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Abstract
Large language models (LLMs) excel at vari-
ous text-related tasks. However, it is still chal-
lenging for them to process graph data such as
molecules. To bridge this gap, this paper pro-
poses Graph2Token, an efficient solution that
aligns a graph token to LLM tokens. The key
idea is to represent a graph token with the LLM
token vocabulary, without finetuning the back-
bone of LLM. In this way, we can unleash the
potential of existing LLMs, which helps the down-
stream molecule prediction tasks. Extensive ex-
periments demonstrate the effectiveness of our
proposed Graph2Token. Code is available at
https://github.com/ZeLeBron/Graph2Token.

1. Introduction
Large language models (LLMs) are primarily designed for
textual data processing. Their capability to handle graph-
structured data such as molecules is not clearly defined.
This presents a challenge as graph data requires a different
approach compared to textual data. Extending the function-
ality of LLMs to effectively process and analyze molecules
will open up opportunities for molecule related tasks.

To apply LLMs for molecule tasks, existing solutions often
involve converting molecule structures into a format that can
be processed by the model. One common approach is to use
Simplified Molecular Input Line Entry System (SMILES)
notation, which represents molecules as text strings (Fig.
1.(a)). Zhao et al. (2023b) employs SMILES as a molecule
representation and utilizes in-context learning to guide Chat-
GPT in understanding molecule structures. However, a
significant limitation of LLMs is their lack of understand-
ing of molecule representations in SMILES strings, which
in many cases leads to inaccurate or inconsistent results
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Figure 1. Different approaches of feeding molecules to LLMs.

(Zhao et al., 2023b). This highlights the challenge of using
SMILES as a representation for molecule data within the
context of LLMs.

Another line of methods involves converting molecule
graphs into textual representations before feeding it to the
model (Fig. 1.(b)). These methods typically involve describ-
ing the adjacency relationships between nodes of the graph
and representing the properties of nodes using text (Wang
et al., 2024; Fatemi et al., 2023; Zhao et al., 2023a; Liu &
Wu, 2023). Combined with zero-shot or more advanced
few-shot learning techniques, as well as prompting methods,
they guide LLMs in understanding complex topological rep-
resentations of the graph. This approach leverages textual
representations to bridge the gap between graph structures
and the language understanding capabilities of large lan-
guage models, thereby facilitating the comprehension of
intricate molecule architectures. However, the pure textual
representation of structured data is insufficient for conduct-
ing graph reasoning using LLMs.
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Figure 2. The model architecture of Graph2Token. Given an input instruction and a graph, we first (a) tokenize and embed them via LLM
tokenizer and designed graph tokenizer. The graph tokenizer aligns the unknown graph token to the LLM embedding space through (b)
encoding graph structures and projecting them into joint representation space with LLM. After that, the trainable alignment function (c) is
used to learn a set of coefficients to weight LLM token vocabulary, aiming to translate the graph token embedding from the joint space to
LLM space. Then, the graph token embedding and instruction embeddings are collectively fed into the frozen LLM backbone. Finally, the
graph token embedding is extracted and fed into the output layer to make graph-level predictions.

Given the limitations of structured data in textual represen-
tations, researchers are exploring the use of instruction fine-
tuning (Fig. 1.(c)). This involves leveraging the relationship
between structured data and textual descriptions to align
them in embedding space by fine-tuning a small number of
parameters. This approach aims to address the inadequacies
of representing structured data in text by aligning it more
closely with textual descriptions through targeted adjust-
ments in the model. Cao et al. (2023) leverages a linear
mapping alignment approach, with the aim of fully map-
ping molecule graph structures into the embedding space of
LLM. When addressing downstream tasks, they finetune the
alignment model and selectively generalize some parame-
ters of LLM to different tasks. Similarly, Liu et al. (2023b)
employs the more complex mapping technique Qformer (Li
et al., 2023) to achieve cross-modal mapping from molecule
graphs to text embedding space. The aforementioned work
relies heavily on high-quality molecule-text paired datasets.
However, in the field of biology, relevant data is often scarce,
hindering the ability to provide the required quantity and
quality of data as in the field of computer vision. As a result,
the full potential of large language models in tasks related
to biological molecules cannot be realized.

In this paper, we propose Graph2Token, a simple and effi-
cient solution, which aligns graph tokens to large language

model tokens. The key idea is to learn a graph token repre-
sentation using the LLM token vocabulary. In this way, a
graph token can be naturally adapted by the LLM, without
the costly fine-tuning. Intuitively, for LLMs to comprehend
an unseen graph token from scratch, the ideal scenario is
to generate a new representation rooted in their existing
knowledge. Building upon this insight, we propose a novel
alignment strategy that utilizes a learnable combination of
tokens pre-trained by LLM to represent the graph tokens.
Graph2Token achieves the SOTA performance on molecule
property prediction tasks with only a fraction of the train-
able parameters (fewer than 4.2 million) typically required
by existing methods. Our main contributions include:

• We design a lightweight token alignment approach that
can adapt a molecule graph token to LLMs.

• By extensive experiments, we show that the proposed
approach achieves superior performance.

2. Method
Our model architecture is illustrated in Figure 2, which
leverages the vocabulary of LLM to learn a graph token
representation, enabling the LLM to understand a graph
token and accomplish molecule-level tasks without the need
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of fine-tuning the backbone model. The input can be for-
malized as texts like: ”The HOMO-LUMO gap is the en-
ergy difference between the highest occupied molecule or-
bital (HOMO) and the lowest unoccupied molecule orbital
(LUMO) in a molecule. What is the HOMO-LUMO gap
of this molecule? <graph>”. It can be seen that the input
to LLMs consist of task-relevant instructions and a special
graph token. The instruction serves as a straightforward yet
effective way to task-specific activation of LLMs. It can be
directly translated into token embedding by LLM tokenizer.
For the placeholder <graph>, it represents the molecule
graph token that corresponds to the graph structure embed-
ding. However, the mismatch between graph embeddings
and the semantic space of LLM has become a barrier to the
understanding of graph token. To bridge the gap, we define
a graph tokenizer towards translating graph structure into
representations that LLMs can understand.

2.1. Graph Encoder

Considering a molecule graph G = (V, E) with vertex set V
and edge set E . Let X and E be the node and edge feature
matrix. The graph tokenizer maps the molecule graph into
the LLM embedding space with three steps. First, since a
graph structure encoder needs to effectively extract node
representations while preserving connectivity information
of the molecule graphs to accurately capture these features,
we apply a graph neural network (GNN) (Zhou et al., 2022)
as the initial encoder:

g = GNN(V, E ,X,E), (1)

where g ∈ Rd is the graph embedding with d dimensions.
It’s worth noting that our method is not limited to the use
of specific GNN. In general, GNN models with greater ex-
pressive power possess better capabilities to represent graph
topology (Zhang et al., 2023), enabling them to encode
structural information more relevant to molecular property.

2.2. Graph Token Alignment

Next, in order to project graph features to the joint represen-
tation space of LLM, a lightweight layer is introduced:

h = Wg ∗ g + bg, (2)

where h ∈ Rd∗
is the graph token embedding with d∗ being

the dimension of LLM token embeddings.

Initially, a graph token embedding is incomprehensible for
LLMs. To address this issue, we propose an innovative align-
ment strategy for aligning graph tokens with the semantic
space of large language models. This approach harnesses
the pre-trained token embeddings from LLM and trains a
linear combination function to redefine the representation
of a graph token, which effectively bridges the gap between
graph structure and the semantic understanding of LLMs.

The proposed alignment strategy starts by augmenting the
vocabulary of the large language model with graph token
embeddings from a joint representation space. Subsequently,
all token embeddings in the augmented vocabulary are re-
trieved, and each is multiplied by a learnable coefficient. Fi-
nally, the weighted token embeddings are aggregated across
corresponding feature channels to yield a new representa-
tion of the graph token. Given the LLM token vocabulary
C and graph token embedding h, the learnable alignment
process is defined as follows:

z = (Walign([C⊤||h⊤]) + balign)
⊤, (3)

where C ∈ RN|C|×d∗
is the LLM token vocabulary with

N|C| indicates the vocabulary size.
[
·∥·

]
represents the con-

catenation operation. A detailed illustration of the above
process is shown in Figure 2(c). z ∈ Rd∗

is the final trans-
lated graph token embedding in the LLM embedding space.
After the alignment, the embedding of graph token is con-
catenated with the instruction and then fed into the LLMs.

2.3. Output Layer

Upon packaging and forwarding the instructions and graph
structure embeddings through the frozen LLM backbone, we
discard the prefix portion to obtain the output representation
aiming to adapt the graph level tasks. Subsequently, we
flatten these representations and apply a linear projection to
derive the final predictions.

We can see that the trainable parameters in our Graph2Token
primarily consist of the graph tokenizer module and the out-
put layer, which are negligible compared to the parameters
of LLMs. By having the original parameters of the LLMs
frozen, Graph2Token preserves their inherent semantics and
functionality.

3. Experiment
In this section, we evaluate Graph2Token on the graph-level
tasks. Details of the datasets are given in Appendix A.

Table 1. Performance (Mean Absolute Error) comparison with
LLM-based Generalist Models on the three molecule regression
tasks (HOMO, LUMO, ∆ϵ) on QM9 dataset. The best results are
in bold, and the second best are underlined.

Method HOMO ↓ LUMO ↓ ∆ϵ ↓ AVG ↓

LLama2-7B 0.7367 0.8641 0.5152 0.7510
Vicuna-13B 0.7135 3.6807 1.5407 1.9783
Mol-Instruction 0.0210 0.0210 0.0203 0.0210
InstructMol-G 0.0060 0.0070 0.0082 0.0070
InstructMol-GS 0.0048 0.0050 0.0061 0.0050
Graph2Token 0.0040 0.0039 0.0063 0.0047
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Table 2. Results (ROC-AUC) on molecule classification tasks on three types of datasets: pharmacokinetic (BBBP), bio-activity (BACE,
HIV), toxicity (TOX21). The best results are in bold, and the second best are underlined.

Method Type Method BBBP ↑ BACE ↑ HIV ↑ TOX21 ↑ Avg↑

Supervised Learning GIN 67.8 76.8 76.5 73.9 73.8
GT 68.7 77.2 74.2 75.5 73.9

Graph Pretrain Finetuning GraphMVP-C 72.4 81.2 77.0 74.4 76.3
Mole-BERT 70.8 79.3 76.0 75.9 75.5

MolFM 72.9 83.9 78.8 77.2 78.2
SimSGT 72.3 83.6 77.7 75.7 77.3

LLM-Based Tuning Llama-2-7B-chat 65.6 74.8 62.3 - 67.6
Vicuna-v1.3-7B 60.1 68.3 58.1 - 62.6

MolCA-S 70.8 79.3 - 76.0 75.4
MolCA-GS 70.0 79.8 - 77.2 75.7

InstructMol-G 64.0 85.9 74.0 - 74.6
InstructMol-GS 70.0 82.3 68.9 - 73.7
Graph2Token 73.5 85.0 79.4 79.2 79.3

As explained, Graph2Token serves as a general graph to-
ken alignment method that does not rely on specific graph
encoders or LLMs. In this work, we employ the Graph
Isomorphism Network (GIN) (Xu et al., 2018) as the graph
encoder and Vicuna-v1.5 7B (Chiang et al., 2023) as LLM
backbone. To ensure a fair comparison with previous GNN-
based baselines, we follow the same setup as in GraphMVP
(Liu et al., 2021), which used single features of atoms and
bonds. For the molecule datasets, we adopt the scaffold
splitting way to divide the data into training, validation,
and test sets with a ratio of 0.8, 0.1, and 0.1, respectively.
Additional setup is given in Appendix C.

3.1. Experiment 1: Overall Performance

In this experiment, we train Graph2Token on molecule
datasets for graph regression and classification tasks. De-
tails of baseline models are provided in Appendix B. All
baseline results are quoted from (Liu et al., 2024; Cao et al.,
2023). As we can see, Graph2Token achieves the superior
performance on both graph classification tasks and regres-
sion tasks compared with the existing methods, especially
for the methods based on LLM-Based tuning. It demon-
strates the advantage of Graph2Token in considering the
alignment of graph structures to the LLM tokens.

3.2. Experiment 2: Few-shot Performance

LLMs have exhibited remarkable capabilities in few-shot
learning (Liu et al., 2023a). In this section, we assess
whether Graph2Token can maintain the few-shot learning
capabilities when translating graph structures into LLM em-
bedding space. The experiments are conducted to use only
5% and 10% of the full training set. The results are shown

in Tab. 3. It can be observed that Graph2Token has a sig-
nificant advantage in few-shot learning scenario on graph
tasks, achieving average improvements of 8.63% and 6.11%
compared to GIN, respectively, when using 5% and 10%
of the training samples. The ability of Graph2Token that
generalize to few-shot graph learning is indeed attributed
to graph tokens alignment and the inherent generalization
capabilities of LLMs. Our approach of aligning graph to-
kens to the LLM embedding space can unlock its potential
for graph-level tasks.

Table 3. Few-shot learning on 5% and 10% training data. Results
on classification dataset using roc-auc as metric.

Ratio Dataset Graph2Token GIN GCN

BBBP 64.7 61.8 64.4
5% BACE 73.2 64.4 65.1

HIV 68.5 66.2 62.7
TOX21 70.6 62.6 58.4

BBBP 69.5 66.9 67.0
10% BACE 74.6 68.1 64.6

HIV 69.7 66.9 60.0
TOX21 71.2 66.7 68.4

4. Conclusion
In this work, we propose Graph2Token, which aims to make
LLMs understand a graph via aligning a graph token to
LLM token. Graph2Token is a lightweight solution that
adapts a graph token to LLMs without costly fine-tuning
while achieving competitive performance.
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A. Datasets Details.
All the datasets used in the experiment are from MoleculeNet (Wu et al., 2018) and can be classified as those for pharma-
cokinetic, bio-activity, toxicity and quantum chemistry. The detailed information is as follows:

• BBBP: Blood-brain barrier penetration (membrane permeability).

• BACE: Qualitative binding results for a set of inhibitors of human β-secretase 1.

• HIV: Experimentally measured abilities to inhibit HIV replication.

• TOX21: Toxicity data on 12 biological targets, including nuclear receptors and stress response pathways.

• QM9: A quantum chemistry dataset containing approximately 134,000 molecules in equilibrium states, covering
various physical and chemical properties.

B. Baselines.
The baseline models used for comparisons include:

• Supervised learning: GIN (Xu et al., 2018); GT (Wu et al., 2021).

• GNN Pretrain Finetuning:
Graph Pre-training method GraphMVP-C (Liu et al., 2021) combined with 3D geometric information;
Graph pre-training methods (Xia et al., 2022; Liu et al., 2024) based on attribute masking;
Multi-modal Graph Pre-training Method MolFM (Luo et al., 2023).

• LLM-based Tuning:
Lora finetuning (Hu et al., 2021) for Llama-2-7B-chat (Touvron et al., 2023), Vicuna-v1.3-7B (Chiang et al., 2023) and
Mol-Instruction (Fang et al., 2023); Cross-modal mapping methods based on LLMs: MolCA (Liu et al., 2023b) and
InstructMol (Cao et al., 2023). ’-GS’ indicates the use of SMILES or SELFIES as prompt in LLM inputs.

Table 4. Hyperparameter settings on classification and regression tasks.

Hyperparameter BBBP, BACE, TOX21 HIV QM9

GNN Hidden Dim. 300 300 300
GNN Num. Layers 5 5 5
GNN Readout mean mean mean

Output Hidden Dim. 256 256 256
Output Activate Func. relu relu relu

Batch Size 16 16 16
Initial LR 1e-4 1e-5 1e-4
Min LR 1e-6 1e-6 1e-5
Warm. LR 1e-7 1e-7 1e-6
LR Dec. Rate 0.9 0.9 0.9
Warm. Steps 1000 1000 1000
Optim. adamw adamw adamw

C. Experiment Setup.
All experiments are conducted on NVIDIA GEFORCE GTX4090 GPU servers. The molecule datasets are divided into
training, validation, and test sets according to the scaffold splitting way with a ratio of 8:1:1. As mentioned in Section 2,
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the inputs to LLMs consist of a task-related instruction and a special graph token that corresponds to a molecule graph
representation. For the settings of atom features and bond features in molecule graph, we follow the configuration in the
baseline works (Liu et al., 2021; Xia et al., 2022; Liu et al., 2024) and only use [atom type, chirality tag] and [bond type,
bond direction]. The trainable parameters of Graph2Token are within the graph tokenizer and the output layer. The graph
structure encoder utilizes Graph Isomorphism Network (GIN), with the hidden layer dimension set to 300, 5 layers of graph
convolutional network, and the mean function for graph pooling. The alignment function, which is the core operation of the
graph tokenizer, comprises 32,001 learnable coefficients. In the output layer, a simple nonlinear multi-layer perceptron
(MLP) is applied, with a hidden layer feature dimension of 256 and the ReLU function as the nonlinear activation function.
For graph classification tasks, cross-entropy loss is employed as the training objective, and roc auc score is used as the
evaluation metric during testing. On the other hand, mean absolute error (MAE) is adopted as both the training target and
the evaluation metric for graph regression tasks. Other hyperparameter configurations used in our experiments are shown in
Tab. 4.

It can be seen that Graph2Token is a lightweight solution for LLMs to understand graph. Compared to recent molecule
graph mapping approaches that have about 100M parameters (Liu et al., 2023b), or even parameter-efficient fine-tuning of
LLMs models that have about 8M parameters, Graph2Token only has less than 4.2M trainable parameters.

D. Ablation Study.
In this section, we attempt to remove the alignment part in the graph tokenizer and explore the effectiveness of utilizing
LLM vocabulary for mapping graph embedding into LLM semantic space. The results are shown in Figure 3. It clearly
shows that when utilizing the LLM vocabulary to learn graph embeddings in the graph tokenizer, there is a significant
performance improvement in graph-level tasks. Specifically, the Graph2Token approach achieves an improvement of 3.8%
and 5.5% on the BBBP and BACE datasets, respectively. The results indicate that the alignment strategy proposed in this
paper plays a crucial role in effectively mapping graph embeddings into the semantic space of LLM.
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Figure 3. Performance comparison with the removal of the alignment part in the graph tokenizer on molecule graph classification tasks on
BBBP and BACE datasets.
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