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Abstract

Inferring relationships between entities in a
knowledge graph (KG) is vital for numer-
ous downstream applications such as semantic
search, ontology construction, and personalized
learning. However, many domains lack suffi-
cient labeled data to train robust relationship
inference models. In this paper, we present
an Expert-in-the-Loop Few-Shot Prompting ap-
proach (EFP-KGRI) to perform LLM-Assisted
relationship inference in KGs. Our framework
leverages a large language model (LLM) to gen-
erate pseudo-labeled entity pairs, creating an
initial set of positive (relationship present) and
negative (no relationship) examples even in the
absence of ground truth. We then fine-tune or
calibrate these initial labels using embedding-
based similarity scores and an active learning
loop where expert feedback resolves uncertain
cases. Experiments on both general-purpose
encyclopedic KGs and specialized educational
KGs demonstrate that EFP-KGRI significantly
outperforms unsupervised baselines and naive
LLM classification. By combining few-shot
prompts, LLM self-consistency checks, and ex-
pert validation, we achieve more accurate and
scalable relationship inference, effectively ad-
dressing the cold-start problem in knowledge
graph completion.

1 Introduction

Knowledge Graphs (KGs) serve as critical infras-
tructures for structuring entities and their relation-
ships across diverse domains, including search, rec-
ommendation, and education (Nickel et al., 2015;
Hogan et al., 2021; Wang et al., 2024b). Despite
the utility of KGs, relationship inference, identi-
fying whether a specific relation (e.g., precedes,
subclass of, requires) holds between two entities,
often struggles when insufficient labeled data exists
to train or calibrate models (Lin et al., 2015). Clas-
sic supervised methods and purely unsupervised
embedding-based approaches both face limitations
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Figure 1: An overview of EFP-KGRI. (1) The LLM
bootstraps an initial set of pseudo-labeled positives and
negatives, then performs a self-consistency pass. (2)
Entities are mapped to embeddings, and pairwise simi-
larity scores are computed. (3) A calibration step fuses
LLM labels with embedding scores to tune « and 7.
(4) The resulting confidence function is applied to all
entity pairs, and (5) borderline cases are submitted to ex-
perts for validation or correction, updating the few-shot
prompt in an active learning loop.

in cold-start scenarios: the former cannot learn
without ground-truth labels, while the latter may
over- or under-predict relationships without reli-
able guidance (Bordes et al., 2013; Nickel et al.,
2015).

Recent advances in Large Language Models
(LLMs) (Brown et al., 2020; Chowdhery et al.,
2023), such as GPT-3.5 or GPT-4, offer new av-
enues for zero-shot and few-shot knowledge ca-
pabilities, using prompts that encode minimal ex-
amples for a target relation (Petroni et al., 2019;
Schick and Schiitze, 2020). However, LLMs alone
can produce inconsistent or hallucinated outputs,
particularly outside mainstream domains (Maynez
et al., 2020; Ji et al., 2023). Merely querying an
LLM for each entity pair also lacks a systematic
check on correctness, potentially generating noisy
or biased relationship labels.



To address these challenges, we propose an
Expert-in-the-Loop Few-Shot Prompting pipeline
for LLM-Assisted Knowledge Graph Relationship
Inference (EFP-KGRI) as shown in Figure 1. First,
we exploit the LLM’s generative capacity to boot-
strap initial sets of positive (relation-holding) and
negative (no relation) pairs, thereby creating a
pseudo-ground truth even in a cold-start scenario.
We then integrate embedding-based similarity to
calibrate thresholds, and employ an active learning
loop (Settles, 2009) where domain experts or re-
fined LLM queries resolve uncertain or conflicting
cases, iteratively enhancing label quality.

In experiments on several KGs, one encyclope-
dic and multiple specialized graphs, our method
consistently outperforms unsupervised baselines
and naive LLM classification, demonstrating that
few-shot prompts, LL.M self-consistency checks,
and expert validation together yield robust relation-
ship inference. Crucially, the system minimizes ex-
pert workload by targeting only high-uncertainty or
high-disagreement edges, addressing the cold-start
problem with minimal reliance on existing labels.
By bridging LLM reasoning, data-driven evidence,
and focused human feedback, EFP-KGRI offers
a practical and scalable blueprint for building ac-
curate knowledge graphs even when labeled data
are scarce. The contribution of this work can be
summarized as:

1. We propose EFP-KGRI, a novel approach that
integrates LLMs, embedding-based similarity met-
rics, and expert-in-the-loop feedback, to itera-
tively infer and validate relationships in knowledge
graphs from various domains.

2. The proposed approach enlists domain experts
only for uncertain or conflicting cases, optimizing
annotation effort and steadily improving the accu-
racy of inferred relationships.

3. We present results on both encyclopedic and
specialized KGs, demonstrating that our method
outperforms unsupervised baselines and naive
LLM classification in multiple settings.

2 Related Work

Knowledge Graph Relationship Inference. KGs
have become prominent for organizing large-scale
structured information (Nickel et al., 2015; Hogan
et al., 2021). Classical methods for relationship
inference of KGs range from embedding-based ap-
proaches, such as TransE (Bordes et al., 2013),
DistMult (Yang et al., 2014), or CompIEX (Trouil-

lon et al., 2016), to more recent graph neural net-
works (GNN5s) (Schlichtkrull et al., 2018) capturing
rich structural patterns. However, these methods
typically presume the existence of some labeled
edges for training or tuning hyperparameters (Lin
et al., 2015). In truly cold-start scenarios, where no
ground-truth relationships are available, purely un-
supervised strategies can produce noisy or biased
predictions (Nickel et al., 2015). In the absence of
labeled data, purely unsupervised strategies often
produce suboptimal results.

Large Language Models for Knowledge Extrac-
tion. Transformer-based LLMs (Brown et al.,
2020; Chowdhery et al., 2023) have demonstrated
strong performance on zero-shot or few-shot tasks,
including text classification and knowledge-based
question answering (Radford, 2018; Schick and
Schiitze, 2020). GPT-style models can often be
prompted to identify relationships between entities,
leveraging their internal knowledge. Prior work has
explored using LL.Ms for tasks like named entity
recognition or relation extraction from text (Petroni
et al., 2019). While LLMs can be surprisingly ac-
curate, they can also hallucinate or supply spuri-
ous answers, particularly in domain-specific con-
texts (Maynez et al., 2020; Ji et al., 2023). Prior
work has examined ways to reduce hallucinations
via chain-of-thought reasoning (Wei et al., 2022)
or calibration metrics (Kadavath et al., 2022). Our
method extends these ideas by applying few-shot
prompts to generate both positive and negative
entity pairs for a target relationship. In contrast
to prior work that typically focuses on extracting
known facts from text (Levy et al., 2017; Bosse-
lut et al., 2019), we use the LLM to bootstrap en-
tirely new labeled pairs in the absence of any initial
ground truth, then apply embedding-based checks
to mitigate errors.

Active Learning and Expert-in-the-Loop Sys-
tems. Active learning (Settles, 2009; Zhang et al.,
2022) aims to reduce labeling costs by selectively
querying a human annotator (or an oracle) for the
most informative samples. In knowledge graph
contexts, this can mean focusing on edges near the
decision boundary or areas where different mod-
els disagree. Expert-in-the-loop pipelines (Ratner
et al., 2019) have proven especially valuable in
specialized domains (e.g., medical, legal, and edu-
cational KGs) where domain expertise is essential.
Our framework seamlessly integrates an expert step
to validate or correct uncertain cases suggested by
either the LLM or our similarity-based model.
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Prompt:
We have the following relationship: “R”:
(e.g., “precedes” or “depends on”).
Examples:
(ey, €3): Yes, because . . .
(e3,e4): No, because . . .

Prompt:
You labeled the following pairs as
Yes/No for the relationship “R*:
(eq ep): Yes
(ec,eq): No

Please review each pair and mark
any that seem incorrect or am-
biguous,with a brief explanation.

Now please generate N new pairs
where “R” holds, and 10 pairs where
“R” does not hold.

Figure 2: Illustration of the few-shot prompt and the
self-consistency prompt used in our pipeline.

3 Method

In this section, we elaborate on our EFP-KGRI
(Expert-in-the-Loop Few-Shot pipeline for LLM-
Assisted Knowledge Graph Relationship Infer-
ence). The overall framework aims to address cold-
start labeling by harnessing an LLM to generate
pseudo-labeled pairs (both positive and negative),
integrate embedding-based similarity for threshold
calibration, and iteratively refine uncertain cases
with expert or additional LLM feedback. Figure 1
illustrates the pipeline of EFP-KGRI.

3.1 LLM-Driven Bootstrapping

Our system begins with an unlabeled set of enti-
ties {e1, €2, ..., e, }. We aim to generate an initial
labeled dataset Dpseuqo indicating whether each en-
tity pair (es, e;) holds a target relationship r. This
step is critical for cold-start scenarios, where no
ground truth is available.

Few-Shot Prompt Construction We first hand-
craft a small few-shot prompt that demonstrates
how to label relationships. This prompt includes
a handful of positive examples (where r indeed
holds) and negative examples (where r definitely
does not). Each example includes: (1) A short de-
scription of the entities involved. (2) A label: “Yes”
(relationship holds) or “No” (relationship does not
hold). (3) A brief rationale.

After listing these seed examples, we instruct
the LLM to generate new pairs of entities, labeling
each as “Yes” or “No” and optionally providing
brief reasoning. We use DeepSeek-R1 (DeepSeek-
Al et al., 2025). A simplified example is shown
in the left of Fig. 2. This approach bootstraps a
labeled set of both positive and negative examples,
using the LLM’s internal world knowledge and
language understanding.

Self-Consistency Verification We collect the
newly generated pairs {(es,e;)} and their
labels{y }, and present them back to the LLM with

a verification prompt shown in the right of Fig. 2.
The LLM may identify contradictory or dubious re-
lationships (especially in domain-specific contexts)
and mark them for exclusion or reevaluation. Then,
we remove pairs flagged by the LLM as incorrect
or highly uncertain. The remaining examples con-
stitute our pseudo-labeled dataset Dyseudo. Each
pair (eg, e;) has a label y € {Yes, No}, reflecting
the LLM’s best guess.

Through this procedure, we obtain an initial
set of positive and negative pairs—despite having
no original ground truth. In subsequent stages,
these pseudo-labels are refined and validated us-
ing embedding-based thresholds and expert-in-the-
loop checks, as described in Sections 3.2 and 3.3.

3.2 Embedding-Based Calibration

While the LLM-generated pseudo-labels offer a
valuable initial signal for relationship inference,
relying solely on LLM outputs can lead to hal-
lucinations or overgeneralizations—especially in
domain-specific contexts. To address this, we inte-
grate embedding-based entity representations and
threshold calibration to (1) align the LLM’s textual
reasoning with data-driven evidence, and (2) filter
out implausible or contradictory cases.

Entity Embeddings. We begin by converting each
entity e; into a vector representation v; € R?. The
choice of embedding model depends on the avail-
able data: If each entity e; is accompanied by a
textual descriptor (e.g., a short Wikipedia para-
graph, an abstract, or a definition), we can use a pre-
trained transformer (e.g., BERT, RoOBERTa, SciB-
ERT if domain-specific) or embedding models (e.g.,
text-embedding-3-small or voyage-3) to generate a
sentence-level or document-level embedding. We
use the embedding of DeepSeek-V3 (DeepSeek-Al
et al., 2024). Formally,

v; = Encoder(Text(e;)), (1)

where Encoder could be a transformer with a
[CLS] token output or mean pooling of contex-
tual embeddings. This approach leverages distribu-
tional semantics, capturing relevant domain knowl-
edge from large-scale pretraining corpora.

If partial KG or adjacency information (exclud-
ing the target relationship) is available, we can learn
graph embeddings (e.g., node2vec, DeepWalk, or a
GNN-based approach). Each node e; is represented
by a vector v; that encodes structural proximity to
other nodes already in the graph. Such methods are



beneficial when textual descriptions are sparse or
inconsistent. Depending on data availability, one
can also combine text-based and graph-based fea-
tures (e.g., by concatenating the two embedding
vectors). In all cases, the result is a consistent rep-
resentation v; for each entity e;.

Similarity Computation. Once we have embed-
dings, we define a similarity function sim(-, -) for
each pair (eg, e;). As there are many choices such
as Cosine Similarity, Dot Product and Distance-
Based Measures, for simplicity, we use Cosine
Similarity in our experiments (Section 4), as it han-
dles varying embedding magnitudes and is widely
employed in semantic tasks:

Vg Vg
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sim(es, €1) = ()
Fusing LLM Outputs with Embedding Scores.
The target is to combine LL.M-generated pseudo-
labels, particularly the “Yes” or “No” assignments
from Section 3.1, with embedding-based similarity
to produce a confidence value for each pair. This
helps reduce false positives from LLM hallucina-
tions and false negatives from purely unsupervised
embeddings.

Given a pair (es, e;) labeled Yes by the LLM,
define the binary indicator:

1, if LLM says Yes,
L €s,€t) = 3
Li(es, &) {0, if LLM says No. ©)

Then, we get the confidence score by blending the
LLM label with the embedding similarity via a
weighted sum:

Conf(eg, ;) = “4)

a- Lipm(es,er) + (1 — ) sim(eg, e;),

where a € [0, 1] is a hyperparameter controlling
how much trust we place in the LLM’s classifica-
tion. Intuitively, if the LLM says “Yes” (= 1) and
the similarity is also high, Conf becomes large. If
the LLM says “No,” Conf is primarily determined
by sim(es, e;). There may also be alternative ap-
proaches. In specialized domains, one may replace
Lyim with a confidence score from the LLM or
use a logistic/softmax transform on the similarity.
The key is ensuring alignment between textual rea-
soning and the numeric evidence from embeddings,
rather than relying on a single source.

Threshold Tuning. To binarize relationships de-
ciding whether a pair (e, ;) truly holds the target

relation r, we define a threshold 7 on the confi-
dence score:

N Yes,
y(es7 et) = {

if Conf(es,e¢) > T,

otherwise.

5
No, )

Recall from Section 3.1 that we have a pseudo-
labeled dataset Dpgeudo- Each pair has an LLM-
assigned label {Yes, No}. We treat Dpyseudo as a
development set for tuning o and 7. Specifically,
we iterate over candidate values (e.g., a grid search)
and pick the pair (o, 7) that optimizes a chosen
metric, commonly AUROC or balanced accuracy.
The procedure is the following:

1. For each candidate cv, compute Conf (e, ;) for
all pairs in Dpgeudo-

2. Sweep 7 from 0 to 1 (or from min to max of
the confidence distribution). At each 7, calculate
AUROC.

3. Choose 7* that yields the best AUROC for a.

4. Finally, select the o* that leads to the highest
performance.

We then apply the chosen « and 7 to all entity
pairs (not just the ones in Dpygeudo), producing a
preliminary classification “Yes” or “No” for each
pair. This calibration step is crucial: it grounds
the LLM’s guesses in a numeric measure of seman-
tic similarity and systematically filters improbable
relationships.

To conclude, the embedding-based calibration
step serves two main functions: mitigating LLM
hallucinations and handling conflicting signals. If
the LLM labels an entity pair as “Yes” but their em-
beddings are extremely dissimilar, the fused con-
fidence score may remain below the threshold 7,
thus overriding or downgrading a likely incorrect
assignment. In cases where the LLM says “No”
but the similarity is very high, there may be a mis-
match between the LLM’s textual reasoning and
domain-specific knowledge. Such pairs could be
flagged as potentially uncertain for expert review
(see Section 3.3).

3.3 Expert-in-the-Loop Active Learning

While LLM bootstrapping (Section 3.1) and
embedding-based calibration (Section 3.2) provide
a solid starting point, some entity pairs remain un-
certain or in conflict with domain knowledge. This
is especially true in specialized areas where the
LLM’s training data may be sparse or where embed-
ding models yield ambiguous signals. To address
these gaps, we adopt an active learning framework



in which expert feedback (or further refined LLM
queries) is solicited for pairs most likely to improve
our overall system performance.
Identifying Uncertain or Disputed Pairs. Af-
ter computing a confidence score Conf/(es, e;) and
deciding a threshold 7, we measure each pair’s dis-
tance from 7. Pairs with Conf (e, e;) close to T are
deemed “borderline” and potentially high impact
for labeling. If the LLM confidently says “Yes” but
the embedding similarity is extremely low (or vice
versa), we flag this discrepancy. Such mismatches
often indicate incoherent or hallucinated relation-
ships, or overlooked domain nuances. We collect a
batch of these uncertain or disputed pairs (/. Rather
than verifying all pairs (which may be in the tens or
hundreds of thousands), we focus only on the small
subset where additional labeling is most valuable.
Expert Validation. In many domains, domain ex-
perts can give reliable judgments on whether the
target relation r holds for a pair (e, e;). We present
these pairs in a concise interface, including mini-
mal context (e.g., textual descriptors, any partial
KG links, or the LLM’s rationale), so the expert
can quickly determine if the pair is “Yes” or “No.”
After done by an expert or a refined LLM query,
each pair in U receives a final label (“Yes” or “No”™)
and, ideally, a brief explanation. These validated
pairs then form a new increment of ground truth.
Updating the Model and Few-Shot Prompt.
Newly validated pairs U/ are added to our labeled
set Dpseudo, effectively correcting or reinforcing
earlier LLM outputs. If certain pairs contradict
the LLM’s original label, we override them with
the new expert label, thus cleaning up false posi-
tives/negatives. Moreover, if the newly confirmed
pairs differ significantly from the pseudo-labeled
distribution, we may re-optimize the threshold 7
and weight . In practice, re-tuning may be per-
formed only after a substantial batch of updated la-
bels to avoid overfitting. Particularly interesting or
representative corner cases (e.g., relationships that
consistently confuse the LLM) can be integrated
into the few-shot prompt. By showing the LLM
exactly how certain tricky pairs were resolved, we
guide it toward improved consistency in subsequent
iterations. To summarize, we iterate the process of:
1. Classifying all entity pairs using the current
best threshold 7.

2. Selecting the most uncertain or contradictory
pairs for review.

3. Validating them via expert.

4. Updating the labeled set and optionally re-
tuning 7 and «.
We repeat this cycle until diminishing returns make
further active learning unnecessary. This approach
maximizes the utility of limited human interven-
tion, where experts only evaluate pairs that are truly
unclear, rather than exhaustively labeling the en-
tire graph. This synergy between human validation
and machine learning ensures a more robust, iter-
atively improving approach to knowledge graph
relationship inference.

3.4 Summary of the EFP-KGRI Pipeline

We have described the EFP-KGRI pipeline in three
key stages: 1. LLM-Driven Bootstrapping (Sec-
tion 3.1) We use a carefully designed few-shot
prompt to have the LLM generate pseudo-labeled
pairs of entities, both positive (relationship present)
and negative (no relationship). A self-consistency
pass filters contradictory or low-confidence pairs,
resulting in an initial labeled set Dpseudo-

2. Embedding-Based Calibration (Section 3.2)
We convert entities to embeddings (using text or
structural features) and define a similarity measure.
We then fuse the LLM labels with similarity scores
into a confidence value, and calibrate a threshold 7
to separate “Yes” from “No.” This helps mitigate
LLM hallucinations and aligns textual reasoning
with data-driven signals.

3. Expert-in-the-Loop Active Learning (Sec-
tion 3.3) We identify uncertain or disputed pairs,
typically near the threshold or where LLM and
embeddings disagree. Experts or refined LLM
prompts validate these pairs, updating the labeled
set and (optionally) re-tuning thresholds. This itera-
tive feedback loop maximizes the impact of limited
human annotations, steadily improving precision
and recall.

Having thus outlined our method, we now move
on to Section 4, where we detail our experimental
setup, baseline comparisons, and empirical results
on two real-world knowledge graphs.

4 Experimental Results

We evaluate EFP-KGRI on six datasets to demon-
strate its ability to infer relationships in KGs. We
begin by describing the datasets and the baselines
(Section 4.1). We then present quantitative and
qualitative results (Section 4.2) and ablation stud-
ies (Sections 4.3 - 4.4 and Appendix F).



4.1 General Settings

Datasets. We evaluate EFP-KGRI on six datasets,
namely IntelliGraphs-syn-types (Thanapalasingam
et al., 2023), CoDEx-S (Safavi and Koutra, 2020),
DBE-KT22 (Wang et al., 2024a), Junyi (Wang
et al., 2024a), WDKG-Course (Wang et al.,
2024a), and WDKG-KnowledgePoints (Wang
et al., 2024a), covering both synthetic/general and
educational domains. IntelliGraphs-syn-types pro-
vides a controlled synthetic environment with typed
entities, while CoDEx-S is a curated subset of
Wikidata reflecting diverse real-world concepts.
DBE-KT?22, Junyi, WDKG-Course, and WDKG-
KnowledgePoints all center on educational knowl-
edge, emphasizing prerequisite or dependency re-
lations at varying granularity from broad course
dependencies to fine-grained knowledge. For each
dataset, we identify a target relationship r (e.g.,
“precedes,” “depends on”). During experiments,
we sampled subgraphs of 50 nodes with connected
structure, then repeated this for ten rounds, and re-
ported the average results to cut cost. Negative ex-
amples are generated via the LLM-based approach
(Section 3.1) or standard random sampling, ensur-
ing balanced sets of positive and negative pairs.
These datasets allow us to gauge the effectiveness
of our pipeline across synthetic, general-purpose,
and education-focused KGs.

Baselines. We compare EFP-KGRI against a set
of both classic and recent KG inference methods,
ensuring coverage of purely embedding-based ap-
proaches and more LLM-centric solutions. Classic
embedding-based methods:

e TransE (Bordes et al., 2013): A translational
embedding approach, interpreting each relation as
a vector r such that vy + r = vy.

* DistMult (Yang et al., 2014): A bilinear method
representing a relation with a diagonal matrix, bal-
ancing simplicity and effectiveness.

* ComplEx (Trouillon et al., 2016): Extends Dist-
Mult by using complex-valued embeddings, better
modeling asymmetric relations.

LLM-based methods:

* BLP (Dazaetal.,2021): Adapts BERT to predict
missing edges by encoding entity descriptions and
training a binary classifier on embeddings.

* KGTS5 (Saxena et al., 2022): A text-to-text trans-
former approach that frames link prediction as a
sequence-to-sequence task.

* SimKGC (Wang et al., 2022): Employs con-
trastive learning over text-enhanced entity represen-

tations, using a PLM to encode entity descriptions
and a similarity-based objective to rank candidate
entities for a given (subject, relation) query.
We also include a direct prompting baseline, with-
out iterative thresholding or expert feedback, to
highlight the difference between naively using an
LLM vs. our integrated pipeline. For each en-
tity pair (e, e;), we prompt an LLM (GPT-4o, ol,
DeepSeek-R1) with: “Does relation r hold between
es and e;? Yes or No?” No additional calibration or
active learning is applied, and any rationale from
the LLM is ignored beyond the final yes/no label.
More details about datasets, models, and hy-
perparameter settings are left in Appendix A, Ap-
pendix B, and Appendix C, respectively.

4.2 Overall Performance

Across all six datasets, IntelliGraphs, CoDEx-S,
DBE-KT?22, Junyi, WDKG-Course, and WDKG-
KnowledgePoints, our EFP-KGRI attains the high-
est AUROC values and outperforms both classic
and modern baselines, as shown in Fig. 3. Tradi-
tional embedding-based techniques (e.g., TransE,
DistMult, and ComplEx) capture broad structural
patterns but frequently struggle with specialized do-
main nuances, particularly in the educational KGs
like DBE-KT22, Junyi, and WDKG series. By
comparison, PLM- or LLM-driven models such as
BLP, KGTS5, SimKGC, GPT-40, o1, and DeepSeek-
R1 benefit from large-scale textual pretraining, yet
typically lack a mechanism to resolve ambiguous
or borderline cases via targeted feedback. In con-
trast, our method combines LLM-based pseudo-
label generation with embedding calibration and
actively solicits expert insight for uncertain edges,
which yields consistently higher AUROC scores.
A closer inspection of the domain-specific
datasets reveals how essential human review can
be for clarifying subtle prerequisite relationships,
such as those in WDKG-Course and WDKG-
KnowledgePoints, where slight conceptual differ-
ences may drive significant variations in perfor-
mance. In these contexts, the Expert-in-the-Loop
step systematically corrects errors that either purely
data-driven or purely LLM-based approaches fail to
catch. Even in the synthetic IntelliGraphs dataset,
which presents a more controlled scenario, our
pipeline’s strategy of fusing LLM reasoning with
numerical checks continues to produce a compet-
itive edge, illustrating that iterative threshold tun-
ing and refinement offer advantages regardless of
whether the domain is synthetic or real-world.
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Figure 3: AUROC values on six datasets for baselines, and EFP-KGRI. Higher bars indicate better performance.

Table 1: AUROC values of various (Embedding, LLM)

Overall, these AUROC results underscore the combinations on the Junyi dataset.

importance of uniting textual reasoning and nu-
merical validation. The synergy between LLM-
generated labels, embedding-based thresholds, and
human oversight creates a robust and adaptable
framework, ensuring that both general-purpose and
domain-specific graphs benefit from iterative error
correction. By aligning LLMs’ strengths with tra-
ditional embedding methods and selective expert
guidance, our pipeline provides a reliable means of
overcoming data scarcity and contextual ambiguity
in KG completion tasks.

4.3 Embedding Model and LLM Combination

While our primary experiments employ DeepSeek-
V3 for entity embeddings and DeepSeek-R1 for
pseudo-labeling, we also investigate alternative
approaches to evaluate their impact on the Junyi
dataset. Table 1 reports the AUROC for each (Em-
bedding, LLM) pairing in Junyi.

Overall, DeepSeek-V3 coupled with DeepSeek-
R1 attains the highest AUROC (0.73), indicating a
strong alignment between this embedding model
and LLM. In contrast, BERT and node2vec typi-
cally yield AUROCSs around 0.60 ~ 0.65 for most
language models, indicating that relying solely on
general textual or structural signals may be insuffi-
cient for capturing fine-grained relationships.

Among the LLMs, DeepSeek-R1 generally out-
performs Claude-3.5-sonnet, GPT-40, and o1, often
by a margin of 4 ~ 5 points in AUROC. Neverthe-
less, o1 achieves respectable scores (e.g., 0.70 with
DeepSeek-V3), showing that a moderate synergy
still emerges when embeddings and LLMs offer
complementary strengths. Meanwhile, Claude-3.5-

Embedding LLM AUROC
BERT Claude-3.5-sonnet 0.60
BERT GPT-40 0.60
BERT ol 0.62
BERT DeepSeek-R1 0.64
node2vec Claude-3.5-sonnet 0.60
node2vec GPT-40 0.60
node2vec ol 0.65
node2vec DeepSeek-R1 0.65
text-embedding-3-small GPT-40 0.62
text-embedding-3-small ol 0.66
text-embedding-3-small DeepSeek-R1 0.71
voyage-3 Claude-3.5-sonnet 0.66
voyage-3 DeepSeek-R1 0.70
DeepSeek-V3 Claude-3.5-sonnet 0.63
DeepSeek-V3 GPT-40 0.64
DeepSeek-V3 ol 0.70
DeepSeek-V3 DeepSeek-R1 0.73

sonnet and GPT-40 hover around 0.60 ~ 0.66, sug-
gesting they perform adequately but may benefit
from additional calibration or prompts to excel.

In summary, these results illustrate the value of

well-aligned embeddings and LLMs: pairings that
closely match each other’s strengths achieve higher
AUROC S, while general-purpose combinations re-
main competitive but less optimal.

4.4 Ablation: Without Expert Feedback

To assess the impact of our expert-in-the-loop
mechanism (Section 3.3), we conduct an ablation
experiment removing human feedback entirely. In
this “No Expert” variant, the pipeline relies solely
on LL.M-generated pseudo-labels and embedding-
based threshold calibration, bypassing any selec-



Table 2: AUROC of Full vs. No Expert Feedback on two
educational datasets. Removing expert checks lowers
AUROC by 6-7 points.

Junyi WDKG-KP.
Full Pipeline 0.73 0.69
No Expert 0.66 0.62
A(avg.) -7.1 pts. -7.0 pts.

tive review of uncertain pairs. Table 2 compares
AUROC scores for the full pipeline versus the No
Expert setting across two representative datasets,
Junyi and WDKG-KnowledgePoints.

Quantitatively, removing expert checks leads
toa 7.0 ~ 7.1 point drop in AUROC. Junyi ex-
periences a 7-point decrease (from 0.73 to 0.66),
while WDKG-KnowledgePoints decreases by 7
points. This pattern underscores the system’s re-
liance on targeted expert validation for resolving
ambiguous or borderline cases. For instance, in
Junyi, fine-grained skill relationships (e.g., “Linear
vs. Quadratic Functions”) often confuse the LLM
alone, resulting in false positives for closely re-
lated concepts and false negatives for slightly more
distant ones. Embedding scores help filter some
errors, but the pipeline still struggles to recognize
overlaps or partial dependencies when experts do
not intervene.

Qualitatively, analyzing misclassifications re-
veals that, in the No Expert condition, nearly half
of the borderline pairs remain mislabeled, espe-
cially those near the similarity threshold or where
the LLM’s textual reasoning conflicts with the
embedding-based signals. In the Full Pipeline,
these pairs are escalated to expert review, where hu-
man oracle confirm or deny the relationship. Such
selective validation consistently corrects errors that
purely automated methods fail to catch.

Additionally, iteration matters: in the Full
Pipeline, each confirmed or corrected label is
folded back into our pseudo-labeled set, refining
future prompts and embedding thresholds. Without
this feedback loop, the pipeline stagnates at a lower
plateau, never improving upon early misclassifica-
tions. These findings highlight that expert checks
are not merely a post-processing step but a core
driver of iterative accuracy gains.

Overall, the ablation demonstrates that expert
involvement is pivotal for handling nuanced rela-
tionships, reducing false positives among closely
related concepts and false negatives among con-
ceptually adjacent topics. While LLM bootstrap-
ping and embedding calibration provide a strong

baseline, omitting selective human oversight can
drop final AUROC by 5 points on average, affirm-
ing that expert-in-the-loop feedback is crucial for
high-fidelity relationship inference. Extra ablation
studies are left in Appendix F.

5 Conclusion

In this paper, we introduced an Expert-in-the-Loop
Few-Shot pipeline for LLM-Assisted Knowledge
Graph Relationship Inference, designed to address
the cold-start problem that arises when little or
no ground-truth data are available. Our approach
combines LLM-driven bootstrapping, embedding-
based threshold calibration, and selective human
feedback, thereby aligning textual reasoning with
data-driven signals while leveraging expert valida-
tion to resolve ambiguous or conflicting pairs.

A key novelty of our method is its iterative de-
sign, in which LLM outputs (pseudo-labeled pairs)
are continuously refined through embedding checks
and an active learning loop. Unlike purely unsuper-
vised or purely LLM-based strategies, our pipeline
leverages both semantic embeddings and targeted
expertise without relying on extensive initial an-
notations. Experimental results across multiple
datasets, ranging from synthetic to educational and
general-purpose knowledge graphs, demonstrate
that our framework consistently outperforms clas-
sic embedding-based baselines and more recent
PLM/LLM-driven approaches.

The significance of this work stems from its
practical and versatile solution to cold-start chal-
lenges in knowledge graph completion. By synthe-
sizing LLLM pseudo-labeling with expert checks,
we can bootstrap relationship inference in new or
sparsely labeled domains. Expert input is directed
precisely where it has the greatest impact, on bor-
derline or uncertain cases, thereby minimizing an-
notation costs while improving inference quality.
Although we focused on prerequisite-like relations,
the pipeline itself can be applied to other hierarchi-
cal or semantic dependencies in diverse knowledge
graphs, making it broadly adaptable.

In future work, we aim to extend the pipeline
to incorporate multi-hop reasoning, richer domain
constraints, and more advanced forms of LLM
self-consistency. Our results indicate a promising
synergy between large language model reasoning
and targeted human oversight, offering a feasible
blueprint for constructing and maintaining accurate
knowledge graphs even under severe data scarcity.



6 Limitations

Despite its promising results, EFP-KGRI has sev-
eral limitations that merit further investigation.
First, the reliance on LLM bootstrapping can in-
troduce biases or hallucinations when the model
encounters unfamiliar domain concepts, especially
if its training data are limited in scope. While the
active learning loop partially mitigates these issues
through expert validation, large-scale or highly spe-
cialized knowledge graphs may still require more
rigorous filtering or dedicated domain-tuned LLM:s.
Second, our method’s efficiency depends on the
cost and availability of expert reviewers. Although
we minimize their workload by focusing on un-
certain or disputed edges, domains with extensive
complexity or frequent updates might strain this
resource, suggesting a need for further automa-
tion or incremental learning strategies. Third, we
currently assume that each knowledge graph en-
tity has at least some textual descriptor or partial
structural connectivity; truly sparse or text-scarce
domains may demand more sophisticated repre-
sentation or data enrichment methods. Lastly, our
evaluation primarily centers on binary relations
(e.g., “Yes” or “No” for a prerequisite edge), leav-
ing open the question of how this pipeline handles
multi-relational or multi-hop reasoning scenarios.
Exploring these aspects will be crucial in extending
the applicability and robustness of EFP-KGRI.

7 Ethical Considerations

EFP-KGRI relies on LLMs for pseudo-label gen-
eration, which raises potential bias and fairness
issues. LLMs can exhibit systematic biases learned
from their training data, such as skewed associa-
tions between certain entities or domains, and these
biases may inadvertently influence the pseudo-
labeled edges in a knowledge graph. While the ac-
tive learning loop and expert validation help to iden-
tify and correct spurious or harmful edges, there is
no guarantee that all problematic outputs will be
caught, particularly when human reviewers have
limited time or domain familiarity.

Additionally, EFP-KGRI emphasizes minimized
expert workload by focusing on uncertain or bor-
derline pairs. In practice, experts need to be aware
that LLM-provided suggestions might contain sub-
tle biases or stereotypical assumptions about cer-
tain topics. This can be especially relevant if the
target domain involves sensitive data such as educa-
tional records, personal health information, or de-

mographic attributes. We encourage implementers
to adopt transparent labeling practices, including
clear provenance for each pseudo-labeled edge, and
to implement routine bias-checking audits, where
domain experts or independent reviewers systemat-
ically assess potential misrepresentations or omis-
sions introduced through the LLM.

Lastly, any system applying this pipeline must re-
spect privacy and data protection regulations when
dealing with sensitive or personally identifiable
information (PII). If textual entity descriptions in-
clude PII or other confidential details, embedding
and inference processes need secure handling to
prevent inadvertent data leaks. As LLM usage
evolves, new or updated privacy protocols (e.g.,
encryption, differential privacy) may become es-
sential. Ensuring compliance with relevant data
protection frameworks (e.g., GDPR) is paramount
when deploying LLM-driven methods in real-world
environments.
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A More Details about Datasets

We evaluate our method on six distinct datasets,
IntelliGraphs-syn-types, CoDEx-S, DBE-
KT22, Junyi, WDKG-Course, and WDKG-
KnowledgePoints, which collectively cover both
general-purpose and educational knowledge graph
(KG) scenarios. The usage of these datasets con-
sent to their licenses, respectively. The final four
are sourced from a publicly available repository
on evaluating large language models (LLMs) with
educational KGs. Below, we briefly describe each
dataset’s domain, size, and key characteristics
relevant to our relationship inference task.

IntelliGraphs-syn-types (with CC-BY 4.0 Li-
cense) is a synthetic dataset designed to test knowl-
edge graph methods under controlled conditions. It
includes various typed entities (such as “concept,”
“topic,” or “skill”’) that exhibit a range of poten-
tial relationships, though we focus on the target
relation 7 for consistent evaluation. This dataset
helps us observe how our method performs when
the underlying graph structure and entity types are
systematically generated or manipulated, offering
insights into model robustness in low-noise, semi-
artificial settings.

CoDEx-S (with MIT License) stems from the
CoDEx benchmarks, which extract subsets of Wiki-
data for link prediction research. CoDEX-S is the
smallest variant, curated to ensure adequate diver-
sity in relation types while remaining computation-
ally manageable. Entities in CoDEX-S represent
real-world objects (e.g., historical figures, places,
scientific concepts), and edges include relation-
ships such as “part of,” “subclass of,” or “instance
of” CoDEXx-S covers a broad semantic range, mak-
ing it well-suited for testing baseline performance
and the general applicability of our pipeline.

DBE-KT22 (with CC-BY 4.0 License) focuses
on a specialized educational or domain-based en-
vironment, where entities correspond to discrete
learning units, and edges capture hierarchical or
prerequisite-like dependencies. Though not as
large as some open-domain KGs, DBE-KT22 fea-
tures nuanced relationships that mirror real-world
knowledge progression in specific subject areas.
This characteristic underscores the importance of
domain context when evaluating relationship in-
ference, especially for step-by-step or hierarchical
knowledge.

Junyi (with CC-BY 4.0 License) provides an-
other educational knowledge graph, emphasizing

11

skill-based or concept-based prerequisites within a
K-12 tutoring context. The relationships frequently
reflect “topic A must precede topic B,” aligning
closely with the notion of “depends on” or “pre-
cedes” at finer granularity. This dataset exposes
how standard link prediction approaches—often
tuned to broad, open-domain data—may struggle
with the subtle dependencies in an educational do-
main.

Similarly, ~WDKG-Course and WDKG-
KnowledgePoints (both with CC-BY 4.0 License)
represent course-level and knowledge-point-level
graphs, respectively, from the same repository. In
WDKG-Course, each node is an entire course or
module, and edges denote large-scale prerequisite
pathways. In contrast, WDKG-KnowledgePoints
drills down into individual concepts or compe-
tencies within those courses, offering a more
granular perspective. These two datasets thus
allow us to test whether our method can handle
both coarse-grained and fine-grained learning
structures, providing a comprehensive view of
how well relationship inference performs across
different levels of educational detail.

In all cases, the target relationship r aligns with
a notion of “prerequisite,” “precedes,” or “depends
on.” Where official train/validation/test splits are
available, we follow the original partitioning to
maintain comparability. Otherwise, we randomly
sample around 70% of the labeled edges for train-
ing (or pseudo-labeling), 10% for validation, and
20% for final testing. Negative examples are either
derived via LLM-based generation (Section 3.1)
or conventional negative sampling, ensuring each
dataset offers balanced coverage of both positive
and negative pairs. By combining synthetic data,
general-domain subsets, and multiple education-
focused graphs, we obtain a robust evaluation of
our pipeline’s ability to infer relationships in di-
verse knowledge graph contexts.

B More Details about Models

In our experiments, we leveraged five differ-
ent large language model (LLM) configura-
tions, GPT-40, o1, Claude-3.5-sonnet, DeepSeek-
V3(embedding variant) and DeepSeek-R1, to re-
flect a range of deployment methods and model
specializations. Below, we clarify each model’s ver-
sioning, usage environment, and key differences.
GPT-40 (gpt-40-2024-08-06). We designate
“gpt-40” as a particular “optimized” GPT-4 re-



lease dated 2024-08-06, accessed via OpenAl API.
This variant preserves GPT-4’s advanced reason-
ing capabilities while prioritizing inference cost-
effectiveness and slightly reduced context window.
In practice, it balances robust zero-/few-shot per-
formance with moderate throughput for large-scale
knowledge graph tasks.

ol (01-2024-12-17). The “o1” label references
a build dated 2024-12-17 that focuses on more de-
tailed chain-of-thought or multi-step reasoning. De-
spite its smaller parameter count relative to GPT-
4, ol can excel in tasks demanding logical con-
sistency. However, it may require more careful
prompt engineering or domain adaptation to match
GPT-4’s broad topical coverage.

Claude-3.5-sonnet (claude-3-5-sonnet-
20241022). Claude is an LLM developed under
a different ecosystem (e.g., Anthropic), offering
strong multi-turn reasoning and interpretability.
The “3.5-sonnet” version (dated 2024-10-22)
emphasizes structured outputs and coherent
chain-of-thought. Despite robust performance in
general dialogues, it occasionally underperforms
in specialized “prerequisite” inference unless
guided by domain-tailored prompts, possibly due
to training corpus coverage.

DeepSeek-R1 A reasoning-oriented LLM tuned
explicitly for tasks such as “prerequisite” detec-
tion or multi-step logical consistency. Through a
domain-aligned training set, DeepSeek-R1 often
demonstrated strong results on nuanced edge cases.
In our pipeline, it served as one of the top perform-
ers for cold-start knowledge graph completion, es-
pecially when the domain required more in-depth
interpretative reasoning.

DeepSeek-V3 (for embeddings) In addition to
the above reasoning models, we rely on DeepSeek-
V3 for entity embedding via Ollama. Unlike a
general-purpose LLM, this version is tailored for
vector encoding—mapping textual or partial adja-
cency data to dense representations. By integrat-
ing these embeddings with the LLM’s textual clas-
sifications (e.g., from GPT-40 or DeepSeek-R1),
we leverage both semantic similarity and chain-of-
thought reasoning to refine relationship inference.

B.1 Practical Considerations

Performance vs. Cost. GPT-4 variants (GPT-40)
and Claude-3.5-sonnet tend to excel at zero/few-
shot tasks but may have higher token usage fees.
Meanwhile, DeepSeek-V3 and DeepSeek-R1 can
be more cost-effective or easier to host locally,
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though they may need specialized prompts to han-
dle complex queries.

Reasoning Depth and Domain Coverage.
Models like o1 and DeepSeek-R1 prioritize multi-
step logical consistency, which can be vital for hi-
erarchical or prerequisite inferences. In contrast, a
more general model like GPT-40 might not special-
ize in domain intricacies unless carefully prompted.
The specific composition of the KG domain ulti-
mately drives which model yields the best synergy.

Security and Data Privacy. For large or sensi-
tive knowledge graphs, shipping data off to external
APIs (GPT-40, Claude) can pose privacy concerns.
Local or on-premise solutions (e.g., DeepSeek-R1
with local implementation as it is open-sourced,
and DeepSeek-V3 embeddings with Ollama) keep
all data in-house at the possible cost of greater hard-
ware requirements.

Iteration and Fine-Tuning. Each model is ver-
sioned by date (e.g., 2024-12-17 for o1, 2024-10-
22 for Claude-3.5-sonnet). Substantial updates
may alter their chain-of-thought policies or sys-
tem instructions, affecting performance stability.
In multi-iteration pipelines, minor parameter shifts
can change how pseudo-labeled data evolves, em-
phasizing the need for periodic re-tuning.

C Hyperparameter Settings

In this section, we present additional details on the
hyperparameters used throughout our experiments,
covering both embedding-based methods and LLM-
based pipelines.

C.1 Embedding Models and Threshold
Tuning

Embedding Dimensionality. For DeepSeek-V3
(with Ollama), we set the embedding dimension to
d = 768 . When using node2vec or other graph-
based approaches, we set d = 200 unless noted
otherwise. In preliminary trials, we found that in-
creasing the dimension above 768 did not yield
significant performance gains for text-based em-
beddings, while dimension sizes above 300 for
node2vec sometimes led to overfitting on smaller
datasets.

Training Epochs (Graph Embeddings). For
node2vec, we ran 20-30 epochs on each dataset
to ensure stable convergence, using a negative sam-
pling ratio of 1 : 5. We used SGD with an initial
learning rate of 0.01 and decayed it by 0.9 every
5 epochs. In practice, the best final embeddings



emerged by epoch 20 for most graphs.

Threshold Calibration (o, 7). As described
in Section 3.2 of the main paper, we combine
LLM pseudo-labeling (Lypny) with similarity-
based scores (sim) using a hyperparameter cv. We
search a over {0,0.25,0.5,0.75,1.0} or a simi-
lar small grid, and similarly sweep 7 in the range
{0,0.1,0.2,...,1.0}. The chosen (a*, 7*) maxi-
mizes AUROC (or occasionally F1 if the dataset is
imbalanced) on a development set Dpseudo-
Distance to Threshold (6) for Borderline Cases.
When identifying uncertain or borderline pairs for
expert review, we set & = 0.05 unless otherwise
stated. Empirically, values § € {0.03,0.05,0.07}
yielded similar results; we selected 0.05 as a bal-
ance between capturing subtle disagreements and
avoiding excessive labeling overhead.

Few-Shot Examples. In all “LLM Bootstrapping’
phases, we typically provide 3-5 demonstration ex-
amples (with roughly equal “Yes” and “No” cases)
to illustrate the target relationship. We observed
diminishing returns after 5 examples, likely due to
context overhead.

Self-Consistency Pass. We allocate a maximum
of 1024 tokens for the LLM to re-check previously
generated pairs. In practice, the self-consistency
prompt rarely exceeds 300—400 tokens, even on the
largest sets.

Active Learning Batch Size. In iterative pipelines,
we typically review 10-20 borderline pairs at each
step to minimize expert workload. Larger batch
sizes (e.g., 20-50) may speed up final convergence
but risk overburdening domain experts.

>

D Detailed Prompt Examples

Here, we provide verbatim samples of the few-shot
prompts and self-consistency prompts used in our
pipeline. These examples demonstrate how we
instruct each LLM to output new pairs (positive
or negative) and how we ask it to verify or flag
contradictory pairs.

D.1 Few-Shot Prompt Snippet

[User Message]

We have the following relationship: “precedes”
(e.g., for hierarchical topics).

Examples:

(Fractions, Decimals): Yes, because one must
understand fractions before decimals.
(Shakespeare, Calculus): No, because these are
unrelated subjects.

(Quadratic Equations, Polynomial Theorems):
Yes, because advanced polynomial analysis needs
quadratics.

Now please generate 5 new pairs where
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precedes” holds, and 5 pairs where precedes”
does not hold.

In the above prompt, we provide three demon-
stration pairs (two “Yes” and one “No”) to illus-
trate the desired structure. The LLM is then asked
to generate additional pairs, explicitly separating
“Yes” from “No” outcomes.

D.2 Self-Consistency Verification Prompt

[User Message]

You labeled the following pairs as Yes/No for
the relationship “precedes”:

(Counting Integers, Basic Probability): Yes
(Shakespeare, French Grammar): No
(Exponential Functions, Logarithms): Yes

(Food Safety, Pythagorean Theorem): No
Please review each pair and mark any that
seem incorrect or ambiguous, with a short
explanation. If correct, say nothing.

The LLM might respond with lines like:

INCORRECT: (Exponential Functions,
Logarithms) because log is often taught
alongside exponentials

AMBIGUOUS: (Food Safety, Pythagorean
Theorem) because they are indeed
unrelated, but there’s no direct reason
for a prerequisite

We parse this output and remove or re-check any
pairs flagged as INCORRECT or AMBIGUOUS. The
remaining examples become our Dpgeydo-

D.3 Domain-Specific Example (DBE-KT22)

Below is a short snippet adapted for a specialized
dataset like DBE-KT22, which focuses on hierar-
chical or prerequisite-like dependencies between
learning units:

[User Message]

We have the following relationship: “depends
on” (e.g., a topic or concept must come before
another in a database curriculum).

Examples:

(Entity-Relationship Model, Enhanced
Entity-Relationship): Yes, because extended
EER diagrams typically build on basic ER
concepts.

(Locking, Enhanced Entity-Relationship):
No, because concurrency control is unrelated to
advanced ER modeling techniques.

(Data Model, Data integrity): Yes, because one
needs to understand how data is structured (data
model) before grasping the consistency/integrity
constraints.

Now please generate 5 new pairs where
“depends on” holds, and 5 new pairs where



“depends on”” does not hold.
Include short rationales for each decision.

And the potential output structure:

Yes: (Many-To-Many, Participation constraints),
because ...
Yes: (Relational data model, Schema), because

No: (Authentication, Two-Phase Locking (2PL)
Protocol), because ...
No: (EXISTS, Data integrity), because ...

And here is an example of self-consistency veri-
fication prompt:

[User Message]

You labeled the following pairs as Yes/No for
the relationship ‘“depends on”:

(Subclass, Enhanced Entity-Relationship): Yes
(Locking, Database Security): No

(DDL, ALTER TABLE): Yes

Please review each pair and mark any that
seem incorrect or ambiguous, with a short
explanation. If correct, say nothing.

Here, we reference DBE-KT22 node names
directly, using the same short references as in
the .graphml (e.g., “Subclass” or “DDL”). The
LLM’s self-consistency check might result in re-
sponses like:

INCORRECT: (Subclass,
Relationship)

because “Subclass” is introduced after “Enhanced
Entity-Relationship,” not before.

AMBIGUOUS: (Locking, Database Security)
because concurrency control is sometimes cov-
ered alongside overall security measures.

Enhanced Entity-

We can then remove or re-label these flagged
pairs, updating your Djeudo set accordingly.

E More Experimental Settings

The running of the proposed method leverages a
MacPro M3pro notebook with 96 GB memory and
8 NVIDIA A100 80GB GPUs.

F Further Ablation Studies

Table 3 compares our full pipeline (DeepSeek-V3
embeddings + DeepSeek-R1 LLM + expert feed-
back) against two ablated variants that remove ei-
ther the embedding-based similarity (“No Similar-
ity”) or the LLM pseudo-labeling (“No LLM”).
On the Junyi dataset, the full pipeline attains an
AUROC of 0.73, whereas removing embeddings
drops performance to 0.69, and discarding the
LLM drives it to 0.62.
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Table 3: Average AUROC on the Junyi dataset for abla-
tion studies removing either similarity or LLM.

Method AUROC
Full Pipeline 0.73
No Similarity (LLM + Expert Only) 0.69
No LLM (Embedding + Expert Only) 0.62

No Similarity (LLM + Expert) In this setting,
the system relies entirely on LLM-proposed pairs
and expert validation, foregoing the embedding-
based confidence calibration. The resulting
0.69 AUROC indicates that expert intervention can
partially mitigate LL.M hallucinations, but the ab-
sence of numeric similarity cues hinders consistent
filtering of borderline or domain-ambiguous cases.

No LLM (Embedding + Expert) Here, pseudo-
label generation is omitted, and the system depends
only on embedding-based similarity scores and
expert checks. The 0.62 AUROC suggests that
while embeddings capture some semantic close-
ness among knowledge points, they struggle to pro-
pose sufficiently diverse or context-specific candi-
date pairs. Without the LLM’s generative insight,
the active learning loop focuses too narrowly on
already-known relationships, limiting the pipeline’s
recall.

Overall, these ablations confirm that both LLM-
driven and embedding-based components are cru-
cial. Removing either yields significantly lower
AUROC, even when experts remain in the loop.

G Usage of AI Assistant

Throughout the development of this EFP-KGRI,
we employed an Al Assistant, in particular, a LLM
such as ChatGPT-40 or DeepSeek-R1 in a “devel-
oper assistance” capacity.

Although expert oversight ultimately governs
the pipeline’s final design, the Al Assistant proved
valuable for draft refinement and code scaffold-
ing, supplementing our manual process. All Al-
generated outputs underwent human validation for
correctness, relevance, and style. By adopting this
hybrid approach, we capitalized on the Al Assis-
tant’s speed and flexibility without compromising
on the accuracy or transparency required in a criti-
cal research environment.
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