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Abstract

Inferring relationships between entities in a001
knowledge graph (KG) is vital for numer-002
ous downstream applications such as semantic003
search, ontology construction, and personalized004
learning. However, many domains lack suffi-005
cient labeled data to train robust relationship006
inference models. In this paper, we present007
an Expert-in-the-Loop Few-Shot Prompting ap-008
proach (EFP-KGRI) to perform LLM-Assisted009
relationship inference in KGs. Our framework010
leverages a large language model (LLM) to gen-011
erate pseudo-labeled entity pairs, creating an012
initial set of positive (relationship present) and013
negative (no relationship) examples even in the014
absence of ground truth. We then fine-tune or015
calibrate these initial labels using embedding-016
based similarity scores and an active learning017
loop where expert feedback resolves uncertain018
cases. Experiments on both general-purpose019
encyclopedic KGs and specialized educational020
KGs demonstrate that EFP-KGRI significantly021
outperforms unsupervised baselines and naive022
LLM classification. By combining few-shot023
prompts, LLM self-consistency checks, and ex-024
pert validation, we achieve more accurate and025
scalable relationship inference, effectively ad-026
dressing the cold-start problem in knowledge027
graph completion.028

1 Introduction029

Knowledge Graphs (KGs) serve as critical infras-030

tructures for structuring entities and their relation-031

ships across diverse domains, including search, rec-032

ommendation, and education (Nickel et al., 2015;033

Hogan et al., 2021; Wang et al., 2024b). Despite034

the utility of KGs, relationship inference, identi-035

fying whether a specific relation (e.g., precedes,036

subclass of, requires) holds between two entities,037

often struggles when insufficient labeled data exists038

to train or calibrate models (Lin et al., 2015). Clas-039

sic supervised methods and purely unsupervised040

embedding-based approaches both face limitations041
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Figure 1: An overview of EFP-KGRI. (1) The LLM
bootstraps an initial set of pseudo-labeled positives and
negatives, then performs a self-consistency pass. (2)
Entities are mapped to embeddings, and pairwise simi-
larity scores are computed. (3) A calibration step fuses
LLM labels with embedding scores to tune α and τ .
(4) The resulting confidence function is applied to all
entity pairs, and (5) borderline cases are submitted to ex-
perts for validation or correction, updating the few-shot
prompt in an active learning loop.

in cold-start scenarios: the former cannot learn 042

without ground-truth labels, while the latter may 043

over- or under-predict relationships without reli- 044

able guidance (Bordes et al., 2013; Nickel et al., 045

2015). 046

Recent advances in Large Language Models 047

(LLMs) (Brown et al., 2020; Chowdhery et al., 048

2023), such as GPT-3.5 or GPT-4, offer new av- 049

enues for zero-shot and few-shot knowledge ca- 050

pabilities, using prompts that encode minimal ex- 051

amples for a target relation (Petroni et al., 2019; 052

Schick and Schütze, 2020). However, LLMs alone 053

can produce inconsistent or hallucinated outputs, 054

particularly outside mainstream domains (Maynez 055

et al., 2020; Ji et al., 2023). Merely querying an 056

LLM for each entity pair also lacks a systematic 057

check on correctness, potentially generating noisy 058

or biased relationship labels. 059
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To address these challenges, we propose an060

Expert-in-the-Loop Few-Shot Prompting pipeline061

for LLM-Assisted Knowledge Graph Relationship062

Inference (EFP-KGRI) as shown in Figure 1. First,063

we exploit the LLM’s generative capacity to boot-064

strap initial sets of positive (relation-holding) and065

negative (no relation) pairs, thereby creating a066

pseudo-ground truth even in a cold-start scenario.067

We then integrate embedding-based similarity to068

calibrate thresholds, and employ an active learning069

loop (Settles, 2009) where domain experts or re-070

fined LLM queries resolve uncertain or conflicting071

cases, iteratively enhancing label quality.072

In experiments on several KGs, one encyclope-073

dic and multiple specialized graphs, our method074

consistently outperforms unsupervised baselines075

and naive LLM classification, demonstrating that076

few-shot prompts, LLM self-consistency checks,077

and expert validation together yield robust relation-078

ship inference. Crucially, the system minimizes ex-079

pert workload by targeting only high-uncertainty or080

high-disagreement edges, addressing the cold-start081

problem with minimal reliance on existing labels.082

By bridging LLM reasoning, data-driven evidence,083

and focused human feedback, EFP-KGRI offers084

a practical and scalable blueprint for building ac-085

curate knowledge graphs even when labeled data086

are scarce. The contribution of this work can be087

summarized as:088

1. We propose EFP-KGRI, a novel approach that089

integrates LLMs, embedding-based similarity met-090

rics, and expert-in-the-loop feedback, to itera-091

tively infer and validate relationships in knowledge092

graphs from various domains.093

2. The proposed approach enlists domain experts094

only for uncertain or conflicting cases, optimizing095

annotation effort and steadily improving the accu-096

racy of inferred relationships.097

3. We present results on both encyclopedic and098

specialized KGs, demonstrating that our method099

outperforms unsupervised baselines and naive100

LLM classification in multiple settings.101

2 Related Work102

Knowledge Graph Relationship Inference. KGs103

have become prominent for organizing large-scale104

structured information (Nickel et al., 2015; Hogan105

et al., 2021). Classical methods for relationship106

inference of KGs range from embedding-based ap-107

proaches, such as TransE (Bordes et al., 2013),108

DistMult (Yang et al., 2014), or CompIEX (Trouil-109

lon et al., 2016), to more recent graph neural net- 110

works (GNNs) (Schlichtkrull et al., 2018) capturing 111

rich structural patterns. However, these methods 112

typically presume the existence of some labeled 113

edges for training or tuning hyperparameters (Lin 114

et al., 2015). In truly cold-start scenarios, where no 115

ground-truth relationships are available, purely un- 116

supervised strategies can produce noisy or biased 117

predictions (Nickel et al., 2015). In the absence of 118

labeled data, purely unsupervised strategies often 119

produce suboptimal results. 120

Large Language Models for Knowledge Extrac- 121

tion. Transformer-based LLMs (Brown et al., 122

2020; Chowdhery et al., 2023) have demonstrated 123

strong performance on zero-shot or few-shot tasks, 124

including text classification and knowledge-based 125

question answering (Radford, 2018; Schick and 126

Schütze, 2020). GPT-style models can often be 127

prompted to identify relationships between entities, 128

leveraging their internal knowledge. Prior work has 129

explored using LLMs for tasks like named entity 130

recognition or relation extraction from text (Petroni 131

et al., 2019). While LLMs can be surprisingly ac- 132

curate, they can also hallucinate or supply spuri- 133

ous answers, particularly in domain-specific con- 134

texts (Maynez et al., 2020; Ji et al., 2023). Prior 135

work has examined ways to reduce hallucinations 136

via chain-of-thought reasoning (Wei et al., 2022) 137

or calibration metrics (Kadavath et al., 2022). Our 138

method extends these ideas by applying few-shot 139

prompts to generate both positive and negative 140

entity pairs for a target relationship. In contrast 141

to prior work that typically focuses on extracting 142

known facts from text (Levy et al., 2017; Bosse- 143

lut et al., 2019), we use the LLM to bootstrap en- 144

tirely new labeled pairs in the absence of any initial 145

ground truth, then apply embedding-based checks 146

to mitigate errors. 147

Active Learning and Expert-in-the-Loop Sys- 148

tems. Active learning (Settles, 2009; Zhang et al., 149

2022) aims to reduce labeling costs by selectively 150

querying a human annotator (or an oracle) for the 151

most informative samples. In knowledge graph 152

contexts, this can mean focusing on edges near the 153

decision boundary or areas where different mod- 154

els disagree. Expert-in-the-loop pipelines (Ratner 155

et al., 2019) have proven especially valuable in 156

specialized domains (e.g., medical, legal, and edu- 157

cational KGs) where domain expertise is essential. 158

Our framework seamlessly integrates an expert step 159

to validate or correct uncertain cases suggested by 160

either the LLM or our similarity-based model. 161
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Prompt: 
We have the following relationship: “R”: 
(e.g., “precedes” or “depends on”). 

Examples: 
(𝑒1, 𝑒2): Yes, because . . . 
(𝑒3, 𝑒4): No, because . . .
. . . 

Now please generate N new pairs
where “R” holds, and 10 pairs where
“R” does not hold.

Few-shot Prompt

Prompt: 
You labeled the following pairs as
Yes/No for the relationship “R“:

(𝑒𝑎, 𝑒𝑏): Yes 
(𝑒𝑐, 𝑒𝑑): No
. . . 

Please review each pair and mark
any that seem incorrect or am-
biguous,with a brief explanation.

Self-Consistency Prompt

Figure 2: Illustration of the few-shot prompt and the
self-consistency prompt used in our pipeline.

3 Method162

In this section, we elaborate on our EFP-KGRI163

(Expert-in-the-Loop Few-Shot pipeline for LLM-164

Assisted Knowledge Graph Relationship Infer-165

ence). The overall framework aims to address cold-166

start labeling by harnessing an LLM to generate167

pseudo-labeled pairs (both positive and negative),168

integrate embedding-based similarity for threshold169

calibration, and iteratively refine uncertain cases170

with expert or additional LLM feedback. Figure 1171

illustrates the pipeline of EFP-KGRI.172

3.1 LLM-Driven Bootstrapping173

Our system begins with an unlabeled set of enti-174

ties {e1, e2, . . . , en}. We aim to generate an initial175

labeled dataset Dpseudo indicating whether each en-176

tity pair (es, et) holds a target relationship r. This177

step is critical for cold-start scenarios, where no178

ground truth is available.179

Few-Shot Prompt Construction We first hand-180

craft a small few-shot prompt that demonstrates181

how to label relationships. This prompt includes182

a handful of positive examples (where r indeed183

holds) and negative examples (where r definitely184

does not). Each example includes: (1) A short de-185

scription of the entities involved. (2) A label: “Yes”186

(relationship holds) or “No” (relationship does not187

hold). (3) A brief rationale.188

After listing these seed examples, we instruct189

the LLM to generate new pairs of entities, labeling190

each as “Yes” or “No” and optionally providing191

brief reasoning. We use DeepSeek-R1 (DeepSeek-192

AI et al., 2025). A simplified example is shown193

in the left of Fig. 2. This approach bootstraps a194

labeled set of both positive and negative examples,195

using the LLM’s internal world knowledge and196

language understanding.197

Self-Consistency Verification We collect the198

newly generated pairs {(es, et)} and their199

labels{y}, and present them back to the LLM with200

a verification prompt shown in the right of Fig. 2. 201

The LLM may identify contradictory or dubious re- 202

lationships (especially in domain-specific contexts) 203

and mark them for exclusion or reevaluation. Then, 204

we remove pairs flagged by the LLM as incorrect 205

or highly uncertain. The remaining examples con- 206

stitute our pseudo-labeled dataset Dpseudo. Each 207

pair (es, et) has a label y ∈ {Yes,No}, reflecting 208

the LLM’s best guess. 209

Through this procedure, we obtain an initial 210

set of positive and negative pairs—despite having 211

no original ground truth. In subsequent stages, 212

these pseudo-labels are refined and validated us- 213

ing embedding-based thresholds and expert-in-the- 214

loop checks, as described in Sections 3.2 and 3.3. 215

3.2 Embedding-Based Calibration 216

While the LLM-generated pseudo-labels offer a 217

valuable initial signal for relationship inference, 218

relying solely on LLM outputs can lead to hal- 219

lucinations or overgeneralizations—especially in 220

domain-specific contexts. To address this, we inte- 221

grate embedding-based entity representations and 222

threshold calibration to (1) align the LLM’s textual 223

reasoning with data-driven evidence, and (2) filter 224

out implausible or contradictory cases. 225

Entity Embeddings. We begin by converting each 226

entity ei into a vector representation vi ∈ Rd. The 227

choice of embedding model depends on the avail- 228

able data: If each entity ei is accompanied by a 229

textual descriptor (e.g., a short Wikipedia para- 230

graph, an abstract, or a definition), we can use a pre- 231

trained transformer (e.g., BERT, RoBERTa, SciB- 232

ERT if domain-specific) or embedding models (e.g., 233

text-embedding-3-small or voyage-3) to generate a 234

sentence-level or document-level embedding. We 235

use the embedding of DeepSeek-V3 (DeepSeek-AI 236

et al., 2024). Formally, 237

vi = Encoder(Text(ei)), (1) 238

where Encoder could be a transformer with a 239

[CLS] token output or mean pooling of contex- 240

tual embeddings. This approach leverages distribu- 241

tional semantics, capturing relevant domain knowl- 242

edge from large-scale pretraining corpora. 243

If partial KG or adjacency information (exclud- 244

ing the target relationship) is available, we can learn 245

graph embeddings (e.g., node2vec, DeepWalk, or a 246

GNN-based approach). Each node ei is represented 247

by a vector vi that encodes structural proximity to 248

other nodes already in the graph. Such methods are 249
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beneficial when textual descriptions are sparse or250

inconsistent. Depending on data availability, one251

can also combine text-based and graph-based fea-252

tures (e.g., by concatenating the two embedding253

vectors). In all cases, the result is a consistent rep-254

resentation vi for each entity ei.255

Similarity Computation. Once we have embed-256

dings, we define a similarity function sim(·, ·) for257

each pair (es, et). As there are many choices such258

as Cosine Similarity, Dot Product and Distance-259

Based Measures, for simplicity, we use Cosine260

Similarity in our experiments (Section 4), as it han-261

dles varying embedding magnitudes and is widely262

employed in semantic tasks:263

sim(es, et) =
vs · vt

∥vs∥∥vt∥
. (2)264

Fusing LLM Outputs with Embedding Scores.265

The target is to combine LLM-generated pseudo-266

labels, particularly the “Yes” or “No” assignments267

from Section 3.1, with embedding-based similarity268

to produce a confidence value for each pair. This269

helps reduce false positives from LLM hallucina-270

tions and false negatives from purely unsupervised271

embeddings.272

Given a pair (es, et) labeled Yes by the LLM,273

define the binary indicator:274

LLLM(es, et) =

{
1, if LLM says Yes,
0, if LLM says No.

(3)275

Then, we get the confidence score by blending the276

LLM label with the embedding similarity via a277

weighted sum:278

Conf(es, et) = (4)279

α · LLLM(es, et) + (1− α) sim(es, et),280

where α ∈ [0, 1] is a hyperparameter controlling281

how much trust we place in the LLM’s classifica-282

tion. Intuitively, if the LLM says “Yes” (= 1) and283

the similarity is also high, Conf becomes large. If284

the LLM says “No,” Conf is primarily determined285

by sim(es, et). There may also be alternative ap-286

proaches. In specialized domains, one may replace287

LLLM with a confidence score from the LLM or288

use a logistic/softmax transform on the similarity.289

The key is ensuring alignment between textual rea-290

soning and the numeric evidence from embeddings,291

rather than relying on a single source.292

Threshold Tuning. To binarize relationships de-293

ciding whether a pair (es, et) truly holds the target294

relation r, we define a threshold τ on the confi- 295

dence score: 296

ŷ(es, et) =

{
Yes, if Conf(es, et) ≥ τ,

No, otherwise.
(5) 297

Recall from Section 3.1 that we have a pseudo- 298

labeled dataset Dpseudo. Each pair has an LLM- 299

assigned label {Yes, No}. We treat Dpseudo as a 300

development set for tuning α and τ . Specifically, 301

we iterate over candidate values (e.g., a grid search) 302

and pick the pair (α, τ ) that optimizes a chosen 303

metric, commonly AUROC or balanced accuracy. 304

The procedure is the following: 305

1. For each candidate α, compute Conf(es, et) for 306

all pairs in Dpseudo. 307

2. Sweep τ from 0 to 1 (or from min to max of 308

the confidence distribution). At each τ , calculate 309

AUROC. 310

3. Choose τ∗ that yields the best AUROC for α. 311

4. Finally, select the α∗ that leads to the highest 312

performance. 313

We then apply the chosen α and τ to all entity 314

pairs (not just the ones in Dpseudo), producing a 315

preliminary classification “Yes” or “No” for each 316

pair. This calibration step is crucial: it grounds 317

the LLM’s guesses in a numeric measure of seman- 318

tic similarity and systematically filters improbable 319

relationships. 320

To conclude, the embedding-based calibration 321

step serves two main functions: mitigating LLM 322

hallucinations and handling conflicting signals. If 323

the LLM labels an entity pair as “Yes” but their em- 324

beddings are extremely dissimilar, the fused con- 325

fidence score may remain below the threshold τ , 326

thus overriding or downgrading a likely incorrect 327

assignment. In cases where the LLM says “No” 328

but the similarity is very high, there may be a mis- 329

match between the LLM’s textual reasoning and 330

domain-specific knowledge. Such pairs could be 331

flagged as potentially uncertain for expert review 332

(see Section 3.3). 333

3.3 Expert-in-the-Loop Active Learning 334

While LLM bootstrapping (Section 3.1) and 335

embedding-based calibration (Section 3.2) provide 336

a solid starting point, some entity pairs remain un- 337

certain or in conflict with domain knowledge. This 338

is especially true in specialized areas where the 339

LLM’s training data may be sparse or where embed- 340

ding models yield ambiguous signals. To address 341

these gaps, we adopt an active learning framework 342
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in which expert feedback (or further refined LLM343

queries) is solicited for pairs most likely to improve344

our overall system performance.345

Identifying Uncertain or Disputed Pairs. Af-346

ter computing a confidence score Conf(es, et) and347

deciding a threshold τ , we measure each pair’s dis-348

tance from τ . Pairs with Conf(es, et) close to τ are349

deemed “borderline” and potentially high impact350

for labeling. If the LLM confidently says “Yes” but351

the embedding similarity is extremely low (or vice352

versa), we flag this discrepancy. Such mismatches353

often indicate incoherent or hallucinated relation-354

ships, or overlooked domain nuances. We collect a355

batch of these uncertain or disputed pairs U . Rather356

than verifying all pairs (which may be in the tens or357

hundreds of thousands), we focus only on the small358

subset where additional labeling is most valuable.359

Expert Validation. In many domains, domain ex-360

perts can give reliable judgments on whether the361

target relation r holds for a pair (es, et). We present362

these pairs in a concise interface, including mini-363

mal context (e.g., textual descriptors, any partial364

KG links, or the LLM’s rationale), so the expert365

can quickly determine if the pair is “Yes” or “No.”366

After done by an expert or a refined LLM query,367

each pair in U receives a final label (“Yes” or “No”)368

and, ideally, a brief explanation. These validated369

pairs then form a new increment of ground truth.370

Updating the Model and Few-Shot Prompt.371

Newly validated pairs U are added to our labeled372

set Dpseudo, effectively correcting or reinforcing373

earlier LLM outputs. If certain pairs contradict374

the LLM’s original label, we override them with375

the new expert label, thus cleaning up false posi-376

tives/negatives. Moreover, if the newly confirmed377

pairs differ significantly from the pseudo-labeled378

distribution, we may re-optimize the threshold τ379

and weight α. In practice, re-tuning may be per-380

formed only after a substantial batch of updated la-381

bels to avoid overfitting. Particularly interesting or382

representative corner cases (e.g., relationships that383

consistently confuse the LLM) can be integrated384

into the few-shot prompt. By showing the LLM385

exactly how certain tricky pairs were resolved, we386

guide it toward improved consistency in subsequent387

iterations. To summarize, we iterate the process of:388

1. Classifying all entity pairs using the current389

best threshold τ .390

2. Selecting the most uncertain or contradictory391

pairs for review.392

3. Validating them via expert.393

4. Updating the labeled set and optionally re- 394

tuning τ and α. 395

We repeat this cycle until diminishing returns make 396

further active learning unnecessary. This approach 397

maximizes the utility of limited human interven- 398

tion, where experts only evaluate pairs that are truly 399

unclear, rather than exhaustively labeling the en- 400

tire graph. This synergy between human validation 401

and machine learning ensures a more robust, iter- 402

atively improving approach to knowledge graph 403

relationship inference. 404

3.4 Summary of the EFP-KGRI Pipeline 405

We have described the EFP-KGRI pipeline in three 406

key stages: 1. LLM-Driven Bootstrapping (Sec- 407

tion 3.1) We use a carefully designed few-shot 408

prompt to have the LLM generate pseudo-labeled 409

pairs of entities, both positive (relationship present) 410

and negative (no relationship). A self-consistency 411

pass filters contradictory or low-confidence pairs, 412

resulting in an initial labeled set Dpseudo. 413

2. Embedding-Based Calibration (Section 3.2) 414

We convert entities to embeddings (using text or 415

structural features) and define a similarity measure. 416

We then fuse the LLM labels with similarity scores 417

into a confidence value, and calibrate a threshold τ 418

to separate “Yes” from “No.” This helps mitigate 419

LLM hallucinations and aligns textual reasoning 420

with data-driven signals. 421

3. Expert-in-the-Loop Active Learning (Sec- 422

tion 3.3) We identify uncertain or disputed pairs, 423

typically near the threshold or where LLM and 424

embeddings disagree. Experts or refined LLM 425

prompts validate these pairs, updating the labeled 426

set and (optionally) re-tuning thresholds. This itera- 427

tive feedback loop maximizes the impact of limited 428

human annotations, steadily improving precision 429

and recall. 430

Having thus outlined our method, we now move 431

on to Section 4, where we detail our experimental 432

setup, baseline comparisons, and empirical results 433

on two real-world knowledge graphs. 434

4 Experimental Results 435

We evaluate EFP-KGRI on six datasets to demon- 436

strate its ability to infer relationships in KGs. We 437

begin by describing the datasets and the baselines 438

(Section 4.1). We then present quantitative and 439

qualitative results (Section 4.2) and ablation stud- 440

ies (Sections 4.3 - 4.4 and Appendix F). 441
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4.1 General Settings442

Datasets. We evaluate EFP-KGRI on six datasets,443

namely IntelliGraphs-syn-types (Thanapalasingam444

et al., 2023), CoDEx-S (Safavi and Koutra, 2020),445

DBE-KT22 (Wang et al., 2024a), Junyi (Wang446

et al., 2024a), WDKG-Course (Wang et al.,447

2024a), and WDKG-KnowledgePoints (Wang448

et al., 2024a), covering both synthetic/general and449

educational domains. IntelliGraphs-syn-types pro-450

vides a controlled synthetic environment with typed451

entities, while CoDEx-S is a curated subset of452

Wikidata reflecting diverse real-world concepts.453

DBE-KT22, Junyi, WDKG-Course, and WDKG-454

KnowledgePoints all center on educational knowl-455

edge, emphasizing prerequisite or dependency re-456

lations at varying granularity from broad course457

dependencies to fine-grained knowledge. For each458

dataset, we identify a target relationship r (e.g.,459

“precedes,” “depends on”). During experiments,460

we sampled subgraphs of 50 nodes with connected461

structure, then repeated this for ten rounds, and re-462

ported the average results to cut cost. Negative ex-463

amples are generated via the LLM-based approach464

(Section 3.1) or standard random sampling, ensur-465

ing balanced sets of positive and negative pairs.466

These datasets allow us to gauge the effectiveness467

of our pipeline across synthetic, general-purpose,468

and education-focused KGs.469

Baselines. We compare EFP-KGRI against a set470

of both classic and recent KG inference methods,471

ensuring coverage of purely embedding-based ap-472

proaches and more LLM-centric solutions. Classic473

embedding-based methods:474

• TransE (Bordes et al., 2013): A translational475

embedding approach, interpreting each relation as476

a vector r such that vs + r ≈ vt.477

• DistMult (Yang et al., 2014): A bilinear method478

representing a relation with a diagonal matrix, bal-479

ancing simplicity and effectiveness.480

• ComplEx (Trouillon et al., 2016): Extends Dist-481

Mult by using complex-valued embeddings, better482

modeling asymmetric relations.483

LLM-based methods:484

• BLP (Daza et al., 2021): Adapts BERT to predict485

missing edges by encoding entity descriptions and486

training a binary classifier on embeddings.487

• KGT5 (Saxena et al., 2022): A text-to-text trans-488

former approach that frames link prediction as a489

sequence-to-sequence task.490

• SimKGC (Wang et al., 2022): Employs con-491

trastive learning over text-enhanced entity represen-492

tations, using a PLM to encode entity descriptions 493

and a similarity-based objective to rank candidate 494

entities for a given (subject, relation) query. 495

We also include a direct prompting baseline, with- 496

out iterative thresholding or expert feedback, to 497

highlight the difference between naïvely using an 498

LLM vs. our integrated pipeline. For each en- 499

tity pair (es, et), we prompt an LLM (GPT-4o, o1, 500

DeepSeek-R1) with: “Does relation r hold between 501

es and et? Yes or No?” No additional calibration or 502

active learning is applied, and any rationale from 503

the LLM is ignored beyond the final yes/no label. 504

More details about datasets, models, and hy- 505

perparameter settings are left in Appendix A, Ap- 506

pendix B, and Appendix C, respectively. 507

4.2 Overall Performance 508

Across all six datasets, IntelliGraphs, CoDEx-S, 509

DBE-KT22, Junyi, WDKG-Course, and WDKG- 510

KnowledgePoints, our EFP-KGRI attains the high- 511

est AUROC values and outperforms both classic 512

and modern baselines, as shown in Fig. 3. Tradi- 513

tional embedding-based techniques (e.g., TransE, 514

DistMult, and ComplEx) capture broad structural 515

patterns but frequently struggle with specialized do- 516

main nuances, particularly in the educational KGs 517

like DBE-KT22, Junyi, and WDKG series. By 518

comparison, PLM- or LLM-driven models such as 519

BLP, KGT5, SimKGC, GPT-4o, o1, and DeepSeek- 520

R1 benefit from large-scale textual pretraining, yet 521

typically lack a mechanism to resolve ambiguous 522

or borderline cases via targeted feedback. In con- 523

trast, our method combines LLM-based pseudo- 524

label generation with embedding calibration and 525

actively solicits expert insight for uncertain edges, 526

which yields consistently higher AUROC scores. 527

A closer inspection of the domain-specific 528

datasets reveals how essential human review can 529

be for clarifying subtle prerequisite relationships, 530

such as those in WDKG-Course and WDKG- 531

KnowledgePoints, where slight conceptual differ- 532

ences may drive significant variations in perfor- 533

mance. In these contexts, the Expert-in-the-Loop 534

step systematically corrects errors that either purely 535

data-driven or purely LLM-based approaches fail to 536

catch. Even in the synthetic IntelliGraphs dataset, 537

which presents a more controlled scenario, our 538

pipeline’s strategy of fusing LLM reasoning with 539

numerical checks continues to produce a compet- 540

itive edge, illustrating that iterative threshold tun- 541

ing and refinement offer advantages regardless of 542

whether the domain is synthetic or real-world. 543
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Figure 3: AUROC values on six datasets for baselines, and EFP-KGRI. Higher bars indicate better performance.

Overall, these AUROC results underscore the544

importance of uniting textual reasoning and nu-545

merical validation. The synergy between LLM-546

generated labels, embedding-based thresholds, and547

human oversight creates a robust and adaptable548

framework, ensuring that both general-purpose and549

domain-specific graphs benefit from iterative error550

correction. By aligning LLMs’ strengths with tra-551

ditional embedding methods and selective expert552

guidance, our pipeline provides a reliable means of553

overcoming data scarcity and contextual ambiguity554

in KG completion tasks.555

4.3 Embedding Model and LLM Combination556

While our primary experiments employ DeepSeek-557

V3 for entity embeddings and DeepSeek-R1 for558

pseudo-labeling, we also investigate alternative559

approaches to evaluate their impact on the Junyi560

dataset. Table 1 reports the AUROC for each (Em-561

bedding, LLM) pairing in Junyi.562

Overall, DeepSeek-V3 coupled with DeepSeek-563

R1 attains the highest AUROC (0.73), indicating a564

strong alignment between this embedding model565

and LLM. In contrast, BERT and node2vec typi-566

cally yield AUROCs around 0.60 ∼ 0.65 for most567

language models, indicating that relying solely on568

general textual or structural signals may be insuffi-569

cient for capturing fine-grained relationships.570

Among the LLMs, DeepSeek-R1 generally out-571

performs Claude-3.5-sonnet, GPT-4o, and o1, often572

by a margin of 4 ∼ 5 points in AUROC. Neverthe-573

less, o1 achieves respectable scores (e.g., 0.70 with574

DeepSeek-V3), showing that a moderate synergy575

still emerges when embeddings and LLMs offer576

complementary strengths. Meanwhile, Claude-3.5-577

Table 1: AUROC values of various (Embedding, LLM)
combinations on the Junyi dataset.

Embedding LLM AUROC

BERT Claude-3.5-sonnet 0.60
BERT GPT-4o 0.60
BERT o1 0.62
BERT DeepSeek-R1 0.64

node2vec Claude-3.5-sonnet 0.60
node2vec GPT-4o 0.60
node2vec o1 0.65
node2vec DeepSeek-R1 0.65

text-embedding-3-small GPT-4o 0.62
text-embedding-3-small o1 0.66
text-embedding-3-small DeepSeek-R1 0.71

voyage-3 Claude-3.5-sonnet 0.66
voyage-3 DeepSeek-R1 0.70

DeepSeek-V3 Claude-3.5-sonnet 0.63
DeepSeek-V3 GPT-4o 0.64
DeepSeek-V3 o1 0.70
DeepSeek-V3 DeepSeek-R1 0.73

sonnet and GPT-4o hover around 0.60 ∼ 0.66, sug- 578

gesting they perform adequately but may benefit 579

from additional calibration or prompts to excel. 580

In summary, these results illustrate the value of 581

well-aligned embeddings and LLMs: pairings that 582

closely match each other’s strengths achieve higher 583

AUROCs, while general-purpose combinations re- 584

main competitive but less optimal. 585

4.4 Ablation: Without Expert Feedback 586

To assess the impact of our expert-in-the-loop 587

mechanism (Section 3.3), we conduct an ablation 588

experiment removing human feedback entirely. In 589

this “No Expert” variant, the pipeline relies solely 590

on LLM-generated pseudo-labels and embedding- 591

based threshold calibration, bypassing any selec- 592
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Table 2: AUROC of Full vs. No Expert Feedback on two
educational datasets. Removing expert checks lowers
AUROC by 6–7 points.

Junyi WDKG-KP.

Full Pipeline 0.73 0.69
No Expert 0.66 0.62

∆(avg.) -7.1 pts. -7.0 pts.

tive review of uncertain pairs. Table 2 compares593

AUROC scores for the full pipeline versus the No594

Expert setting across two representative datasets,595

Junyi and WDKG-KnowledgePoints.596

Quantitatively, removing expert checks leads597

to a 7.0 ∼ 7.1 point drop in AUROC. Junyi ex-598

periences a 7-point decrease (from 0.73 to 0.66),599

while WDKG-KnowledgePoints decreases by 7600

points. This pattern underscores the system’s re-601

liance on targeted expert validation for resolving602

ambiguous or borderline cases. For instance, in603

Junyi, fine-grained skill relationships (e.g., “Linear604

vs. Quadratic Functions”) often confuse the LLM605

alone, resulting in false positives for closely re-606

lated concepts and false negatives for slightly more607

distant ones. Embedding scores help filter some608

errors, but the pipeline still struggles to recognize609

overlaps or partial dependencies when experts do610

not intervene.611

Qualitatively, analyzing misclassifications re-612

veals that, in the No Expert condition, nearly half613

of the borderline pairs remain mislabeled, espe-614

cially those near the similarity threshold or where615

the LLM’s textual reasoning conflicts with the616

embedding-based signals. In the Full Pipeline,617

these pairs are escalated to expert review, where hu-618

man oracle confirm or deny the relationship. Such619

selective validation consistently corrects errors that620

purely automated methods fail to catch.621

Additionally, iteration matters: in the Full622

Pipeline, each confirmed or corrected label is623

folded back into our pseudo-labeled set, refining624

future prompts and embedding thresholds. Without625

this feedback loop, the pipeline stagnates at a lower626

plateau, never improving upon early misclassifica-627

tions. These findings highlight that expert checks628

are not merely a post-processing step but a core629

driver of iterative accuracy gains.630

Overall, the ablation demonstrates that expert631

involvement is pivotal for handling nuanced rela-632

tionships, reducing false positives among closely633

related concepts and false negatives among con-634

ceptually adjacent topics. While LLM bootstrap-635

ping and embedding calibration provide a strong636

baseline, omitting selective human oversight can 637

drop final AUROC by 5 points on average, affirm- 638

ing that expert-in-the-loop feedback is crucial for 639

high-fidelity relationship inference. Extra ablation 640

studies are left in Appendix F. 641

5 Conclusion 642

In this paper, we introduced an Expert-in-the-Loop 643

Few-Shot pipeline for LLM-Assisted Knowledge 644

Graph Relationship Inference, designed to address 645

the cold-start problem that arises when little or 646

no ground-truth data are available. Our approach 647

combines LLM-driven bootstrapping, embedding- 648

based threshold calibration, and selective human 649

feedback, thereby aligning textual reasoning with 650

data-driven signals while leveraging expert valida- 651

tion to resolve ambiguous or conflicting pairs. 652

A key novelty of our method is its iterative de- 653

sign, in which LLM outputs (pseudo-labeled pairs) 654

are continuously refined through embedding checks 655

and an active learning loop. Unlike purely unsuper- 656

vised or purely LLM-based strategies, our pipeline 657

leverages both semantic embeddings and targeted 658

expertise without relying on extensive initial an- 659

notations. Experimental results across multiple 660

datasets, ranging from synthetic to educational and 661

general-purpose knowledge graphs, demonstrate 662

that our framework consistently outperforms clas- 663

sic embedding-based baselines and more recent 664

PLM/LLM-driven approaches. 665

The significance of this work stems from its 666

practical and versatile solution to cold-start chal- 667

lenges in knowledge graph completion. By synthe- 668

sizing LLM pseudo-labeling with expert checks, 669

we can bootstrap relationship inference in new or 670

sparsely labeled domains. Expert input is directed 671

precisely where it has the greatest impact, on bor- 672

derline or uncertain cases, thereby minimizing an- 673

notation costs while improving inference quality. 674

Although we focused on prerequisite-like relations, 675

the pipeline itself can be applied to other hierarchi- 676

cal or semantic dependencies in diverse knowledge 677

graphs, making it broadly adaptable. 678

In future work, we aim to extend the pipeline 679

to incorporate multi-hop reasoning, richer domain 680

constraints, and more advanced forms of LLM 681

self-consistency. Our results indicate a promising 682

synergy between large language model reasoning 683

and targeted human oversight, offering a feasible 684

blueprint for constructing and maintaining accurate 685

knowledge graphs even under severe data scarcity. 686
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6 Limitations687

Despite its promising results, EFP-KGRI has sev-688

eral limitations that merit further investigation.689

First, the reliance on LLM bootstrapping can in-690

troduce biases or hallucinations when the model691

encounters unfamiliar domain concepts, especially692

if its training data are limited in scope. While the693

active learning loop partially mitigates these issues694

through expert validation, large-scale or highly spe-695

cialized knowledge graphs may still require more696

rigorous filtering or dedicated domain-tuned LLMs.697

Second, our method’s efficiency depends on the698

cost and availability of expert reviewers. Although699

we minimize their workload by focusing on un-700

certain or disputed edges, domains with extensive701

complexity or frequent updates might strain this702

resource, suggesting a need for further automa-703

tion or incremental learning strategies. Third, we704

currently assume that each knowledge graph en-705

tity has at least some textual descriptor or partial706

structural connectivity; truly sparse or text-scarce707

domains may demand more sophisticated repre-708

sentation or data enrichment methods. Lastly, our709

evaluation primarily centers on binary relations710

(e.g., “Yes” or “No” for a prerequisite edge), leav-711

ing open the question of how this pipeline handles712

multi-relational or multi-hop reasoning scenarios.713

Exploring these aspects will be crucial in extending714

the applicability and robustness of EFP-KGRI.715

7 Ethical Considerations716

EFP-KGRI relies on LLMs for pseudo-label gen-717

eration, which raises potential bias and fairness718

issues. LLMs can exhibit systematic biases learned719

from their training data, such as skewed associa-720

tions between certain entities or domains, and these721

biases may inadvertently influence the pseudo-722

labeled edges in a knowledge graph. While the ac-723

tive learning loop and expert validation help to iden-724

tify and correct spurious or harmful edges, there is725

no guarantee that all problematic outputs will be726

caught, particularly when human reviewers have727

limited time or domain familiarity.728

Additionally, EFP-KGRI emphasizes minimized729

expert workload by focusing on uncertain or bor-730

derline pairs. In practice, experts need to be aware731

that LLM-provided suggestions might contain sub-732

tle biases or stereotypical assumptions about cer-733

tain topics. This can be especially relevant if the734

target domain involves sensitive data such as educa-735

tional records, personal health information, or de-736

mographic attributes. We encourage implementers 737

to adopt transparent labeling practices, including 738

clear provenance for each pseudo-labeled edge, and 739

to implement routine bias-checking audits, where 740

domain experts or independent reviewers systemat- 741

ically assess potential misrepresentations or omis- 742

sions introduced through the LLM. 743

Lastly, any system applying this pipeline must re- 744

spect privacy and data protection regulations when 745

dealing with sensitive or personally identifiable 746

information (PII). If textual entity descriptions in- 747

clude PII or other confidential details, embedding 748

and inference processes need secure handling to 749

prevent inadvertent data leaks. As LLM usage 750

evolves, new or updated privacy protocols (e.g., 751

encryption, differential privacy) may become es- 752

sential. Ensuring compliance with relevant data 753

protection frameworks (e.g., GDPR) is paramount 754

when deploying LLM-driven methods in real-world 755

environments. 756
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A More Details about Datasets897

We evaluate our method on six distinct datasets,898

IntelliGraphs-syn-types, CoDEx-S, DBE-899

KT22, Junyi, WDKG-Course, and WDKG-900

KnowledgePoints, which collectively cover both901

general-purpose and educational knowledge graph902

(KG) scenarios. The usage of these datasets con-903

sent to their licenses, respectively. The final four904

are sourced from a publicly available repository905

on evaluating large language models (LLMs) with906

educational KGs. Below, we briefly describe each907

dataset’s domain, size, and key characteristics908

relevant to our relationship inference task.909

IntelliGraphs-syn-types (with CC-BY 4.0 Li-910

cense) is a synthetic dataset designed to test knowl-911

edge graph methods under controlled conditions. It912

includes various typed entities (such as “concept,”913

“topic,” or “skill”) that exhibit a range of poten-914

tial relationships, though we focus on the target915

relation r for consistent evaluation. This dataset916

helps us observe how our method performs when917

the underlying graph structure and entity types are918

systematically generated or manipulated, offering919

insights into model robustness in low-noise, semi-920

artificial settings.921

CoDEx-S (with MIT License) stems from the922

CoDEx benchmarks, which extract subsets of Wiki-923

data for link prediction research. CoDEx-S is the924

smallest variant, curated to ensure adequate diver-925

sity in relation types while remaining computation-926

ally manageable. Entities in CoDEx-S represent927

real-world objects (e.g., historical figures, places,928

scientific concepts), and edges include relation-929

ships such as “part of,” “subclass of,” or “instance930

of.” CoDEx-S covers a broad semantic range, mak-931

ing it well-suited for testing baseline performance932

and the general applicability of our pipeline.933

DBE-KT22 (with CC-BY 4.0 License) focuses934

on a specialized educational or domain-based en-935

vironment, where entities correspond to discrete936

learning units, and edges capture hierarchical or937

prerequisite-like dependencies. Though not as938

large as some open-domain KGs, DBE-KT22 fea-939

tures nuanced relationships that mirror real-world940

knowledge progression in specific subject areas.941

This characteristic underscores the importance of942

domain context when evaluating relationship in-943

ference, especially for step-by-step or hierarchical944

knowledge.945

Junyi (with CC-BY 4.0 License) provides an-946

other educational knowledge graph, emphasizing947

skill-based or concept-based prerequisites within a 948

K-12 tutoring context. The relationships frequently 949

reflect “topic A must precede topic B,” aligning 950

closely with the notion of “depends on” or “pre- 951

cedes” at finer granularity. This dataset exposes 952

how standard link prediction approaches—often 953

tuned to broad, open-domain data—may struggle 954

with the subtle dependencies in an educational do- 955

main. 956

Similarly, WDKG-Course and WDKG- 957

KnowledgePoints (both with CC-BY 4.0 License) 958

represent course-level and knowledge-point-level 959

graphs, respectively, from the same repository. In 960

WDKG-Course, each node is an entire course or 961

module, and edges denote large-scale prerequisite 962

pathways. In contrast, WDKG-KnowledgePoints 963

drills down into individual concepts or compe- 964

tencies within those courses, offering a more 965

granular perspective. These two datasets thus 966

allow us to test whether our method can handle 967

both coarse-grained and fine-grained learning 968

structures, providing a comprehensive view of 969

how well relationship inference performs across 970

different levels of educational detail. 971

In all cases, the target relationship r aligns with 972

a notion of “prerequisite,” “precedes,” or “depends 973

on.” Where official train/validation/test splits are 974

available, we follow the original partitioning to 975

maintain comparability. Otherwise, we randomly 976

sample around 70% of the labeled edges for train- 977

ing (or pseudo-labeling), 10% for validation, and 978

20% for final testing. Negative examples are either 979

derived via LLM-based generation (Section 3.1) 980

or conventional negative sampling, ensuring each 981

dataset offers balanced coverage of both positive 982

and negative pairs. By combining synthetic data, 983

general-domain subsets, and multiple education- 984

focused graphs, we obtain a robust evaluation of 985

our pipeline’s ability to infer relationships in di- 986

verse knowledge graph contexts. 987

B More Details about Models 988

In our experiments, we leveraged five differ- 989

ent large language model (LLM) configura- 990

tions, GPT-4o, o1, Claude-3.5-sonnet, DeepSeek- 991

V3(embedding variant) and DeepSeek-R1, to re- 992

flect a range of deployment methods and model 993

specializations. Below, we clarify each model’s ver- 994

sioning, usage environment, and key differences. 995

GPT-4o (gpt-4o-2024-08-06). We designate 996

“gpt-4o” as a particular “optimized” GPT-4 re- 997
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lease dated 2024-08-06, accessed via OpenAI API.998

This variant preserves GPT-4’s advanced reason-999

ing capabilities while prioritizing inference cost-1000

effectiveness and slightly reduced context window.1001

In practice, it balances robust zero-/few-shot per-1002

formance with moderate throughput for large-scale1003

knowledge graph tasks.1004

o1 (o1-2024-12-17). The “o1” label references1005

a build dated 2024-12-17 that focuses on more de-1006

tailed chain-of-thought or multi-step reasoning. De-1007

spite its smaller parameter count relative to GPT-1008

4, o1 can excel in tasks demanding logical con-1009

sistency. However, it may require more careful1010

prompt engineering or domain adaptation to match1011

GPT-4’s broad topical coverage.1012

Claude-3.5-sonnet (claude-3-5-sonnet-1013

20241022). Claude is an LLM developed under1014

a different ecosystem (e.g., Anthropic), offering1015

strong multi-turn reasoning and interpretability.1016

The “3.5-sonnet” version (dated 2024-10-22)1017

emphasizes structured outputs and coherent1018

chain-of-thought. Despite robust performance in1019

general dialogues, it occasionally underperforms1020

in specialized “prerequisite” inference unless1021

guided by domain-tailored prompts, possibly due1022

to training corpus coverage.1023

DeepSeek-R1 A reasoning-oriented LLM tuned1024

explicitly for tasks such as “prerequisite” detec-1025

tion or multi-step logical consistency. Through a1026

domain-aligned training set, DeepSeek-R1 often1027

demonstrated strong results on nuanced edge cases.1028

In our pipeline, it served as one of the top perform-1029

ers for cold-start knowledge graph completion, es-1030

pecially when the domain required more in-depth1031

interpretative reasoning.1032

DeepSeek-V3 (for embeddings) In addition to1033

the above reasoning models, we rely on DeepSeek-1034

V3 for entity embedding via Ollama. Unlike a1035

general-purpose LLM, this version is tailored for1036

vector encoding—mapping textual or partial adja-1037

cency data to dense representations. By integrat-1038

ing these embeddings with the LLM’s textual clas-1039

sifications (e.g., from GPT-4o or DeepSeek-R1),1040

we leverage both semantic similarity and chain-of-1041

thought reasoning to refine relationship inference.1042

B.1 Practical Considerations1043

Performance vs. Cost. GPT-4 variants (GPT-4o)1044

and Claude-3.5-sonnet tend to excel at zero/few-1045

shot tasks but may have higher token usage fees.1046

Meanwhile, DeepSeek-V3 and DeepSeek-R1 can1047

be more cost-effective or easier to host locally,1048

though they may need specialized prompts to han- 1049

dle complex queries. 1050

Reasoning Depth and Domain Coverage. 1051

Models like o1 and DeepSeek-R1 prioritize multi- 1052

step logical consistency, which can be vital for hi- 1053

erarchical or prerequisite inferences. In contrast, a 1054

more general model like GPT-4o might not special- 1055

ize in domain intricacies unless carefully prompted. 1056

The specific composition of the KG domain ulti- 1057

mately drives which model yields the best synergy. 1058

Security and Data Privacy. For large or sensi- 1059

tive knowledge graphs, shipping data off to external 1060

APIs (GPT-4o, Claude) can pose privacy concerns. 1061

Local or on-premise solutions (e.g., DeepSeek-R1 1062

with local implementation as it is open-sourced, 1063

and DeepSeek-V3 embeddings with Ollama) keep 1064

all data in-house at the possible cost of greater hard- 1065

ware requirements. 1066

Iteration and Fine-Tuning. Each model is ver- 1067

sioned by date (e.g., 2024-12-17 for o1, 2024-10- 1068

22 for Claude-3.5-sonnet). Substantial updates 1069

may alter their chain-of-thought policies or sys- 1070

tem instructions, affecting performance stability. 1071

In multi-iteration pipelines, minor parameter shifts 1072

can change how pseudo-labeled data evolves, em- 1073

phasizing the need for periodic re-tuning. 1074

C Hyperparameter Settings 1075

In this section, we present additional details on the 1076

hyperparameters used throughout our experiments, 1077

covering both embedding-based methods and LLM- 1078

based pipelines. 1079

C.1 Embedding Models and Threshold 1080

Tuning 1081

Embedding Dimensionality. For DeepSeek-V3 1082

(with Ollama), we set the embedding dimension to 1083

d = 768 . When using node2vec or other graph- 1084

based approaches, we set d = 200 unless noted 1085

otherwise. In preliminary trials, we found that in- 1086

creasing the dimension above 768 did not yield 1087

significant performance gains for text-based em- 1088

beddings, while dimension sizes above 300 for 1089

node2vec sometimes led to overfitting on smaller 1090

datasets. 1091

Training Epochs (Graph Embeddings). For 1092

node2vec, we ran 20–30 epochs on each dataset 1093

to ensure stable convergence, using a negative sam- 1094

pling ratio of 1 : 5. We used SGD with an initial 1095

learning rate of 0.01 and decayed it by 0.9 every 1096

5 epochs. In practice, the best final embeddings 1097
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emerged by epoch 20 for most graphs.1098

Threshold Calibration (α, τ ). As described1099

in Section 3.2 of the main paper, we combine1100

LLM pseudo-labeling (LLLM) with similarity-1101

based scores (sim) using a hyperparameter α. We1102

search α over {0, 0.25, 0.5, 0.75, 1.0} or a simi-1103

lar small grid, and similarly sweep τ in the range1104

{0, 0.1, 0.2, . . . , 1.0}. The chosen (α∗, τ∗) maxi-1105

mizes AUROC (or occasionally F1 if the dataset is1106

imbalanced) on a development set Dpseudo.1107

Distance to Threshold (δ) for Borderline Cases.1108

When identifying uncertain or borderline pairs for1109

expert review, we set δ = 0.05 unless otherwise1110

stated. Empirically, values δ ∈ {0.03, 0.05, 0.07}1111

yielded similar results; we selected 0.05 as a bal-1112

ance between capturing subtle disagreements and1113

avoiding excessive labeling overhead.1114

Few-Shot Examples. In all “LLM Bootstrapping”1115

phases, we typically provide 3-5 demonstration ex-1116

amples (with roughly equal “Yes” and “No” cases)1117

to illustrate the target relationship. We observed1118

diminishing returns after 5 examples, likely due to1119

context overhead.1120

Self-Consistency Pass. We allocate a maximum1121

of 1024 tokens for the LLM to re-check previously1122

generated pairs. In practice, the self-consistency1123

prompt rarely exceeds 300–400 tokens, even on the1124

largest sets.1125

Active Learning Batch Size. In iterative pipelines,1126

we typically review 10–20 borderline pairs at each1127

step to minimize expert workload. Larger batch1128

sizes (e.g., 20–50) may speed up final convergence1129

but risk overburdening domain experts.1130

D Detailed Prompt Examples1131

Here, we provide verbatim samples of the few-shot1132

prompts and self-consistency prompts used in our1133

pipeline. These examples demonstrate how we1134

instruct each LLM to output new pairs (positive1135

or negative) and how we ask it to verify or flag1136

contradictory pairs.1137

D.1 Few-Shot Prompt Snippet1138

[User Message]1139
We have the following relationship: “precedes”1140
(e.g., for hierarchical topics).1141
Examples:1142
(Fractions, Decimals): Yes, because one must1143
understand fractions before decimals.1144
(Shakespeare, Calculus): No, because these are1145
unrelated subjects.1146
(Quadratic Equations, Polynomial Theorems):1147
Yes, because advanced polynomial analysis needs1148
quadratics.1149
Now please generate 5 new pairs where1150

precedes” holds, and 5 pairs where precedes” 1151
does not hold. 1152

1153

In the above prompt, we provide three demon- 1154

stration pairs (two “Yes” and one “No”) to illus- 1155

trate the desired structure. The LLM is then asked 1156

to generate additional pairs, explicitly separating 1157

“Yes” from “No” outcomes. 1158

D.2 Self-Consistency Verification Prompt 1159

[User Message] 1160
You labeled the following pairs as Yes/No for 1161
the relationship “precedes”: 1162
(Counting Integers, Basic Probability): Yes 1163
(Shakespeare, French Grammar): No 1164
(Exponential Functions, Logarithms): Yes 1165
(Food Safety, Pythagorean Theorem): No 1166
Please review each pair and mark any that 1167
seem incorrect or ambiguous, with a short 1168
explanation. If correct, say nothing. 1169

1170

The LLM might respond with lines like: 1171

INCORRECT: (Exponential Functions, 1172
Logarithms) because log is often taught 1173
alongside exponentials 1174
AMBIGUOUS: (Food Safety, Pythagorean 1175
Theorem) because they are indeed 1176
unrelated, but there’s no direct reason 1177
for a prerequisite 1178

1179

We parse this output and remove or re-check any 1180

pairs flagged as INCORRECT or AMBIGUOUS. The 1181

remaining examples become our Dpseudo. 1182

D.3 Domain-Specific Example (DBE-KT22) 1183

Below is a short snippet adapted for a specialized 1184

dataset like DBE-KT22, which focuses on hierar- 1185

chical or prerequisite-like dependencies between 1186

learning units: 1187

[User Message] 1188
We have the following relationship: “depends 1189
on” (e.g., a topic or concept must come before 1190
another in a database curriculum). 1191

1192

Examples: 1193
(Entity-Relationship Model, Enhanced 1194
Entity-Relationship): Yes, because extended 1195
EER diagrams typically build on basic ER 1196
concepts. 1197
(Locking, Enhanced Entity-Relationship): 1198
No, because concurrency control is unrelated to 1199
advanced ER modeling techniques. 1200
(Data Model, Data integrity): Yes, because one 1201
needs to understand how data is structured (data 1202
model) before grasping the consistency/integrity 1203
constraints. 1204

1205

Now please generate 5 new pairs where 1206
“depends on” holds, and 5 new pairs where 1207

13



“depends on” does not hold.1208
Include short rationales for each decision.1209

1210

And the potential output structure:1211

Yes: (Many-To-Many, Participation constraints),1212
because . . .1213
Yes: (Relational data model, Schema), because1214
. . .1215
No: (Authentication, Two-Phase Locking (2PL)1216
Protocol), because . . .1217
No: (EXISTS, Data integrity), because . . .1218

1219

And here is an example of self-consistency veri-1220

fication prompt:1221

[User Message]1222
You labeled the following pairs as Yes/No for1223
the relationship “depends on”:1224
(Subclass, Enhanced Entity-Relationship): Yes1225
(Locking, Database Security): No1226
(DDL, ALTER TABLE): Yes1227
Please review each pair and mark any that1228
seem incorrect or ambiguous, with a short1229
explanation. If correct, say nothing.1230

Here, we reference DBE-KT22 node names1231

directly, using the same short references as in1232

the .graphml (e.g., “Subclass” or “DDL”). The1233

LLM’s self-consistency check might result in re-1234

sponses like:1235

INCORRECT: (Subclass, Enhanced Entity-1236
Relationship)1237
because “Subclass” is introduced after “Enhanced1238
Entity-Relationship,” not before.1239
AMBIGUOUS: (Locking, Database Security)1240
because concurrency control is sometimes cov-1241
ered alongside overall security measures.1242

We can then remove or re-label these flagged1243

pairs, updating your Dpseudo set accordingly.1244

E More Experimental Settings1245

The running of the proposed method leverages a1246

MacPro M3pro notebook with 96 GB memory and1247

8 NVIDIA A100 80GB GPUs.1248

F Further Ablation Studies1249

Table 3 compares our full pipeline (DeepSeek-V31250

embeddings + DeepSeek-R1 LLM + expert feed-1251

back) against two ablated variants that remove ei-1252

ther the embedding-based similarity (“No Similar-1253

ity”) or the LLM pseudo-labeling (“No LLM”).1254

On the Junyi dataset, the full pipeline attains an1255

AUROC of 0.73, whereas removing embeddings1256

drops performance to 0.69, and discarding the1257

LLM drives it to 0.62.1258

Table 3: Average AUROC on the Junyi dataset for abla-
tion studies removing either similarity or LLM.

Method AUROC

Full Pipeline 0.73
No Similarity (LLM + Expert Only) 0.69
No LLM (Embedding + Expert Only) 0.62

No Similarity (LLM + Expert) In this setting, 1259

the system relies entirely on LLM-proposed pairs 1260

and expert validation, foregoing the embedding- 1261

based confidence calibration. The resulting 1262

0.69 AUROC indicates that expert intervention can 1263

partially mitigate LLM hallucinations, but the ab- 1264

sence of numeric similarity cues hinders consistent 1265

filtering of borderline or domain-ambiguous cases. 1266

No LLM (Embedding + Expert) Here, pseudo- 1267

label generation is omitted, and the system depends 1268

only on embedding-based similarity scores and 1269

expert checks. The 0.62 AUROC suggests that 1270

while embeddings capture some semantic close- 1271

ness among knowledge points, they struggle to pro- 1272

pose sufficiently diverse or context-specific candi- 1273

date pairs. Without the LLM’s generative insight, 1274

the active learning loop focuses too narrowly on 1275

already-known relationships, limiting the pipeline’s 1276

recall. 1277

Overall, these ablations confirm that both LLM- 1278

driven and embedding-based components are cru- 1279

cial. Removing either yields significantly lower 1280

AUROC, even when experts remain in the loop. 1281

G Usage of AI Assistant 1282

Throughout the development of this EFP-KGRI, 1283

we employed an AI Assistant, in particular, a LLM 1284

such as ChatGPT-4o or DeepSeek-R1 in a “devel- 1285

oper assistance” capacity. 1286

Although expert oversight ultimately governs 1287

the pipeline’s final design, the AI Assistant proved 1288

valuable for draft refinement and code scaffold- 1289

ing, supplementing our manual process. All AI- 1290

generated outputs underwent human validation for 1291

correctness, relevance, and style. By adopting this 1292

hybrid approach, we capitalized on the AI Assis- 1293

tant’s speed and flexibility without compromising 1294

on the accuracy or transparency required in a criti- 1295

cal research environment. 1296
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