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ARTICLE INFO ABSTRACT

Communicated by Wang Zhena Federated learning has emerged as a new way of data sharing. The participants in the federation tend to choose
different strategies based on their benefits, which is formalized into an evolutionary game model. Existing
techniques can limit the malicious behavior of participants by detecting betrayers or weakening their influence.
The problem that whether there is an incentive mechanism which makes participants spontaneously choose to
cooperate honestly and maintains the stability of the federated learning system is urgent. In this paper, we
develop a multi-player evolutionary game model in federated learning. We model the federated learning process
by evaluating the payoffs of the central server, internal clients, and external clients. The stability of the federated
learning system in the long-term dynamics process is assessed by seeking the evolutionarily stable equilibrium
solutions. In this paper, mathematical reasoning and computer simulation are combined to analyze the impact of
reward and punishment strategies in incentive mechanisms on the game process and game equilibrium. An
incentive mechanism is designed to achieve evolutionarily stable equilibrium while make most clients join the
federation spontaneously and cooperate honestly. Finally, the effectiveness, stability, and generalizability of this
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incentive mechanism are verified by sensitivity analysis and Lyapunov stability theory.

1. Introduction

Federated learning has been developed as a new distributed machine
learning technique to solve the data island problem [1]. Specifically, the
process of federated learning is that clients train the local data and then
upload the parameters to the central server, which aggregates and ob-
tains the global model parameters and distributes them to each client.
The learning is completed through multiple communications and in-
teractions [2]. Federated learning is received increasing attention due to
its significant advantages in privacy protection. However, there are still
many challenges, for example, participant challenges [3]. As the prin-
cipal members of federated learning, local clients are the foundation of
federated learning. Since clients will upload and download parameters
through the central server, data pollution caused by a betrayal partici-
pant may spread to the whole federated learning cluster. Therefore, how
to deal with malicious clients and attract more honest clients to partic-
ipate in federated learning is a necessary issue [4].

Previous studies that only focused on technical aspects are not
enough to solve this problem. To some extent, the research on cooper-
ative strategies for federated learning in the context of specific
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application scenarios is more critical than technical research [5]. The
operation of the federated learning system is determined by the inter-
action of the strategy of multiple players, which consist of the central
server (CS), internal clients (IC), and external clients (EC). Non-
cooperation, dependence on strategy, and pursuit of profit maximiza-
tion among the players are the essential characteristics of game theory.
Therefore, some scholars applied game theory to solve the design
problem of federated learning mechanisms and achieved good results
[5-10]. For example, Wang et al. [11] modeled the dynamics of regret
minimization in large agent populations, helped us deepen our under-
standing of the multi-agent learning process. This study shows the
importance of evolution and stability in multi-agent system, and inspires
us to use game theory to model federated learning.

Most of the current studies are under the framework of complete
information and complete rationality of the players, which differs from
the reality and ignores the fluctuations of the changing strategies of the
players in the system. This leads to the risk of instability of the federated
learning system in the dynamic process. In reality, the participants in
federated learning form a complex dynamic system, and the players are
always in a state of limited rationality. In this scenario, it is difficult to
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achieve a stable equilibrium in traditional games, and evolutionary
game theory is needed for analysis and research.

Evolutionary game that combines game analysis and dynamic evo-
lution process analysis has been widely used in economics, operations
research, and management, etc. [12]. Evolutionary game theory focuses
on the dynamics of strategy changes and which strategies can persist in
the above settings. The success of a player’s strategy is directly related to
the strategy chosen by other players. Once an evolutionarily stable
strategy is adopted by a group, no player intends to deviate from it, and
it can still survive when there is a small external incursion. In the field of
federated learning, some scholars also use evolutionary game to model
the interaction between the clients, where the individual utility of cli-
ents has been successfully improved by adjusting the client training
scheme or cluster selection [13-15]. To the best of our knowledge, no
researcher embodied all the complex strategies influences among the CS,
honest and betrayed IC, and EC not joining the federation in the
modeling process of evolutionary games, and obtained evolutionarily
stable equilibrium strategies.

This paper aims to develop a multi-player evolutionary game model
by analyzing the operation process of the federated learning system. We
analyze each player’s strategy choices and benefit needs in the dynamic
process based on current techniques and a variety of specific application
scenarios in federated learning. In this paper, we use the system dy-
namics (SD) method [16], which is widely used in the numerical
simulation, to simulate the strategy changes and interaction of each
player, and to study the implementation effects of each strategy and the
evolutionarily stable equilibrium. In this paper, through the mathe-
matical analysis based on Lyapunov stability theory and the computer
simulation of SD, we study the participant’s challenge in the dynamic
process of federated learning from qualitative and quantitative aspects.
We obtain the incentive mechanism that can achieve the evolutionarily
stable equilibrium. Finally, the corresponding recommendations for the
design of the federated learning mechanism are given, aiming to
maintain the healthy operation of the federated learning system stably
way in the long term. The main contributions are as follows:

e In this paper, the model combines evolutionary game theory and
system dynamics to analyze the strategy choice and game processes
of the CS, IC, and EC in federated learning. An incentive mechanism
is designed, which can achieve evolutionary stability equilibrium,
and made most of the EC spontaneously choose to join the federation,
and most of the IC choose to cooperate honestly.

Different from the previous studies, this paper’s model is based on
the assumption of incomplete information and limited rationality.
We analyzes the CS’s reward and punishment behavior, the IC’s
attack behavior, and the EC’s impact on the federation as a whole,
which is more in line with the actual operation process of a federated
learning system.

In this paper, the effectiveness, stability, and generalizability of this
incentive are verified by sensitivity analysis and Lyapunov stability
theory. The combination of mathematical reasoning and computer
simulation provides ideas and recommendations for the design of
incentive mechanisms in federated learning.

The remainder of this paper is organized as follows. In Section 2,
literature review is presented. In Section 3, the analysis of the multi-
player evolutionary game in federated learning is presented. In Sec-
tion 4, the stability and robustness of the mechanism are analyzed.
Finally, the conclusions are described in Section 5.

2. Literature review

In 2016, McMahan et al. [17] proposed the concept of federated
learning, a distributed machine learning, which provides a feasible so-
lution to the problem of data islands. It integrates multi-player models
by not directly sharing data, so that the AI system can use data more
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accurately, efficiently [18], and safely [19,20]. Most existing studies
[21,22] assume that the client is willing to participate in constructing
federated learning models, which can only be realized on the premise
that there is an effective incentive mechanism. Otherwise, clients
seeking for maximize benefits may not be willing to participate in
federated learning, or even attacks spontaneously [23]. Therefore, the
design of the federated learning mechanism needs to consider the game
process of the players with conflicting benefits in the model [24].

In recent years, scholars have made some achievements in the design
of federated learning mechanism by using game theory. Hu et al. [25]
and Xiao et al. [7] designed incentive mechanisms by reducing the client
privacy loss and optimizing the server utility. They constructed a
Stackelberg game model based on federated learning, derived the
optimal equilibrium solution, and demonstrated the significant perfor-
mance of the proposed mechanism. Ding et al. [5] and Wu et al. [6]
studied the problem of designing incentives for the CS by using a
multidimensional contract theory approach in game theory, which
reveal the impact of the level of information asymmetry on the strategy,
cost, and utility of the server. Ng et al. [8] proposed a multi-player game
model of federated learning to study how each participant makes
choices among different incentives. Cong et al. [9] split the incentive
mechanism design problem in the game-theoretic framework into two
sub-problems: supply-side and demand-side. It is noteworthy that these
studies are based on the assumption of complete information or com-
plete rationality. However, the behavior of each participant in federated
learning is limited rational in actuality. And if the limitation of incom-
plete information is ignored, the modeling and analysis of the federated
learning mechanism will deviate from the actual situation, which reduce
the effectiveness and application value of the design method of the
mechanisms. To solve the above problems, we investigated the litera-
tures that have successfully addressed them in other fields. For example,
in the field of climate change mitigation, when face collective-risk social
dilemmas, Wang et al. [26] successfully safeguarded the group optimal
outcome while balancing selfish interests and common good. Wang et al.
[27] proposed and proved through social dilemma experiments that
reducing anonymity can effectively promote the cooperation between
individuals. These studies inspire us to consider: in the field of federated
learning, there is no pressure of group loss from social dilemmas, and
strict privacy requirements make it difficult to achieve onymous
communication between individuals. In such a case, how can the game
promote egoists to cooperate actively? Can we promote the cooperative
behavior between individuals through incentive mechanism?

We wonder if introduce the evolutionary game into federated
learning can find an answer to the above idea. The evolutionary game
model can analyze the game behavior between limited rational players
in an incomplete information model. Because the strategies of the CS, IC,
and EC are constantly evolving in the operation of a real federated
learning system, evolutionary game theory is precisely applicable to
studying this interaction of strategies. By applying evolutionary game
theory, Zou et al. [13] explored a method to maximize the utility of
mobile devices in federated learning. Lim et al. [14] proposed a hier-
archical game framework to study edge association and resource allo-
cation in hierarchical federated learning networks by combining the
Stackelberg game with an evolutionary game. In addition, Lim et al. [15]
simulated the dynamic process of cluster selection to solve the problem
of secondary resource allocation and incentive design. The articles
above have all achieved excellent results. To our knowledge, no
researcher has embodied all the complex strategies influences among
CS, honest and betrayed IC, and EC not joining the federation in the
modeling process of evolutionary game. There is still a lack of discussion
on motivating more IC to choose honesty while more EC choose to join
in the federated learning. The above research work provides a reference
for us to analyze the strategic choices of all players in the federated
learning system. The comparison between state of art related techniques
and ours is listed in Table 1.
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Table 1
Comparison with related works in federated learning (FL).
Schemes  Game model Rational Players Research objectives Verification Sensitivity
limitation method analysis
[25] Stackelberg X CS, IC The incentive design for compensating privacy leakage cost of v X
providing reliable data users for general FL systems
[28] Stackelberg X CS, IC, Build market-oriented model to analyze and solve optimal behavior in v v
market general FL systems
[29] Mixed- X CS, IC Algorithm optimization of detect and discard bad updates provided by x v
strategy the clients in robust FL System
[30] Reverse v CS, IC Employ federal learning as the proof of work for blockchain v X
[6] Contract v Cs, IC Jointly considering the task expenditure and privacy issue of FL v X
theory incentive design
[14] Stackelberg, v Cs, IC, Capture the dynamics of edge association and resource allocation in v v
Evolutionary edge hierarchical FL networks
servers
[31] Evolutionary v CS, Optimize algorithms that improve system availability by solving X X
fog instability problems within the fog federation
providers
[13] Evolutionary v CS, IC Optimization strategies for enhancing individual utility of mobile v X
devices in general FL systems
Ours Evolutionary v CS, IC, EC Analyze and solve the problem of stability and incentive mechanism v v

design for dynamic processes of general FL systems

Verification method: whether mathematical reasoning is used to interpret and verify the computer simulation results.

Rational limitation: whether to restrict to ’limited rationality’.

3. Multi-player evolutionary game analysis of federated
learning

In the operation of a federated learning system [17], because all clients
are in the same social market, their payoffs are mutually influenced. IC are
managed by CS, so the payoffs between these two are also mutually
influential and interdependent. The above-mentioned individuals are
limited rational, their behavior are not static. They always calculate,
compare their payoffs and change their choices accordingly, thus the
behavior of the game is formed. The players with lower payoffs keep
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replicating the dynamics of the “successful ones” in the process of the
game. The strategies of each player need to experience a process of
adaptive change rather than being obtained by an immediate optimization
calculation. So the whole federated learning system evolves over time
according to some regular pattern. A system with the above characteristics
can be called a dynamic system [32]. Evolutionary game theory differs
from traditional game theory, because it applies to analyzing dynamic
game processes with limited rational players [33]. Therefore, evolutionary
game theory is more suitable for studying the dynamic process of federated
learning, and making the study more realistic.
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Fig. 1. Federated Learning System Framework.
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3.1. Game design and description

Based on the theory of federated learning, the central servers and
clients participating in the federation will make different decisions,
which result in different payoffs. As time goes on, players continuously
improve their cooperation strategies, and then form new federated
cooperation scenarios. We further set the payoffs for each player by
analyzing the federated learning process.

Assumptionl. In the game, each player is limited rational and pursues
payoff maximization. Each player can choose one of two mutually exclusive
strategies and continuously check their own payoffs to decide whether to
change their strategies.

The multi-player game among the CS, IC, and EC is shown in Fig. 1.

Central server: In our setting, the CS may be a cloud platform
providing coordination services and is responsible for organizing
federation collaboration and aggregating local models. The goal of CS is
to enable participating clients to cooperate honestly and recruit more
clients to join the federation at a low cost. CS coordinates more honest IC
can get better global model and thus higher market returns so as to
improve its net income. The strategy space of CS is {Regulate, No
regulate}. 'Regulate’ means to pay extra cost to deploy defenses. For
example, the schemes proposed in the literature such as [34] and [35]
can be used to detect attacks from malicious IC. At this time, there is a
probability to capture malicious IC and implementing a penalty. "No
regulate’ does not require the above costs to detect malicious attacks.
The specific interactions and corresponding symbols related to CS in the
multi-player game process are described as follows:

The CS chooses a(0<a<1) as its strategy, where a represents the
regulation rate. The bigger the value of a, the bigger the regulation in-
vestment of the CS. The CS charges the client a model usage fee w;-

(clientsmarketreturns) and gives the honest client a reward of
ws-(modelusagefee). The CS needs to pay the additional regulation cost
c(c > 1) when strengthening regulation. At this time, it is possible to
detect the betrayal behavior of the IC and implement punishment. When
the CS chooses ‘no regulate’, it is vulnerable to attack by malicious IC,
and the quality of the global model is reduced. Then the market returns
of other IC is lower, and the model usage fee is low. This leads to low
payoffs for the CS and a low-quality global model, which makes EC tend
to be unwilling to join. Therefore, the CS considers changing its strategy
to ‘regulate’, which also leads to changes in other players’ strategies. In
reality, multiple entities (clients) in a federated learning system
collaborate to solve machine learning problems under the coordination
of a CS. The original data of each client is stored locally and will not be
transmitted directly. The clients are independent decision-making and
use local updates to achieve learning goals. Therefore, the system
operation of federated learning is a long-term process. Each player will
observe and compare their different payoffs and change their strategies
dynamically.

Assumption2. The CS probabilistically catches the betrayed IC with a
probability density o l‘Te’C, then the probability of catching the betrayal is jOT

l-e _ 1 ,—ct 1
Sedt =1 + e+ e

Internal clients: The clients may be private cell phones, computers,
and other terminals or small enterprises that own the data. We call the
clients who have participated in federated learning as IC, they are
responsible for uploading the parameters of local models to CS for ag-
gregation, and then downloading the aggregated models and putting
them into the market for payoffs. The goal of IC is to maximize their net
income, their strategy space is {Honest, Betray}. 'Honest” means that IC
honestly implement procedures such as uploading or downloading pa-
rameters and reporting market revenue in the process of federated
learning, CS and several honest IC can form a reliable federation to
achieve federated learning. *Betray’ means that malicious IC choose to
implement attack methods such as model poisoning [36] and backdoor
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attacks [37] on CS. This can destroy the market share of other honest IC
by destroying the global model of CS, so as to indirectly increase their
market returns, or to reduce the cost of participating in the federation to
increase their net benefits by free-riding [38], misreporting market
returns, etc. The specific interactions and corresponding symbols related
to IC in the game process are described as follows:

IC choose (0<p<1) as their strategy, where $ represents the honesty
rate of IC. The bigger the value of , the more IC choose honesty. Global
model prediction accuracy can be improved when the IC honestly par-
ticipates in federated learning (formalized in the text as improving the
model quality score). IC pay a model usage fee to the CS and receives
reward. When a client betrays the federation, it uploads fake parame-
ters. In this case, the federated model quality score is decreased, and the
payoffs are slightly misreported. However, it is possible to be detected
by the CS and punished.

External clients: EC refer to clients that are not already joining in
the aforementioned federated cooperation, and their strategy space is
{Join, Not to join}. If the payoff of joining the federation is higher, EC
choose ‘Join’, and if not, choose ‘Not to join’. EC that do not join in
federated learning only gain market returns through their own local
models, and do not need to interact with CS. The specific interactions
and corresponding symbols related to EC in the game process are
described as follows:

EC choose y(0<y<1) as their strategy, where y represents the joining
rate of EC. The bigger the value of y, the more EC choose to join. When
an external client joins the federation, it defaults to honest cooperation.
It needs to pay model usage fees, while it can improve the model quality
score (i.e., increases market returns) and receives a reward.

All variables in the multi-player game model are shown in Table 2.
Table 3 shows the payoff matrix under eight different strategies com-
binations. Each part of the payoff function represents the payoff of the
CS, IC, and EC.

3.2. Game solution

According to evolutionary game theory [39] and the payoff matrix in
Table 3, the expected benefits U, when the CS chooses to regulate and
the expected benefits U; _, when it does not regulate can be obtained as
follows, respectively.

Uy = —c + (1 = wy)wimB[2way +wa(1 —7) |
| . 1 1 1 1)
+<l+%e ,E>5(1 —p) - <fﬁe +ﬁ>
wiwim(l —p)(1 = B)(ywa + 1 —7)
Fwim(l = p)(1 = p)[r(2 = wa)wo +1 —7]

Table 2
Meanings of variables in the multi-player game.
Variables = Meaning of the variables Notes
c Supervision cost of central server c>1
m Model quality score when the client does not join ~ m > 1
federated learning
way The quality enhancement coefficient for the initial 1 < w, < w’2 <2

client when only one player in the game honestly
joins the federated learning

w, The quality enhancement coefficient for the initial
client when two players in the game honestly join
the federated learning

T<wy<w,<2

wy The proportion of model usage fee handed overto 0 <w; <1
the central server on the client in the client’s
market return

w3 The proportion of rewards distributed by the 0 <ws<1
central server to the client in the model usage fee

p Damage coefficient of the betrayed client to 0<p<<l1
federated learning model

T Update cycle of a federated learning model T>0

S Punishment for internal clients who choose to $>0
betray
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Table 3
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Payoff matrix of the game among the central server, the internal clients and the external clients.

Three players strategies Central server payoff

Internal clients payoff External clients payoff

a,p.y 1- W3)2w1W2m—c
a,p1—y (1 —ws)wiwam—c
a,l—py (2 —ws)wiwam(l —p) —c
1 5 1
_ ( e ﬁ>w3w1wzm(1 -p)
1 4 1
+(1 +T—Ce — T—C>S
a,1—-p.1—y wim(l—p)—c
1 o 1
7< —e ﬁ)wwlm(l -p)
1 . 1
+(l * Tce Tc)s
1-apy (1 - w3)2wiwm
1-a,81-y (1 — w3)wiwam
1-a1-py 2(1 — w3 )wiwom(1 —p)
1-a,1-4,1—y (1 —ws)wim(1 —p)

(1+ wawi — wy)w,m (1+ wawi — wr)w,m
(1+ wawr — wi)wam m 1
we +1
m(1 +p) — wiwam(1 —p) (14 wswy —w1)(1 —p)wam

1, n 1
L — Jwawywom(1 —p
( e 15) aWiWam( )

m(1+p) —wim(l —p) m
1

1
—_ —Tc R —
+< Tce + Tc)w3w1m(1 p)

1 5, 1
- (1 +ﬁe - ﬁ)s
(1+ wawy — wi)w,m (1+ wawy — wy)w,m
(1+ wswy — wy)wom m 1
wy +1
m(1+p) + (ws — 1)wywam(1 —p) (14 wswy —wq)(1 —p)wom
m(1+p) + (w3 — )wim(1 —p) m

Uia = (1 = w3)wimp[2wyy + wa(1 —7) ]
+ (I —ws)wim(l —p)(1 = p)(2yw2 + 1 —7) 2

Therefore, the average expected benefit of the central server is:
Urx,l—a = aUa + (1 - a)UI—a (3)

According to replication dynamics [40], more players gradually
adopt strategies with better-than-average benefits in a limited rational
population. Therefore, the proportion of players using each strategy in
the population will change. The change rate of @ can be calculated by
replication dynamic equation, which is derived as follows:

F(a) = Z—(: =a(Uy — Upgi-a) = a(1 — a)(Us — Uy_y)

:a(lfa){p—c+(l+%e’"—%) (1—,6) “

[S + wawim(1 = p)(yws +1 — r)]}

Similarly, the expected benefits U; when IC are honest and the ex-
pected benefits U;_; when they betray can be calculated as follows:

Up = (1 +wsw; 7w1)m[w/2y+w2(lf}/)] 5)

1 |
Uiy =m(l+p) —a(l +T—Ce’T‘ —T—C)SJr(}/wz +1—y)wm(l—p) {w3

1 1
—1— 14— To
aws ( + Tce Tc)}
(6)

The expected benefits U, when EC join and the expected benefits U; _,
when they do not join can be calculated as follows:

Uy = (1+ wswy — wi)m[w, + wa(1 = p)(1 = p) | %)

Ulfy:mﬁ

w2+l+m(l_ﬁ) (8)

To sum up, the multi-player evolutionary game of federated learning
can be expressed by the following replication dynamic equation group:

Fl@) = a1 —a){ et (1 +Tice*“ —Tic>
(1=l + w1 = )+ 1= )1}

P9 =1 = (1 wamn = Jm i a1 =)

1 1
—m(1+p)+a 1+ Ee’n ~Te YS—(pwa+1—7y) 9
(1-p) l—a (1+1*'“‘ 1)
wim pP)|ws W3 Tce Te

F(y)=r(1 *7){(1 +waw, — Wl)’"{“’ﬁﬂ

(1 - )(1 w)} —mﬁﬁ—mQ —ﬂ)}

Set F(a) = F(B) = F(y) = 0, the local equilibrium solutions can be
calculated as: E;(0,0,0)", E,(0,0,1)", E5(0,1,0)7, E40,1,1)",
Es(1,0,0)7, E(1,0, 1), E,(1,1,0)7, Eg(1,1, 1), a, 4, B, €0, 1].
The other three equilibrium solutions are in the appendix A.

Friedman [39] proposed that the stability of the equilibrium point of
the replication dynamic equations can be judged by the determinant and
eigenvalues of the Jacobian matrix of the system at the equilibrium
point. According to Lyapunov stability theory, if all eigenvalues have
non-positive real parts, the system is stable; otherwise, the system is
unstable. The Jacobian matrix of the replication dynamic equation
group (9) is:

Ju  Jn Jiz
J=1{Ju Jn Jas (10)

o Jn J33

Which,
_O0F(a) 1 e T
Ji = Y =(1 2a){—c+<l Tc+ Te

(1= s+ wam(t = phw(1 =+ w)| |

oF 1 e ™
112: (ll) = - (17ﬁ+eTC )(lfa)a[S+W3m(lfp)wl(lfy

+way)]
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oF

_O0F(a) 1 e I¢
Ji3 = o =wym(l —p)w (1 Tc+ Te

(-1 )0 - @at-p

oF(p) 1 e T
Y= -mls(1 -5 )

1 e T
+W3m(lfp)w1<lfﬁ+ e )(1*7+W27>]

122:()};—(;):(1—2.3){‘”’(1"‘17)

ws(1= 2 Narm( 1w+
_— m - W wiw
Tc Tc ! e

{Wz(l -7) +W£7} —m(l = p)wi [ L+ws

oLty ” -7+
w3 Te Tc a Y —way

J23 :aF—(ﬁ) = {m(l — Wi +W3W1>
oy

<v\/2 —wz) —m(l —p)w, <— 1+wz) {— 1+ws

i o

Ja =

_OF(y) _
0F(y) m
= — — 1—
J3n P m 5w +m wi

+W3W1> <W§ - *p)w)} (=7

Jggzdg—;}/):{—mo—ﬂ)—lﬁﬂwz—l-m

(1 —wi + W3W1> {(1 —p)wa(1 = p) + W'zﬂ} } (1 - 27)

Table 4
Eigenvalues of Jacobian matrix.
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Take eight pure strategy solutions as an example, substituted into the
Jacobian matrix (10) respectively. The eigenvalues of the Jacobian
matrix corresponding to the equilibrium solutions are shown in Table 4.

If and only if 1;, 1o, 43<0, the equilibrium solution is in a stable state.
By analyzing the calculated results in Table 4, we know that many fac-
tors jointly influence the evolutionary equilibrium state of the federated
learning system. At this time, it is impossible to determine whether there
is an evolutionary stable strategy (ESS) in the above equilibrium solu-
tions, so we can use computer simulation to analyze the federated
learning evolution. The primary purpose of mathematical modeling is to
catch the essence of the problem, explore the specific effects of each
factor, and find the optimal solution of the problem. Therefore, when the
full use of theoretical analysis cannot achieve the purpose of mathe-
matical modeling, then computer simulation can be used to conduct
scientific prediction analysis by simulating the implementation effect of
different strategies.

3.3. Game analysis based on system dynamics

The SD approach relies on computer simulation technology and the
feedback control theory. It combines quantitative and qualitative anal-
ysis to deeply explore the information feedback behavior in complex
systems, find and study relevant and important influencing factors
within the system [16]. Simulation the game by using SD allows for an
integrated view of the dynamic features behind the game equilibrium
from a global perspective. In addition, the analysis of evolutionary game
theory plays a key role in modeling and formulating the corresponding
decisions [41].

Based on the above assumptions and analysis, this paper uses Vensim
DSS v5.6a to develop an evolutionary game model for federated
learning, which consists of three sub-systems, namely the central server,
internal clients, and external clients, as shown in Fig. 2. The rectangles
represent level variables showing the cumulative results. The valves
represent the rate variables showing the physical flows of items feeding
into or depleting; the other variables are auxiliary and exogenous vari-
ables. In this model, there are three flow level variables, three flow rate
variables, nine exogenous variables, and twelve auxiliary variables.
Functional relationships among all variables are set based on the above
equations (1)-(8).
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Fig. 2. Evolutionary game SD model of federated learning.

The system parameters are set as: INITIAL TIME = 0, FINAL TIME =
100, TIME STEP = 0.25, Integration Type: Euler. According to publicly
available data sources (i.e., literature, institutional reports, and an-
nouncements), the initial values of the exogenous variables in the model
are shown in Table 5 after pre-processing.

Table 5
The initial values of exogenous variables.

Variables = Meaning of the variables Initial
values

c Supervision cost of central server 2

m Model quality score when the client does not join 10
federated learning

wa The quality enhancement coefficient for the initial client 1.2
when only one player in the game honestly joins the
federated learning

w, The quality enhancement coefficient for the initial client 1.3
when two players in the game honestly join the
federated learning

wy The proportion of model usage fee handed over to the 0.8
central server on the client in the client’s market return

w3 The proportion of rewards distributed by the central 0.8
server to the client in the model usage fee

P Damage coefficient of the betrayed client to federated 0.5
learning model

T Update cycle of a federated learning model 2

S Punishment for internal clients who choose to betray 4

In the replication dynamic equations group (9), set F(a) = F(p)
F(y) = 0, 11 equilibrium solutions can be obtained as follows:
E1(0,0,0)", E»(0,0,1)", E3(0,1,0)T, E40,1,1)7, Es(1,0,0)7,
Es(1,0,1)7, E,(1,1,0)7, Es(1,1,1)", Eo(1,0.4376, 0.885388)",
E10(0.758333, 0.631877, 0)7, E11(0.527392, 0.661928, 1)". E; ~ Eg
are pure strategy equilibrium solutions and Eg ~ E;1; are mixed strategy
equilibrium solutions.

Next, we take E;; as an example and substitute E;; into the SD model,
the simulation results are shown in Fig. 3. This result shows a relatively
balanced state, in which the CS, IC, and EC do not spontaneously change
their strategies. However, it still needs to be tested whether E;; is an ESS.
According to evolutionary game theory, the population who adopt ESS
should be sufficient to withstand small mutations [42]. We make a small
mutation in the initial strategy of the EC, i.e., change the initial value y of
the EC from 1 to 0.9, and re-simulating the model. The result is shown in
Fig. 4.

As can be seen from Fig. 3, wheny = 1, i.e., when all EC choose to
join, IC maintain a high honesty rate, and the CS maintain a moderate
regulation rate. Further, the results in Fig. 4 show that E;; is not an ESS,
because a mutation in the initial value of y breaks the equilibrium of E;1,
leading to fluctuating and unstable strategies for other players. The
reason for this phenomenon is that EC have a mutation, i.e., a change in
their strategy results in less benefit. The strategy of EC will continue to
change, so that the CS and IC will also change their strategies based on
their benefits. Similarly, we checked the equilibrium states of other ten
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equilibrium solutions by observing the simulation results and found that
E; ~ E; are also not ESS.

To sum up, a practical approach to analyzing the stability of equi-
librium solutions is to use SD to simulate multi-player evolutionary
game. When the CS, IC, and EC all maintain the initial strategies, the
state of the system is stable and will not change with simulation time,
and each player makes the best choice based on its own benefits.
However, this equilibrium is unstable, once there is a mutation in one
player’s strategy, this steady state will be broken, which shows that all
equilibrium solutions are not ESS. Therefore, there is no ESS in this
game, and the behavior of multi-players will not be effectively
controlled within a certain time.

4. Stability control scheme of federated learning
It is difficult to design a mature federated learning mechanism when

the system is unstable. Therefore, it is necessary to study how to ensure
the stability of the system to produce an effective mechanism.

4.1. Static incentive mechanism

A common idea in the design of federated learning incentive mech-
anisms is to increase the penalty for betrayed IC. In the above model, we

adjust the strength of the CS’s punishment on IC, i.e., the CS’s punish-
ment on betrayed clients is changed from S = 4 to S = 6 and to
S = 8. Theinitial strategies of the three players aresetas: a = 0.5, =
0.5, and y = 0.5. The strategy choices for the CS and the IC under
different penalty strengths are shown in Fig. 5 and Fig. 6.

According to the simulation results in Fig. 5, it can be seen that the
fluctuation frequency and amplitude of the CS supervision rate will in-
crease with punishment. Similarly, as can be seen from Fig. 6, in the
same period, the honesty rate of the IC increases with penalty intensity.
But the frequency and amplitude of fluctuations of the IC in the game
process also increase with penalty intensity.

In conclusion, in the design of the federated learning incentive
mechanism, simply increasing the penalty is not effective in restraining
the fluctuations in the players’ strategic choices, and there is still no ESS
in the game. In addition, increasing the punishment can restrain the
betrayal of IC in the short term. As the punishment rises, the honesty rate
of IC will rise faster, and IC will temporarily choose not to betray.
However, this strategic choice of players is not sustainable in the long
term; this design approach can only obtain short-term achievements.
There is still fluctuation in this game, and the magnitude and frequency
of fluctuation increase. To address similar problems, some scholars
proved that only increasing the punishment in a mixed strategy game
cannot actually change the equilibrium position of the honesty
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Fig. 6. Effect of different punishment on IC in static incentive mechanism.

probability of the punished[43]. In practice, increasing the punishment
is widely used because it can increase the equilibrium position of the
punishment in the short term[44]. However, this approach ignores that
the payoff matrix of the game players is impacted by the increase of
punishment, which makes the game more difficult to control.

4.2. Dynamic incentive mechanism

To restrain fluctuations in the operation of the federated learning
system, several studies correlated rewards and punishments with the
performance of all players [45]. Therefore, in the dynamic incentive
mechanism, the CS implements dynamic punishment based on its
regulation rate and dynamic reward based on the IC honesty rate and EC
joining rate. The stricter the CS regulation, the heavier the punishment
for IC. The lower the honesty rate of IC and the joining rate of EC, the
more rewards that the CS will give to clients. So as to improve the multi-
player strategy fluctuation situation, as shown in the following two
formulas:

S = qiSa,wy = gaws (1 — p)(1 —y)

Where ¢; and g, are the reward and punishment adjustment factors
of the CS respectively, which are set to 8 and 10 here. The modified
system dynamics model is shown in Fig. 7.

Set the initial strategies for the CS, IC, and EC to
@ =05p=057y=05and a =02 8 =06,y = 09 un-
planned, the simulation results are shown in Fig. 8 and Fig. 9.

According to the simulation results in Fig. 8 and Fig. 9, it can be seen
that in the dynamic incentive mechanism, even if the initial strategies
are different, the three players will keep playing over time and finally
stabilize at E*(0.4790, 0.8421, 0.7480). The strategy choices of CS, IC
and EC in both figures need different time to reach stable state, which is
influenced by the initial strategies. But they all show a trend of gradually
decreasing amplitude until they no longer fluctuate. This is different
from the simulation results in Fig. 5 and Fig. 6 in section 4.1. We sub-
sequently simulated other 20 groups with randomly different initial
strategies and get the same evolutionary process and stable point E*. In
addition, the time of reaching the stable state is influenced by the dis-
tance between the initial three-player strategy and E*, the closer the two
are, the faster the convergence rate. Thus, the fluctuations in the pre-
vious static incentive mechanism are eliminated and converge to a point.
Then E* is an evolutionarily stable equilibrium solution.

Since the possible values of the initial strategy are infinite, the SD
simulation cannot traversal all possibilities, which is not rigorous
enough in academic research. So we need to further verify the correct-
ness of E* according to Lyapunov stability theory , and substitute S* and
w; into the equation group (9). The new replication dynamic equations
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In replication dynamic equation group (11), set F(a) = F(f) =
F(y) = 0, the equilibrium solutions of 8 pure strategies and 7 mixed
strategies can be obtained as follows: E;(0,0,0)", E;(0,0,1)",
E;(0,1,0)", E,0,1,1)", E(1,0,0)", E(1,0,1)7, E(1,1,0),
Ey(1,1,1)",  E;(0.561021, 0.852363,1)",  E;,(0, 0, 0.770833)",
E;,(1,0,0.770833)", E;,(0.0828277,0,1)", E;4(0, 0.808036, 0)7,
E;,(0, 0.144036, 0.796504)", E;,(0.479061, 0.842166, 0.748053)".

The Jacobian matrix of the replicated dynamic equation group (11)
is:
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Substituting E; ~ E;, into the Jacobian matrix (12) respectively,
there are eigenvalues greater than O in the calculation results, so Ej ~
E,, are not evolutionarily stable equilibrium solutions. After substituting
E|; into the matrix, we get:

0.951115 — 3.43781 —0.165013
J (E;S) = 3.22193 — 1.94567 —1.07373 13)
0 —1.98731 —2.2646

The eigenvalues of the matrix (13) are: 4; = - 0.253886 + 2.80762i,

a=0.5, f=0.5, y=0.5 (base line)
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A2 = -0.253886 —2.80762i, 13 = —2.75138. The real part of the ei-
genvalues are all less than 0. Therefore, E;;(0.479061, 0.842166 ,

0.748053)" is the ESS of the system.

In summary, the mathematical derivation results are consistent with
the computer simulation results. The ESS can be accurately obtained by
simulating the evolutionary game through the SD model. The dynamic
incentive mechanism effectively restrains the fluctuation and makes the
model have a stable evolutionary equilibrium solution. In addition,
under certain system parameter designs, the mechanism makes IC tend
to be honest and EC tend to join while the CS maintains a moderate
regulation rate. It shows a good incentive effect and enables the feder-
ated learning system to operate stably and efficiently.

4.3. Sensitivity analysis

In reality, the federated learning system may be subject to external
perturbations or operate under some uncertain conditions, and the
proposed mechanism should still be able to maintain its function.
Therefore, sensitivity analysis is performed to further verify the
robustness of the system. We find out the parameters in the model from
several uncertainties one by one, which have an important influence on
federated learning. We analyze the degree of influence and sensitivity of
the parameters on the three players in the game, thus determining the
ability of the system to resist risk. If a small change in a parameter can
lead to a large change in the strategies of three players, then this
parameter is called a sensitive factor, and otherwise, it is called a non-
sensitive factor [46]. In this paper, we use the sensitivity module
embedded in Vensim to analyze all the variables prone to fluctuate in the
model. We make these variables fluctuate with a normal distribution,
the fluctuation range is set to [-20%, +20%], and the initial strategies
for the CS, IC, and ECarea = 0.5, # = 0.5, y = 0.5. Taking the CS
regulation cost ¢ = 2 as an example, the minimum value of c is 1.6, the
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Fig. 10. Sensitivity analysis results (when the CS regulation cost ¢ fluctuates).
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maximum value is 2.4, the mean is 2, and the variance is 1, which fol-
lows the normal distribution. The simulation results are shown in
Fig. 10. The colored areas in the figure are the range of possible changes
of the player’s strategy when the parameter changes. For example, the
yellow area means that the player’s strategy falling in the yellow area
with 50% confidence level when the external parameter changes.
Likewise, the confidence level for falling in the green area is 75%, blue is
95% and gray is 100%. As shown in the figures, the area of all colored
areas is extremely small, so the change of ¢ does not lead to a substantial
change in the strategies of three players, so c is a non-sensitive factor.
When ¢ is changed, all players still achieve an evolutionary stable
equilibrium, so the federated learning mechanism proposed in this paper
maintains the stability. Similarly, after sensitivity analysis of other
vulnerable variables, the simulation results further verify that the
mechanism is robust and can contribute to the long-term stable and
healthy operation of the federated learning system.

5. Conclusions

In this paper, a multi-player evolutionary game model with a CS, IC,
and EC is developed to solve the problems in the operation of the
federated learning system. A combination of mathematical analysis and
computer simulation was used to mutually verify the correctness, and
analyze the strategies of each player in different incentive mechanisms.
The conclusions are as follows:

When the incentive mechanism is static, the strategy choices of the
CS, IC, and EC fluctuate continuously. In other words, there does not
exist an ESS in the game. In addition, the frequency and magnitude of
fluctuations vary with the initial values of some variables. Simply
changing the rewards and punishments will only get results in the short
term and cannot restrain fluctuations. Instead, in the long term, it will
increase the fluctuation of strategy choices for all players, and make the
actual problem more difficult to control effectively.

In the dynamic incentive mechanism, the fluctuation of each player
in the game is effectively restrained. The stable state and the equilibrium
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value are not affected by the change of initial values of the variables. The
game has an ESS, and the mechanism shows a good incentive effect
under a certain range of system parameters design. It enables the
federated learning system to operate stably and efficiently.

Static incentives can quickly restrain the betrayal behavior of IC in
the short term, and dynamic incentives can effectively restrain the
fluctuations in the game. A good federated learning mechanism should
not simply increase the punishment. However, it should increase the
joining rate of EC while decreasing the betrayal rate of IC and avoid
fluctuations in the game. This ensures the stability of the system while
keeping all players’ strategies in an ideal situation. In addition, Lyapu-
nov stability theory and the method of SD simulation evolutionary game
both can effectively analyze the system stability and determine the
equilibrium solution. The sensitivity analysis shows that the SD model is
generalize and can provide a reference for developing federated learning
incentives.

However, there are some limitations of this study. For example, this
paper does not consider the conspiracy between clients. Gaming be-
comes more complicated when multiple clients cooperate to betray the
central server. Therefore, our future work will further explore this issue.
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