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A B S T R A C T   

Federated learning has emerged as a new way of data sharing. The participants in the federation tend to choose 
different strategies based on their benefits, which is formalized into an evolutionary game model. Existing 
techniques can limit the malicious behavior of participants by detecting betrayers or weakening their influence. 
The problem that whether there is an incentive mechanism which makes participants spontaneously choose to 
cooperate honestly and maintains the stability of the federated learning system is urgent. In this paper, we 
develop a multi-player evolutionary game model in federated learning. We model the federated learning process 
by evaluating the payoffs of the central server, internal clients, and external clients. The stability of the federated 
learning system in the long-term dynamics process is assessed by seeking the evolutionarily stable equilibrium 
solutions. In this paper, mathematical reasoning and computer simulation are combined to analyze the impact of 
reward and punishment strategies in incentive mechanisms on the game process and game equilibrium. An 
incentive mechanism is designed to achieve evolutionarily stable equilibrium while make most clients join the 
federation spontaneously and cooperate honestly. Finally, the effectiveness, stability, and generalizability of this 
incentive mechanism are verified by sensitivity analysis and Lyapunov stability theory.   

1. Introduction 

Federated learning has been developed as a new distributed machine 
learning technique to solve the data island problem [1]. Specifically, the 
process of federated learning is that clients train the local data and then 
upload the parameters to the central server, which aggregates and ob
tains the global model parameters and distributes them to each client. 
The learning is completed through multiple communications and in
teractions [2]. Federated learning is received increasing attention due to 
its significant advantages in privacy protection. However, there are still 
many challenges, for example, participant challenges [3]. As the prin
cipal members of federated learning, local clients are the foundation of 
federated learning. Since clients will upload and download parameters 
through the central server, data pollution caused by a betrayal partici
pant may spread to the whole federated learning cluster. Therefore, how 
to deal with malicious clients and attract more honest clients to partic
ipate in federated learning is a necessary issue [4]. 

Previous studies that only focused on technical aspects are not 
enough to solve this problem. To some extent, the research on cooper
ative strategies for federated learning in the context of specific 

application scenarios is more critical than technical research [5]. The 
operation of the federated learning system is determined by the inter
action of the strategy of multiple players, which consist of the central 
server (CS), internal clients (IC), and external clients (EC). Non- 
cooperation, dependence on strategy, and pursuit of profit maximiza
tion among the players are the essential characteristics of game theory. 
Therefore, some scholars applied game theory to solve the design 
problem of federated learning mechanisms and achieved good results 
[5–10]. For example, Wang et al. [11] modeled the dynamics of regret 
minimization in large agent populations, helped us deepen our under
standing of the multi-agent learning process. This study shows the 
importance of evolution and stability in multi-agent system, and inspires 
us to use game theory to model federated learning. 

Most of the current studies are under the framework of complete 
information and complete rationality of the players, which differs from 
the reality and ignores the fluctuations of the changing strategies of the 
players in the system. This leads to the risk of instability of the federated 
learning system in the dynamic process. In reality, the participants in 
federated learning form a complex dynamic system, and the players are 
always in a state of limited rationality. In this scenario, it is difficult to 
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achieve a stable equilibrium in traditional games, and evolutionary 
game theory is needed for analysis and research. 

Evolutionary game that combines game analysis and dynamic evo
lution process analysis has been widely used in economics, operations 
research, and management, etc. [12]. Evolutionary game theory focuses 
on the dynamics of strategy changes and which strategies can persist in 
the above settings. The success of a player’s strategy is directly related to 
the strategy chosen by other players. Once an evolutionarily stable 
strategy is adopted by a group, no player intends to deviate from it, and 
it can still survive when there is a small external incursion. In the field of 
federated learning, some scholars also use evolutionary game to model 
the interaction between the clients, where the individual utility of cli
ents has been successfully improved by adjusting the client training 
scheme or cluster selection [13–15]. To the best of our knowledge, no 
researcher embodied all the complex strategies influences among the CS, 
honest and betrayed IC, and EC not joining the federation in the 
modeling process of evolutionary games, and obtained evolutionarily 
stable equilibrium strategies. 

This paper aims to develop a multi-player evolutionary game model 
by analyzing the operation process of the federated learning system. We 
analyze each player’s strategy choices and benefit needs in the dynamic 
process based on current techniques and a variety of specific application 
scenarios in federated learning. In this paper, we use the system dy
namics (SD) method [16], which is widely used in the numerical 
simulation, to simulate the strategy changes and interaction of each 
player, and to study the implementation effects of each strategy and the 
evolutionarily stable equilibrium. In this paper, through the mathe
matical analysis based on Lyapunov stability theory and the computer 
simulation of SD, we study the participant’s challenge in the dynamic 
process of federated learning from qualitative and quantitative aspects. 
We obtain the incentive mechanism that can achieve the evolutionarily 
stable equilibrium. Finally, the corresponding recommendations for the 
design of the federated learning mechanism are given, aiming to 
maintain the healthy operation of the federated learning system stably 
way in the long term. The main contributions are as follows:  

• In this paper, the model combines evolutionary game theory and 
system dynamics to analyze the strategy choice and game processes 
of the CS, IC, and EC in federated learning. An incentive mechanism 
is designed, which can achieve evolutionary stability equilibrium, 
and made most of the EC spontaneously choose to join the federation, 
and most of the IC choose to cooperate honestly.  

• Different from the previous studies, this paper’s model is based on 
the assumption of incomplete information and limited rationality. 
We analyzes the CS’s reward and punishment behavior, the IC’s 
attack behavior, and the EC’s impact on the federation as a whole, 
which is more in line with the actual operation process of a federated 
learning system.  

• In this paper, the effectiveness, stability, and generalizability of this 
incentive are verified by sensitivity analysis and Lyapunov stability 
theory. The combination of mathematical reasoning and computer 
simulation provides ideas and recommendations for the design of 
incentive mechanisms in federated learning. 

The remainder of this paper is organized as follows. In Section 2, 
literature review is presented. In Section 3, the analysis of the multi- 
player evolutionary game in federated learning is presented. In Sec
tion 4, the stability and robustness of the mechanism are analyzed. 
Finally, the conclusions are described in Section 5. 

2. Literature review 

In 2016, McMahan et al. [17] proposed the concept of federated 
learning, a distributed machine learning, which provides a feasible so
lution to the problem of data islands. It integrates multi-player models 
by not directly sharing data, so that the AI system can use data more 

accurately, efficiently [18], and safely [19,20]. Most existing studies 
[21,22] assume that the client is willing to participate in constructing 
federated learning models, which can only be realized on the premise 
that there is an effective incentive mechanism. Otherwise, clients 
seeking for maximize benefits may not be willing to participate in 
federated learning, or even attacks spontaneously [23]. Therefore, the 
design of the federated learning mechanism needs to consider the game 
process of the players with conflicting benefits in the model [24]. 

In recent years, scholars have made some achievements in the design 
of federated learning mechanism by using game theory. Hu et al. [25] 
and Xiao et al. [7] designed incentive mechanisms by reducing the client 
privacy loss and optimizing the server utility. They constructed a 
Stackelberg game model based on federated learning, derived the 
optimal equilibrium solution, and demonstrated the significant perfor
mance of the proposed mechanism. Ding et al. [5] and Wu et al. [6] 
studied the problem of designing incentives for the CS by using a 
multidimensional contract theory approach in game theory, which 
reveal the impact of the level of information asymmetry on the strategy, 
cost, and utility of the server. Ng et al. [8] proposed a multi-player game 
model of federated learning to study how each participant makes 
choices among different incentives. Cong et al. [9] split the incentive 
mechanism design problem in the game-theoretic framework into two 
sub-problems: supply-side and demand-side. It is noteworthy that these 
studies are based on the assumption of complete information or com
plete rationality. However, the behavior of each participant in federated 
learning is limited rational in actuality. And if the limitation of incom
plete information is ignored, the modeling and analysis of the federated 
learning mechanism will deviate from the actual situation, which reduce 
the effectiveness and application value of the design method of the 
mechanisms. To solve the above problems, we investigated the litera
tures that have successfully addressed them in other fields. For example, 
in the field of climate change mitigation, when face collective-risk social 
dilemmas, Wang et al. [26] successfully safeguarded the group optimal 
outcome while balancing selfish interests and common good. Wang et al. 
[27] proposed and proved through social dilemma experiments that 
reducing anonymity can effectively promote the cooperation between 
individuals. These studies inspire us to consider: in the field of federated 
learning, there is no pressure of group loss from social dilemmas, and 
strict privacy requirements make it difficult to achieve onymous 
communication between individuals. In such a case, how can the game 
promote egoists to cooperate actively? Can we promote the cooperative 
behavior between individuals through incentive mechanism? 

We wonder if introduce the evolutionary game into federated 
learning can find an answer to the above idea. The evolutionary game 
model can analyze the game behavior between limited rational players 
in an incomplete information model. Because the strategies of the CS, IC, 
and EC are constantly evolving in the operation of a real federated 
learning system, evolutionary game theory is precisely applicable to 
studying this interaction of strategies. By applying evolutionary game 
theory, Zou et al. [13] explored a method to maximize the utility of 
mobile devices in federated learning. Lim et al. [14] proposed a hier
archical game framework to study edge association and resource allo
cation in hierarchical federated learning networks by combining the 
Stackelberg game with an evolutionary game. In addition, Lim et al. [15] 
simulated the dynamic process of cluster selection to solve the problem 
of secondary resource allocation and incentive design. The articles 
above have all achieved excellent results. To our knowledge, no 
researcher has embodied all the complex strategies influences among 
CS, honest and betrayed IC, and EC not joining the federation in the 
modeling process of evolutionary game. There is still a lack of discussion 
on motivating more IC to choose honesty while more EC choose to join 
in the federated learning. The above research work provides a reference 
for us to analyze the strategic choices of all players in the federated 
learning system. The comparison between state of art related techniques 
and ours is listed in Table 1. 
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3. Multi-player evolutionary game analysis of federated 
learning 

In the operation of a federated learning system [17], because all clients 
are in the same social market, their payoffs are mutually influenced. IC are 
managed by CS, so the payoffs between these two are also mutually 
influential and interdependent. The above-mentioned individuals are 
limited rational, their behavior are not static. They always calculate, 
compare their payoffs and change their choices accordingly, thus the 
behavior of the game is formed. The players with lower payoffs keep 

replicating the dynamics of the “successful ones” in the process of the 
game. The strategies of each player need to experience a process of 
adaptive change rather than being obtained by an immediate optimization 
calculation. So the whole federated learning system evolves over time 
according to some regular pattern. A system with the above characteristics 
can be called a dynamic system [32]. Evolutionary game theory differs 
from traditional game theory, because it applies to analyzing dynamic 
game processes with limited rational players [33]. Therefore, evolutionary 
game theory is more suitable for studying the dynamic process of federated 
learning, and making the study more realistic. 

Table 1 
Comparison with related works in federated learning (FL).  

Schemes Game model Rational 
limitation 

Players Research objectives Verification 
method 

Sensitivity 
analysis 

[25] Stackelberg × CS, IC The incentive design for compensating privacy leakage cost of 
providing reliable data users for general FL systems 

✓ ×

[28] Stackelberg × CS, IC, 
market 

Build market-oriented model to analyze and solve optimal behavior in 
general FL systems 

✓ ✓ 

[29] Mixed- 
strategy 

× CS, IC Algorithm optimization of detect and discard bad updates provided by 
the clients in robust FL System 

× ✓ 

[30] Reverse ✓ CS, IC Employ federal learning as the proof of work for blockchain ✓ ×

[6] Contract 
theory 

✓ CS, IC Jointly considering the task expenditure and privacy issue of FL 
incentive design 

✓ ×

[14] Stackelberg, 
Evolutionary 

✓ CS, IC, 
edge 
servers 

Capture the dynamics of edge association and resource allocation in 
hierarchical FL networks 

✓ ✓ 

[31] Evolutionary ✓ CS, 
fog 
providers 

Optimize algorithms that improve system availability by solving 
instability problems within the fog federation 

× ×

[13] Evolutionary ✓ CS, IC Optimization strategies for enhancing individual utility of mobile 
devices in general FL systems 

✓ ×

Ours Evolutionary ✓ CS, IC, EC Analyze and solve the problem of stability and incentive mechanism 
design for dynamic processes of general FL systems 

✓ ✓ 

Verification method: whether mathematical reasoning is used to interpret and verify the computer simulation results. 
Rational limitation: whether to restrict to ’limited rationality’. 

Fig. 1. Federated Learning System Framework.  
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3.1. Game design and description 

Based on the theory of federated learning, the central servers and 
clients participating in the federation will make different decisions, 
which result in different payoffs. As time goes on, players continuously 
improve their cooperation strategies, and then form new federated 
cooperation scenarios. We further set the payoffs for each player by 
analyzing the federated learning process. 

Assumption1. In the game, each player is limited rational and pursues 
payoff maximization. Each player can choose one of two mutually exclusive 
strategies and continuously check their own payoffs to decide whether to 
change their strategies. 

The multi-player game among the CS, IC, and EC is shown in Fig. 1. 
Central server: In our setting, the CS may be a cloud platform 

providing coordination services and is responsible for organizing 
federation collaboration and aggregating local models. The goal of CS is 
to enable participating clients to cooperate honestly and recruit more 
clients to join the federation at a low cost. CS coordinates more honest IC 
can get better global model and thus higher market returns so as to 
improve its net income. The strategy space of CS is {Regulate, No 
regulate}. ’Regulate’ means to pay extra cost to deploy defenses. For 
example, the schemes proposed in the literature such as [34] and [35] 
can be used to detect attacks from malicious IC. At this time, there is a 
probability to capture malicious IC and implementing a penalty. ’No 
regulate’ does not require the above costs to detect malicious attacks. 
The specific interactions and corresponding symbols related to CS in the 
multi-player game process are described as follows: 

The CS chooses α(0⩽α⩽1) as its strategy, where α represents the 
regulation rate. The bigger the value of α, the bigger the regulation in
vestment of the CS. The CS charges the client a model usage fee w1⋅ 
(client′smarketreturns) and gives the honest client a reward of 
w3⋅(modelusagefee). The CS needs to pay the additional regulation cost 
c(c > 1) when strengthening regulation. At this time, it is possible to 
detect the betrayal behavior of the IC and implement punishment. When 
the CS chooses ‘no regulate’, it is vulnerable to attack by malicious IC, 
and the quality of the global model is reduced. Then the market returns 
of other IC is lower, and the model usage fee is low. This leads to low 
payoffs for the CS and a low-quality global model, which makes EC tend 
to be unwilling to join. Therefore, the CS considers changing its strategy 
to ‘regulate’, which also leads to changes in other players’ strategies. In 
reality, multiple entities (clients) in a federated learning system 
collaborate to solve machine learning problems under the coordination 
of a CS. The original data of each client is stored locally and will not be 
transmitted directly. The clients are independent decision-making and 
use local updates to achieve learning goals. Therefore, the system 
operation of federated learning is a long-term process. Each player will 
observe and compare their different payoffs and change their strategies 
dynamically. 

Assumption2. The CS probabilistically catches the betrayed IC with a 
probability density of 1− e− c

T , then the probability of catching the betrayal is 
∫ T

0 
1− e− ct

T dt = 1 + 1
TCe− ct + 1

TC. 

Internal clients: The clients may be private cell phones, computers, 
and other terminals or small enterprises that own the data. We call the 
clients who have participated in federated learning as IC, they are 
responsible for uploading the parameters of local models to CS for ag
gregation, and then downloading the aggregated models and putting 
them into the market for payoffs. The goal of IC is to maximize their net 
income, their strategy space is {Honest, Betray}. ’Honest’ means that IC 
honestly implement procedures such as uploading or downloading pa
rameters and reporting market revenue in the process of federated 
learning, CS and several honest IC can form a reliable federation to 
achieve federated learning. ’Betray’ means that malicious IC choose to 
implement attack methods such as model poisoning [36] and backdoor 

attacks [37] on CS. This can destroy the market share of other honest IC 
by destroying the global model of CS, so as to indirectly increase their 
market returns, or to reduce the cost of participating in the federation to 
increase their net benefits by free-riding [38], misreporting market 
returns, etc. The specific interactions and corresponding symbols related 
to IC in the game process are described as follows: 

IC choose β(0⩽β⩽1) as their strategy, where β represents the honesty 
rate of IC. The bigger the value of β, the more IC choose honesty. Global 
model prediction accuracy can be improved when the IC honestly par
ticipates in federated learning (formalized in the text as improving the 
model quality score). IC pay a model usage fee to the CS and receives 
reward. When a client betrays the federation, it uploads fake parame
ters. In this case, the federated model quality score is decreased, and the 
payoffs are slightly misreported. However, it is possible to be detected 
by the CS and punished. 

External clients: EC refer to clients that are not already joining in 
the aforementioned federated cooperation, and their strategy space is 
{Join, Not to join}. If the payoff of joining the federation is higher, EC 
choose ‘Join’, and if not, choose ‘Not to join’. EC that do not join in 
federated learning only gain market returns through their own local 
models, and do not need to interact with CS. The specific interactions 
and corresponding symbols related to EC in the game process are 
described as follows: 

EC choose γ(0⩽γ⩽1) as their strategy, where γ represents the joining 
rate of EC. The bigger the value of γ, the more EC choose to join. When 
an external client joins the federation, it defaults to honest cooperation. 
It needs to pay model usage fees, while it can improve the model quality 
score (i.e., increases market returns) and receives a reward. 

All variables in the multi-player game model are shown in Table 2. 
Table 3 shows the payoff matrix under eight different strategies com
binations. Each part of the payoff function represents the payoff of the 
CS, IC, and EC. 

3.2. Game solution 

According to evolutionary game theory [39] and the payoff matrix in 
Table 3, the expected benefits Uα when the CS chooses to regulate and 
the expected benefits U1− α when it does not regulate can be obtained as 
follows, respectively. 

Uα = − c + (1 − w3)w1mβ
[
2w’

2γ + w2(1 − γ)
]

+

(

1 +
1
Tc

e− Tc −
1
Tc

)

S(1 − β) −
(

−
1
Tc

e− Tc +
1
Tc

)

w3w1m(1 − p)(1 − β)(γw2 + 1 − γ)
+w1m(1 − p)(1 − β)[γ(2 − w3)w2 + 1 − γ ]

(1) 

Table 2 
Meanings of variables in the multi-player game.  

Variables Meaning of the variables Notes 

c Supervision cost of central server c > 1 
m Model quality score when the client does not join 

federated learning 
m > 1 

w2 The quality enhancement coefficient for the initial 
client when only one player in the game honestly 
joins the federated learning 

1 < w2 < w′
2 < 2 

w′
2 The quality enhancement coefficient for the initial 

client when two players in the game honestly join 
the federated learning 

1 < w2 < w′
2 < 2 

w1 The proportion of model usage fee handed over to 
the central server on the client in the client’s 
market return 

0 < w1 < 1 

w3 The proportion of rewards distributed by the 
central server to the client in the model usage fee 

0 < w3⩽1 

p Damage coefficient of the betrayed client to 
federated learning model 

0 < p << 1 

T Update cycle of a federated learning model T > 0 
S Punishment for internal clients who choose to 

betray 
S > 0  
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U1− α = (1 − w3)w1mβ
[
2w’

2γ + w2(1 − γ)
]

+ (1 − w3)w1m(1 − p)(1 − β)(2γw2 + 1 − γ) (2) 

Therefore, the average expected benefit of the central server is: 

Uα,1− α = αUα +(1 − α)U1− α (3) 

According to replication dynamics [40], more players gradually 
adopt strategies with better-than-average benefits in a limited rational 
population. Therefore, the proportion of players using each strategy in 
the population will change. The change rate of α can be calculated by 
replication dynamic equation, which is derived as follows: 

F(α) = dα
dt

= α
(
Uα − Uα,1− α

)
= α(1 − α)(Uα − U1− α)

= α(1 − α)
{

p − c +
(

1 +
1
Tc

e− Tc −
1
Tc

)(

1 − β
)

[S + w3w1m(1 − p)(γw2 + 1 − γ)]
}

(4) 

Similarly, the expected benefits Uβ when IC are honest and the ex
pected benefits U1− β when they betray can be calculated as follows: 

Uβ = (1 + w3w1 − w1)m
[
w′

2γ + w2(1 − γ)
]

(5)  

U1− β = m(1 + p) − α
(

1 +
1
Tc

e− Tc −
1
Tc

)

S+(γw2 + 1 − γ)w1m(1 − p)
[

w3

− 1 − αw3

(

1 +
1
Tc

e− Tc −
1
Tc

)]

(6) 

The expected benefits Uγ when EC join and the expected benefits U1− γ 

when they do not join can be calculated as follows: 

Uγ = (1 + w3w1 − w1)m
[
w′

2β + w2(1 − β)(1 − p)
]

(7)  

U1− γ = mβ
1

w2 + 1
+m(1 − β) (8) 

To sum up, the multi-player evolutionary game of federated learning 
can be expressed by the following replication dynamic equation group: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

F(α) = α(1 − α)
{

− c +
(

1 +
1
Tc

e− Tc −
1
Tc

)

(1 − β)[S + w3w1m(1 − p)(γw2 + 1 − γ) ]
}

F(β) = β(1 − β)
{(

1 + w3w1 − w1

)

m
[

w’
2γ + w2(1 − γ)

]

− m(1+p)+α（1+
1
Tc

e− Tc −
1
Tc

）S − (γw2 + 1 − γ)

w1m(1 − p)
[

w3 − 1 − αw3（1 +
1
Tc

e− Tc −
1
Tc

）
]}

F(γ) = γ(1 − γ)
{(

1 + w3w1 − w1

)

m
[

w’
2β

+w2(1 − β)(1 − p)
]

− mβ
1

w2 + 1
− m

(

1 − β
)}

(9) 

Set F(α) = F(β) = F(γ) = 0, the local equilibrium solutions can be 
calculated as: E1(0, 0, 0)T, E2(0, 0, 1)T, E3(0, 1, 0)T, E4(0, 1, 1)T, 
E5(1, 0, 0)T, E6(1, 0, 1)T, E7(1, 1, 0)T, E8(1, 1, 1)T, α, β1, β2 ∈ [0, 1]. 
The other three equilibrium solutions are in the appendix A. 

Friedman [39] proposed that the stability of the equilibrium point of 
the replication dynamic equations can be judged by the determinant and 
eigenvalues of the Jacobian matrix of the system at the equilibrium 
point. According to Lyapunov stability theory, if all eigenvalues have 
non-positive real parts, the system is stable; otherwise, the system is 
unstable. The Jacobian matrix of the replication dynamic equation 
group (9) is: 

J =

⎡

⎣
J11 J12 J13
J21 J22 J23
J31 J32 J33

⎤

⎦ (10) 

Which, 

J11 =
∂F(α)

∂α = (1 − 2α)
{

- c +
(

1 −
1
Tc

+
e - Tc

Tc

)

(1 − β)
[

S + w3m(1 − p)w1(1 − γ + w2γ)
]}

J12 =
∂F(α)

∂β
= -

(

1 −
1
Tc

+
e - Tc

Tc

)

(1 − α)α[S + w3m(1 − p)w1(1 − γ

+ w2γ)]

Table 3 
Payoff matrix of the game among the central server, the internal clients and the external clients.  

Three players strategies Central server payoff Internal clients payoff External clients payoff 

α,β, γ (1 − w3)2w1w′
2m − c (1+ w3w1 − w1)w′

2m (1+ w3w1 − w1)w′
2m 

α,β,1 − γ (1 − w3)w1w2m − c (1+ w3w1 − w1)w2m m
1

w2 + 1 
α,1 − β, γ (2 − w3)w1w2m(1 − p) − c

−

(

−
1
Tc

e− Tc +
1
Tc

)

w3w1w2m(1 − p)

+

(

1 +
1
Tc

e− Tc −
1
Tc

)

S 

m(1 + p) − w1w2m(1 − p)

+

(

−
1
Tc

e− Tc +
1
Tc

)

w3w1w2m(1 − p)

−

(

1 +
1
Tc

e− Tc −
1
Tc

)

S 

(1+ w3w1 − w1)(1 − p)w2m 

α,1 − β,1 − γ w1m(1 − p) − c

−

(

−
1
Tc

e− Tc +
1
Tc

)

w3w1m(1 − p)

+

(

1 +
1
Tc

e− Tc −
1
Tc

)

S 

m(1 + p) − w1m(1 − p)

+

(

−
1
Tc

e− Tc +
1
Tc

)

w3w1m(1 − p)

−

(

1 +
1
Tc

e− Tc −
1
Tc

)

S 

m 

1 − α,β, γ (1 − w3)2w1w′
2m (1+ w3w1 − w1)w′

2m (1+ w3w1 − w1)w′
2m 

1 − α,β,1 − γ (1 − w3)w1w2m (1+ w3w1 − w1)w2m m
1

w2 + 1 
1 − α,1 − β, γ 2(1 − w3)w1w2m(1 − p) m(1+ p) + (w3 − 1)w1w2m(1 − p) (1+ w3w1 − w1)(1 − p)w2m 
1 − α,1 − β,1 − γ (1 − w3)w1m(1 − p) m(1+ p) + (w3 − 1)w1m(1 − p) m  
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J13 =
∂F(α)

∂γ
= w3m(1 − p)w1

(

1 −
1
Tc

+
e - Tc

Tc

)

(

- 1 + w2

)

(1 − α)α(1 − β)

J21 =
∂F(β)

∂α = (1 − β)β
[

S
(

1 −
1
Tc

+
e - Tc

Tc

)

+w3m(1 − p)w1

(

1 −
1
Tc

+
e - Tc

Tc

)(

1 − γ + w2γ
)]

J22 =
∂F(β)

∂β
= (1 − 2β)

{

- m(1 + p)

+S
(

1 −
1
Tc

+
e - Tc

Tc

)

α + m
(

1 − w1 + w3w1

)

[

w2(1 − γ) + w’
2γ
]

− m(1 − p)w1

[

- 1 + w3

− w3

(

1 −
1
Tc

+
e - Tc

Tc

)

α
](

1 − γ + w2γ
)}

J23 =
∂F(β)

∂γ
=

{

m
(

1 − w1 + w3w1

)

(

w’
2 − w2

)

− m(1 − p)w1

(

- 1 + w2

)[

- 1 + w3

− w3

(

1 −
1
Tc

+
e - Tc

Tc

)

α
]}

(1 − β)β  

J31 =
∂F(γ)

∂α = 0  

J32 =
∂F(γ)

∂β
=

[

m −
m

1 + w2
+ m

(

1 − w1

+w3w1

)(

w’
2 − (1 − p)w2

)]

(1 − γ)γ  

J33 =
∂F(γ)

∂γ
=

{

- m
(

1 − β
)

−
mβ

1 + w2
+ m

(

1 − w1 + w3w1

)[

(1 − p)w2(1 − β) + w’
2β
]}(

1 − 2γ
)

Take eight pure strategy solutions as an example, substituted into the 
Jacobian matrix (10) respectively. The eigenvalues of the Jacobian 
matrix corresponding to the equilibrium solutions are shown in Table 4. 

If and only if λ1, λ2, λ3⩽0, the equilibrium solution is in a stable state. 
By analyzing the calculated results in Table 4, we know that many fac
tors jointly influence the evolutionary equilibrium state of the federated 
learning system. At this time, it is impossible to determine whether there 
is an evolutionary stable strategy (ESS) in the above equilibrium solu
tions, so we can use computer simulation to analyze the federated 
learning evolution. The primary purpose of mathematical modeling is to 
catch the essence of the problem, explore the specific effects of each 
factor, and find the optimal solution of the problem. Therefore, when the 
full use of theoretical analysis cannot achieve the purpose of mathe
matical modeling, then computer simulation can be used to conduct 
scientific prediction analysis by simulating the implementation effect of 
different strategies. 

3.3. Game analysis based on system dynamics 

The SD approach relies on computer simulation technology and the 
feedback control theory. It combines quantitative and qualitative anal
ysis to deeply explore the information feedback behavior in complex 
systems, find and study relevant and important influencing factors 
within the system [16]. Simulation the game by using SD allows for an 
integrated view of the dynamic features behind the game equilibrium 
from a global perspective. In addition, the analysis of evolutionary game 
theory plays a key role in modeling and formulating the corresponding 
decisions [41]. 

Based on the above assumptions and analysis, this paper uses Vensim 
DSS v5.6a to develop an evolutionary game model for federated 
learning, which consists of three sub-systems, namely the central server, 
internal clients, and external clients, as shown in Fig. 2. The rectangles 
represent level variables showing the cumulative results. The valves 
represent the rate variables showing the physical flows of items feeding 
into or depleting; the other variables are auxiliary and exogenous vari
ables. In this model, there are three flow level variables, three flow rate 
variables, nine exogenous variables, and twelve auxiliary variables. 
Functional relationships among all variables are set based on the above 
equations (1)-(8). 

Table 4 
Eigenvalues of Jacobian matrix.  

Equilibrium solution λ1 λ2 λ3 

E1(0, 0, 0)T 
- c +

(

1 −
1
Tc

+
e - Tc

Tc

)

[S+ w3m(1 − p)w1 ]
- m(1 + p) + m(1 − w1 + w3w1)w2

− m(1 − p)w1(− 1 + w3)

- m + m(1 − w1 + w3w1)(1 − p)w2 

E2(0, 0, 1)T 
- c +

(

1 −
1
Tc

+
e - Tc

Tc

)

[S+ w3m(1 − p)w1w2]
- m(1 + p) + m(1 − w1 + w3w1)w′

2

− m(1 − p)w1[ − 1 + w3]w2 

m − m(1 − w1 + w3w1)(1 − p)w2 

E3(0, 1, 0)T - c m(1 + p) − m(1 − w1 + w3w1)w2
+m(1 − p)w1(− 1 + w3)

-
m

1 + w2
+ m(1 − w1 + w3w1)w′

2 

E4(0, 1, 1)T - c m(1 + p) − m(1 − w1 + w3w1)w′
2

+m(1 − p)w1(− 1 + w3)w2 

m
1 + w2

− m(1 − w1 + w3w1)w′
2 

E5(1, 0, 0)T 
c −

(

1 −
1
Tc

+
e - Tc

Tc

)

[S+ w3m(1 − p)w1] - m(1 + p) + S
(

1 −
1
Tc

+
e - Tc

Tc

)

+ m(1 − w1 + w3w1)w2

− m(1 − p)w1

[

- 1 − w3

(

-
1
Tc

+
e - Tc

Tc

)]

- m + m(1 − w1 + w3w1)(1 − p)w2 

E6(1, 0, 1)T 
c −

(

1 −
1
Tc

+
e - Tc

Tc

)

[S+ w3m(1 − p)w1w2] - m(1 + p) + S
(

1 −
1
Tc

+
e - Tc

Tc

)

+ m(1 − w1 + w3w1)w′
2

− m(1 − p)w1

[

- 1 − w3

(

-
1
Tc

+
e - Tc

Tc

)]

w2 

m − m(1 − w1 + w3w1)(1 − p)w2 

E7(1, 1, 0)T c 
m(1 + p) − S

(

1 −
1
Tc

+
e - Tc

Tc

)

− m(1 − w1 + w3w1)w2

+m(1 − p)w1

[

- 1 − w3

(

-
1
Tc

+
e - Tc

Tc

)]

-
m

1 + w2
+ m(1 − w1 + w3w1)w′

2 

E8(1, 1, 1)T c 
m(1 + p) − S

(

1 −
1
Tc

+
e - Tc

Tc

)

− m(1 − w1 + w3w1)w′
2

+m(1 − p)w1

[

- 1 − w3

(

-
1
Tc

+
e - Tc

Tc

)

α
]

w2  

m
1 + w2

− m(1 − w1 + w3w1)w′
2   
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The system parameters are set as: INITIAL TIME = 0, FINAL TIME =
100, TIME STEP = 0.25, Integration Type: Euler. According to publicly 
available data sources (i.e., literature, institutional reports, and an
nouncements), the initial values of the exogenous variables in the model 
are shown in Table 5 after pre-processing. 

In the replication dynamic equations group (9), set F(α) = F(β) =

F(γ) = 0, 11 equilibrium solutions can be obtained as follows: 
E1(0, 0, 0)T, E2(0, 0, 1)T, E3(0, 1, 0)T, E4(0, 1, 1)T, E5(1, 0, 0)T, 
E6(1, 0, 1)T, E7(1, 1, 0)T, E8(1, 1, 1)T, E9(1, 0.4376, 0.885388)T, 
E10(0.758333, 0.631877, 0)T, E11(0.527392, 0.661928, 1)T. E1 ∼ E8 
are pure strategy equilibrium solutions and E9 ∼ E11 are mixed strategy 
equilibrium solutions. 

Next, we take E11 as an example and substitute E11 into the SD model, 
the simulation results are shown in Fig. 3. This result shows a relatively 
balanced state, in which the CS, IC, and EC do not spontaneously change 
their strategies. However, it still needs to be tested whether E11 is an ESS. 
According to evolutionary game theory, the population who adopt ESS 
should be sufficient to withstand small mutations [42]. We make a small 
mutation in the initial strategy of the EC, i.e., change the initial value γ of 
the EC from 1 to 0.9, and re-simulating the model. The result is shown in 
Fig. 4. 

As can be seen from Fig. 3, when γ = 1, i.e., when all EC choose to 
join, IC maintain a high honesty rate, and the CS maintain a moderate 
regulation rate. Further, the results in Fig. 4 show that E11 is not an ESS, 
because a mutation in the initial value of γ breaks the equilibrium of E11, 
leading to fluctuating and unstable strategies for other players. The 
reason for this phenomenon is that EC have a mutation, i.e., a change in 
their strategy results in less benefit. The strategy of EC will continue to 
change, so that the CS and IC will also change their strategies based on 
their benefits. Similarly, we checked the equilibrium states of other ten 

Fig. 2. Evolutionary game SD model of federated learning.  

Table 5 
The initial values of exogenous variables.  

Variables Meaning of the variables Initial 
values 

c Supervision cost of central server 2 
m Model quality score when the client does not join 

federated learning 
10 

w2 The quality enhancement coefficient for the initial client 
when only one player in the game honestly joins the 
federated learning 

1.2 

w′
2 The quality enhancement coefficient for the initial client 

when two players in the game honestly join the 
federated learning 

1.3 

w1 The proportion of model usage fee handed over to the 
central server on the client in the client’s market return 

0.8 

w3 The proportion of rewards distributed by the central 
server to the client in the model usage fee 

0.8 

p Damage coefficient of the betrayed client to federated 
learning model 

0.5 

T Update cycle of a federated learning model 2 
S Punishment for internal clients who choose to betray 4  
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equilibrium solutions by observing the simulation results and found that 
E1 ∼ E10 are also not ESS. 

To sum up, a practical approach to analyzing the stability of equi
librium solutions is to use SD to simulate multi-player evolutionary 
game. When the CS, IC, and EC all maintain the initial strategies, the 
state of the system is stable and will not change with simulation time, 
and each player makes the best choice based on its own benefits. 
However, this equilibrium is unstable, once there is a mutation in one 
player’s strategy, this steady state will be broken, which shows that all 
equilibrium solutions are not ESS. Therefore, there is no ESS in this 
game, and the behavior of multi-players will not be effectively 
controlled within a certain time. 

4. Stability control scheme of federated learning 

It is difficult to design a mature federated learning mechanism when 
the system is unstable. Therefore, it is necessary to study how to ensure 
the stability of the system to produce an effective mechanism. 

4.1. Static incentive mechanism 

A common idea in the design of federated learning incentive mech
anisms is to increase the penalty for betrayed IC. In the above model, we 

adjust the strength of the CS’s punishment on IC, i.e., the CS’s punish
ment on betrayed clients is changed from S = 4 to S = 6 and to 
S = 8 . The initial strategies of the three players are set as: α = 0.5, β =

0.5, and γ = 0.5. The strategy choices for the CS and the IC under 
different penalty strengths are shown in Fig. 5 and Fig. 6. 

According to the simulation results in Fig. 5, it can be seen that the 
fluctuation frequency and amplitude of the CS supervision rate will in
crease with punishment. Similarly, as can be seen from Fig. 6, in the 
same period, the honesty rate of the IC increases with penalty intensity. 
But the frequency and amplitude of fluctuations of the IC in the game 
process also increase with penalty intensity. 

In conclusion, in the design of the federated learning incentive 
mechanism, simply increasing the penalty is not effective in restraining 
the fluctuations in the players’ strategic choices, and there is still no ESS 
in the game. In addition, increasing the punishment can restrain the 
betrayal of IC in the short term. As the punishment rises, the honesty rate 
of IC will rise faster, and IC will temporarily choose not to betray. 
However, this strategic choice of players is not sustainable in the long 
term; this design approach can only obtain short-term achievements. 
There is still fluctuation in this game, and the magnitude and frequency 
of fluctuation increase. To address similar problems, some scholars 
proved that only increasing the punishment in a mixed strategy game 
cannot actually change the equilibrium position of the honesty 

Fig. 3. Game results under initial strategy E11.  

Fig. 4. Game results exists mutation E11(γ→0.9).  
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probability of the punished[43]. In practice, increasing the punishment 
is widely used because it can increase the equilibrium position of the 
punishment in the short term[44]. However, this approach ignores that 
the payoff matrix of the game players is impacted by the increase of 
punishment, which makes the game more difficult to control. 

4.2. Dynamic incentive mechanism 

To restrain fluctuations in the operation of the federated learning 
system, several studies correlated rewards and punishments with the 
performance of all players [45]. Therefore, in the dynamic incentive 
mechanism, the CS implements dynamic punishment based on its 
regulation rate and dynamic reward based on the IC honesty rate and EC 
joining rate. The stricter the CS regulation, the heavier the punishment 
for IC. The lower the honesty rate of IC and the joining rate of EC, the 
more rewards that the CS will give to clients. So as to improve the multi- 
player strategy fluctuation situation, as shown in the following two 
formulas: 

S∗ = q1Sα,w*
3 = q2w3(1 − β)(1 − γ)

Where q1 and q2 are the reward and punishment adjustment factors 
of the CS respectively, which are set to 8 and 10 here. The modified 
system dynamics model is shown in Fig. 7. 

Set the initial strategies for the CS, IC, and EC to 
α = 0.5, β = 0.5, γ = 0.5 and α = 0.2, β = 0.6, γ = 0.9 un
planned, the simulation results are shown in Fig. 8 and Fig. 9. 

According to the simulation results in Fig. 8 and Fig. 9, it can be seen 
that in the dynamic incentive mechanism, even if the initial strategies 
are different, the three players will keep playing over time and finally 
stabilize at E∗(0.4790, 0.8421, 0.7480). The strategy choices of CS, IC 
and EC in both figures need different time to reach stable state, which is 
influenced by the initial strategies. But they all show a trend of gradually 
decreasing amplitude until they no longer fluctuate. This is different 
from the simulation results in Fig. 5 and Fig. 6 in section 4.1. We sub
sequently simulated other 20 groups with randomly different initial 
strategies and get the same evolutionary process and stable point E∗. In 
addition, the time of reaching the stable state is influenced by the dis
tance between the initial three-player strategy and E∗, the closer the two 
are, the faster the convergence rate. Thus, the fluctuations in the pre
vious static incentive mechanism are eliminated and converge to a point. 
Then E∗ is an evolutionarily stable equilibrium solution. 

Since the possible values of the initial strategy are infinite, the SD 
simulation cannot traversal all possibilities, which is not rigorous 
enough in academic research. So we need to further verify the correct
ness of E∗ according to Lyapunov stability theory， and substitute S∗ and 
w*

3 into the equation group (9). The new replication dynamic equations 

Fig. 5. Effect of different punishment on CS in static incentive mechanism.  

Fig. 6. Effect of different punishment on IC in static incentive mechanism.  
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Fig. 7. Evolutionary game SD model under the dynamic incentive mechanism.  

Fig. 8. Game results under dynamic incentive mechanism.  
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group is obtained as: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

F’(α) = α(1 − α)
{

− c +
(

1 +
1
Tc

e− Tc −
1
Tc

)

(1 − β)

[

q1Sα + q2w3(1 − β)(1 − γ)w1m(1 − p)(γw2 + 1 − γ)
]}

F’(β) = β(1 − β)
{

[1 + q2w3(1 − β)(1 − γ)w1 − w1 ]m

[

w’
2γ + w2(1 − γ)

]

− m(1 + p) + α
(

1 +
1
Tc

e− Tc −
1
Tc

)

q1Sα − (γw2 + 1 − γ)w1m(1 − p)
[

q2w3(1 − β)(1 − γ)

− 1 − αq2w3(1 − β)(1 − γ)
(

1 +
1
Tc

e− Tc −
1
Tc

)]}

F’(γ) = γ(1 − γ)
{[

1 + q2w3(1 − β)(1 − γ)w1 − w1

]

m

[

w’
2β + w2(1 − β)(1 − p)

]

− mβ
1

w2 + 1
− m(1 − β)

}

(11) 

In replication dynamic equation group (11), set F′(α) = F′(β) =

F′(γ) = 0, the equilibrium solutions of 8 pure strategies and 7 mixed 
strategies can be obtained as follows: E*

1(0, 0, 0)T, E*
2(0, 0, 1)T, 

E*
3(0, 1, 0)T, E*

4(0, 1, 1)T, E*
5(1, 0, 0)T, E*

6(1, 0, 1)T, E*
7(1, 1, 0)T, 

E*
8(1, 1, 1)T, E*

9(0.561021, 0.852363, 1)T, E*
10(0, 0, 0.770833)T, 

E*
11(1, 0, 0.770833)T, E*

12(0.0828277, 0, 1)T, E*
13(0, 0.808036, 0)T, 

E*
14(0, 0.144036, 0.796504)T, E*

15(0.479061, 0.842166, 0.748053)T. 
The Jacobian matrix of the replicated dynamic equation group (11) 

is: 

J∗ =

⎡

⎢
⎢
⎣

J*
11 J*

12 J*
13

J*
21 J*

22 J*
23

J*
31 J*

32 J*
33

⎤

⎥
⎥
⎦ (12) 

In which, 

J*
11 =

∂F*(α)
∂α = 8

(
3 + e− 4)(1 − α)α(1 − β)

+(1 − α)
{

− 2 +
(
3 + e− 4)(1 − β)

[

8α + 8(1 − β)

(1 − γ)(1 + 0.2γ)
]}

− α
{

− 2 +
(
3 + e− 4)(1 − β)

[8α + 8(1 − β)(1 − γ)(1 + 0.2γ) ]
}

J*
12 =

∂F*(α)
∂β

= (1 − α)α
{

-
(
3 + e− 4)[8α + 8(1 − β)

(1 − z)(1 + 0.2γ)] − 8
(
3 + e− 4)(1 − β)(1 − γ)(1 + 0.2γ)

}

J*
13 =

∂F*(α)
∂γ

=
(
3 + e− 4)(1 − α)α(1 − β)

[1.6(1 − β)(1 − β) − 8(1 − β)(1 + 0.2γ) ]

J*
21 =

∂F*(β)
∂α = (1 − β)β

[

16
(
3 + e− 4)α

+8
(
3 + e− 4)(1 − β)(1 − γ)(1 + 0.2γ)

]

J*
22 =

∂F*(β)
∂β

= (1 − β)β
{

- 64(1 − γ)(1.2 + 0.1γ)

− 4
[

− 8(1 − γ) + 2
(
3 + e− 4)α(1 − γ)

]

(1 + 0.2γ)
}

+(1 − β)
{

− 15 + 8
(
3 + e− 4)α2 +

[

2 + 64(1 − β)

(1 − γ)
]

(1.2 + 0.1γ) − 4
[

− 1 + 8(1 − β)(1 − γ)

− 2
(
3 + e− 4)α(1 − β)(1 − γ)

]

(1 + 0.2γ)
}

− β
{

− 15 + 8
(
3 + e− 4)α2 +

[

2 + 64(1 − β)

(1 − γ)
]

(1.2 + 0.1γ) − 4
[

− 1 + 8(1 − β)

(1 − γ) − 2
(
3 + e− 4)α(1 − β)(1 − γ)

]

(1 + 0.2γ)
}

Fig. 9. Game results under dynamic incentive mechanism.  
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J*
23 =

∂F*(β)
∂γ

= (1 − β)β
{

0.1[2 + 64(1 − β)(1 − γ) ]

− 0.8
[

− 1 + 8(1 − β)(1 − γ) − 2
(
3 + e− 4)α(1 − β)

(1 − γ)
]

− 64(1 − β)(1.2 + 0.1γ) − 4
[

− 8(1 − β)

+2
(
3 + e− 4)α(1 − β)

]

(1 + 0.2γ)
}

J*
31 =

∂F*(γ)
∂α = 0  

J*
32 =

∂F*(γ)
∂β

=

{
60
11

+ 0.7[2 + 64(1 − β)(1 − γ) ]

− 64(0.6 + 0.7β)(1 − γ)
}

(1 − γ)γ  

J*
33 =

∂F*(γ)
∂γ

=

{

− 10 +
60β
11

+ (0.6 + 0.7β)
[

2 + 64(1 − β)

(1 − γ)
]}

(1 − γ) −
{

− 10 +
60β
11

+ (0.6 + 0.7β)
[

2 + 64(1 − β)(1 − γ)
]}

γ − 64(1 − β)(0.6 + 0.7β)(1 − γ)γ 

Substituting E*
1 ∼ E*

14 into the Jacobian matrix (12) respectively, 
there are eigenvalues greater than 0 in the calculation results, so E*

1 ∼

E*
14 are not evolutionarily stable equilibrium solutions. After substituting 

E*
15 into the matrix, we get: 

J*( E*
15

)
=

⎡

⎣
0.951115 − 3.43781 − 0.165013

3.22193 − 1.94567 − 1.07373
0 − 1.98731 − 2.2646

⎤

⎦ (13) 

The eigenvalues of the matrix (13) are: λ1 = - 0.253886 + 2.80762i, 

λ2 = - 0.253886 − 2.80762i, λ3 = − 2.75138. The real part of the ei
genvalues are all less than 0. Therefore, E*

15(0.479061, 0.842166 ,
0.748053)T is the ESS of the system. 

In summary, the mathematical derivation results are consistent with 
the computer simulation results. The ESS can be accurately obtained by 
simulating the evolutionary game through the SD model. The dynamic 
incentive mechanism effectively restrains the fluctuation and makes the 
model have a stable evolutionary equilibrium solution. In addition, 
under certain system parameter designs, the mechanism makes IC tend 
to be honest and EC tend to join while the CS maintains a moderate 
regulation rate. It shows a good incentive effect and enables the feder
ated learning system to operate stably and efficiently. 

4.3. Sensitivity analysis 

In reality, the federated learning system may be subject to external 
perturbations or operate under some uncertain conditions, and the 
proposed mechanism should still be able to maintain its function. 
Therefore, sensitivity analysis is performed to further verify the 
robustness of the system. We find out the parameters in the model from 
several uncertainties one by one, which have an important influence on 
federated learning. We analyze the degree of influence and sensitivity of 
the parameters on the three players in the game, thus determining the 
ability of the system to resist risk. If a small change in a parameter can 
lead to a large change in the strategies of three players, then this 
parameter is called a sensitive factor, and otherwise, it is called a non- 
sensitive factor [46]. In this paper, we use the sensitivity module 
embedded in Vensim to analyze all the variables prone to fluctuate in the 
model. We make these variables fluctuate with a normal distribution, 
the fluctuation range is set to [-20%, +20%], and the initial strategies 
for the CS, IC, and EC are α = 0.5, β = 0.5, γ = 0.5. Taking the CS 
regulation cost c = 2 as an example, the minimum value of c is 1.6, the 

Fig. 10. Sensitivity analysis results (when the CS regulation cost c fluctuates).  
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maximum value is 2.4, the mean is 2, and the variance is 1, which fol
lows the normal distribution. The simulation results are shown in 
Fig. 10. The colored areas in the figure are the range of possible changes 
of the player’s strategy when the parameter changes. For example, the 
yellow area means that the player’s strategy falling in the yellow area 
with 50% confidence level when the external parameter changes. 
Likewise, the confidence level for falling in the green area is 75%, blue is 
95% and gray is 100%. As shown in the figures, the area of all colored 
areas is extremely small, so the change of c does not lead to a substantial 
change in the strategies of three players, so c is a non-sensitive factor. 
When c is changed, all players still achieve an evolutionary stable 
equilibrium, so the federated learning mechanism proposed in this paper 
maintains the stability. Similarly, after sensitivity analysis of other 
vulnerable variables, the simulation results further verify that the 
mechanism is robust and can contribute to the long-term stable and 
healthy operation of the federated learning system. 

5. Conclusions 

In this paper, a multi-player evolutionary game model with a CS, IC, 
and EC is developed to solve the problems in the operation of the 
federated learning system. A combination of mathematical analysis and 
computer simulation was used to mutually verify the correctness, and 
analyze the strategies of each player in different incentive mechanisms. 
The conclusions are as follows: 

When the incentive mechanism is static, the strategy choices of the 
CS, IC, and EC fluctuate continuously. In other words, there does not 
exist an ESS in the game. In addition, the frequency and magnitude of 
fluctuations vary with the initial values of some variables. Simply 
changing the rewards and punishments will only get results in the short 
term and cannot restrain fluctuations. Instead, in the long term, it will 
increase the fluctuation of strategy choices for all players, and make the 
actual problem more difficult to control effectively. 

In the dynamic incentive mechanism, the fluctuation of each player 
in the game is effectively restrained. The stable state and the equilibrium 

value are not affected by the change of initial values of the variables. The 
game has an ESS, and the mechanism shows a good incentive effect 
under a certain range of system parameters design. It enables the 
federated learning system to operate stably and efficiently. 

Static incentives can quickly restrain the betrayal behavior of IC in 
the short term, and dynamic incentives can effectively restrain the 
fluctuations in the game. A good federated learning mechanism should 
not simply increase the punishment. However, it should increase the 
joining rate of EC while decreasing the betrayal rate of IC and avoid 
fluctuations in the game. This ensures the stability of the system while 
keeping all players’ strategies in an ideal situation. In addition, Lyapu
nov stability theory and the method of SD simulation evolutionary game 
both can effectively analyze the system stability and determine the 
equilibrium solution. The sensitivity analysis shows that the SD model is 
generalize and can provide a reference for developing federated learning 
incentives. 

However, there are some limitations of this study. For example, this 
paper does not consider the conspiracy between clients. Gaming be
comes more complicated when multiple clients cooperate to betray the 
central server. Therefore, our future work will further explore this issue. 
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Appendix. Equilibrium solutions 

E9

⎛

⎜
⎜
⎝

cecT mT（ − 1 − p + w1 − w3w1 − pw1
+w3pw1 + w2 − w1w2 + w3w1w2

）

( − w3mw1 + w3mpw1
− S)(1 − ect + cectT)

,

− w3mw1 + ecT w3mw1 + w3mpw1 − ecT w3mpw1 − S
+ecT S + c2ecT T − cecT w3mw1T + cecT w3mpw1T − cecT ST

( − w3mw1 + w3mpw1
− S

)(
1 − ecT + cecT T

)
, 0

⎞

⎟
⎟
⎠

T  

E10

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

cecT mT
(
− 1 − p + w’

2 − w1w’
2 + w3w1w’

2

+w1w2 − w3w1w2 − pw1w2 + w3pw1w2)(
1 − ecT + cecT T

)(
− S

− w3mw1w2 + w3mpw1w2)

,

− ecT(S + c2T − cST + w3mw1w2 − w3m
pw1w2 − cw3mw1Tw2 + cw3mpw1

Tw2) − S − w3mw1w2 + w3mpw1w2(
1 − ecT + cecT T

)(
S+

w3mw1w2 − w3mpw1w2)

, 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

T  
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E11

⎛

⎜
⎜
⎜
⎜
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⎜
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⎜
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⎝

0,

(1 + w2)(1 − w2 + pw2 + w1w2
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[
w1

(
1 − w3 − p + w3p − w’

2 + w3w’
2
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+p + w’
2

]
+ w2

2

(
− 1 + p + w1 − w3w1

− pw1 + w3pw1
)
+ w’

2 − w1w’
2 + w3w1w’

2
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1 + p − w1 + w3w1 + pw1
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2

− w1w’
2 + w3w1w’

2 − w2 + 2w1w2
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⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T  
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