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ABSTRACT

Efficient computation for Vision Transformers (ViTs) is critical for latency-sensitive
applications. However, early-exit schemes rely on auxiliary controllers that in-
troduce non-trivial overhead. We propose UWYN, an end-to-end framework
for image classification and shape classification tasks that embeds exit decisions
directly within the transformer by reusing the classification head at each resid-
ual block. UWYN first partitions inputs via a lightweight feature-threshold into
“simple” and “complex” samples: simple samples are routed to a shallow ResNet
branch, while complex samples traverse the ViT and terminate as soon as their
per-block confidence exceeds a preset confidence level. During the ViT pass,
UWYN also dynamically prunes redundant patch embeddings and attention heads
to further cut computation. We implement and evaluate this strategy on both 2D
(ImageNet,CIFAR-10, CIFAR-100, SVHN, BloodMNIST) and 3D (ModelNet-40,
Scan Object NN) benchmarks. UWYN reduces Multiply-Accumulate operations
(MACs) by over 75% compared to SOTA models, e.g., LGViT [ACM MM ’23],
achieving 83.29% accuracy on CIFAR-100 and 84.39% on ImageNet. We also
show faster inference with minimal accuracy loss.

1 INTRODUCTION

Figure 1: Computational complexity (MACs),
model size (parameters), and ImageNet accuracy
across different ViT methods (36; 40; 66; 16; 14;
8; 30). UWYN shows a substantial reduction in
MACs with only a minimal dip in accuracy.

Vision Transformer (ViT) (23) architectures have
emerged as powerful tools for a wide range of com-
puter vision tasks. However, their high computational
demands present challenges, especially in resource-
constrained environments like mobile and embedded
systems. These systems, equipped with powerful
SoCs (Systems-on-Chips) and heterogeneous process-
ing units, require models that balance accuracy with
efficiency to meet real-time processing needs. De-
spite significant advances in accuracy, traditional ViT
models often overlook the resource constraints, such
as limited processing power, memory, and energy,
faced by such devices. For instance, mobile GPUs
typically have limited memory, ranging from 2-8 GB, which is far below the requirements of large-
scale transformer models. To illustrate, let us consider a state-of-the-art transformer model like
MegaViT (11), which has 22 billion (22B) parameters. Since each parameter is typically stored as a
4 byte floating-point value, storing the model’s parameters alone requires approximately 88 GB of
memory. This large memory requirement renders models like MegaViT impractical for most GPUs
or TPUs. Even high-end GPUs with 40-80 GB struggle to fit such models without optimizations
like model parallelism, sharding, or offloading model segments to disk. Smaller network architec-
tures like ResNet (15) rely on local convolutions, which limits their ability to capture long-range
dependencies. In contrast, transformers address this by using self-attention mechanisms that model
global relationships. While both ViTs and ResNets have demonstrated impressive capabilities,
there is increasing interest in using early exits to improve efficiency and model interpretability.
Recent work has focused on training smaller networks and applying algorithmic approximations to
tailor transformer-based models for embedded devices (8; 66). While these approaches have made
strides in reducing model size and computational demands, they often compromise accuracy or limit
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the model’s full potential. This trade-off highlights the need for solutions that optimize ViTs for
deployment in real-world, resource-constrained environments — solutions that can significantly
reduce computational requirements without drastically reducing performance.

Table 1: Motivation: trade-off between inference
time and accuracy on ImageNet when dropping the
final k of the 12 ViT blocks.

Number of Blocks
Dropped

Inference
Time (s)

Accuracy
(%)

0 287 84.8
1 264 82.5
2 242 65.2
3 217 34.6
4 197 12.0

This forms our problem statement: How can a ViT
dynamically allocate computation based on input
complexity? Our broad solution approach is to ap-
proximate the execution based on content complex-
ity, allowing the model to dynamically adapt its pro-
cessing to the demands of the data. Consider the
ViT (23) architecture, a widely adopted transformer
model comprising 12 blocks, applied here in the con-
text of image classification task on the ImageNet
dataset (12; 49; 23). To quantify the depth–efficiency
trade-off, we systematically drop the final k blocks
from a 12-layer ViT and record end-to-end inference
time versus classification accuracy, as shown in Table 1. Similar trends have been observed in NLP
problems (Appendix A.8). These findings suggest a trade-off between accuracy and efficiency, a
balance that could be leveraged for applications where rapid inference is critical or resources are
constrained. This approach raises the intriguing possibility of leveraging intermediate outputs for
early exits, enabling the model to make informed decisions on when to terminate processing based on
content complexity.

The pipeline begins by classifying inputs by complexity: simple data goes to a shallow ResNet,
complex data to a novel early-exit Transformer. Our model adds a layer within each Transformer
block to leverage intermediate features, enabling context-aware, efficient processing by selecting key
patches and attention heads. Embeddings from each block feed into a shared classifier (Figure 2).
After each block, token embeddings are classified; if a dominant class exceeds a threshold, we
exit early with that prediction. We evaluate using accuracy, MACs, and parameters (Figure 1).
Existing adaptive ViTs like EfficientViT (36) implements Cascaded Group Attention to perform
faster inference, while methods like EfficientFormer (30) uses meta blocks for efficient token mixing
and reduce computation cost. Various state-of-the-art methods inflate models with extra networks
requiring separate training. UWYN minimizes overhead by selecting key features within a block and
using a shared, light layer for early exits across all blocks, reducing parameters and MACs. Our gains
have been demonstrated in two distinct tasks, 2D image classification and 3D shape classification. We
achieve orders of magnitude gains in MACs relative to ViT (23), which is an exact, non-approximated
model with the highest accuracy. We reduce MACs from 1693G to 1.2G and the number of parameters
by 3.8×, from 86M to 22.86M. Our results show that UWYN achieves competitive accuracy with
significantly reduced inference time, establishing it as a practical and efficient inferencing solution
for real-world applications on resource-constrained devices. The main contributions of our paper are:

1. Assessing feature relevance within blocks for adaptive early exits: We integrate additional
layers inside transformer blocks to assess feature relevance in real-time, enabling early exit without
auxiliary networks, which simplifies training.

2. Reusing a unified classifier with confidence-based early exits: We use a single classifier
across all transformer blocks, reducing the need for separate classifiers and simplifying the
model architecture. Further, we implement a confidence score-based mechanism that continuously
evaluates prediction certainty. As the model processes each block, it calculates dynamic confidence
scores to determine optimal exit points.

3. Performance gains across diverse hardware architectures: We demonstrate inference speed up
in a variety of architectures like a server-class P100 GPU and two edge devices, AGX Xavier and
Jetson Orin.

2 RELATED WORK

Transformer Efficiency Challenges and Architectural Solutions: Transformers (23; 58) have
achieved strong performance in tasks like image classification but face challenges with latency
and resource demands due to large model sizes and reliance on extensive datasets (47; 28; 27; 22).
These limitations have driven research into adapting transformers for mobile and resource-limited
environments (30; 63; 71). Several architectural modifications have been proposed to address
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efficiency constraints. For instance, Efficient ViT (36) introduces cascaded group attention blocks
to process features selectively, avoiding full-length processing and reducing computational load.
Efficient-Former uses a dual path attention mechanism to reduce inference time (30). Similarly,
MobileViT (40) separates local and global feature processing with CNNs before integration, and
AdaViT (42) uses a decision network in each block to focus on essential parts of prior outputs,
optimizing efficiency. This adds an overhead to each transformer block, thereby making the overall
process heavyweight. In addition to architectural changes, data flow optimization has been explored to
improve transformer training efficiency. DeiT (54) integrates a distillation token and pre-trained CNN
teacher to guide learning. PiT (16) uses depth-wise convolution to achieve channel multiplication
and spatial reduction with small parameters. In video tasks, SparseVit (9), a variant of Swin
Transformer (38), prioritizes high-relevance windows based on L2 norms, improving execution
efficiency in self-attention mechanisms. However, by separating local and global attention, the number
of parameters is increased significantly. Other orthogonal efforts have been made to efficiently handle
memory processing for hardware, such as Ring Attention (33) and Flash Attention (10). However,
these need powerful tensor cores, which makes it infeasible for mobile devices like AGX-class
of mobile GPUs and even earlier server-class GPUs like Tesla P100. In addition, the software
dependencies for these methods have a conflict based on their current CUDA versions and JetPack
packages available. In contrast to all works in this category, UWYN demonstrates reduction in
inference time over a wide variety of mobile devices.

Pre-processing hinders Efficiency in 3D Shape Classification: For point cloud data, methods
like PointNet (44) and PointNet++ (45) introduce symmetry and hierarchical clustering for direct,
permutation-invariant processing. While transformers improve generalization and long-range de-
pendency capture in point cloud tasks (72), these models often depend on extensive pre-processing,
which can reduce inference speed and efficiency, particularly in complex or masked scenes (57). In
contrast, UWYN identifies how simple and complex data instances can be processed separately,
thereby making the overall pipeline more efficient. We add a pre-processing step for 3D data, which
accelerates the pipeline much more compared to the existing methods. These pre-processing steps,
combined with early exit, make the end-to-end inference faster.

Early Exits and Lightweight Networks in Transformers: To reduce processing time, early exit
techniques in transformers and deep neural networks assess intermediate results, ending processing
when confidence thresholds are met. Methods like those by Teerapittayanon et al. (52) and Wolczyk et
al. (61) incorporated a small network for each network block or pathway to decide when to early-exit.
LGViT (66) achieves this by combining local and global perception heads, while models like Fast-
BERT (35) and BERxiT (65) add lightweight networks within BERT layers for early exits. However,
these approaches generally increase computational complexity by requiring additional networks or
classifiers. Techniques like Neural Architecture Search (NAS) (31; 74; 69) implement reinforcement
learning to decide when to early exit or to choose a pathway that streamlines computations.

These methods add a significant computational overhead due to the addition of separate networks
at regular intervals of the backbone network. We quantitatively compare the efficiency and the
accuracy of UWYN against several of these prior works, ViT (23), EfficientViT (36), LeViT (14),
EfficientFormer (30), PiT (16), MobileViT (40), AdaptFormer (8), and LGViT (66) in Table 2.

3 METHODS

As shown in Table 1, reducing the number of blocks in the ViT architecture results in sub-
stantial computational savings with only a slight decrease in accuracy. For instance, us-
ing 90% of the model maintains classification accuracy while achieving a speedup of ap-
proximately 20 seconds in inference time (10% less time). This observation provides the
insight that the full model is not necessary for confidently classifying all data instances.

Figure 3: Flowchart for image classification using UWYN: A
dual-path strategy for classifying images based on their complexity.

To leverage this insight, we propose a
systematic approach for accelerating
inference by categorizing data based
on its complexity and adapting pro-
cessing accordingly.

Our proposed pipeline, illustrated in
Figure 3, divides input data into two

3
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Figure 2: Architecture of Early-Exit Efficient Vision Transformer: The data is segmented into patches by the
Soft Split Network, analyzed by the Patch and Attention Head Selector to identify key embeddings and attention
heads. Each modified transformer block includes normalization, multi-head attention, MLPs, and a mechanism
for selecting relevant attention heads. Embeddings are evaluated at a classifier layer; if the confidence score
exceeds α or the final block is reached, classification is returned early. Otherwise, processing continues to the
next transformer block, reducing redundant computations.

categories: A) simple data, which can be accurately classified with a simple network like ResNet and
B) complex data, which requires heavy computations to be performed by an efficient early-exit ViT.
We first demonstrate this approach on 2D image classification and then extend it to a 3D task with
only minimal modifications to the pre-processing stage.

3.1 THRESHOLDING

Data samples with a complexity value lesser than a threshold are passed through the simple network,
while the rest are passed through the complex pathway.
For 2D: We classify data samples as simple or complex using the Sobel operator (detailed calculations
in Appendix Section A.1), which computes the gradient magnitude by convolving the image with
two 3×3 kernels for detecting horizontal (Gx) and vertical edges (Gy). The gradient magnitude is:

Magnitude(i, j) =
√
Gx(i, j)2 +Gy(i, j)2. (1)

Using an empirically set threshold (Section 4.1), we classify images in the top 2/3rd of gradient
magnitudes as complex, while the remainder are considered simple. Simple images have fewer edges
and are easier to classify, indicating less structural detail, while complex images contain richer edge
information. Figure 7 in Appendix (Section A.2) shows an example of ImageNet (12), illustrating
this classification. The Sobel-based method is efficient as it leverages fast gradient calculations to
categorize images by structural complexity, making it ideal for resource-constrained environments.
For 3D: The data is expressed as point clouds, consisting of multiple 3D points in (x, y, z) coordinates
that define the shape under consideration. We determine complexity based on the density and spatial
distribution of these point clouds. Using a fixed sample of 1,024 points, we calculate the volume
they occupy. Shapes occupying a smaller volume (within the lower 70th percentile) are classified
as complex, while those occupying a larger volume are considered simple. The threshold for this
classification is determined empirically.

3.2 SIMPLE NETWORK

For 2D We use ResNet50 (15) to process the simpler data points in the dataset. The network is
trained from scratch with drop path regularization (19), which enhances robustness and generalization.
This approach improves pipeline efficiency by enabling faster processing of simpler data points with
reduced computational resources.
For 3D The point cloud consists of 3D points. We use an architecture similar to ResNet50 (15) ,
where each point (x, y, z) is treated as a 3-channel input. We implement a network consisting of
3,4,4,3 residual blocks, in sequential order, to efficiently process simpler 3D data.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 EARLY-EXIT EFFICIENT TRANSFORMER

For complex data instances, UWYN incorporates an early exit mechanism within the Vision Trans-
former, inspired by efficient attention, to speed up processing of single-object images with redundant
patches (Figure 2). After the Soft Split Network creates overlapping patches, selected key patches are
processed by transformer blocks in parallel. Each block’s embeddings for all the selected patches
are passed through a unified classifier layer, and if a confidence threshold is met or the final block is
reached, the process exits with a classification result.

3.3.1 ADDITIONAL PRE-PROCESSING FOR 3D

To render the 3D points, we preprocess them by first centering and scaling the coordinates (x, y, z).
A virtual camera is defined with a specific position and orientation in the 3D space, using the default
perspective projection for depth. This means the depth, represented by the z-coordinate, affects the
projection onto the 2D screen, with points farther from the camera appearing smaller due to this
perspective effect. To calculate the 2D screen coordinates (x′, y′) for each point P (x, y, z), we use:

x′ =
x

z
· d, y′ =

y

z
· d (2)

where d is the distance from the camera to the projection plane. This scaling ensures that the per-
spective effect is maintained, with distant points shrinking as their z-coordinate increases, effectively
transforming the 3D coordinates into 2D with realistic depth perception.

3.3.2 EXTRACTION OF PATCHES

We use a Soft Split Network (SSN) (70) that segments the input X ∈ Rh×w×c into overlapping
patches, emulating a convolution operation with receptive fields, to divide the input image into
overlapping patches. This segmentation captures local structural details while preserving continuity
and contextual relationships between adjacent patches, unlike traditional transformers with disjoint
patches. The patches, of size t× t, overlap by o pixels and may include p pixels of padding, similar
to a convolution with stride t− o. This configuration maintains token coherence while integrating
pixel- and patch-level details. After flattening the patches, the data is transformed into a format
compatible with subsequent transformer blocks. The number of generated tokens, N , is computed as
N =

⌊
h+2p−t

t−o + 1
⌋
×
⌊
w+2p−t

t−o + 1
⌋

, where each token is a flattened vector of size d = ct2.

The Soft Split Network (SSN) output, XSSN ∈ RN×d, is then prepended with a classification token
[CLS], Xcls, to form the final embedding input, Xemb = [XCLS;XSSN], Xemb ∈ R(N+1)×d .

3.3.3 PATCH SELECTOR AND ATTENTION HEAD SELECTOR NETWORK

To improve computation efficiency (Figure 2), we introduce a Patch Selector before the first trans-
former block, and an Attention Head Selector in each of the transformer blocks. These selectors filter
out the most relevant patches and attention heads for further processing in the corresponding block.
Computational savings occur because non-selected heads and initial patches are effectively zeroed
out during calculations.

Each of the selectors has a linear layer followed by a sigmoid activation. Intuitively, a patch is
selected if it is likely to have some part of the object that we are trying to classify. Mathematically,
the Patch Selector has the following form:

Spatch = σ(Wpatch · vec(XSSN)), Wpatch ∈ RN×Nd (3)

where · is matrix multiplication, vec(XSSN) ∈ R(N)d is the flattened version of XSSN, and σ(·) is
the sigmoid function which is applied element-wise. All of the patches are processed concurrently.
We set a threshold of 0.5 for patches to be selected. To maintain the dimension of the inputs of the
various stages, we set the tokens corresponding to the non-essential patches to be 0. This masking
approach skips computations, when it encounters a 0 in the selected vector.

A tensor Xemb = [XCLS;XSSN] ∈ R(N+1)×d is passed to the first transformer block as input. Thus,
each patch generates one token plus there is the [CLS] token, which together constitute the input to
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the transformer component. The Attention Head Selector has a similar architecture:

S
(l)
AttHead = σ(W

(l)
AttHead · vec(X(l−1)

emb )), W
(l)
patch ∈ RH×(N+1)d′

,X
(l−1)
emb ∈ R(N+1)×d′

. (4)

With a threshold of 0.7 (determined in Figure 6), high-impact attention heads are selected to form the
new features X(l−1)

emb (notation for block l − 1) to be processed by a the next block (block l in this
case). High-impact heads intuitively extract features of the image that have a bearing on the ultimate
classification result.

Parallelization of Attention Calculation - Efficient calculation of Query and Keys: Standard
self-attention (e.g., PyTorch (4)) computes query Q and key K separately via matrix multiplications
with input X, requiring two fetches of X and sequential computation, increasing memory access
overhead and inference time due to GPU memory bandwidth limits and serialization. . UWYN
computes Q and K simultaneously in one inference pass. We concatenate trained weight matrices
WQ and WK into W = [WQ,WK] ∈ Rd×2d. Then, XW = [Q,K] is computed. This reduces
inference time by fetching X once and parallelizing Q and K computation. This does not cause
any change to the training process as the attention values are not affected by this optimization. The
speedup for this parallelization has been demonstrated in Section A.3 in the Appendix.

3.3.4 CONFIDENCE SCORE AND EARLY-EXIT

We introduce two techniques to speed up processing within the transformer: patch-wise prediction
and early exit mechanism.

Patch-wise prediction.. For image and object classification datasets, where each image prominently
contains a single object (such as ImageNet (12), CIFAR-10 (25), and CIFAR-100 (24) for 2D and
ModelNet40 (64) and ScanObjNN (57) for 3D), the division of images into patches generally results
in most patches reflecting the same object class. To exploit this characteristic, we extend beyond the
conventional reliance on the single [CLS] token for classification, and propose prediction based on
all the patches. Specifically, with the output of a transformer block l, i.e., the embedding features
X

(l)
emb, we have a universal classifier applied onto each patch embedding:

pi = argmax(softmax(W ·X(l)
emb,i)), W ∈ RC×d, ∀i = 0, 1, · · · , N. (5)

In this paper, we implement a one-layer classifier. Among the N + 1 patch predictions pi, the most
frequently predicted class is marked as the image prediction p = mode(pi). We compute a confidence
score α = population(p)/(N + 1), which is the ratio of the votes for p.

Early exit mechanism.. After each transformer block, we process the embedding features X(l)
emb

using the universal classifier (Eq. 5), and the patch-wise prediction strategy for classification. When a
confidence score α surpasses a predefined threshold αthreshold, indicating a strong consensus among
the patch predictions, an early exit of the transformer model is executed: the prediction based on
the intermediate embedding features is returned as the final output, and no further computation
by subsequent transformer blocks is executed, hence saving computation. Note that this classifier,
including weights, is shared by all tokens and all transformer blocks. By reusing the same classifier,
we reduce the training overhead; by keeping our classifier lightweight, we reduce the inference
time. This training time and inference time advantage over prior works like EfficientViT (36) and
EfficientFormer (30) is demonstrated in Tables 2 and 3.

4 RESULTS

We evaluate UWYN on 2D and 3D classification tasks, comparing its performance with state-of-the-
art models in terms of accuracy, inference time, and computational efficiency.

Datasets and training: We evaluate our pipeline on ImageNet (12), CIFAR-10 (25), and CIFAR-
100 (24). We also show our results on two unconventional datasets, BloodMNIST (6; 67)—a low
resolution medical image processing dataset, and SVHN (43)—an image dataset, which includes
potential distractors. For 3D shape classification, we have used ModelNet-40 (64) and Scan Object
NN (57), where the latter includes distractions beyond the intended shape. We employ the Adam
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Table 2: ImageNet classification accuracy, MACs, parameters, and inference time on Xavier, P100, and
Orin: UWYN achieves the best accuracy (84.39 %) with only 1.2 G MACs and 22.9 M parameters—over 90×
fewer MACs than vanilla ViT—and runs up to 2.3× faster than EfficientFormer (30). (see Table 7 in Appendix
for other model variants).

Method MACs Params Accuracy Time (Xavier) Time (Orin) Time (P100)
ViT-Base (23; 56) 1693 G 86 M 84.8% (49) 4960 s 4482 s 1089.52 s(non-approximated model)

EfficientViT-M5 (36) 0.5 G 12.57 M 77.1% 3142.23 s 3246.74 s 792.63 s
LeViT-384 (14; 59) 2.2 G 39.11 M 82.6% 1842.81 s 1934.33 s 511.8 s
EfficientFormerV2-l (29; 59) 2.6 G 26.3 M 83.6% 4162 s 4347.74 s 1091.99 s
PiT-small (16) 2.9 G 23.5 M 81.1% 1976.98 s 1919.21 s 502.6 s
MobileViT (40) 2.0 G 5.6 M 78.3% 1809.65 s 1747.32 s 497.74 s
MobileViT-v2 (41) 2.0 G 10.6 M 80.4% 1801.65 s 1733.49 s 492.86 s
AdaptFormer (8) 1.71 G 87.6 M 82.6% 3256.45 s 3129.56 s 719.82 s
LGViT (66) 10.65 G 101 M 80.3% 2001.9 s 1984.5 s 504.89 s
PartialFormer (? ) 3.4 G 64 M 83.9% 1955 s 1864 s 498.42 s

UWYN 1.2 G 22.86 M 84.39% 1796 s 1695.23 s 492.63 s

optimizer (21) with an initial learning rate (with cosine annealing) of 0.1, β = (0.9, 0.99), decayed by
(1e-4) for the first 100 epochs, followed by a reduced rate of (2e-5), till we reached convergence.

For our Soft Split Network (Section 3.3.2), we use 3 convolution layers with kernel sizes (7, 3,
3), stride (4, 2, 2) and padding (2, 1, 1) along each dimension, respectively. The depth (number
of channels) of the output tensor depends on the number of filters (output channels) used in the
convolution layer. Based on these calculations, we divide an image of size 224 × 224 into 14 × 14
patches. The Early-Exit Efficient Transformer has 12 blocks total, each block having 6 attention
heads. The hidden dimension for ImageNet, ScanObjNN, and ModelNet40 is 768, while for other
datasets, it is 384.

Evaluation metrics: We evaluate our pipeline by running it five times on various devices, with no
other tasks running concurrently and report the average results. The metrics we use for evaluation
include image or shape classification accuracy (top-1 accuracy), average MACs (Multiply-Accumulate
operations), number of Parameters (Params), and the total inference time for the entire test set of the
dataset. We use the python thop library to calculate MACs and Params. The variation in inference
time across the five runs is at most 7%. We report inference time on a server-class GPU, Tesla P100
GPU, and resource-constrained edge devices - NVIDIA AGX Xavier and NVIDIA Jetson Orin.

4.1 2D RESULTS

We focus on single object classification tasks. Tables 2, 3, and 7 (Appendix) show how UWYN
performs with respect to other state-of-the-art algorithms. We choose ViT as the baseline for its
non-approximated structure and highest reported accuracy (23). We report the baselines’ results
based on their official implementations from GitHub and where available, pre-trained models from
Hugging Face; we executed them ourselves on our target device types.

ImageNet Results: Table 2 demonstrates our performance on ImageNet over various state-of-the-art
popular approximation methods. We compare UWYN with the highest accuracy for a given model,
where it has several variants. For a comparison with other shallower versions of these models, please
refer to Table 7 in Appendix.While there are models that have lower MACs (e.g., EfficientViT (36)) or
fewer parameters (e.g., MobileViT (40)) individually, UWYN is consistently a better tradeoff between
the MACs and number of parameters. Apart from the vanilla version of ViT (23) (which is an exact,
i.e., non-approximated model), UWYN demonstrates higher accuracy than other approximation
methods. We further perform inference at almost half the amount of time required by EfficientViT
and EfficientFormer (30). The fact that UWYN has lower values for MACs and Params emphasizes
the efficiency of our model, achieving reduced computational costs without a significant sacrifice in
performance. As compared to AdaptFormer (8), UWYN uses 40% lower MACs, 25% of the number
of parameters, yet outperforms it in accuracy with lesser inference time on all devices.

Unconventional 2D datasets and other popular datasets: For 2D image classification, we evaluate
on unconventional datasets, such as low resolution images like BloodMNIST and noisy images like
SVHN. From the results in Table 3, we see that UWYN achieves competitive accuracy, maintaining
a low inference time compared to traditional models like ViT and LGViT. It is worth noting that
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Figure 4: ImageNet ac-
curacy vs. majority-vote
threshold αthreshold: from
32.5% at (α=0.1) to 84.39%
at (α=0.5), then plateauing.

Figure 5: Accuracy (red, left) and infer-
ence time (blue, right) vs. fraction routed
to the simple branch on CIFAR-100; at
33% simple, UWYN achieves 83.29%
accuracy in 103.63 s, a reasonable point
in the speed-accuracy trade-off.

Figure 6: Varying the threshold for at-
tention head selection for ImageNet clas-
sification task. A threshold value of 0.7
strikes a reasonable trade-off between
the accuracy and the inference time.

the BloodMNIST website (68) reports achieving a 96.1% accuracy using Google AutoML Vision,
with 2 hours of node time required for training. In contrast, training the ResNet model and the
Early-Exit Transformer for our approach took only 20 and 100 epochs, respectively, amounting to
approximately 1 hour of total training time from scratch. Our method UWYN achieved a 96.17%
accuracy. However, since they have not released their code, it is difficult to directly compare the
speedup. AdaptFormer achieves the highest accuracy on CIFAR100 (86.2%) with an inference time
of 136.67 s. UWYN demonstrates a balance of efficiency and accuracy across CIFAR100 (83.29%,
103.63 s), CIFAR10 (94.87%, 103.4 s), BloodMNIST (96.17%, 27.88 s), and SVHN (92.16%, 225.67
s), often with fewer MACs and parameters. UWYN performs inference faster consistently over all
three device classes — server class GPU as P100, and edge devices as AGX Xavier and Jetson Orin.
Table 3: Variety of Datasets: Performance on 2D image classification tasks across various datasets,
showing accuracy and inference time on P100.

Method (2D) CIFAR100 CIFAR 10 BloodMNIST SVHN
Accuracy Time Accuracy Time Accuracy Time Accuracy Time

ViT (23; 56) 93.95% 219.47 s 95.29% (1) 219.52 s 89.6% (3) 58.68 s 96.40% (2) 275.8 s
LGViT (66) 82.57% 94.98 s 92.5% 95.27 s 91.5% 30.28 s 90.24% 250.66 s

AdaptFormer (8) 86.2% 136.67 93.36% 137.12 90.6% 42.5 s 93.2% 230.56 s

UWYN 83.29% 103.63 s 94.87% 103.4 s 96.17% 27.88 s 92.16% 225.67 s

Choice of Hyper-parameters: We observed that maximum accuracy was achieved at αthreshold = 0.5
(equivalent to the majority case) when increasing the threshold αthreshold from 0.1 to 0.5 [Figure 4].
Beyond this point, increasing αthreshold resulted in only marginal gains in accuracy (in the second
decimal place). Therefore, an early exit is triggered if the confidence score exceeds the predefined
threshold of αthreshold = 0.5 (or if the majority of token predictions agree on the same object), and
has been maintained throughout the results for the purpose of this paper.

We also explored the impact of varying the proportions of simple and complex data instances. We
notice a similar trend of all datasets, and the results for CIFAR 100 are presented in Figure 5.
Processing all data through the simple network yields the lowest inference time but also the lowest
accuracy. Conversely, utilizing only the complex network results in high accuracy at the cost of
significantly increased inference time. However, a closer examination of the graph reveals a notable
trend: If the ratio of simple data instances is less than 0.3, the accuracy is high but the inference time
is unacceptably high. There is a knee in the curve at 0.3 and beyond that, the inference time drops
slowly, as does the accuracy. So, we choose 33.33% of the data points for all our experiments, as
going the simple (ResNet) path. This reduction can likely be attributed to the increased prevalence of
early exits in the complex network beyond this ratio, leading to faster processing, especially when
combined with the efficient processing of the remaining simple instances by the simple network. This
observed behavior strongly motivated our decision to adopt a 1:2 ratio for simple to complex data
instances throughout our evaluation. For selecting the number of attention heads, the threshold of 0.7
empirically strikes a favorable balance. It maintains a high classification accuracy while achieving a
noticeable reduction in inference time compared to lower threshold values, as observed in Figure 6.
The numbers overlaid on the inference time data points refer to the number of attention heads used
on average at a particular threshold. There are 6 total attention heads, and we observe that after a
threshold of 0.6, an average of 4.8 attention heads are used.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.2 3D RESULTS

Table 4 presents the performance of UWYN on 3D shape classification task using the Model-
Net40 (64) and ScanObjNN (57) datasets. Our method outperforms existing approaches in both accu-
racy and inference time, such as Point Transformer (72) and PointNet++ (45). Specifically, UWYN
achieves higher accuracy on both datasets—94.03% on ModelNet40 and 92.43% on ScanObjNN—
while significantly reducing inference times (78.31% reduction on ModelNet40 and 73.4% reduction
on ScanObjNN inference time with respect to PointTransformer (72) on P100). These results high-
light the efficiency of UWYN’s approach, which reduces the dimensionality of point clouds and
accelerates the processing pipeline compared to traditional methods. We repeat experiments on
our edge devices and observe a speed up in inference time for all cases. As discussed earlier, in
Section 2, existing pipelines are slow primarily due to their need for heavyweight pre-processing;
however, UWYN overcomes this limitation through a simple conversion to 2D data format. It is
worth noting that our speed up in the 3D task relative to state-of-the-art is better than in the 2D task;
this is attributable to the reason just given above.

Table 4: 3D shape classification on ModelNet40 (64) and ScanObjNN (57): UWYN achieves 94.03% and
92.43% accuracy while reducing inference time by over 75% on P100, AGX Xavier, and Orin compared to Point
Transformer and PointNet++.

Method (3D) ModelNet40 ScanObjNN
Accuracy Inference Time Accuracy Inference Time

Xavier Orin P100 Xavier Orin P100
Point Transformer (72) 92.4% 3892.23 s 3695.62 s 842.41 s 90.5% 900.25 s 821.45 s 171.2

PointNet++ (45) 91.8% 2896 s 2667.34 s 705.04 s 84.2% 825.23 s 798.66 s 142.5

UWYN 94.03% 503.5 s 440.12 s 182.7 s 92.43% 150.27 s 139.55 s 45.45 s

4.3 OBJECT DETECTION RESULTS

Table 5: Object Detection Performance: UWYN per-
forms with a higher mAP using less than half of the
number of parameters.

Method MACs (G) Params (M) mAP (%)
RT-DETRv2S (39) 30 20 48.1
RT-DETR-R18 (73) 30 20 46.5
EfficientDet (51) 99.6 64 59.9
YOLO-12m (53) 33.75 20.2 52.5
YOLO-v8s (48; 20) 14.4 11.16 43.2

SSD (34)+UWYN 10.84 4.31 64.22

In this section, we evaluate UWYN on object
detection using an SSD (34) backbone and re-
port results on the COCO dataset (32). We
measure performance in terms of mean aver-
age precision (mAP) across all classes and com-
pare against models of comparable scale as
well as the strongest variants within each fam-
ily. As shown in Table 5, UWYN delivers the
highest accuracy while requiring less than half
the number of parameters. Notably, UWYN
achieves a 20% improvement in mAP over RT-
DETRv2 (39) while using under 30% of its train-
able parameters, demonstrating both the efficiency and extensibility of our approach across diverse
problem settings.

5 CONCLUSION AND BROADER IMPACT

In conclusion, this work introduces UWYN, a novel approach to enhance the efficiency of classi-
fication tasks through the strategic reduction of redundant computations. Quantitatively, UWYN
achieves a 25% reduction in MACs relative to comparable methodologies while maintaining competi-
tive performance levels. These findings underscore the potential of UWYN as a viable and efficient
solution for vision model deployment in resource-constrained real-world applications, including edge
devices and unmanned aerial vehicles. Future research directions may explore the generalization of
UWYN to other data modalities and its adaptability to evolving hardware and devices.

Reproducibility statement: We present training protocols, architectural specifications, and hyper-
parameter choices in the Results section (Section 4). The underlying mathematical formulations
are described in the Methods section (Section 3), while implementation details related to Sobel
operators are provided in the Appendix (Section A.1). The source code will be released publicly upon
acceptance of this paper.
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and Tomasz Trzcinski. Zero time waste: Recycling predictions in early exit neural networks.
Advances in Neural Information Processing Systems, 34:2516–2528, 2021.

[62] Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi
Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based
image representation and processing for computer vision, 2020.

13

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

[63] Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan.
Tinyvit: Fast pretraining distillation for small vision transformers. In European Conference on
Computer Vision, pages 68–85. Springer, 2022.

[64] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1912–1920, 2015.

[65] Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin. BERxiT: Early exiting for BERT with better
fine-tuning and extension to regression. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty,
editors, Proceedings of the 16th Conference of the European Chapter of the Association for
Computational Linguistics: Main Volume, pages 91–104, Online, April 2021. Association for
Computational Linguistics.

[66] Guanyu Xu, Jiawei Hao, Li Shen, Han Hu, Yong Luo, Hui Lin, and Jialie Shen. Lgvit: Dynamic
early exiting for accelerating vision transformer. In Proceedings of the 31st ACM International
Conference on Multimedia, pages 9103–9114, 2023.

[67] Jiancheng Yang, Rui Shi, and Bingbing Ni. Medmnist classification decathlon: A lightweight
automl benchmark for medical image analysis. In IEEE 18th International Symposium on
Biomedical Imaging (ISBI), pages 191–195, 2021.

[68] Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister,
and Bingbing Ni. Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical
image classification. Scientific Data, 10(1):41, 2023.

[69] Shangshang Yang, Xiaoshan Yu, Ye Tian, Xueming Yan, Haiping Ma, and Xingyi Zhang.
Evolutionary neural architecture search for transformer in knowledge tracing. Advances in
Neural Information Processing Systems, 36:19520–19539, 2023.

[70] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis E.H. Tay,
Jiashi Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch
on imagenet. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 558–567, October 2021.

[71] Jinnian Zhang, Houwen Peng, Kan Wu, Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan.
Minivit: Compressing vision transformers with weight multiplexing. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12145–12154, 2022.

[72] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 16259–16268,
2021.

[73] Yian Zhao, Wenyu Lv, Shangliang Xu, Jinman Wei, Guanzhong Wang, Qingqing Dang, Yi Liu,
and Jie Chen. Detrs beat yolos on real-time object detection. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 16965–16974, 2024.

[74] Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In Interna-
tional Conference on Learning Representations, 2017.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

Here, we will demonstrate the additional results from our work.

A.1 SOBEL OPERATOR

The Sobel operator calculates the gradient of an image by convolving the image with two 3x3 kernels:
one for detecting horizontal edges (Gx) and one for detecting vertical edges (Gy). The convolution
of the image I at each pixel (i, j) with these kernels is expressed as:

Gx(i, j) =

1∑
m=−1

1∑
n=−1

Gx(m,n) · I(i+m, j + n) (6)

Gy(i, j) =

1∑
m=−1

1∑
n=−1

Gy(m,n) · I(i+m, j + n) (7)

where the Sobel kernels are defined as:

Gx =

[−1 0 1
−2 0 2
−1 0 1

]
, Gy =

[−1 −2 −1
0 0 0
1 2 1

]
(8)

The gradient magnitude is then calculated as:

Magnitude(i, j) =
√

Gx(i, j)2 +Gy(i, j)2 (9)

The gradient magnitude is a measure of the sharpness of the image - a measure of how much curvature
or information is there in the image.

A.2 VISUAL REPRESENTATION OF SIMPLE AND COMPLEX IMAGES

Figure 7 is a visual representation of a simple and a complex image from the ImageNet dataset. We
identify few curves on the simple image and more detailed silhouettes on complex images, based on
our thesholding mechanism in Section 3.1.

(a) Simple Image Thresholding (b) Complex Image Thresholding

Figure 7: Examples from the ImageNet dataset (12) illustrating the application of a Sobel operator
[ A.1] for edge detection. (a) A “simple” image (left) with minimal details, processed with the Sobel
operator (right), showing fewer prominent edges. (b) A “complex” image (right) with intricate details,
processed with a Sobel operator (right), revealing a dense edge pattern.

A.3 SPEED-UP DUE TO ATTENTION PARALLELIZATION

As discussed in Section 3.3.3, parallelizing attention computations significantly accelerates inference
in the Efficient Early-Exit Transformer, with a more pronounced effect on 2D tasks than 3D. In
3D tasks, the extra pre-processing for point cloud data and 2D projection introduces additional
computational overhead, limiting the speedup.
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Table 6: Parallel attention computation speed-up: Comparison of data instances processed per
second for Early-Exit Efficient Transformer, evaluated under both parallel and sequential attention
schemes. The speedup in 2D images is more than 3D shapes.

Dataset Data instances processed per second
Attention parallel Attention sequential

CIFAR 100 (24) 60.15 58.37
ImageNet (12) 28.23 26.40

ModelNet40 (64) 13.74 13.57

A.4 COMPARISON WITH EXTREMELY SMALL MODELS

Despite the existence of models with considerably lower MACs in Table 7, our evaluation reveals a
clear advantage for our approach. Our model exhibits faster inference times, notably on edge devices,
and maintains a higher accuracy than any of the identified low-MAC models. These experiments
have been performed on ImageNet. We also add entries from recent models whose implementation is
not publicly available at the time of submission. We use the symbol: − to indicate observations that
are not accessible due to the aforementioned reason.

Table 7: Comparison with other models: Comparison of small MAC Methods with UWYN on
ImageNet. We demonstrate higher accuracy than all and faster inference for some.

Method MACs Params Accuracy Time (Xavier) Time (P100) Time (Orin)
Efficient ViT-M0 (36) 0.1 G 5.4 M 71.9% 1415 s 346.87 s 1279.38 s
LeViT-128S (14; 59) 0.2 G 7.77 M 76.5% 1582.14 s 401.16 s 1632.71 s
EfficientFormerV2-s0 (29; 59) 0.3 G 3.5 M 76.1% 1994.42 s 494.13 s 2068.05 s
LF-ViT (17) 1.85 G - 82.2% - - -
CF-ViT (7) 2.4 G - 81.9% - - -
SAC-ViT (18) 1.6 G - 82.3% - - -

UWYN 1.2 G 22.86 M 84.39% 1796 s 492.63 s 1695.23 s

A.5 USING A LARGER BATCH SIZE TO COMPARE RESULTS

Here we compare the inference time when we use a batch size of 32 during inference time. There is a
larger speedup in the 3D pre-processing due to efficient handling of data as compared to the other
methods. We identify the simple and complex data instances from beforehand, batch them together
and then perform inference.

Figure 8: Batch inference: This table shows the time
required for inference using a batch size of 32 on the
ModelNet40 dataset.

Method Inference Time

PointNet++ (45) 695.45 sec
Point Transformer (72) 701.88 sec
UWYN 166.39 sec

Figure 9: Batch inference: This table shows the time
required for inference using a batch size of 32 on the
CIFAR 10 dataset.

Method Inference Time

LGViT (66) 59.83 sec
AdaptFormer (8) 62.18 sec
UWYN 40.45 sec

A.6 MACS FOR OTHER NETWORKS

In this section we will compare the MACs of our networks with other popular transformer architec-
tures. We are using the maximum MAC for our methods for comparison. From the table below, we
demonstrate that our MACs are minimal with respect to other architectures as well.
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Table 8: MACs of other methods: From the table, it is evident that our method is much more
computationally efficient than the existing popular architecture choices. We use the thop (5) python
library to calculate the MACs. Our MACs are very low compared to the other state of the art.

Architecture MACs

DeIT Small (55; 62; 12) 4249 M
Swin V2 Tiny (37) 5760 M
Mobile ViT small (40) 347.5 M
EfficientNet-B0 (50) 380.55 M
ConvNeXt-T (13) 4.5 G
MNv4-Hybrid-L (46) 7.2 G

Our Complex Net
(CIFAR 100) 337 M

UWYN (CIFAR 100) 1186 M

A.7 FEASIBILITY OF OUR EARLY EXIT

To explore if our concept of early exit is feasible or not, we have implemented the early exit from
on a ViT (23). This indicates that after execution of each Transformer block, the output was sent to
the classifier, and based on the classifier features and labels of the images, a cross-entropy loss was
implemented. Table 9 demonstrates the results when we train these pipelines over a limited number
of epochs, thereby testifying the feasibility of our work. We start the early exit after and confidence
score calculation after at least 4 transformer blocks during inference.

Table 9: Possibility of Early Exit: Performance comparison of full capacity vs. early exit ViTs
across various datasets, trained from scratch for 100 epochs. This table illustrates the generalizability
of our method, showing that performance acceleration is consistent across different datasets and not
solely reliant on the patch and attention head selector networks. From the full capacity accuracy
(Acc.), there is a limited dip by 1%, while the other metrics, such as MACs, Parameters (Params),
and Inference time (Time), have reduced significantly.

Metric CIFAR-10 BloodMNIST CIFAR-10 BloodMNIST
(Full Capacity) (Full Capacity) (Early Capacity) (Early Exit)

Accuracy (%) 80.21 97.02 80.08 96.89
MACs (M) 1384 1401.8 836.6 596.4
Params (M) 21.31 21.31 12.34 12.34
Time (sec) 273.07 12.52 247.09 5.59

A.8 OTHER MOTIVATIONAL EXAMPLES

As mentioned in the Introduction, Section 1, the redundancy in transformers is also apparent in
Natural Language Processing tasks as well. We examine BART (26), a widely used transformer
model comprising 12 encoder and 12 decoder blocks, in the context of text classification task on the
MNLI dataset (60). In this task, Lewis et al. (26) categorizes if a pair of sentences as contradictory
or not. We systematically drop later blocks in both the encoder and decoder to evaluate the impact
on performance and computational efficiency. As Table 10 illustrates, reducing the number of
blocks yields significant computational savings with only minor accuracy decreases. For instance,
using 10 encoder blocks and 8 decoder blocks results in a mere 0.07% accuracy reduction while
saving approximately 30 ms per CPU and GPU computation time, reducing FLOPs by almost 25%.
These findings suggest a trade-off between accuracy and efficiency, which could be leveraged for
applications where rapid inference is critical or resources are constrained.
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Table 10: Motivation from NLP: Experimental results of BART (26) on the MNLI dataset, demon-
strating the impact of reducing model components (encoder/decoder blocks) on computational
demand and accuracy.

Encoders Decoders Params CPU (ms) GPU (ms) KFLOPs Accuracy (%)

12 12 4.07× 108 81.51 87.73 12.03× 103 83
10 10 3.49× 108 51.77 61.08 10.02× 103 82.35
8 8 2.90× 108 46.52 50.19 8.02× 103 52.66

10 8 3.15× 108 53.86 57.76 8.88× 103 82.93
10 6 2.81× 108 37.58 34.55 7.73× 103 70.08

Table 10 highlights trade-offs between efficiency (CPU/GPU time for inference on the entire test set,
parameters, KFLOPs) and classification performance, supporting the hypothesis that not all model
components are essential for model efficiency. This indicates that intermediate features are also well
learnt in most cases.
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