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Abstract
Proteins are highly flexible macromolecules and
the ability to adapt their shape is fundamental
to many functional properties. While a single,
‘static’ protein structure can be predicted at high
accuracy, current methods are severely limited
at predicting structural flexibility. A major factor
limiting such predictions is the scarcity of suitable
training data. Here, we focus on the functionally
important antibody CDRs and related loop mo-
tifs. We implement a strategy to create a large
dataset of evidence for conformational flexibil-
ity and develop AbFlex, a method able to predict
CDR flexibility with high accuracy.

1. Introduction
Proteins are built of a sequence of basic building blocks
(amino acids), which fold into a 3-dimensional shape. Many
proteins adopt more than one stable structure, termed con-
formations, and transitions between them are fundamental
for functional properties (Teilum et al., 2009). For example,
flexibility plays an important role in antibodies, a class of
proteins central to the immune system and frequently used
for therapeutic drugs. Antibodies interact with their target
through loops called CDRs. Conformational flexibility of
CDRs has been linked to properties such as affinity (Mikola-
jek et al., 2022) and polyspecificity (Guthmiller et al., 2020;
James et al., 2003). As both of these functional properties
need to be optimised in therapeutic antibodies, data on CDR
flexibility improve understanding of antibody function and
enhance the drug development process.

Prediction of a single, ‘static’ structure of a protein from
its sequence is now possible at high accuracy with a range
of recently developed methods (Jumper et al., 2021; Baek
et al., 2021; Lin et al., 2023). In contrast, machine learning
tools to predict structures of conformational ensembles or
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indicate the ability of a protein to undergo conformational
rearrangements are currently limited. A major challenge
which has restricted progress in this field of research is the
scarcity of suitable data for training and evaluation.

A number of methods have been developed in an attempt
to predict structures of protein conformational ensembles.
Most of these build on modifications of AlphaFold2 (AF2)
to reduce the depth of the input multiple sequence alignment
(MSA) (del Alamo et al., 2022; Stein & Mchaourab, 2022;
Wayment-Steele et al., 2024; Sala et al., 2023b). These
workflows increase the diversity of outputs during inference.
A smaller number of generative models were developed
specifically for the task of conformation prediction (Jing
et al., 2023; 2024; Zheng et al., 2023; Lu et al., 2023; Man-
soor et al., 2024). Methods have mostly been evaluated on
one or a few case studies, which may not accurately reflect
their performance across diverse sets of proteins (Riccabona
et al., 2024; Faezov & Dunbrack, 2023; Sala et al., 2023a;
Saldaño et al., 2022). A study evaluating performance on a
slightly larger dataset of 100 proteins showed that methods
generally increase diversity in predicted structures but do
not capture the conformational landscape well (Jing et al.,
2024). Correlations between predicted flexibility and ob-
served flexibility in crystal structures appear to be weak
(Jing et al., 2023). Stronger correlations were identified
between predicted flexibility and flexibility in molecular
dynamics (MD) simulations for models fine-tuned on MD
data (Jing et al., 2024).

In this work, we develop a strategy to overcome issues of
data scarcity. On the one hand, we focus on functionally
important secondary structure motifs, antibody CDRs and
related loops, rather than full length proteins. On the other
hand, we implement a systematic approach of mining the
protein data bank (PDB) (Berman et al., 2002). In this
way, we create a large dataset of the flexibility of CDRs
and related protein loops which collects the structures of
all conformations observed in crystal structures. While
some loops adopt multiple conformational states, others
are always observed in an identical conformation (Figure 1,
Panel A-B). Using the dataset, we develop AbFlex, a method
that accurately predicts the flexibility of CDRs from inputs
of either crystal structures or predicted structural models
(Figure 1, Panel C).
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Figure 1. Overview of the AbFlex method. A) Example of a ‘flexible’ protein loop which is observed to adopt multiple conformations.
12 crystal structures of loops identical in sequence are overlaid. B) Example of a ‘rigid’ loop which adopts a single conformation. 14
crystal structures of sequence identical loops are overlaid. C) Flowchart detailing the AbFlex method predicting the conformational
flexibility of CDR loops. The structure and sequence of a loop (cyan) and its context (grey) are extracted from a PDB file and a graph
representation is generated. A three-layer E(n)-EGNN iteratively updates the node features, followed by binary classification of the loop
as conformationally flexible or rigid.

2. Dataset
The amount of data on the conformational flexibility of
proteins is limited which makes it difficult to train or even
benchmark methods. Evidence on conformational flexibility
can be obtained from crystal structures. Although X-ray
crystallography does not directly capture molecular mo-
tions, low-energy conformations of a protein should appear
in structures solved under different conditions. Therefore,
determining structural flexibility from crystallographic data
requires multiple solved structures of a protein which re-
stricts the number of available data points as compared to
standard protein structure prediction. Crystallographic data
is often used for case studies but systematic mining of the
PDB for instances of the same protein remains underex-
plored (Ellaway et al., 2023).

Molecular dynamics (MD) simulations provide an alter-
native to generate structures of conformational ensembles.
MD simulations are computationally expensive and, there-
fore, even the largest databases of standardised MD simula-
tions are not sufficient for training machine learning models
(Vander Meersche et al., 2024). Furthermore, model as-
sumptions, imperfections in force field parameterisations,
sensitivity to initial conditions and accessible timescales

may lead to inaccuracies in simulated flexibility behaviours
(Wan et al., 2021).

Here, we focus on evidence of conformational flexibility of
antibody CDRs from crystallographic data and collect the
structures of all observed conformations. To create a large
dataset for training a robust machine learning model, we
implement a systematic approach to mine all PDB structures
for CDR-like secondary structure motifs. Motifs are defined
as any loop connecting antiparallel β-strands. Furthermore,
we create a high confidence test set of CDRH3 and CDRL3
flexibility by searching the Structural Antibody Database
(SAbDab) (Schneider et al., 2022; Dunbar et al., 2014). Fur-
thermore, data points are assigned binary labels. Loops are
identified as ‘flexible’, if they adopt two or more distinct
conformations, and ‘rigid’, if multiple identical conforma-
tions are observed and there is no evidence for multiple
accessible conformations (Figure 1, Panel A-B).

2.1. Protein Loops

A large dataset of the conformational flexibility of CDR-
like loops in general proteins was created as detailed below.
All crystal structures deposited in the PDB with resolution
under 3.5 Å were mined using DSSP, an algorithm for sec-
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Algorithm 1 Labelling of data points
Require: Loop sequences s, coordinates x, PDB code of

structure containing loop p
Group x and p pairs by s identity:
groupi ← {(x, p)l:m}i
for n = 0 to N do
alignedCoords← AlignCoordinates(groupn.x)
distanceMat← pairwiseRMSD(alignedCoords)
if max(distanceMat) > 1.25 Å then
labeln ← flexible

else if len(set(groupn.p)) ≥ 5 then
labeln ← rigid

else
labeln ← ambiguous

end if
end for

ondary structure assignment (Kabsch & Sander, 1983), for
loop motifs connecting antiparallel β-strands. 1,200,000
occurrences of protein loop structures were found. Struc-
tures were grouped by sequence identity and groups were
labelled as conformationally ‘flexible’ or ‘rigid’ as outlined
in Algorithm 1. Structures in each group are aligned on the
Cα of loop residues and a pairwise distance matrix of Cα
RMSDs was calculated. If the RMSD of any two structures
in a group exceeded 1.25 Å the group was labelled to be
‘flexible’. The cutoff of 1.25 Å was chosen as this is known
to provide a good threshold for functional clustering of CDR
loops (Spoendlin et al., 2023). The absence of evidence for
flexibility does not prove that a loop cannot adopt multi-
ple conformations, but the possibility that alternative states
were not captured remains. The more structures depicting
the loop to adopt a single conformation are available, the
more confident we can be on the absence of flexibility. We,
therefore, introduce a requirement that a loop needs to adopt
a single conformation in at least five separate PDB struc-
tures to be labelled as ‘rigid’ 1. The final dataset contains
more than 20,000 labelled loops (Table 1).

2.2. Antibody CDRs

Additionally, a high confidence dataset of conformational
flexibility of antibody CDRs was created. All fragment vari-
able (Fv) structures were extracted from SAbDab (Schneider
et al., 2022; Dunbar et al., 2014). Structures were grouped
by Fv sequence identity, rather than CDR sequence iden-
tity, to increase confidence in the determined flexibility.

1We chose the requirement of five separate PDB files instead
of simply five structures as the same loop can occur several times
in the same PDB file due to multiple copies of a protein within a
crystal unit cell. Loops are likely to adopt the same conformation
in all copies even if flexible.

Table 1. Datasets and sizes.

DATASET TOTAL FLEXIBLE RIGID

PROTEIN LOOPS 20,216 4289 15,927
CDRH3 152 97 55
CDRL3 84 15 69

CDRH3s and CDRL32 of each group were then labelled as
‘flexible’ or ‘rigid’ identical as for the protein loops dataset.

3. Method
In order to demonstrate the usefulness of the dataset we
developed AbFlex, a model classifying the flexibility of
CDR loops.

3.1. AbFlex model

AbFlex is a graph neural network and consists of three E(n)-
EGNN layers (Satorras et al., 2022). The layers take input of
node embeddings hl, coordinates xl and edge embeddings
E = aij . Embeddings in each layers are updated as follows:

mij = ϕm(h
l
i, h

l
j, ∥xl

i − xl
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∑
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The last layer of node features are pooled and a linear layer
with sigmoid activation function applied for binary classi-
fication. The chosen model architecture makes predicted
flexibilities invariant to transformations of the group E(3)
(translations, rotations, reflections), therefore orientations
and absolute positions of inputs to the model can be ignored.

A loop and its structural context are encoded as a residue
level graph. Context is provided by all residues within 10 Å
of any loop residues. Node features are a 22-dimensional
vector formed by a one-hot encoding of amino acid type
(1 class for each of the 20 amino acids plus an additional
class for unknown residues) concatenated with a one-hot
encoding of the residue being located in the loop or context.
A 10 Å distance cutoff is used to construct the edges. Edge

2CDR3s are here defined as IMGT numbered (Lefranc et al.,
2003) residues 107-116. In most antibodies these residues form
the loop between the two antiparallel β-strands.
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features are 9-dimensional providing a one-hot encoding of
the presence of a covalent bond between two residues and a
Cα distance encoding. The distance encoding is produced
by 8 Gaussian radial basis functions (RBFs) equally dis-
tributed between 0 Å and 10 Å. Residue coordinates were
taken from the Cα atoms.

A 70-15-15 split was used to divide the protein loops dataset
into training, validation and test sets. A maximal sequence
identity of 80% between the splits was enforced. Addition-
ally, all loops with more than 80% sequence identity to any
of the loops in the CDRH3 and CDRL3 datasets were re-
moved from the training and validation sets. One structure
per loop was sampled for the validation and test sets. To
ensure the stability of predictions to small changes in atom
coordinates the training set was augment by the random
sampling of five structures per loop.

AbFlex was trained with a binary cross-entropy loss using
the Adam optimiser (Kingma & Ba, 2014) with a learning
rate of 2 · 10−4 and weight decay of 10−6. The valida-
tion area under the precision-recall curve (PR AUC) was
monitored and training stopped when converged.

3.2. Baseline models

A set of three baseline models were created to assess AbFlex
performance. Firstly, a logistic regression classifier was fit
to inputs of loop length. Longer loops contain more bonds
around which they can rotate and are therefore expected to
be more flexible in conformation (Guloglu & Deane, 2023).
Secondly, a logistic regression classifier was fit to inputs
of the solvent exposure of a loop. We approximate solvent
exposure by the number of residues located within 10 Å
around the loop. Loops with higher solvent exposure have
less steric hindrance restricting conformational rearrange-
ments and are expected to be more flexible (Guloglu &
Deane, 2023). Lastly, a logistic regression was fit to both
length and solvent exposure. All baselines were trained and
tested on identical data splits as AbFlex.

3.3. AF2-based flexibility prediction

AbFlex performance on the CDR test sets was compared
to two AF2-based approaches for flexibility prediction. Be-
sides the predicted structures, AF2 returns a pLDDT score
for each residues which provides a local confidence mea-
sure. Low pLDDT scores have previously been described
to provide a good indicator that a part of a protein is dis-
ordered and flexible in conformation (Jumper et al., 2021).
We, therefore, used the mean pLDDT of a CDR as a pre-
dictor of flexibility. Furthermore, AF2 workflows using
subsampled, shallow MSAs can successfully predict confor-
mational states for some proteins (Riccabona et al., 2024).
We created 40 models of each antibody running AF2 with

MSA subsampling3 and used the average CDR RMSD in
the 40 models as a predictor of flexibility.

4. Results
4.1. Performance on protein loops dataset

AbFlex was initially evaluated on the protein loops test
set (Table 2). To assess its performance, we compare
AbFlex predictions to three simple baseline models. AbFlex
achieves good predictive power at classifying loops to be
‘rigid’ or ‘flexible’ and outperforms all baselines substan-
tially. Baseline results show that features of loop length and
solvent exposure detect some signal, however are not suf-
ficient to explain most of the loop flexibility. The superior
performance of AbFlex suggests that the model has learned
more than these two simple features to predict conforma-
tional flexibility.

Additionally, we tested two modifications of the AbFlex
method. AbFlex-loop uses an identical architecture as
AbFlex but model input differs. AbFlex-loop is given a
graph encoding of only the loop itself and not its structural
context. AbFlex-sequence is a CNN-based model trained
on an amino acid sequence encoding of the loop (again no
data of the structural context is provided). AbFlex-loop
and AbFlex-sequence achieve similar performance (Table
2) indicating that loop structure alone does not give more in-
formation than sequence. Both models outperform the only
relevant baseline (baseline-length)4, but show less predictive
power than AbFlex.

These results give some indication on the biophysical fac-
tors that affect the conformational flexibility of protein loop
motifs. Long loops tend to be more flexible than shorter
ones. Furthermore, the sequence of a loop impacts its ability
to adopt multiple conformations; no additional information
is gained from the structure of the loop alone. Encoding
the structural context of the loop motif results in the largest
boost in performance. This highlights that interactions with
the context within the protein are an important factor affect-
ing conformational dynamics.

4.2. Predicting CDR flexibility

AbFlex was further evaluated on the CDRH3 and CDRL3
test sets. The methods generalises to antibody CDRs and
achieves good predictive power on both sets. AbFlex sub-
stantially outperforms all baseline methods and AF2-based

3The following parameters of AF2 were changed from default
values: MSA depth = 64, extra sequences = 128, recycles = 1,
seeds = 8. Parameters were selected to maximise the diversity of
outputs while limiting the occurrence of unfolded structures.

4Baseline-length is the only relevant baseline here. The other
two consider information of the loop’s structural context which
AbFlex-loop and AbFlex-sequence do not have access to.



AbFlex: Predicting the conformational flexibility of antibody CDRs

Table 2. Protein loops test set performance.

METHOD ROC AUC PR AUC

RANDOM 0.50 0.23

BASELINE - SOLVENT EXPOSURE 0.60 0.29
BASELINE - LENGTH 0.69 0.35
BASELINE - COMBINED 0.76 0.46

ABFLEX-SEQUENCE 0.76 0.47
ABFLEX-LOOP 0.76 0.46
ABFLEX 0.83 0.61

Table 3. CDR test set performance. Values specify the area under
the precision-recall curve (PR AUC).

METHOD CDRH3 CDRL3

RANDOM 0.64 0.18

BASELINE - SOLVENT EXPOSURE 0.68 0.32
BASELINE - LENGTH 0.69 0.36
BASELINE - COMBINED 0.72 0.37

ABFLEX 0.80 0.62
ABFLEX-ABB2 0.77 0.63
AF2 - PLDDT 0.70 0.32
AF2 - MSA SUBSAMPLING 0.74 0.48

alternatives.

The CDRH3 test set contains an interesting case study of
a loop that is flexible in the context of one Fv sequence
(A) but rigid in the context of an alternative Fv (B) (Figure
2). The two Fvs differ by a slight repositioning of a β-
strand near the CDRH3. AbFlex predicts the increased
flexibility of A (prediction score 0.41) compared to B (0.04).
This case study indicates that AbFlex is sensitive to small
rearrangements in the structural context that affect CDR
flexibility.

Up to this points, AbFlex was only tested with structural
data taken from crystal structures. Sequence data is avail-
able for a far grater number of antibodies (Olsen et al.,
2022) than experimentally solved structures (Dunbar et al.,
2014). We, therefore, tested AbFlex on input graphs cre-
ated from structural models predicted using ABodyBuilder2
(Abanades et al., 2023). Similar performance is achieved
using predicted structures (AbFlex-ABB2 in Table 3) as for
crystal structures (AbFlex in Table 3), showing that AbFlex
can be used even if only antibody sequence is known.

5. Conclusions
Conformational changes give rise to functional properties
of many classes of proteins (Teilum et al., 2009). Current
machine learning tools do not capture structural flexibility
well (Riccabona et al., 2024; Jing et al., 2024). A main

factor that has limited methods development in this space is
the absence of large datasets necessary to train and evaluate
models. Here, we focus on the conformational flexibility
of antibody CDRs, a functionally highly important protein
motif. We mine the PDB (Berman et al., 2002) and SAbDab
(Dunbar et al., 2014) for crystallographic evidence of the
conformational flexibility of CDRs and structurally related
loops across all classes of proteins. Through this approach
we create a large dataset set of more than 20,000 loop motifs
with determined flexibility.

We develop AbFlex which shows strong predictive power
for classifying if antibody CDRs are able to transition be-
tween multiple conformational states or consistently adopt
a single stable conformation. Our method substantially out-
performs AF2-based alternative which have previously been
described as predictors of protein flexibility (Jumper et al.,
2021; del Alamo et al., 2022). By training on crystal struc-
ture data, we eliminate potential artefacts originating from
methods, e.g. MD, that approximate the flexibility of pro-
teins through simulation. The conformational flexibility of
CDRs affects functional properties of the antibody including
affinity (Mikolajek et al., 2022) and specificity (Guthmiller
et al., 2020; James et al., 2003), which are key properties
that need to be optimise in therapeutic drugs. AbFlex, there-
fore, adds a valuable tool to investigate antibody function
and assist the drug discovery process.

Furthermore, this work highlights biophysical factors that
influence the conformational flexibility of protein loop mo-
tifs. While sequence affects the tendency to adopt multiple
conformations, we identify the arrangement of residues in
the surrounding (structural context) as a key factor that
drives loop flexibility. These results are in line with previ-
ous studies of CDRH3 flexibility (Guloglu & Deane, 2023)
and suggest that this finding may generalise to all protein
loop motifs.

Software and data availability
The AbFlex code and training data will be made available
upon publication.
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