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ABSTRACT

Causality detection is to identify the “true” directed acyclic graph (DAG) of a
causal model from the joint probability distribution of the observed variables. Algo-
rithms such as PC and its modified versions perform this task under the restrictive
faithfulness assumption, that is the DAG encodes all conditional independencies
imposed by the distribution. However, all existing algorithms fail to detect the sim-
ple structure where a variable is the XOR of several Bernoulli variables, violating
faithfulness. We generalize this type of unfaithfulness that appears in other, non-
XOR, examples and define the minimal dependence of a given variable X as the set
of variables, such that X is independent of each variable in the set but depends on
at least one of them, the dependent member if conditioned on the remainder of the
set. Minimal dependencies of size at least two violate faithfulness. Consequently,
we relax faithfulness to minimal dependence faithfulness, restricting the neighbors
of a node to its dependent members, and impose minimal orientation faithfulness
that generalizes the orientation rules under faithfulness. We then determine the
structure of the dependent members of a node X in the true DAG and show that
they are connected to X either directly or indirectly by a collider. Finally, we
provide a sound and complete modification of the PC algorithm to detect this kind
of unfaithfulness and output all possible candidates for the true DAG.

1 INTRODUCTION

Structural causal models (SCMs) are used to capture the causal relationships between a set of random
variables. They assign to each variable a deterministic function of some of the other variables, known
as its parents or direct causes, and possibly a noise variable (Peters et al., 2017). Consequently, each
SCM induces a joint probability distribution over the random variables and a directed acyclic graph
(DAG) where the direct causes of each variable are linked to that variable. The DAG is also known as
the “true DAG” or causal network of the variables. To learn the structure of the causal network – a
process referred to as structure learning – intervention is a reliable method to find causal relations
(Ke et al., 2020). However, because of practical constraints, the use of only observational data has
attracted attention in recent decades (Ng et al., 2021). For this purpose, sufficiency, causal Markov
condition (CMC), and faithfulness are usually considered in the literature to make learning possible
(Zhang & Spirtes, 2016). Causal sufficiency refers to the absence of hidden (or latent) variables.
CMC implies that all conditional independencies implied by the true DAG hold in the joint probability
distribution and faithfulness implies the inverse.

Under these assumptions, one main approach to find the true DAG is known as constraint-based
and is based on testing conditional independencies (constraints) between the variables (Kitson et al.,
2021). Examples of constraint-based algorithms are PC (Spirtes et al., 2000), SGS (Spirtes et al.,
2000) FCI (Guo et al., 2020) which are based on (in)dependence detection. The result of this approach
is a class of independence-equivalence (I-equivalence) graphs that are presented as a partially DAG
(PDAG). Under the causal Markov and faithfulness assumptions, constraint-based approaches have
been shown to correctly find the true PDAG given the joint probability distribution, and the same
holds asymptotically with respect to the number of data instances of a given dataset (Ng et al., 2021).

CMC and faithfulness are used to conclude the existence and absence of links in the true DAG
based on conditional independence test results, respectively. However, the faithfulness assumption
is violated in some practical situations (Andersen, 2013), making it a restrictive assumption. Some
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of the work in the literature has accordingly relaxed this assumption (Lemeire et al., 2012) and
developed unfaithfulness detection approaches, that is, to detect from observational distribution P the
existence of some conditional dependencies that cannot be captured by the true DAG (Ramsey et al.,
2006; Zhang & Spirtes, 2008; Spirtes & Zhang, 2014).

Adjacency-faithfulness and orientation-faithfulness assumptions that are weaker than faithfulness
were defined in (Ramsey et al., 2006). PC algorithm was accordingly adapted, resulting in the
conservative PC (CPC) algorithm that puts forward a number of candidate PDAGs that include the
true DAG. As another relaxation of faithfulness, triangle-faithfulness was introduced and investigated
in (Zhang & Spirtes, 2008; Spirtes & Zhang, 2014), resulting in the very conservative PC (VCPC) and
VCSGS algorithms. However, all of these and other existing algorithms, such as MGM-FCI-MAX
(Horii, 2021), fail to detect the true graph in examples such as the generalized XOR where several
Bernoulli random variables cause another variable.

The first step in detecting this type of unfaithfulness was taken in (Marx et al., 2021) for the case with
three variables, i.e., two causing the third, resulting in the conventional XOR example. The authors
relaxed the faithfulness to the so-called 2-adjacency faithfulness and 2-orientation faithfulness,
provided a modified grow-shrink (GS) algorithm (Margaritis & Thrun, 1999) to detect triple of
variables violating faithfulness, and proved the soundness.

We take the next step in this regard and define the minimal dependence of a given variable X as the
set of variables Y , such that X is independent of each Y but becomes dependent if conditioned on the
remainder of the set. Minimal dependencies of size at least two violate faithfulness. Consequently,
we relax the assumption to minimal dependence faithfulness, limiting the existence of links to a
variable and its minimal dependence. We then determine the structure of minimal dependencies in
the true DAG and provide a modification of the PC algorithm, the minimal dependence PC (MD-PC)
algorithm to detect this kind of unfaithfulness and output all possible candidates for the true DAG.

2 PROBLEM FORMULATION

Consider a structural causal model (SCM) (Peters et al., 2017) defined as the tuple ⟨X ,N , PU ,F⟩
where X = {X1, . . . , Xm} are the random variables, N = {NX | X ∈ X} are the disjoint noise
random variables whose joint distribution PU satisfies PU (N ) =

∏
X PU (NX). The value assigned

to each variable X ∈ X is a deterministic function fX of a subset of the variables PaX ⊂ X \ {X},
known as its parents, and a parent noise variable NX ∈ N , i.e., X := fX(PaX , NX). The set of
functions fX for all variables X defines F . The parents of each variable X are known as its direct
causes. The function fX is minimal in the parents of X; that is, there does not exist another function
gX , such that fX(PaX , NX) = gX(S, NX) for some subset S ⊂ PaX . The SCM induces (i) a
joint (observational) probability distribution P over the variables X and (ii) a DAG G whose nodes
represent variables X , and there is a link to every variable X from each of its parents PaX .

The goal is to obtain DAG G, referred to as the “true DAG,” from observational probability distribution
P , that is to estimate the causal relationships from the observational distribution.

Problem 1 (Causal discovery) Consider an SCM over the variables X , inducing DAG G and joint
observational probability distribution P . Given distribution P , find DAG G.

This is, however, an impossible task in general. The simplest example is the case with two dependent
variables X and Y , where both SCMs X := 2Y and Y := 0.5X impose the same observational
distribution P but two different DAGs Y → X and X → Y .

Some commonly-imposed assumptions facilitate this task. One is the (causal) faithfulness assumption
explained as follows. True DAG G implies some independencies between the variables. For example,
if there is no trail (path) between two variables in G, their deterministic functions are not related,
rendering the two variables independent. Faithfulness states that such independencies implied
by G capture all independencies satisfied by the distribution P . The attribution of (conditional)
independencies to a DAG is formalized by the notion of d-separation (see Appendix). Let I(G) denote
the set of all d-separations in a DAG G and I(P ) denote the set of all conditional independencies
implied by distribution P , i.e., I(P ) = {(Y1 ⊥ Y2 | Y3) : Y1,Y2,Y3 ⊆ X}.

Assumption 1 (Faithfulness) I(P ) ⊆ I(G).
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Distribution P is said to be (causally) faithful to the DAG G if it satisfies the above assumption.
Problem 1 can then be stated as follows.

Problem 2 (Causal discovery under faithfulness) Consider an SCM over variables X , inducing
DAG G and joint observational probability distribution P . Given distribution P and under Assumption
1, find DAG G.

Problem 2 is often introduced from a different perspective, without the causality ingredient: there is
some true DAG G over random variables X with joint distribution P , and the goal is to again obtain
G from P . Clearly, then the connection between G and P is lost and any DAG is a candidate for G.
Faithfulness helps to bridge the gap yet is insufficient as, for example, an empty graph satisfies the
faithfulness assumption for every distribution P , and hence, is always a valid candidate. A second
commonly-imposed assumption is the (Causal) Markov Condition (CMC).

Assumption 2 (Markovness) I(G) ⊆ I(P ).

If Markovness holds, G is called an I-map for P . If additionally, G is no longer an I-map for P upon
the elimination of an edge, then it is a minimal I-map for P . Similar to faithfulness, Markovness is
insufficient to learn causal DAGs from observational data, because, for example, a fully connected
DAG has I(G) = ∅ and satisfies CMC for any observational distribution. However, together these
assumptions enable us to present Problem 2 without the causality ingredient.

Problem 3 (Structure learning) Consider random variables X with joint probability distribution
P . Assume there exists a DAG G satisfying Assumptions 1 and 2. Given distribution P , find DAG G.

We state the results in the conventional setup of Problem 3, but they can also be stated using the setup
of Problem 1.Note that even with both Markovness and faithfulness in force, the two-node DAGs
example stated at the beginning of this section may not be distinguished using the observational
distribution. This is because the two have identical distributions P and in turn I(P ). Consequently,
the problem of finding the true DAG is reduced to finding the so-called I-equivalent class of DAGs,
which share the same I(G) that is equal to I(P ). I-equivalent DAGs are known to have the same
skeleton and same directions on some of the edges (Koller & Friedman, 2009), and hence, are
represented by a PDAG.

PC algorithm solves Problem 3 (and 2) by putting forward an I-equivalence class that includes the
true DAG G. The algorithm, however, fails if the faithfulness assumption is violated. The idea with
PC is that if two variables are independent conditioned on any subset of the other variables, then
the two are not adjacent in the true DAG–a condition satisfied by faithfulness. If distribution P is
unfaithful, PC may incorrectly identify the absence of a link once an independence is detected in P
as illustrated in the following example.

Example 1 (nth-order XOR) Consider the SCM with variables Y1, . . . , Yn, and X defined by

Yi := Bernoulli(1/2), i = 1, . . . , n,

X := Y1 ⊕ . . .⊕ Yn,

where ⊕ is the XOR function. The induced causal DAG is shown in Figure 1(a). By probabilistic
arithmetic, P (X | Yi) = P (X) for all i. Therefore, X is independent from every Yi, but X is not
independent of any Yi conditioned on the remainder of Yi’s, i.e., P (X | Y1, . . . , Yn) ̸= P (X | Yi) for
all i, implying the existence of some path between X and Y1, . . . , Yn. Therefore, the independencies
X ⊥ Yi for all i are satisfied by the distribution P but not by the causal DAG G. As a result,
faithfulness is violated, i.e., I(P ) ̸⊆ I(G).
Should existing constraint-based algorithms, i.e., SGS and PC or their modified versions such as
CSGS, CPC, VCSGS, or VSPC, be applied to the above observational distribution, the result would be
the empty DAG G′ in Figure 1(b), which is different from G and violates the causal Markov condition,
i.e., (X ⊥ Y1 | Y2, . . . , Yn) ∈ I(G′) whereas (X ⊥ Y1 | Y2, . . . , Yn) ̸∈ I(P ).

To the best of our knowledge, except for the case of n = 2 (Marx et al., 2021), this type of
unfaithfulness has not been investigated in detail and no constraint-based algorithm is able to detect
it. The unfaithfulness is also not limited to Bernoulli distributions, binary variables, or deterministic
relationships; see Examples 4 and 5 in the Appendix. It is also not limited to extended v-structures as
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Y1 Y2 · · · Yn

X

(a)

Y1 Y2 · · · Yn

X

(b)

Y1 Y2 · · · Yn

X Yn−1

(c)

Figure 1: (a) The true DAG in Example 1, (b) the DAG found by PC and its modified versions, (c)
the true DAG in Example 2

in Figure 1(a) as illustrated in the following example. Given set of variables Y = {Y1, . . . , Yn}, n ≥
1, define Y−i = Y \ {Yi} for i = 1, . . . , n.

Example 2 Consider the SCM with variables Y1, . . . , Yn, and X defined by

Yi := Bernoulli(1/2), i = 1, . . . , n− 1,

X := Y1 ⊕ . . .⊕ Yn−1 ⊕ U,

Yn := Y1 ⊕ . . .⊕ Yn−1 ⊕X,

where U := Bernoulli(1/2) is the noise variable. The induced causal DAG G is shown in Figure 1(c).
For every index i, it can be verified that X ⊥ Yi, but X ̸⊥ Yi | Y−i. Thus, similar to Example 1, the
induced joint probability distribution P is unfaithful.

In what follows, we first characterize the type of unfaithfulness appearing in these examples, then
determine the structure of the underlying true DAG, and finally propose an algorithm that identifies a
class of DAGs that includes the true DAG.

3 MINIMAL-DEPENDENCE FAITHFULNESS

The type of unfaithfulness explained in Examples 1 and 2 happens when a variable X is independent
of each individual member of a set Y = {Y1, . . . , Yn} but not when conditioned on the other members.
Namely, X indeed depends on all of Y1, . . . , Yn, yet each single Yi does not individually inform the
distribution of X . The following definition captures this idea.

Definition 1 (Weak minimal dependence) Given a variable X ∈ X , a minimal dependence for X
is a set Y ⊆ X \ {X} that satisfies the following conditions:

1. there exists at least one member Y ∈ Y that satisfies

X ̸⊥ Y | Y \ {Y }, (1)

2. if |Y| ≥ 2, then
∀Y ∈ Y X ⊥ Y, (2)

3. no proper subset of Y satisfies (1) and (2).

If a minimal dependence of a variable X consists of a single variable Y , then Condition (2) does not
apply. Condition (1), on the other hand, implies that X and Y are dependent. Should faithfulness be
in force, we would conclude that X and Y are connected by some active trail.

However, if a minimal dependence entails at least two variables, it violates the faithfulness assumption.
Condition (1) implies that X depends on some variable Y in its minimal dependence set given the
remainder of the set. However, Condition (2) implies that X is independent of every member of
the minimal independence. This is counter intuitive as it implies that the only way the dependence
between X and Y can be explained is by the other members of the minimal dependence; nevertheless,
X is independent of each of these members, resulting in an unfaithful distribution.

Proposition 1 Consider random variables X with joint probability distribution P . If for any of the
variables X ∈ X , there exists a minimal dependence of X with cardinality of at least two, then P is
not faithful to any DAG G over X that is an I-map for P .

4
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The set Y = {Y1, . . . , Yn} in Examples 1 and 2 is a dependence set for X . This notion of unfaithful-
ness may as well apply to some real-world scenarios, where the presence of a single “effect” does not
make a particular “cause” more likely, yet the combination of several such effects may do so.

Example 3 (influenza or dengue fever) Let the binary variable X indicate the presence of either
influenza (X = 0) or the dengue fever disease (Halstead, 2007; Eccles, 2005) (X = 1) in a patient.
There are three symptoms shared between these two diseases: (i) fever (captured by Y1 = 1 when
present otherwise Y1 = 0); (ii) headache (captured by Y2 = 1 when present otherwise Y2 = 0);
(iii) joint and muscle pain (captured by Y3 = 1 when present otherwise Y3 = 0). Knowing any of
these symptoms does not make any of the two diseases more likely, i.e., P (X | Yi) = P (X) for all i.
However, while all three symptoms can be simultaneously present in the case of influenza, that is not
the case with dengue fever. In dengue fever, fever and headache appear in the early stages, and the
joint and muscle pain is observed often a few days after. Therefore, if the patient is known to have
fever and headache, the additional information of whether they also have joint and muscle pain may
determine the disease type, i.e., P (X | Y1, Y2, Y3) ̸= P (X | Y1, Y2), implying X ̸⊥ Y3 | Y1, Y2. It
follows that Y = {Y1, Y2, Y3} is a minimal dependence for X .

The third condition in Definition 1 is to ensure that the members of Y are all required for the
unfaithfulness; otherwise, the dependence set Y may become redundantly large by including variables
that are independent of every other variable, e.g., isolated nodes. Nevertheless, the consequence of
minimality is that all members of the minimal dependence set satisfy Condition 1.

Proposition 2 Let Y ⊆ X be a weak minimal dependence of a variable X ∈ X . Then

∀Y ∈ Y X ̸⊥ Y | Y \ {Y } (3)
X ̸⊥ Y (4)

and for every Y ′ ⊂ Y ,

X ⊥ Y ′, (5)

∀Y ∈ Y ′ X ⊥ Y | Y ′ \ {Y }. (6)

Although we defined minimal dependence in Definition 1 in its simplest form by requiring the
dependence in Condition (1) to hold for only one member, it appears that the condition does hold
for all members of the minimal dependence. This means that in practice, if for a set of variables
Y = {Y1, . . . , Yn} that are each independent of X , we find that just one of them, say Y1, depends on
X conditioned on the rest of the variables, then so do all of the remainder, i.e., Y2, . . . , Yn, provided
that Y is minimal. If Y is not minimal, then we can find the minimal set by finding the smallest subset
of Y that satisfies Condition (1). This explains why a uniform quantifier is not used in Condition (1).

3.1 THE STRUCTURE OF THE MINIMAL DEPENDENCE

What can be concluded about the true DAG G of a distribution P that admits a minimal dependence
of size at least two? An immediate result of Proposition 1 is that once a minimal dependence of size
at least two is detected for a variable X in the distribution P , the absence of the links between X
and its minimal dependence variables may no longer be concluded, even though X is independent of
them. This, however, does not mean that X and the minimal dependence can form any DAG. The
following result enforces the existence of certain combinations of links.

Theorem 1 Consider random variables X with joint probability distribution P . Consider a node
Z ∈ X and its weak minimal dependence Y . If DAG G is an I-map for P , then every member Y ∈ Y
is connected to Z either by a collider-free trail or by a trail, every collider of which has a node in Y
as its descendant.

To further conclude about the structure of the true DAG, we define the following stronger version
of Definition 1. This definition is motivated by normal faithfulness, where two nodes X and Y are
adjacent if and only if their dependence does not break upon the observation of any other set U , i.e.,
X ̸⊥ Y | U for all U ̸⊇ {X,Y } (Koller & Friedman, 2009). Similarly, here, we extend Condition (1)
in Definition 1 to when any additional set U is observed.

5
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Definition 2 ((Strong) minimal dependence) Given a variable X ∈ X , a (strong) minimal depen-
dence for X is a set Y ⊆ X \ {X} that satisfies the following conditions:

1. there exists at least one member Y ∈ Y that satisfies

∀U ∈ X \ ({X} ∪ Y) X ̸⊥ Y | (Y \ {Y }) ∪ U (7)

2. if |Y| ≥ 2, then
∀Y ∈ Y X ⊥ Y, (8)

3. no proper subset of Y satisfies (7) and (8).

Every member Y ∈ Y that satisfies (7) is called a dependent member of Y and the set of all dependent
members of Y is denoted by Yo. The set of all strong minimal dependencies of X is denoted by
Dep(X).

In the rest of the paper, by “minimal dependence” we mean strong minimal dependence. According
to Definition 2, the dependence between X and its minimal dependence variables does not break
upon the observation of non-minimal-dependence variables. Clearly, a strong minimal dependence of
a variable X is also its weak minimal dependence but not the other way around. Note that (7) implies
the presence of an edge between X and a node in Y .

Next, to deduce the absence of an edge in the true DAG, we make the following assumption. The
violation of faithfulness no longer allows edge elimination in G. Nevertheless, faithfulness is only
violated “within” the minimal independence sets. The outer ones may be removed.

Assumption 3 (Minimal-dependence faithfulness) Consider DAG G over variables X with joint
probability distribution P . If Y, Z ∈ X are adjacent in G, then each is a dependent member of a
minimal dependence of the other, i.e., there exists a minimal dependence Y ∈ Dep(Z) such that
Y ∈ Yo and a minimal dependence Z ∈ Dep(Y ) such that Z ∈ Zo.

This assumption is motivated by a result in faithfulness (as well as adjacency faithfulness (Ramsey
et al., 2006); see Section 3.4). Under a faithful distribution, two nodes Y and Z are adjacent only if
Y ̸⊥ Z | U for all U ⊆ X \ {Y,Z}. Namely, adjacency is allowed only between “tightly” dependent
variables. Similarly, Assumption 3 enforces the same, with the difference that here the notion of
tight dependence extends to that between a variable Z and a set of other variables Y . Namely, in
view of Proposition 2, each minimal dependence Y ∈ Dep(Z) can be seen as a “super node”:
Although independent of individual nodes in Y , variable Z does depend on the whole Y according
to Equation (7). Hence, Assumption 3 allows adjacency between nodes Z and Y only if Z and Y
are tightly dependent where Y ∈ Yo and Y ∈ Dep(Z) which in turn implies that that Z and Y are
tightly dependent.

Assumption 3 and Definition 2 sharpen Theorem 1 to what we define as a v-star. Denote the union
of the minimal dependencies of Z by Dep(Z) = ∪Y∈Dep(Z)Y and the union of the sets of the
dependent members of the minimal dependencies by Depo(Z) = ∪Y∈Dep(Z)Yo.

Definition 3 (v-star) A v-star over the node set X is the DAG where a single node X ∈ X is
connected to every other node in X either directly (i.e., the two are adjacent) or indirectly by a
collider whose effect node is also a node in X . The DAG is also referred to as a v-star centered at X .

Theorem 2 Consider random variables X with joint probability distribution P , and let Z ∈ X . If
DAG G is an I-map for P and satisfies Assumption 3, then (i) Z and Depo(Z) form a v-star centered
at Z; and (ii) for every Y ∈ Depo(Z) that is not adjacent to Z, a node in Y \ {Y } is a descendant
of (or equals) the effect node of the collider connecting Y to Z, where Y is the minimal dependence
of Z that includes Y .

The structures in Examples 1 and 2 both appear to be v-stars. Theorem 2 does not reveal the structure
of each individual minimal dependence but all of them as a whole: Dependent member Y of a
minimal dependence Y ∈ Dep(Z) may be connected to Z directly, indirectly by another node in Y ,
or indirectly by another node in a different minimal dependence of Z, say Y ′. However, this requires
that other node to belong to the minimal dependence of Y as otherwise, there is no link between

6
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them according to Assumption 3. So if none of the members of the minimal dependencies belong to
any of the other minimal dependencies of Z, then Theorem 2 is further sharpened to each minimal
dependence of Z forming a v-star. Another special case is for singleton minimal dependencies as
illustrated by the following corollary.

Corollary 1 Consider random variables X with joint probability distribution P , and let Z ∈ X .
If DAG G is an I-map for P and satisfies Assumption 3, then for every singleton strong minimal
dependence {Y } ∈ Dep(Z) (that is, for every Y and Z where Y ̸⊥ Z | U for all U ⊆ X \ {X,Y }),
it holds that Z is adjacent to Y .

3.2 THE SYMMETRIC CASE

So far, Theorems 1 and 2 indicate the possibility of intertwined connections of the minimal depen-
dencies in the true DAG. The connections can be partly separated upon the introduction of some
symmetry to the minimal dependence.

Definition 4 (Symmetric minimal dependence) Given variables X with joint probability distribu-
tion P , a symmetric minimal dependence is a set of random variables Z = {Z1, . . . , Zn} ⊆ X , such
that for every i ∈ {1, . . . , n}, Z−i ∈ Dep(Zi) and Zo

−i = Z−i.

Namely, for each variable of a symmetric minimal dependence, the remainder of the set is its strong
minimal dependence and all members of which are dependent members. The set of variables in both
Examples 1 and 2 are symmetric minimal dependencies, but not those in Example 4. What structure
does the true DAG of a symmetric minimal dependence take? It appears that in both examples, there
is a node where all others are directing to. We show that this is generally true.

Definition 5 (Directed star) A directed star over nodes Z consists of a single center node Z ∈ X
that has an incoming edge from every other node Z \ {Z}. The directed star is also referred to as a
star directed at Z.

Corollary 2 Consider random variables X with joint probability distribution P . If DAG G is an
I-map for P and satisfies Assumption 3, then the nodes of a symmetric minimal dependence admit a
directed star in G.

Unlike the general results in Theorems 1 and 2 on the structure of the union of the minimal de-
pendencies, here, the structure of a single minimal dependence is revealed. Namely, if a node X
and its minimal dependence form a symmetric minimal dependence, their graphical representation
includes a directed star, regardless of the rest of the nodes in Dep(X). The center node, however, is
undetermined. For example, for a symmetric minimal dependence of size three, the possible DAGs
include all cases in Figure 2-a–c) as well as Figure 2-d–f) where an additional link is included. Thus,
there can be several candidate DAGs for the true DAG, which are not distinguishable based on the
distribution P . This motivates defining a class for such candidate DAGs as in the following section.

Remark 1 A special case of a symmetric minimal dependence is a set of two variables X and Y ,
where X ̸⊥ Y | U for all U ∈ X \ {X,Y }. Then Corollary 2 implies that there is a link between X
and Y in the true DAG. Therefore, as highlighted in Corollary 1, every node that forms a singleton
minimal dependence of X is adjacent to X .

3.3 MINIMAL DEPENDENCE EQUIVALENCE CLASS

The idea with PDAG class P-maps is to capture all DAGs that are an I-map for the distribution
P , satisfy the faithfulness condition, and are indistinguishable with respect to the distribution P .
Similarly, here, we can define a class of DAGs that all are an I-map for the distribution P and satisfy
minimal dependence faithfulness, and that potentially any of them can be the true DAG.

So far, neither the definition of a minimal dependence nor the minimal dependence faithfulness
assumption helps to determine the direction of the edges of the true DAG. This is because faithfulness
does not hold and hence an independence between a triple of variables does not necessarily imply an
immorality between them in the true DAG. More specifically, we build upon the following result for
faithful distributions that helps in finding the orientation of undirected edges found in constraint-based
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algorithms (Koller & Friedman, 2009). Suppose that in a P-map, nodes Y1 and Y2 are not adjacent
but are both adjacent with X . Then

1. if Y1, Y2, X form the immorality Y1 → X ← Y2 (that is Y1 and Y2 are not adjacent and
both are linked to X), then Y1 ̸⊥ Y2 | X,U for all U ⊆ X \ {X,Y1, Y2};

2. if Y1, Y2, X do not form an immorality, then Y1 ̸⊥ Y2 | U for all U ⊆ X \ {X,Y1, Y2}.

Now, in our case, instead of the single nodes Y1 and Y2, we have the minimal dependencies Y1 and
Y2 that can be viewed as “super nodes” and that form directed stars centered at X . Accordingly, the
above conditions are extended by replacing Yi with Yi and making necessary adjustments. First, we
extend the definition of immorality so that it also applies to node sets.

Definition 6 Node X and node sets Y1,Y2 form an immorality if (i) there is no node in Y1 that is
adjacent to a node in Y2 and (ii) Y1 ∪ Y2 ∪ {X} forms a directed star centered at X .

Assumption 4 (Minimal orientation) Consider an SCM over variables X , inducing DAG G and
joint probability distribution P . For X ∈ X , if Y1 ∪ {X} and Y2 ∪ {X} are symmetric minimal
dependencies, where no node in Y1 is adjacent with a node in Y2, then

1. if Y1 ∪ Y2 ∪ {X} form an immorality in G, then Y1 ̸⊥ Y2 | X,U for all U ⊆
X \ ({X} ∪ Y1 ∪ Y2);

2. if Y1 ∪ Y2 ∪ {X} do not form an immorality in G, then Y1 ̸⊥ Y2 | U for all U ⊆
X \ ({X} ∪ Y1 ∪ Y2).

The main use of the above assumption is the contra-position of the second case. For symmetric
minimal dependencies Y1 ∪ {X} and Y2 ∪ {X} where Y1 and Y2 are not adjacent, if Y1 ⊥ Y2 | U
for some U ⊆ X \ ({X} ∪ Y1 ∪ Y2), then Y1 ∪ Y2 ∪ {X} form a directed start centered at X .

Definition 7 (MD-equivalence) Given variables X with joint probability distribution P , the MD-
equivalence class of P is the set of every DAG that (i) satisfies Assumptions 3 and 4, and (ii) for
all Z ∈ X , Depo(Z) admits a v-star centered at Z. Any two DAGs in this class are said to be
MD-equivalent (with respect to P ).

The six DAGs in Figure 2-a–h) are MD-equivalent. One could additionally require every symmetric
minimal dependence to admit a directed star in G in order for it to belong to the MD-equivalence
class; however, that would be an (indirect) implication of Condition ii) in Definition 7 as Corollary 2
is a result of Theorem 2.

To simplify the representation of the MD-equivalence class, we define the following extended type
of PDAGs. A dashed PDAG over vertices X is a tuple (X , E1, E2, E3), where E1 ∈ X × X is the
set of directed edges, and E2, E3 ⊆ {{X1, X2} | X1, X2 ∈ X , X1 ̸= X2} are the set of undirected
and dashed edges, respectively, and that no pair of nodes appears in more than one edge set (i.e., the
directions in E1 ignored, the edge sets are mutually exclusive).

Definition 8 (Class dashed PDAG) The (MD-equivalent) class dashed PDAG of distribution P over
variables X is a dashed PDAG G over X where (i) there is no edge (of any form) between X and
Y in G iff that is the case with all DAGs in the MD-equivalence class of P ; (ii) there is a directed
edge X → Y in G iff X → Y exists in all DAGs in the MD-equivalence class of P ; (iii) there is an
undirected edge X − Y in G iff among the DAGs in the MD-equivalence class of P , some (at least
one) include the link X → Y and the remainder (at least one) include the link Y → X; iv) there is a
dashed edge X −−Y in G iff none of the previous cases hold.

Back to Figure 2, the MD-equivalent class dashed PDAG of the class is represented by Figure 2-h).
As another example, given the true DAG in Figure 3-a) in Example 7, the class dashed PDAG
representation is shown in Figure 3-c). Examples of the MD-equivalent class in this case include
Figure 4-a–d). How to obtain the possible MD-equivalent DAGs from the class dashed PDAG?
Similar to the P-map class PDAG, one can turn undirected (un-dashed and dashed) edges into directed
links as long as directed cycles and new immoralities do not appear. For example, in Example 7, a
DAG with the immorality Y5 → X ← Y6 would not belong to the class dashed PDAG as this would
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Figure 2: a, b, c) Three possible structures of an immorality over nodes X,Y, Z. d, e, f) Three
possible structures of a triangle over nodes X,Y, Z. h) The graph representation for the existence of
the immorality between nodes X,Y, Z.

cause the new immorality Y5 → X ← Y1. The main difference to P-map class PDAG is that here the
dashed edges can be removed as long as Condition (ii) in definition 8 is met. Again in Example 7,
the case where all three dashed edges among X,Y1, Y5 are removed does not belong to the MD
equivalent class.

3.4 RELATION TO OTHER TYPES OF FAITHFULNESS

The authors of (Ramsey et al., 2006) relaxed the faithfulness assumption to its implication in terms
of the existence of a link. More specifically, they assume adjacency faithfulness, imposing that if
nodes X and Y are adjacent in the true DAG G, then they are dependent conditional on any subset
of X \ {X,Y }. Similarly, DAG G is said to be minimally Markovian if it is an I-map for P and
two nodes are adjacent in G if and only if they are dependent conditioned on every subset of other
variables (Sadeghi & Soo, 2022). Both are the special case of Assumption 3 when all minimal
dependencies are of size one. Moreover, the case where a symmetric minimal dependence is of size
two matches the definition of tripe unfaithfulness in (Marx et al., 2021) and hence is considered
as a special case. In this regard, Assumptions 3 and 4 and Definition 1 and 2 can be considered as
extensions of (2-)adjacency and (2-)orientation faithfulness and the notion of k-association in (Marx
et al., 2021), respectively. Given all this, if a DAG is faithful, it is adjacency faithful. If a DAG is
adjacency faithful, it is 2-adjacency faithful, and if it is 2-adjacency faithful it is minimal-dependence
faithful. So minimal-dependence faithfulness can be considered as a generalization of the adjacency
and 2-adjacency faithfulness, and in turn, faithfulness. This, however, comes with the inevitable cost
that the set of final candidates for the true DAG increases.

We highlight that the minimal dependence assumption imposed in this paper does not impose
minimality on the number of edges and hence is different from existing notions such as causal
minimality also known as SGS minimality stating that no proper sub-DAG of the true DAG G is an
I-map for P (Spirtes et al., 2000; Zhang & Spirtes, 2008; Neapolitan, 2004). It is also different from
P -minimality (Zhang, 2013), stating that no DAG G′ satisfying I(G) ⊂ I(G′) is an I-map for P .
Another different notion is the sparsest Markov representation (SMR) which is an I-map G, such
that every other I-map that is not I-equivalent to G has more edges than G (Raskutti & Uhler, 2018).
Similarly, an I-map G satisfying the frugality assumption, then it is in the set of SMRs (Forster et al.,
2018). Overall, Assumption 3 does not imply any of the aforementioned minimality assumptions: the
DAG in Figure 4-a) satisfies Assumption 3 but the sub-DAG in Figure 3-a) is the true DAG. Whether
the aforementioned minimality assumptions imply Assumption 3 remains an open problem.

4 MD-PC ALGORITHM

How to perform causal discovery in the face of the unfaithfulness caused by a minimal dependence
of size greater than one? A simple way is to iteratively find the Dep sets of all of the variables.
However, the PC algorithm can be exploited to reduce the computations. To this end, we develop
Algorithm 1, the minimal dependence PC (MD-PC) algorithm. Roughly speaking, the idea is to
consider each minimal dependence as a super node and perform the PC algorithm as before. This
determines the inter-structure of the minimal dependencies (super nodes). The intra-structure of the
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minimal dependencies are then partially determined by Theorem 2 and Corollary 2. This applies only
to minimal dependencies of size at least two, resulting in an unfaithfulness, detected according to
Proposition 1. The result will be a set of candidate dashed PDAGs, one of which is guaranteed to be
the true DAG under minimal-dependence faithfulness, i.e., Assumption 1.

Similar to PC, the algorithm goes through every pair of nodes X and Y . If the two are dependent,
then Y does not belong to a minimal dependence of X of size greater than one, and hence, normal
PC is followed. Namely, if later, the two become conditionally independent, the connecting link is
deleted; otherwise, Y is adjacent with X (equivalently, {Y } ∈ Dep(X)). However, if X and Y are
independent, we investigate the possibility of Y forming a strong minimal dependence of size at least
two with some other nodes. If yes, the minimal dependence is stored and all links between X and
the minimal dependence are removed. Otherwise, the link between X and Y is removed. Next, we
proceed to mark the minimal dependencies using the minimal orientation rule.

Theorem 3 Consider an SCM over variables X , inducing DAG G and joint probability distribution
P . If G satisfies Assumptions 3 and 4, then Algorithm 1 outputs the MD-equivalent class dashed
PDAG of P .

Remark 1. Compared to PC, the MD-PC algorithm additionally computes Dep(X) for all X .
Although this is not done in a separate process and uses the results of PC, it can result in additional
computational burden. However, the computational complexity of the proposed MD-PC and the
PC algorithm both equal O(2N ), where N is the number of variables. For sparse true DAGs, the
number of operations of the PC algorithm is much less than O(2N ), which may not be the case with
the MD-PC algorithm, depending on the dependencies between the variables. If p is the maximum
number of parents in the true DAG, the MD-PC algorithm must check CI tests on the maximum
p variables. Hence, the number of CI tests is bounded by O(Np) which is similar to the bound of
the number of CI tests for the PC algorithm. So for sparse high-dimensional networks knowing the
maximum number of parents helps to reduce the complexity of the MD-PC algorithm.

5 CONCLUSION

We addressed the problem of causality detection by focusing on identifying the "true" directed acyclic
graph (DAG) of a causal model from the joint probability distribution of observed variables. Our
investigation revealed that existing algorithms, such as PC and its modified versions, were unable to
detect certain simple structures that violated the faithfulness assumption. To overcome this limitation,
we introduced the concept of minimal dependence faithfulness, relaxing the faithfulness assumption
to account for situations where variables exhibit dependencies that violate traditional faithfulness
criteria. We defined minimal dependence as the set of variables on which a given variable depends,
even though it may be independent of each individual member of that set. Our analysis revealed that
minimal dependencies of size at least two violated faithfulness, prompting us to develop a modified
version of the PC algorithm capable of detecting this type of unfaithfulness. This modified algorithm
provided sound and complete results, allowing us to identify all possible candidates for the true
DAG, even in cases where traditional algorithms failed. Additionally, we characterized the structure
of minimal dependencies in the true DAG and showed that they formed v-stars or directed stars in
certain configurations. These insights allowed us to propose a class dashed PDAG representation to
simplify the representation of the MD-equivalence class. We also discussed the relationship between
minimal dependence faithfulness and other minimality and faithfulness assumptions. Overall, our
findings provide insights into the challenges of causality detection and offer practical solutions to
improve the accuracy of causal model inference from observational data.
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A APPENDIX

Definition 9 (d-separation) (Ramsey et al., 2012) Consider DAG G with node set X . A trail T
between two nodes X,Y ∈ X is active relative to (or given) a set of nodes Z ⊆ X if (i) for each
collider on T , at least one of the descendants of the collider node is in Z , and (ii) no other node on
T is in Z . The node subsets X1,X2 ⊆ X are d-separated given Z , denoted d− sepG(X1,X2 | Z), if
there is no active trail between any node X1 ∈ X1 and any node X2 ∈ X2 given Z . The set of all
d-separations in G is denoted by I(G).

Example 4 (Non-Bernoulli distribution; non-deterministic) The following is a V-structure SCM
where the collider node X does not have a deterministic relationship with Y1 and Y2 and does not
take a Bernouli distribution. The SCM consists of the variables X,Y1, Y2 and is defined by the
equations 

X := f(Y1, Y2, U)

Y1 := Bernouli(1/2)

Y2 := Bernouli(1/4)

where U ∈ {1, 2, 3, 4, 5} is the noise variable with the following distribution

P (U) =



.2 U = 1

.1 U = 2

.1 U = 3

.1 U = 4

.5 U = 5

and the function f is defined as follows:

f(0, 1, U) =

{
0 U = 1

1 U > 1
, f(1, 0, U) =

{
0 U ≤ 2

1 U > 2
,

f(1, 1, U) =

{
0 U ≤ 3

1 U > 3
, f(0, 0, U) =

{
0 U = 4

1 U > 4

It can be verified that Y = {Y1, Y2} is the minimal dependence of X .

Example 5 (Non-Bernoulli distribution; non-deterministic) The following is another V-structure
SCM with binary nodes X,Y1 ∈ {1, 2} and non-binary node Y2 ∈ {1, 2, 3}:

X := f(Y1, Y2, U)

Y1 := Bernouli(0.4)

Y2 := Multinomial(0.6, 0.2, 0.2)

where for brevity we only provide the conditional probability distribution of X:

P (X = 0 | Y1, Y2) =



0.65 Y1 = 0, Y2 = 0

0.25 Y1 = 0, Y2 = 1

0.1 Y1 = 0, Y2 = 2

0.33 Y1 = 1, Y2 = 0

0.6 Y1 = 1, Y2 = 1

0.7 Y1 = 1, Y2 = 0

Again, it can be verified that Y = {Y1, Y2} is the minimal dependence of X .

Example 6 (Water tank) Consider a water tank that has an input flow and an output flow (of equal
debit) controlled by two valves. Let X ∈ {0, 1} denote the water level of the tank, which is 0 if the
water level equals some desired level, e.g., 1 meter above the base, and is 1 otherwise. Also, denote
by Y1 ∈ {0, 1} and Y2 ∈ {0, 1} the valve statuses of the input and output flows, where a value of 0
means that the valve is open and 1 means that it is closed. Clearly, whether the water level changes
from the desired level (X) is independent of just Y1 (the inflow tap being open or closed) or just Y2
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(the output flow valve being open or closed), but is not independent of any of them once the other
one is known. For example, given that the inflow valve is closed, then the output flow valve being
open implies that the water level decreases, and being closed implies that the water level remains
unchanged. It follows that Y = {Y1, Y2} is a minimal dependence for X .

Proof of Proposition 1. We prove by contradiction. Assume that for some X ∈ X , there exists a
minimal dependence Y of X where |Y| ≥ 2, and assume on the contrary that there exists some DAG
G to which P is faithful. In view of faithfulness, Condition (2) yields the absence of any active trail
between X and each node in Y . We show that X is d-separated from every node Yi ∈ Y given Y−i.
Otherwise, for some i ∈ {1, . . . , n}, there must be an inactive trail between X and Yi that becomes
active upon the observation of Y−i. The only way this is possible is to have on the inactive trail
including one or more colliders where each has a node in Y−i as its descendant (or effect node).
Denote by V1 the closest node to X on this trail that together with two other nodes V2 and V3 on this
trail form the collider V1 → V2 ← V3 where some node Yk ∈ Y−i is a descendant of (or equals)
V2. Let T1 be the directed path from X to V2 on this trail and T2 be a directed path from V2 to Yk

Then the concatenated path T1T2 is a collider-free and hence active trail from X to a node in Y−i and
in turn Y , a contradiction. Hence, for all i ∈ {1, . . . , n}, X ⊥ Yi | Y−i belongs to I(G) but not to
I(P ) according to (1). This violates the I-map assumption, a contradiction. □

Proof of Proposition 2. Eq. 6 follows from the third condition in Definition 1. To prove (5), let
Y ′ = {Y ′

1 , . . . , Y
′
k}, k < n. Then in view of (6), P (X | Y ′) = P (X | Y ′ \ {Y ′

1}). Next, by letting
Y ′ \ {Y ′

1} to be Y ′ in (6), and Y to be Y ′
2 , we obtain P (X | Y ′ \ {Y ′

1}) = P (X | Y ′ \ {Y ′
1 , Y

′
2}).

Hence, by induction, it can be shown that P (X | Y ′) = P (X). To prove (3),let Y = {Y1, . . . , Yn}
and assume that (1) holds for Y = Y1. We prove by contradiction. Assume on the contrary that (1)
does not hold for some Y ∈ Y , say Y2, i.e., X ⊥ Y2 | Y \{Y2}. Then P (X | Y) = P (X | Y \{Y2}).
Now, by letting Y ′ = Y \{Y2}, (5) results in P (X | Y \{Y2}) = P (X}). Thus, P (X | Y) = P (X).
On the other hand, again from (5) , P (X | Y\{Y1}) = P (X). Hence, P (X | Y) = P (X | Y\{Y1}),
yielding X ⊥ Y1 | Y \ {Y1}, a contradiction, completing the proof. Finally, (4) is also proven by
contradiction as if on the contrary X ⊥ Y , then P (X | Y) = P (X) which similar to the proof for
(5) results in a contradiction. □

Proof of Theorem 1. Consider an arbitrary Yi ∈ Y . Should Yi be adjacent to Z the result is trivial, so
consider otherwise. In view of Condition (1), Z ̸⊥ Yi | Y−i. So Y−i observed, G being an I-map
implies an active trail, say T , between Z and Yi. Thus, every collider on trail T becomes active upon
observing Y−i, implying that the effect node or its descendant is in Y−i, and hence, Y . □

Proof of Theorem 2. Consider an arbitrary dependent member Y ∈ Depo(Z). Should Y be adjacent
to Z the result is trivial, so consider otherwise. Let Y ∈ Dep(Z) be the minimal dependence set that
includes Y , i.e., Y ∈ Yo. In view of (7), Once Y \ {Y } is observed, G being an I-map implies an
active trail between Z and Y that does not become inactive whether a node other than those in Y is
observed. Hence, Z and Y must form a collider with the effect node or its descendant in Y \ {Y }.
On the other hand, Assumption 3 excludes links between Z and non-dependent members. Hence, the
effect node of the collider must belong to Depo(Z). Thus, Z and Depo(Z) admit a v-star centered
at Z. □

Proof of Corollary 1. The proof follows Part (ii) in Theorem 2 and the fact that if a minimal
dependence Y ∈ Dep(Z) is a singleton, say {Y }, then Y \ {Y } becomes empty, implying that a
collider cannot connect Y and Z. So the two are adjacent. □

Proof of Corollary 2. Let Z = {Z1, . . . , Zn} be a symmetric minimal dependence. Theorem 2
implies that either (i) Zi and Zj are linked, (ii) Zi and Zj form a collider with an effect node
Zij ∈ Z−ij , or (iii) Zi and Zj form a collider with an affect node Vij ∈ X \ Z with some node
Zij ∈ Z−ij being a descendant of Vij . Let T be the longest directed path among the nodes in Z
and let Z be the last node in this path. Node Z cannot be linked to any of the nodes in T as that
would result in a directed cycle. Also, node Z cannot have an outgoing link to any of the other
symmetric minimal dependence nodes Z as that would result in a longer directed path. Hence, if
we denote by S = {S1, . . . , Sk} those nodes in Z that are not linked to Z, it follows from the three
aforementioned cases that each Si forms a collider with Z with some effect node Vi ∈ X \ Z . The
descendant of Vi cannot be any of the nodes that are linked to Z as then that node together with
Vi and Z form a directed cycle. Hence, each Vi takes as its descendant a node in S, which we
denote by Si+1. However, since S is finite, it holds for some i that Si+1 = Sj for some j < i.
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Then Sj → Vj− → Sj+1 → Vj+1 . . . Vi− → Sj forms a directed cycle which is impossible (− →
denotes a directed path). Thus, S is empty, implying that every node in Z \{Z} is connected to Z. □

Proof of Theorem 3. Denote by G′ the class dashed PDAG of P . (soundness) Consider adjacent nodes
X and Y in the true DAG G. In view of Assumption 3, Y is a dependent member of some minimal
dependence Y ∈ Dep(X), i.e., Y ∈ Yo. Case 1. Should |Y| = 1, no set U ⊆ X \ {X,Y } renders
X and Y conditionally independent, and hence, the connecting edge would not be eliminated neither
by the PC part of the algorithm, nor by the beginning part when it finds minimal dependencies of
size at least 2. Hence, the edge between X and Y exists in the output of the algorithm and will not
be dashed. So one of the following cases holds. Case 1.1. The edge is directed, say X → Y in G′.
Then in view of Assumption 4, the direction is either because of the existence of another symmetric
minimal dependence Z ∪ {X} for some Z ∈ Dep(X), where no node in Z is adjacent with Y ,
or that the opposite direction would cause a directed cycle or a new immorality. In either case, the
algorithm correctly identifies the direction. Case 1.2. The edge is undirected in G′. Then again in
view of Assumption 4, none of the possibilities in Case 1.1 take place which is the same as with
the algorithm. Case 2. Should |Y| ≥ 2, the edge would be dashed in G′ (except for the already
covered case when it is directed due to Assumption 4), which is correctly identified by the algorithm,
because it exhaustively searches through all subsets of variables that are marginally independent of
X , identifies Y as a minimal dependence of X , and in turn identifies Yo and marks the links from
X to Yo as dashed. (completeness) Consider nodes X and Y that are not adjacent in the true DAG
G. Then X and Y are d-separated in G, i.e., (X ⊥ Y | V) ∈ I(G) for some V ∈ X \ {X,Y }. As
G is an I-map for P , (X ⊥ Y | V) ∈ I(P ). Should X ⊥ Y ̸∈ I(P ), then Y does not belong to
a minimal dependence of X and the link between them is eliminated by the algorithm as it would
have been in normal PC. The same holds if X ⊥ Y ∈ I(P ) but there is no superset Y ⊃ Y for
which (X ⊥ Y) ̸∈ I(P ) and X is independent of each member of V ′. The only case left is when
X ⊥ Y ∈ I(P ) and there is a superset Y ⊃ Y that is a minimal dependence of X , but then all
the connections between X and dependent members Y ∈ Yo are a dashed edge in G′ which is also
the case with the output of the algorithm and there is no edge between X and the non-dependent
members Y ∈ Y \ Yo in view of Assumption 3, which is again the case with the algorithm. □

Example 7 Consider the SCM with variables X = {X,Y1, Y2, Y3, Y4, Y5, Y6} defined by

Yi := Bernoulli(1/2), i = 1, 2, 3, 4, 5

X := Y1 ∧ (Y2 ⊕ Y3 ⊕ Y4),

Y6 := X ⊕ Y5,

where ∧ is the logical conjunction. Fig.3-a) shows the true causal DAG and Fig.3-b) shows the
resulting network from the PC algorithm, which does not capture the links between X and Y2, Y3, Y4

and between Y6 and X and Y5. The minimal dependence sets of each variable are as follows:

Dep(X) = {{Y1}, {Y2, Y3, Y4}, {Y5, Y6}},
Dep(Y1) = {{X}}, Dep(Y2) = {{X,Y3, Y4}},
Dep(Y3) = {{X,Y2, Y4}}, Dep(Y4) = {{X,Y2, Y3}},
Dep(Y5) = {{X,Y6}}, Dep(Y6) = {{X,Y5}}

Consequently, the symmetric minimal dependence is

Sym = {{X,Y1}, {X,Y2, Y3, Y4}, {X,Y5, Y6}}.
So following the MD-PC algorithm, we first obtain the graph in Figure 3-b). The solid edge between
X and Y1 is because {X} is the only member of Dep(Y1). Both {X,Y1} and {X,Y2, Y3, Y4} are
symmetric minimal dependencies. Moreover, there is no link between Y1 and {X,Y2, Y3, Y4} (none
are in the dependence set of the other), and Y1 ̸⊥ Y2, Y3, Y4 | X,U for all U ⊆ {Y5, Y6}, implying
that X ̸∈ ∪Y ′∈{Y2,Y3,Y4

Sepset(Y1, Y
′), it follows that Y1, Y2, Y3, Y4 and X form a star directed at

X , resulting in Figure 3-c). This is not the case for symmetric minimal dependencies {X,Y1} and
{X,Y5, Y6} for example.

To avoid a new immorality between Y1 and Y5 and between Y1 and Y6, the edges XY5 and XY6 may
not be pointing to X . In view of the fact that Y5, Y6, and X form a directed star, this implies that the
directed star is either centered at Y6 or Y5. These results are in the graphs in Fig.4.
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Algorithm 1: The MD-PC Algorithm
Input: A set of random variables X and their joint probability distribution P
Output: A set of partially directed acyclic graphs with nodes X

1 Form the complete undirected graph G over nodes X ;
2 Sym = ∅; // The set of symmetric minimal dependencies
3 Perp(X) = ∅ for all X ∈ X ; // The set of variables independent of X

4 Dep(X) = Depo(X) = ∅ for all X ∈ X ;
5 Sepset(X,Y ) = ∅ for all X,Y ∈ X ;
6 for X ∈ X // find minimal dependencies of size at least 2
7 for Y ∈ X \ {X}
8 if X ⊥ Y
9 Perp(X)← Perp(X) ∪ {Y };

10 for Y ∈ Perp(X)
11 for V ⊆ Perp(X) \ {Y } // Sort V from small to large
12 if ̸ ∃Y ∈ Dep(X) : V ∪ {Y } ⊆ Y // Due to Condition 3 in

Definition 2
13 if X ̸⊥ Y | V ∪ U for all U ⊆ X \ ({X,Y } ∪ V)
14 Dep(X)← Dep(X) ∪ {{Y } ∪ V};
15 Dep(X)← Dep(X) ∪ {Y } ∪ V;
16 Depo(X)← Depo(X) ∪ {Y };
17 for V ∈ V // Find other dependent members
18 if X ̸⊥ V | {Y } ∪ (V \ {V }) ∪ U for all U ⊆ X \ ({X,Y } ∪ V)
19 Depo(X)← Depo(X) ∪ {V };

20 Remove the edges between X and Dep(X) in G;
21 for X ∈ X // Add symmetric minimal dependencies
22 for Y ∈ Dep(X)
23 if Y \ {Y } ∈ Dep(Y ) for all Y ∈ Y
24 Sym← Sym ∪ {Y ∪ {X}};
25 m = 0
26 while maximum node degree in G is greater than m do // Normal PC
27 for X ∈ X
28 for Y ∈ Adj(G, X)
29 for U ⊆ Adj(G, X) \ {Y } and | U |= m
30 if X ⊥ Y | U
31 Remove the edge X − Y from G;
32 Sepset(X,Y )← U ;

33 m = m+ 1;
34 for X ∈ X // Remaining edges form a singleton minimal dependence
35 for Y ∈ Adj(G, X)
36 Dep(X)← Dep(X) ∪ {{Y }};
37 Sym← Sym ∪ {{X,Y }};
38 for X ∈ X
39 for Y1,Y2 ∈ Dep(X) // Orientation
40 if Y1 ∪ {X},Y2 ∪ {X} ∈ Sym
41 if there is no edge between a node in Y1 and a node in Y2
42 if X ̸∈ ∪Y1∈Y1,Y2∈Y2

Sepset(Y1, Y2)
43 Link every node in Y1 ∪ Y2 to X with a directed edge;

44 for Y ∈ Dep(X) // Dashed edges
45 if |Y| ≥ 2
46 Connect X and each node in Y ∩Depo(X) by dashed edges, unless they are already

connected by a directed or undirected non-dashed edge;
47 Orient every undirected edge if the opposite direction yields a directed cycle or a new immorality;
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Figure 3: a) The true DAG for SCM in Example 7. b) Output of the PC algorithm c) The dashed
PDAG representing the MD-equivalent class from the MD-PC algorithm.

Figure 4: Examples of the MD-equivalent class.
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