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ABSTRACT

A 3D scene graph represents a compact scene model, storing information about the
objects and the semantic relationships between them, making its use promising for
robotic tasks. When interacting with a user, an embodied intelligent agent should
be capable of responding to various queries about the scene formulated in natural
language. Large Language Models (LLMs) are beneficial solutions for user-robot
interaction due to their natural language understanding and reasoning abilities.
Recent methods for creating learnable representations of 3D scenes have demon-
strated the potential to improve the quality of LLMs responses by adapting to the
3D world. However, the existing methods do not explicitly utilize information
about the semantic relationships between objects, limiting themselves to informa-
tion about their coordinates. In this work, we propose a method 3DGraphLLM for
constructing a learnable representation of a 3D scene graph. The learnable repre-
sentation is used as input for LLMs to perform 3D vision-language tasks. In our
experiments on popular ScanRefer, RIORefer, Multi3DRefer, ScanQA, Sqa3D,
and Scan2cap datasets, we demonstrate the advantage of this approach over base-
line methods that do not use information about the semantic relationships between
objects.

1 INTRODUCTION

In this paper, we consider scene understanding in the context of solving 3D vision-language prob-
lems: 3D referred object grounding task, 3D dense scene captioning and 3D visual question an-
swering. The 3D referred object grounding task involves identifying a region in a 3D scene that
corresponds to a complex natural language query. This query may describe object properties (e.g.,
color, size) and spatial relationships (e.g., a mug on a table). A common approach to solving this
problem is to assume that one is given a 3D reconstruction of the scene (e.g., a point cloud, mesh, or
NeRF). The goal is to predict the bounding boxes of the region that matches the query. The goal of
the dense scene captioning task is to describe the selected object. Finally, the goal of the 3D visual
question answering task is to generate text answer to various questions about the properties of the
scene. It seems promising to explicitly use a three-dimensional scene graph to solve these tasks.

The 3D scene graph not only allows storing multimodal information about individual objects within
a scene but also captures the semantic relationships (Wang et al., 2023b; Koch et al., 2024) and
hierarchical organization between them (Werby et al., 2024; Honerkamp et al., 2024). Additionally,
the graph scene representation enables real-time updates for dynamic environments (Rosinol et al.,
2021; Özsoy et al., 2023), and supports the application of graph algorithms for tasks such as nav-
igation (Zhou et al., 2023b; He & Zhou, 2024; Honerkamp et al., 2024) or object search based on
textual queries (Feng et al., 2021; Chang et al., 2023; Werby et al., 2024; Gu et al., 2024).

The solving of 3D vision-language tasks (Chen et al., 2020; 2021; Azuma et al., 2022) is crucial for
embodied intelligent agents. To interact with the user, an intelligent agent must be able to describe
the environment and answer questions about its properties using natural language. Large language
models (LLMs) are particularly well-suited for this task, as their advanced capabilities in natural
language understanding and common-sense reasoning make them highly effective in interpreting and
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Figure 1: Proposed 3DGraphLLM approach leverages 3D semantic scene graph learnable represen-
tation supplied as input to an LLM to perform various 3D vision-language tasks.

matching user queries to objects in a scene (Hong et al., 2023b; Wang et al., 2024; Gu et al., 2024).
Using LLMs makes it easier to adapt the method to new categories of objects and relationships found
in referring expressions. LLMs can also handle complex queries that don’t explicitly mention the
class name, but instead describe its function (e.g. ”somewhere to sit”).

The 3D scene description input for LLMs can be represented either as text (Gu et al., 2024; Linok
et al., 2024; Werby et al., 2024; Honerkamp et al., 2024; Yang et al., 2024; Yuan et al., 2024),
or through learnable representations (Hong et al., 2023b; Chen et al., 2023; Huang et al., 2023;
Chen et al., 2024; Cheng et al., 2024), which encode objects and their relationships using signif-
icantly fewer tokens and their corresponding embeddings than a textual description of the scene.
These learnable representations enhance the performance of the LLM in generating responses to
user queries, while also improving response accuracy through adaptation to 3D scenes. However,
current methods (Hong et al., 2023b; Chen et al., 2023; Huang et al., 2023; Chen et al., 2024) for 3D
vision-language tasks using LLM and learnable 3D scene representations fail to leverage semantic
relationships between objects, relying solely on their spatial coordinates.

In this paper, we propose a novel learnable representation of a 3D scene graph called 3DGraphLLM,
designed for use as input to a LLM (see Figure 1). This representation consists of a list of learnable
embeddings for objects within the scene, where each object is represented by a subgraph containing
the object itself along with several of its nearest neighbors. These object subgraphs are provided to
the LLM as a sequence of triplets (object1, relation, object2). Semantic relations between objects
are embedded using features derived from the semantic edges of the graph, which is generated
using state-of-the-art methods for 3D semantic graph generation such as VL-SAT (Wang et al.,
2023b). Our experiments demonstrate that incorporating semantic relationships between objects
significantly improves the accuracy of LLM responses for 3D vision-language tasks, outperforming
baseline approaches for creating learnable scene representations.

To summarize, our contributions are as follows:

• We introduce 3DGraphLLM, the first method to create a learnable 3D scene graph repre-
sentation for LLMs, enabling the mapping of semantic relationships between objects in the
scene to LLM’s token embedding space.

• We propose an algorithm that produces a flat sequence of graph embedding tokens using
k-nearest neighbor selection with a minimum distance filter between objects, optimizing
inference speed by reducing the number of tokens required to describe the scene.

• 3DGraphLLM shows state-of-the-art results for the 3D referred object grounding task on
the Multi3DRefer (Zhang et al., 2023) (+5.8% F1@0.5) and ScanRefer (Chen et al., 2020)
(+4.4% Acc@0.5) benchmarks and also for the 3D scene captioning on the Scan2Cap
dataset Chen et al. (2021) (CIDEr@0.5 +5.8%).

The code for training and inference of 3DGraphLLM will be made publicly available, with all train-
ing and validation performed on open datasets.
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2 RELATED WORKS

Scene Graphs. The concept of a scene graph was initially developed for 2D images, providing a
structured representation of a scene’s semantics by incorporating relationships between the semantic
elements (Johnson et al., 2015). In the context of images, scene graphs have proven effective for
tasks such as content-based image retrieval (Johnson et al., 2015; Pei et al., 2023), 2D referring ex-
pression comprehension (Yang et al., 2019a; Shi et al., 2023; Han et al., 2024), image caption (Yang
et al., 2019b; Phueaksri et al., 2023), image generation (Johnson et al., 2018; Farshad et al., 2023).

In 3D scenes, a scene graph is commonly used to address robotics challenges such as plan-
ning (Werby et al., 2024; Honerkamp et al., 2024), object grounding for navigation (Werby et al.,
2024; Gu et al., 2024; Linok et al., 2024; Honerkamp et al., 2024) and manipulation (Honerkamp
et al., 2024), as well as scene generation (Zhai et al., 2024; Gao et al., 2024).

Our approach is part of a class of methods that utilize an implicit representation of the scene graph,
such as OVSG (Chang et al., 2023), which frames the problem of 3D object grounding as subgraph
retrieval. 3DGraphQA (Wu et al., 2024) proposes to use the bilinear graph neural network for
feature fusion between scene and question graphs for question answering task. Feng et al. (2021)
build a graph based on a text query, which is used to refine the visual graph in order to select from its
vertices the one that best fits the description. However, the application scope of this method is limited
to specific tasks as 3D referred object grounding with one referred object or question answering. In
contrast, we propose a more versatile method capable of solving various 3D vision-language tasks.

3D Language Scene Understanding. 3D scene understanding is a complex computer vision task
that involves identifying the semantic, physical, and functional properties of objects, as well as
their mutual relations. One of the goals of 3D scene understanding is to develop methods capable
of responding to natural language queries about the scene. The queries may correspond to differ-
ent visual-language tasks such as 3D referred object grounding (Chen et al., 2020; Zhang et al.,
2023; Miyanishi et al., 2024), question answering (Azuma et al., 2022), and dense scene caption-
ing (Chen et al., 2021). Recent approaches address these queries by reconstructing the scene as a
3D mesh (Peng et al., 2023) or point cloud (Zhao et al., 2021; Chen et al., 2022; Zhu et al., 2023),
often enhanced with instance segmentation (Zhu et al., 2023).

The emergence of transformer models (Vaswani, 2017) has enabled the development of neural net-
work models that create a learnable representation of a scene for answering various language queries.
MultiCLIP (Delitzas et al., 2023) proposes to align 3D scene representation with text queries and
multi-view 2D CLIP (Radford et al., 2021) embeddings to improve the quality of question answer-
ing. 3DVG-Transformer (Zhao et al., 2021) and Vil3DRef (Chen et al., 2022) methods introduce
modules for modeling spatial relationships between objects to improve the quality of object ground-
ing. 3D-VisTA (Zhu et al., 2023) presents a transformer model for aligning 3D object and text
representations, coupled with an unsupervised pre-training scheme to solve various 3D vision-text
problems using specialized task-specific heads. However, these fully supervised approaches face
challenges in generalizing to new tasks and domains. In contrast, leveraging large language mod-
els (LLMs) for scene understanding enhances generalization capabilities and taps into the extensive
knowledge LLMs contain about the physical world (Hong et al., 2023b).

Large Language Models for Scene Understanding. Large language models (LLMs) offer several
advantages for scene understanding, notably enhancing the ability to address complex queries that
require common knowledge. LLMs can serve as agents that decompose user queries into elementary
tasks, which can then be addressed by other methods (Yang et al., 2024; Yuan et al., 2024). Addi-
tionally, LLMs can act as an interface for reasoning by processing textual descriptions of the scene
as input (Linok et al., 2024; Gu et al., 2024). BBQ (Linok et al., 2024) and ConceptGraphs (Gu et al.,
2024) demonstrate that using a text-based graph representation with an LLM interface significantly
improves the quality of object retrieval compared to using CLIP features of objects. HOV-SG (Werby
et al., 2024) construct a hierarchical graph consisting of objects, rooms, and floors, and demonstrate
the effectiveness of such a representation for the task of object grounding given a query containing
object location hints. The authors of the MOMA (Honerkamp et al., 2024) method propose using
a hierarchical scene graph together with a navigational Voronoi graph as input to LLM to predict a
high-level policy for object search for navigation and manipulation. However, using text to describe
an object in a scene graph inevitably leads to the loss of some of the information contained in its
RGB point cloud. Additionaly, in the case of using a text graph, several hundred tokens may be
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required to describe one object (its semantic class, pose), which will significantly slow down LLM
inference in the case of a large number of objects in the scene.

Recent advancements have successfully integrated point cloud data into LLMs by employing pre-
trained point cloud encoders and training adapters to align the resulting representations with the
LLM embedding space. 3D-LLM (Hong et al., 2023a) aggregates 3D point cloud features from a
sequence of 2D images and then solves the grounding problem as a prediction of a sequence of lo-
cation tokens added to the LLM dictionary. Chat3D-v2 (Huang et al., 2023) generates a 3D feature
for each object in the scene and then treats the grounding problem as an object selection problem.
LLA3D (Chen et al., 2023) proposes to use a set of trainable fixed-length query tokens obtained by
interacting potential visual cues, text cues, and object point cloud features in a transformer model.
Grounded 3D-LLM (Chen et al., 2024) uses referent tokens to decode object masks in point clouds.
Additionally, research has demonstrated that incorporating spatial information, such as object coor-
dinates (Huang et al., 2023) or depth maps (Cheng et al., 2024), enhances the accuracy of responses
to user queries.

Despite recent advances, existing methods do not fully leverage the rich semantic information in
object relationships. In this paper, we introduce 3DGraphLLM, a method that demonstrates the
effectiveness of utilizing semantic relationships between objects to enhance performance across
various scene understanding tasks.

3 METHOD

Our approach uses a set of point clouds of scene objects as input. The objects’ point clouds can be
obtained either from ground-truth annotations or through state-of-the-art point cloud instance seg-
mentation methods. These point clouds are used to extract scene graph features (see Section 3.1).
A scene graph consists of nodes representing the objects and edges corresponding to semantic rela-
tionships between them. To convert the scene graph into a token sequence, we represent each object
by an identifier, followed by a subgraph comprising the object’s k nearest neighbors. The rela-
tionships between an object and its neighbors are encoded as triplets (objecti, relationij , objectj).
The scheme of the 3DGraphLLM approach is shown in Figure 2. For more details on the scene
graph representation, refer to Section 3.2. Our training process is two-stage. First, we pre-train the
model on a dataset for various 3D scene understanding tasks using ground-truth instance segmenta-
tion. Next, we fine-tune 3DGraphLLM with predicted instance segmentation of scene point clouds,
considering a scenario where ground-truth segmentation is unavailable (see Section 3.3).

3.1 MODEL ARCHITECTURE

The model architecture includes pre-trained encoders for 3D point clouds and their semantic re-
lationships, alongside a pre-trained LLM. We train projection layers to map the extracted object
features and their relationships into the LLM’s token embedding space. Following the approach of
Chat-Scene (Huang et al., 2024), we introduce additional object identifier tokens {< OBJi >}ni=1
into the LLM’s vocabulary. Here and throughout, we use n to denote the number of objects in the
scene. These learned identifiers, along with the features from object subgraphs composed of nearest
neighbors for each object, are used to create a flat representation of the scene graph, which is then
fed into the LLM.

Object Proposals. We use point clouds of objects in the scene as vertices in the scene graph
G . In our experiments, we evaluate 3DGraphLLM in various modes, including ground-truth
scene segmentation and instance segmentation using state-of-the-art neural network methods like
Mask3D (Schult et al., 2023) and OneFormer3D (Kolodiazhnyi et al., 2024). Thus, the set V of ver-
tices of the graph consists of n point clouds {Pi}ni=1, where Pi ∈ Rmi×6. Here, mi is the number
of points in the i-th object proposal of instance segmentation of scene point cloud, and 6 dimensions
of each point correspond to its 3D coordinates and RGB color.

Object Identifiers. Following the approach in Chat3D-Scene, we add a set of learnable identifier
tokens {< OBJi >}ni=1 to the LLM’s vocabulary for object identification. These tokens allow the
model to identify objects in the scene by simply predicting the corresponding object identifier token.
In our experiments, we assume a maximum of 200 objects per scene.
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Figure 2: The overall architecture of our approach. 3DGraphLLM leverages pre-trained encoders
for 3D object point clouds and semantic relationships between objects. We introduce trainable
layers to map the extracted graph node and edge features into the token embedding space of a pre-
trained LLM. The scene graph is flattened for input into the LLM, with each object represented by a
subgraph of its k nearest neighbors. To further adapt the LLM to 3D vision-language tasks, we add
new object tokens to the LLM’s vocabulary and fine-tune it using LoRa.

2D Object Encoder. The results of Chat-Scene demonstrate that adding aggregated 2D DI-
NOv2(Oquab et al., 2023) features increase the LLM performance on 3D vision-language tasks.
Therefore, we add DINOv2 Z2d

i ∈ R1×1024 features as an additional token describing the object
subgraph. DINOv2 object features are obtained by aggregating features from the masked multi-view
images where masks come from the projection of the object’s 3D point cloud..

3D Object Encoder. We extract vertex features using a pre-trained Uni3D (Zhou et al., 2023a)
encoder, which generates point cloud features aligned with their textual descriptions. Since this
model is pre-trained on a large dataset, it enables us to produce high-quality graph vertex em-
beddings across various data domains. For each object point cloud Pi, we extract Uni3D feature
Z

vp

i ∈ R1×1024.

Edge Feature Encoder. One challenge in generating features for semantic relationships between
objects is that most methods for 3D semantic scene graph generation are trained on 3RScan
scenes (Wald et al., 2019), while visual grounding tasks are typically tested on ScanNet scenes (Dai
et al., 2017). Although both datasets belong to the indoor scene domain, existing methods strug-
gle with performance in cross-domain testing, resulting in a drop in accuracy for the grounding
task (Miyanishi et al., 2024).

To extract semantic relationships between objects, we use VL-SAT (Wang et al., 2023b), a method
for generating 3D semantic scene graphs from point clouds. One of its key advantages is that it
only requires 3D point cloud coordinates as input during prediction, while leveraging knowledge
transfer from the pre-trained CLIP model (Radford et al., 2021). This allows the method to perform
well when applied to new scene domains (Wang et al., 2023b), as confirmed by our experiments
(see Section 4.3 and Tables 3 and 4). For each pair of point clouds Pi and Pj , we generate a latent
feature representing their relationship Ze

ij ∈ R1×512, which corresponds to VL-SAT graph neural
network feature before the classification head assigning semantic categories to the graph edges.
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Table 1: Example of prompt for the language model containing scene graph.
System: A chat between a curious user and an artificial intelligence assistant.

The assistant gives helpful, detailed, and polite answers to the user’s questions. The conversation centers around an in-
door scene:[<OBJ001> F 2d

1 , Fv
1 , F e

12, F
v
2 Fv

1 , F e
14, F

v
4 ...<OBJN> F 2d

N , Fv
N , F e

Nk1
, Fv

k1
Fv

N , F e
Nk2

, Fv
k2

]
User: According to the given description, there are brown wooden cabinets,

placed on the side of the kitchen, please provide the ID of the object that closely matches this description.
Assistant: <OBJ001>.

While VL-SAT predicts a fixed set of relationships between objects, these relationships are not
mutually exclusive (e.g., ”larger” and ”close”). Therefore, we use latent features to capture possible
combinations of these semantic relationships.

2D/3D object, and semantic relation projection. To adapt the extracted features for the language
model, we use three trainable projection modules: the 2D Object Projection f2d(·), which maps the
2D image features of objects, the 3D Object Projection fv(·), which maps the point cloud features of
objects, and the Semantic Relation Projection fe(·), which maps the features of semantic relation-
ships between objects. Therefore, for the i-th object, the 2D and 3D object features are projected
to token embeddings F v

i and F 2d
i respectively. For the pair of i-th and j-th objects, the semantic

relation feature is projected to token embedding F e
ij :

F 2d
i = fv(Z

2d
i ), F v

i = fv(Z
v
i ), F

e
ij = fe(Z

e
ij). (1)

3.2 FLAT GRAPH REPRESENTATION

The scene graph is a complete graph because we can generate connections between all pairs of ob-
jects. However, such a graph contains n · (n − 1) edges between objects, and using the complete
graph as a sequence for the LLM would significantly increase the sequence length. However, in-
tuitively, the most relevant relationships for answering user questions are those between an object
and its nearest neighbors. Therefore, for each object, we consider a subgraph of its k nearest neigh-
bors. The relationships between objects are encoded using features extracted from point clouds
{F v

i }ni=1 and semantic relations features {F e
ij , i ∈ {1, ..., n}, j ∈ {1, ..., n}}, represented as a

triplet (F v
i , F

e
ij , F

v
j ). When using the complete scene graph, the number of tokens required to de-

scribe the scene is 2 · n+ 3n · (n− 1). For 100 objects, which matches the number of objects in the
Mask3D (Schult et al., 2023) instance segmentation, this totals 29900 tokens. By using a k-nearest
neighbor subgraph, we reduce the token count to n+3n · k. As shown in Section 4.3 (see Figure 4),
setting k = 2 improves accuracy in 3D visual-language tasks while reducing the number of tokens
needed to describe a scene with 100 objects to 800.

Prompt template. Thus, we integrate the scene description as a sequence of object subgraphs
into the prompt for LLM in the following way, similar to the integration of the list of objects and
their embeddings in the Chat-Scene method (Huang et al., 2024). An example of a prompt for LLM
containing a system prompt, a scene description in the form of an object identifier and an object sub-
graph, a user request, and an LLM assistant response is given in Table 1. The sequence describing an
object i starts with its identification token <OBJi>. Then there are k triplets {(F v

i , F
e
ijk

, F v
jk
)}kjk=1

describing the relationship between the object and its k nearest neighbors.

3.3 TRAINING STRATEGY

Following the strategy used in Chat-Scene(Huang et al., 2024), we implement a training approach
that involves simultaneously training the projection layers and the language model. We also con-
duct joint training for various tasks, including visual grounding (ScanRefer (Chen et al., 2020) and
Multi3DRefer (Zhang et al., 2023)), 3D scene description (Scan2Cap (Chen et al., 2021)), and 3D
visual question answering (ScanQA (Azuma et al., 2022) and SQA3D (Ma et al., 2022)). This
adaptation of the tasks is designed for user-assistant interactions, as proposed by the authors of
Chat-Scene. During training, we aim to optimize the trainable parameters θ of both the language
model and the projection layers to minimize the negative log-likelihood of the target response sres

compared to the response predicted by the model. We use the loss function from the Chat-Scene
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method, adapting it to fit our proposed graph representation of the scene given the input prefix se-
quence sprefix containing system and user prompts:

L(θ) = −
ℓ∑

i=1

logP (sres
i |sres

[1,...,i−1], s
prefix), (2)

where ℓ is the length of the token sequence in the LLM response, sres
[1,...,i−1] is the sequence generated

up to the i-th token. The trainable parameters θ include the parameters of 3D Object Projection and
Semantic Relation Projection Layers, added object identifier token embeddings and the language
model.

We use the encoder for semantic relationships between objects pre-trained using ground-truth (GT)
point cloud scene segmentation data (Wang et al., 2023b). Since the predicted point cloud segmenta-
tion typically contains more noise than the GT segmentation, we anticipate that the edge features de-
rived from the GT segmentation will be of higher quality than those from the neural network instance
segmentation. To address this problem, we employ a two-stage training strategy for 3DGraphLLM.
First, we pre-train the projection layers and the language model on the GT instance segmentation
data to achieve effective projections of the semantic embeddings of relations and objects into the
language model’s embedding space. Then, we fine-tune 3DGraphLLM using the noisy data from
the neural network segmentation.

4 EXPERIMENTS

Datasets. We conduct experiments using the ScanNet (Dai et al., 2017) and 3RScan (Wald et al.,
2019) scene datasets. For training 3DGraphLLM on ScanNet scenes (Dai et al., 2017), we uti-
lize data from five 3D vision-language benchmarks: visual grounding tasks (ScanRefer (Chen et al.,
2020), Multi3DRefer (Zhang et al., 2023)), scene description (Scan2Cap (Chen et al., 2021)), and 3D
visual question answering (ScanQA (Azuma et al., 2022), SQA3D (Ma et al., 2022)). Each of these
datasets follows a standard split into training and validation sets, corresponding to 1201 training
scans and 312 validation scans from ScanNet. Additionally, we include the RioRefer dataset (Miyan-
ishi et al., 2024), which provides referring expressions for objects in 3RScan scenes (Wald et al.,
2019) splitting into standard training and validation sets (1175 training scans and 157 validation
scans). Since our method primarily targets visual grounding tasks, the majority of validation exper-
iments are performed on the ScanRefer, Multi3DRefer, and RioRefer datasets.

Implementation details. The projection layers for 3D object features and their semantic relations
are three-layer MLPs. In our experiments, we use LLAMA3-8B-Instruct (AI@Meta, 2024), a state-
of-the-art large language model, as well as Vicuna-1.5-7B (Zheng et al., 2023) for ablation. For
fine-tuning the language model, we apply LoRA (Hu et al., 2021) with a rank of 16. We use a batch
size of 8 and train 3DGraphLLM for 3 epochs with an initial learning rate of 0.00002, following
a cosine annealing schedule. Training is performed on a server equipped with an NVIDIA A100
GPU, and the entire training process takes approximately 36 hours. In our experiments, we select
k = 2 nearest neighbors to construct object subgraphs and, in the case of using Mask3D (Schult
et al., 2023) instance scene point cloud segmentation, we use a NMS filter and a filter that ensures a
minimum distance between nearest neighbors of 1 cm (see Section 4.3).

Evaluation metrics. For the visual grounding task on the ScanRefer (Chen et al., 2020) and Ri-
oRefer (Miyanishi et al., 2024) datasets, we use the standard metrics Acc@0.25 and Acc@0.5. A
prediction is considered a true positive if the intersection-over-union (IoU) between the predicted
object’s 3D bounding box and the ground truth exceeds the thresholds of 0.25 and 0.5, respectively.
The Multi3DRefer (Zhang et al., 2023) dataset contains queries that may refer to multiple objects.
Therefore, we use the benchmark-standard F1 score at IoU thresholds of 0.25 and 0.5. During
ablation experiments, we also assess the quality of object descriptions using the Scan2Cap (Chen
et al., 2021) benchmark metrics CIDEr@0.5 and BLEU-4@0.5. For the visual question answering
task, we follow the validation strategy from Chat3Dv2, applying CIDEr (Vedantam et al., 2015) and
BLEU-4 (Papineni et al., 2002) metrics for ScanQA (Azuma et al., 2022), and exact match accuracy
(EM) for SQA3D (Ma et al., 2022).
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Table 2: Performance comparison of 3DGraphLLM with state-of-the-art approaches for 3D vision-
language tasks. ”Expert models” use specialized heads to deal with different 3D vision-language
tasks. Our approach falls into the category of ”LLM-based models” that consider different tasks as
different user queries to a generative model. C denotes the CIDEr metric.

ScanRefer Multi3DRefer ScanQA Sqa3D Scan2Cap
Methods A@0.25↑ A@0.5↑ F1@0.25↑F1@0.5↑ C↑ B-4↑ EM↑ C@0.5↑ B-4@0.5↑

E
xp

er
tm

od
el

s

ScanRefer (Chen et al., 2020) 37.3 24.3 - - - - - -
MVT (Huang et al., 2022) 40.8 33.3 - - - - - - -
3DVG-Trans (Zhao et al., 2021) 45.9 34.5 - - - - - - -
ViL3DRel (Chen et al., 2022) 47.9 37.7 - - - - - - -
M3DRef-CLIP (Zhang et al., 2023) 51.9 44.7 42.8 38.4 - - - - -
Scan2Cap (Chen et al., 2021) - - - - - - - 35.2 22.4
ScanQA (Azuma et al., 2022) - - - - 64.9 10.1 - - -
Sqa3D (Ma et al., 2022) - - - - - - 47.2 - -
3D-VisTA (Zhu et al., 2023) 50.6 45.8 - - 72.9 13.1 48.5 66.9 34.0
BUTD-DETR (Jain et al., 2022) 52.2 39.8 - - - - - - -
PQ3D (Zhu et al., 2025) - 51.2 - 50.1 87.8 - 47.1 80.3 36.0

LL
M

-b
as

ed
m

od
el

s

ZSVG3D (Yuan et al., 2024) 36.4 32.7 - - - - - -
3D-LLM(Flamingo) (Hong et al., 2023a) 21.2 - - - 59.2 7.2 - - -
3D-LLM(BLIP2-flant5) (Hong et al., 2023a) 30.3 - - - 69.4 12.0 - - -
Chat-3D v2 (Huang et al., 2023) 35.9 30.4 - - 77.1 7.3 - - -
Scene-LLM (Fu et al., 2024) - - - 80.0 12.0 54.2 - -
LL3DA (Chen et al., 2023) - - - - 76.8 13.5 - 65.2 36.8
Grounded 3D-LLM (Chen et al., 2024) 47.9 44.1 45.2 40.6 72.7 13.4 - 70.6 35.5
Chat-Scene (Huang et al., 2024) 55.5 50.2 57.1 52.4 87.7 14.3 54.6 77.1 36.3
3DGraphLLM Vicuna-1.5 (ours) 57.0 51.3 60.1 55.4 87.6 12.1 53.1 81.2 36.3
3DGraphLLM LLAMA3-8B (ours) 60.2 54.6 63.0 58.2 83.1 12.5 55.2 82.9 37.8

User query: 
This is a large twin sized bed. It is on the right side of the hotel room with a small pair of pants on it.

User query: 
It is a black suitcase on the floor. It is sitting beside the mini fridge.

Figure 3: Qualitative examples of 3DGraphLLM performance on the ScanRefer dataset. For each
query, we provide an RGB image from the ScanNet dataset showing the selected object, along with
a visualization of the RGB point cloud. In the point cloud, green points indicate the points that
3DGraphLLM identified as corresponding to the object from the text query, while the green box
highlights the ground truth (GT) box for the query.

4.1 EXPERIMENTAL RESULTS

Comparison with state-of-the-art approaches. As shown in Table 2, our method significantly
outperforms baseline approaches that use LLMs on the two ScanNet 3D referred object grounding
benchmarks, ScanRefer (Chen et al., 2020) and Multi3DRefer (Zhang et al., 2023), as wall on the
Scene Captioning benchmark Scan2Cap (Chen et al., 2021). These results highlight the effectiveness
of a learnable graph-based scene representation 3D vision-language tasks. It’s worth noting that the
performance of our method is comparable to state-of-the-art specialized models with separate heads
for different language tasks, such as 3D-VisTA (Zhu et al., 2023), PQ3D (Zhu et al., 2025) and
M3DRef-CLIP (Zhang et al., 2023). Notably, 3DGraphLLM demonstrates a clear advantage over
PQ3D (Zhu et al., 2025) and M3DRef-CLIP (Zhang et al., 2023) on the Multi3DRefer dataset.

Qualitative results. Figure 3 shows the qualitative results of 3DGraphLLM on the ScanRefer
dataset using Mask3D (Schult et al., 2023) instance scene segmentation. In the left part of the
figure, 3DGraphLLM correctly identifies the bed on the right and leverages an additional spatial cue
- pants that are lying on the bed. In the right part of the figure, 3DGraphLLM distinguishes the
black suitcase next to the refrigerator, despite there being another suitcase farther away from the
refrigerator in the scene.

4.2 ABLATION STUDIES. ROLE OF SEMANTIC RELATIONS AND TRAINING PIPELINE

To isolate the impact of using a scene graph representation, we conduct an experiment with different
LLMs and training pipelines using Mask3D (Schult et al., 2023)instance segmentation. We train a
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Table 3: Ablation study on semantic edges role and training pipeline. C denotes the CIDEr metric.
Number ScanRefer Multi3DRefer ScanQA Sqa3D Scan2Cap

Methods Pre-train of edges Acc@0.5↑ F1@0.5↑ C↑ B-4↑ EM↑ C@0.5↑ B-4@0.5↑
3DGraphLLM-0 Vicuna1.5 ✗ 0 50.2 52.4 87.7 14.3 54.6 77.1 36.3
3DGraphLLM-2 Vicuna1.5 ✗ 2 50.1 52.7 92.2 15.5 54.7 80.4 36.9
3DGraphLLM-2 Vicuna1.5 ✓ 2 51.3 55.4 87.6 12.1 53.1 81.2 36.3
3DGraphLLM-0 LLAMA3-8B ✗ 0 52.0 55.1 84.0 15.8 53.8 80.0 37.5
3DGraphLLM-2 LLLAMA3-8B ✗ 2 54.3 57.3 87.4 14.9 54.5 85.6 39.6
3DGraphLLM-2 LLLAMA3-8B ✓ 2 54.6 58.2 83.1 12.5 55.2 82.9 37.8

Table 4: Ablation study on semantic edges role depending on quality of instance segmentation.
ScanRefer

Methods Instance segmentation Number of edges Minimal distance, cm Acc@0.25↑ Acc@0.5↑
3DGraphLLM-0 GT 0 - 48.9 48.9
3DGraphLLM-2 GT 2 0 54.4(+5.6%) 54.4(+5.6%)
3DGraphLLM-0 Mask3D 0 - 46.0 34.2
3DGraphLLM-2 Mask3D 2 0 47.3(+1.3%) 35.6(+1.4%)
3DGraphLLM-2 Mask3D 2 1 48.0(+2.0%) 36.2(+2.0%)
3DGraphLLM-2 Mask3D (+ NMS) 2 1 48.1(+2.1%) 36.5(+2.3%)
3DGraphLLM-0 OneFormer3D 0 - 45.4 34.5
3DGraphLLM-2 OneFormer3D 2 0 47.1(+1.7%) 35.7(+1.2%)
3DGraphLLM-2 OneFormer3D (+NMS) 2 1 47.5(+2.1%) 36.1(+1.6%)

version of 3DGraphLLM (3DGraphLLM-0) where the scene is represented as a sequence of object
identifiers and features extracted by the 2D Object Encoder and the 3D Object Encoder, following
the same training pipeline as 3DGraphLLM (3DGraphLLM-2) with two nearest neighbors. The
3DGraphLLM version with zero nearest neighbors serves as a baseline, equivalent to the Chat-Scene
approach, which uses the same LLM as 3DGraphLLM. As shown in Table 3, incorporating a scene
graph representation significantly improves the performance of the LLMs across all three 3D Vision-
Language tasks: visual grounding, scene description, and question answering. However, the effect is
more noticeable for the more modern LLAMA3-8B-Instruct. The pre-training on GT instance seg-
mentation data improves the quality of the 3D Referred Object Grounding for LLAMA3-8B-Instruct
and Vicuna-1.5-7B. For LLM Vicuna-1.5-7B, pre-training increases the Scene Captioning quality.
For LLAMA3-8B-Instruct, pre-training improves the question answering on the Sqa3D dataset. The
most interpretable metrics for the role of semantic edges are the accuracy metrics in the 3D Re-
ferred Object Grounding problem, so we keep this pre-training as part of the 3DGraphLLM training
pipeline.

4.3 ABLATION STUDIES. 3D SCENE GRAPH REPRESENTATION

We conduct a series of experiments to explore methods for constructing a scene graph repre-
sentation from a point cloud. In these experiments, we use a frozen version of LLAMA3-8B-
Instruct (AI@Meta, 2024), training only the projection layers. We do not introduce new object
tokens into the LLM’s dictionary and follow a three-stage training process, including 3D Object
Alignment, 3D Scene Alignment, and Instruction Tuning, as outlined in Chat3D (Wang et al.,
2023a).

Quality of instance segmentation. We evaluate how the quality of scene segmentation into objects
impacts the performance of 3DGraphLLM. As shown in Table 4, even with noisy neural network
segmentation, representing the scene as a graph with semantic relationships is still more effective
than using a simple list of objects. We conduct experiments with different object proposal methods,
including OneFormer3D (Kolodiazhnyi et al., 2024) and Mask3D (Schult et al., 2023), but found no
significant difference between them for our task. Therefore, in subsequent experiments, we use the
Mask3D method to maintain consistency with the baseline Chat3Dv2 approach.

Neural network segmentation imperfections impact both the quality of object embeddings generated
by the 3D Object Encoder and the embeddings of semantic relations between objects. We perform a
PCA analysis of Uni3D object embeddings and VL-SAT relation embeddings, comparing results for
ScanNet training scenes using GT instance segmentation and Mask3D instance segmentation (see
Appendix A). Our analysis shows that, with the standard selection of nearest neighbors, the relation
embeddings differ significantly between GT and Mask3D three-dimensional masks.
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By examining the minimum distance between neighboring objects, we observed that dupli-
cate objects were often selected as neighbors. To address this issue, we introduced a
minimum distance filter of 1 cm between neighboring objects, which made the relation-
ship embeddings from GT masks and Mask3D results more consistent. Additionally, ap-
plying this filter improved performance on the visual grounding task, as shown in Table 4.

Figure 4: Dependence of inference speed and vi-
sual grounding accuracy on the number of near-
est neighbors in the object subgraph. This experi-
ment utilizes the RioRefer dataset along with GT
instance segmentation.

We also experimented with adding an NMS fil-
ter to remove duplicates among the vertices that
an object may be associated with, with a thresh-
old of IoU = 0.99. The results in Table 4 show
that adding the filter allows for further improve-
ment of the grounding quality.

Number of nearest neighbors. We conducted
an experiment to examine how the number
of nearest neighbors affects the quality of vi-
sual grounding and the speed of model infer-
ence, as adding more connections increases the
number of tokens used to describe each ob-
ject. This experiment was performed using
ground-truth scene segmentation and the Ri-
oRefer dataset (Miyanishi et al., 2024), as this
setup provides the highest quality embeddings
for semantic relations between objects. We
vary the number of nearest neighbors in pow-
ers of two, capping it at 5 due to GPU memory
constraints during training. As shown in Figure
4, increasing the number of nearest neighbors
enhances visual grounding quality with a slight
increase in inference time.

Table 5: Ablation study on spatial relation module
on RioRefer dataset (GT Instance segmentation).

Methods Edge Number Spatial relation Acc@0.5↑
3DGraphLLM 0 ✓ 42.6
3DGraphLLM 2 ✓ 48.9(+6.3%)
3DGraphLLM 2 ✗ 50.1(+7.5%)

Spatial relations. Previous research (Wang
et al., 2023a; Huang et al., 2023) has shown
that incorporating spatial relationships between
objects, represented by 3D coordinates of their
bounding boxes, can improve performance in
visual grounding tasks. We attempted to inte-
grate spatial relations into our method by using
the output of the spatial transformer as the final
token in the relation triplets between an object
and its nearest neighbors (i.e., a triplet (F v

i , F
e
ijk

, F rel
jk
), where F rel

jk
represents the output of the

Chat3Dv2 spatial relation module (Huang et al., 2023)). However, as shown in Table 5, our experi-
ments did not find this approach effective for learning a graph representation of a scene.

5 CONCLUSION

In this paper, we propose a new learnable approach to using a 3D semantic scene graph for a large
language model solving the 3D vision-language tasks. Detailed experiments demonstrate the ef-
fectiveness of this approach, which explicitly takes into account semantic relations between objects
represented as 3D point clouds. Our approach, called 3DGraphLLM, demonstrated state-of-the-art
quality on popular ScanRefer, Multi3DRefer, and Scan2Cap datasets.

A limitation of the method is a significant increase in resource consumption with an increase in the
edge number for each graph node. At the same time, we showed that taking into account only two
edges for each object demonstrates an acceptable trade-off between performance and model quality.

For further development of the work, it seems appropriate to search for the methods to reduce token
usage for encoding object relationships in our graph representation.. Another important aspect for
further work is the creation of methods for generating semantic relations between objects that are
robust to imperfections in the instance segmentation of the scene point cloud.
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A PCA ANALYSIS OF UNI3D OBJECT EMBEDDINGS AND VL-SAT
RELATION EMBEDDINGS

We conduct a PCA analysis of Uni3D object embeddings and VL-SAT relation embeddings, compar-
ing results on ScanNet training scenes using both GT instance segmentation and Mask3D instance
segmentation.

Our findings indicate that the relation embeddings exhibit notable differences between GT and
Mask3D three-dimensional masks when the naive nearest-neighbor selection is applied. When
applying the minimal distance filter, the similarity of VL-SAT relation embeddings significantly
increases between GT and Mask3D instance segmentation.

Uni3D object features VL-SAT edge features for 2 nearest
neighbors

VL-SAT edge features for 2 nearest
neighbors (minimal distance filter)

Figure 5: Comparison of Uni3D object features and VL-SAT semantic edge features for the two
nearest neighbors (NNs) based on ground-truth (GT) scene segmentation and Mask3D scene seg-
mentation within the ScanNet training set. Left: Uni3D object features are relatively close for GT
point clouds and Mask3D point clouds. Center: using the standard approach for selecting NNs to
generate VL-SAT features, the features for pairs of Mask3D point clouds differ significantly from
those of GT point clouds. Right: after applying a minimum neighbor distance filter for selecting
NNs, the VL-SAT features for object pairs from Mask3D instance segmentation align more closely
with those from GT instance segmentation.

B COMMON FAILURE CASES

We illustrate the most common failure cases of 3DGraphLLM related to spatial relationships in
Figure 6.

User query: The bed is white with a brown frame. it is to the right of the nightstand
3DGraphLLM: <OBJ016>
GT: <OBJ033>

User query: What is sitting beside the toilet?
3DGraphLLM: Trash can.
GT:"bath tub", "toilet paper on 1 side shower on other"

Figure 6: Common failure cases of 3DGraphLLM related to spatial relationships. Left: In the
ScanQA dataset, 3DGraphLLM incorrectly identifies the front/back and left.right directions relative
to the observer. Right: In the ScanRefer dataset, 3DGraphLLM confuses left and right. The GT ob-
ject is highlighted in green, and the 3DGraphLLM prediction is highlighted in red

.
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C FUNCTIONAL QUERIES

We illustrate the ability of 3DGraphLLM to leverage common sense knowledge in its responses to
question types not present in the training dataset in Figure 7.

User query: Name the type of room described by the list of objects.
3DGraphLLM: Hotel room.
User query: Can I make dinner in this room?
3DGraphLLM: No.

User query: What object can I use to do my homework?
Answer with object ID.
3DGraphLLM: <OBJ037>.

Figure 7: Functional queries about the room and objects to the 3DGraphLLM. Left: 3DGraphLLM
is capable of answering questions about functional properties of the room and its room type. Right:
3DGraphLLM is capable of answering questions about the functional properties of objects in a room.
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