
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THE PATH-DRIVEN INDEPENDENCE TESTING (PIT) AL-
GORITHM

Anonymous authors
Paper under double-blind review

ABSTRACT

PC is an efficient constraint-based algorithm for learning the structure of a Bayesian
network. However, the required number of conditional independent (CI) tests can
make the algorithm practically infeasible or slow for large graphs. We developed
a constrained-based algorithm, called Path-Driven Independence Testing (PIT)
Algorithm, which during the learning process, utilizes the information of the
partially learned network to reduce the number of CI tests. The idea is that for each
pair of variables X and Y , instead of checking independence conditioned on every
subset of all the neighbors of X (resp. Y) as in PC, the search is restricted to only
the common neighbors of X and Y and to neighbors connected to Y (resp. X) by a
path. Also, paths connecting X and Y without a descendant of a common neighbor
can be blocked by observing two consecutive nodes on the path. Compared to PC,
PIT is proven to conduct at most the same number of CI tests, and experimentally
shown to be significantly (up to 7 times) faster and more accurate.

1 INTRODUCTION

Causal discovery, the task of identifying the relationship between random variables, is the key to
understanding the underlying governing mechanisms and is necessary to answer interventional queries
(Kitson et al., 2021). Causal relationships can be represented by a directed acyclic graph (DAG) with
random variables as nodes and where links imply causal relations. Similarly, yet in a non-causal
context, a DAG (the structure) together with the probability distributions of each variable conditioned
on its parents (the parameters) form a Bayesian network over the variables, which factorizes the joint
probability distribution of the variables as a multiplication of the conditional probability distributions,
and in turn allows answering probabilistic queries. In either context, the task of identifying the “true”
DAG from data collected on the variables is referred to as structure learning (Guo et al., 2020).

One approach to fulfill this task is constraint based, which is based on detecting (in)dependencies
between the variables by performing conditional independence (CI) tests (Koller & Friedman, 2009).
The idea is that two variables are not connected in the true DAG should they be independent
conditioned on a subset of the other variables. The result is a class of independence-equivalence (I-
equivalence) graphs that is presented as a partially DAG (PDAG). Under the Markov and faithfulness
assumptions, constraint-based methods asymptotically output the “true” PDAG (Ng et al., 2021).

The PC algorithm is one of the most fundamental constraint-based approaches for causal discovery,
following a two-step process (Spirtes et al., 2000). First, it identifies the direct dependencies between
every pair of variables by starting from a fully connected graph and iteratively removing edges where
conditional independence is detected. Second, the surviving edges are oriented to reflect causal
directions. Despite its effectiveness, the number of conditional independence (CI) tests required by
the PC algorithm can scale exponentially, with a worst-case complexity of O(2N), where N is the
number of variables (Spirtes et al., 2000).

In practice, this number is often lower due to the removal of edges and reduction of adjacency sets,
particularly in sparse graphs (Spirtes et al., 2000; Peters et al., 2017). However, the high number of CI
tests remains a critical bottleneck (van den Boom et al., 2022; Wadhwa & Dong, 2021), especially for
large-scale problems. To address this, several techniques have been developed, including distributed
and parallel learning approaches (Hwang et al., 2006; Gu & Zhou, 2020; Bouhamed et al., 2015;
Zarebavani et al., 2019; Le et al., 2016; Shahbazinia et al., 2023), limiting the size of conditioning sets
(Sondhi & Shojaie, 2019), and pre-processing strategies (Cai et al., 2022). While these methods offer

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

improvements, they either demand extensive computation resources, rely on specific assumptions, or
did not consistently outperform PC.

In this paper, we developed the Path-Driven Independence Testing (PDIT) Algorithm to reduce the
number of CI tests in the PC algorithm. In PC, the candidate conditioning set for a pair of adjacent
variables X and Y is every subset of the neighbors of X and every subset of the neighbors of Y .
However, some neighbors of X are not connected to Y and vice versa, and hence, do not render X
and Y independent. Thus, they can be excluded from the conditioning set. On the other hand, some
paths between X and Y may always be blocked without activating any other connecting path. Thus,
these paths or a sufficient number of their nodes can be always included in the conditioning set and do
not need to be searched through. PIT and its variants leverage these properties to reduce the number
of candidate conditioning sets. PIT is sound and complete and never requires more CI tests than
those in PC–should an oracle be used for the CI tests. In practice, our extensive evaluation across 16
datasets shows that PIT requires significantly fewer CI tests, and is significantly faster and often more
accurate than PC and PC-stable (Colombo & Maathuis, 2014) as well as Hill Climbing and Tabu.

2 BACKGROUND

Given random variables X = {X1, . . . , XN}, their joint probability distribution P (X) can be
factorized according to the chain rule into ΠN

i=1P (Xi | X1, . . . , Xi−1). Each conditional probability
term may be simplified if a corresponding conditional probability independence holds. For example,
P (X1 | X2, X3) becomes P (X1 | X2) should X1 ⊥ X3 | X2 hold. The problem is to find (one of)
the “simplest” factorization(s) of the joint probability distribution.

A directed acyclic graph (DAG) G can be attributed to each factorization, where nodes are the random
variables X and for each conditional term P (Xi | Xi1 , . . . , Xik), k ≥ 1, there is an incoming link
from each of the conditioned variables Xi1 , . . . , Xik to Xi. Thus, Xi1 , . . . , Xik form the parents
of Xi, denoted by the set PaXi . A sequence of nodes T = (X1, X2, . . . , Xn), n ≥ 1, where Xi

and Xi+1 are linked in G for i = 1, . . . , n − 1, is referred to as a trail (path) between X1 and
Xn. The length of the trail is the number of its links, i.e., n− 1. Define the interior of the trail as
int(T) = {X2, . . . , Xn−1}, that is, the set of all but the ending nodes. The descendants of a node X
are those nodes to which X is connected by a directed path, including X itself. The reachable set of
node Y , denotedRY , is the set of nodes, including Y , that are connected to Y by some trail. Path T
is a directed path from X1 to Xn if node Xi is linked to node Xi+1 for all i = 1, . . . , n− 1. Define
a collider as a length-two trail (X,Z, Y) where nodes X and Y are linked to Z, i.e., X → Z ← Y .
Node Z is referred to as the collider node or center. The collider is an immorality if there is no edge
between X and Y , referred to as a covering edge.

The DAG implies certain conditional independencies on the variables. For example, each variable
is independent of its non-descendants conditioned on its parents (Koller & Friedman, 2009). More
generally, the notion of d-separation is defined to capture all conditional independencies imposed
by the DAG (Definition 5 in the appendix). Let I(P) be the set of all conditional independencies
satisfied by the joint distribution of variables X . Back to the aforementioned factorization problem, it
can be shown that every d-separation in the DAG that corresponds to the factorization is also satisfied
by the distribution P . So DAG G corresponding to the desired factorization must fulfill the so-called
Markov condition (MC), that is, I(G) ⊆ I(P). A DAG G satisfying MC is known as an I-map for P .
On the other hand, we are interested in the “simplest” factorization, that is, the “sparsest” DAG. This
is captured by the notion of minimal I-map, which is a DAG that is an I-map for P but not if any of
its edges are deleted. We make the more restrictive yet common assumption that I(P) ⊆ I(G). The
distribution P is said to be faithful to the DAG G if it satisfies this assumption. We assume that there
exists a DAG G that satisfies both the Markovness and faithfulness assumptions for the distribution P .
Such a DAG is called a P-map for P , also referred to as the true DAG.

Assumption 1 There exists a DAG G that is a P-map for the distribution P , i.e., I(G) = I(P).

The factorization problem then is to find a P-map for P – a task known as structure learning. There
is often more than one P-map for a distribution P , e.g., both DAGs X → Y and Y → X are a P-map
for the distribution I(P) = ∅. The set of all P-maps for a given distribution P share the same skeleton
(the undirected graph obtained by removing the orientations of the edges) and immoralities (Koller
& Friedman, 2009). Thus, a partially DAG (PDAG), that is a graph that can have both directed and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: (a) True DAG (b) The undirected graph after testing marginal independencies by the PC
algorithm.

undirected edges but does not have a directed cycle, is used to represent the set of all P-maps. More
specifically, a P-map class PDAG for P is a PDAG, such that if the undirected edges are oriented in a
way that do not make a directed cycle or a new immorality, the resulting DAG is a P-map for P .

The PC algorithm obtains a P-map class PDAG by first forming a completely-connected undirected
graph over variables X , then iteratively removing the edge between every two variables that are
marginally independent, then those that are independent conditioned on a single other variable, then
those that are independent conditioned on two other variables, and so on. Finally, the directions of
the remaining edges are determined based on the orientation rules described in (Spirtes et al., 2000)
(Algorithm 3). Consequently, the number of conditional independent (CI) tests performed by PC is at
most 2

(
N
2

)∑N−2
i=0

(
N−2

i

)
and is thus of order O(2N).

The idea behind the algorithm is that two adjacent nodes in the P-map never become independent,
regardless of what they are conditioned on, because they never become d-separated.

Lemma 1 (Based on (Pearl, 2009)) Consider random variables X with joint distribution P that
admits a P-map G. Vertices X and Y are not adjacent in G if and only if X ⊥ Y | U for some
U ⊆ X .

PC is based on a sharpened version of this lemma, restricting U to the parents of X and Y .

Lemma 2 [Lemma 3.2 in (Koller & Friedman, 2009)] Consider random variables X with joint
distribution P that admits a P-map G. Vertices X and Y are not adjacent in G if and only if
X ⊥ Y | PaX or X ⊥ Y | PaY .

Thus, in order to remove the edge between X and Y , only CI tests conditioned on the parents of X
and conditioned on the parents of Y are needed. As the parents are unknown initially in the undirected
graph, PC searchers over all subsets of the neighbors of X , denoted NX , and the neighbors of Y ,
denoted NY , to ensure that their parents will be conditioned on during the search.

Example 1 Consider random variables X1, . . . , Xn and Y and assume that their joint distribution
admits a P-map in the form of Fig. 1-a. Starting from the completely connected graph, PC algorithm
performs marginal independence tests on pairs of variables. If first the links between the nodes
X1, . . . , Xn are checked, then the undirected structure in Fig. 1-b is obtained before checking the
links between Y and the other nodes. This is done by marginal independence tests between Xi and
Xj for all i and j, that is, n(n− 1)/2 tests. Next, the dependence between Y and the Xi’s is checked.
Since these links are not spurious, i.e., exist in the P-map, PC performs all possible CI tests to ensure
that they cannot be removed. For example, for the link X1 → Y , PC checks whether X1 ⊥ Y | U
holds for all combinations U ⊆ {X2, . . . , Xn} from zero to n− 1 variables, resulting in O(2n) tests.

Example 2 Consider variables X = {X1, . . . , X11} whose joint distribution admits the P-map
G in Fig. 2-a. Suppose that we start the PC algorithm from the undirected graph in Fig. 2-b and
in particular, we are interested in determining whether the link between X5 and X8 also exists
in the P-map. To this end, PC checks the CI’s X5 ⊥ X8 | U for all subsets U ⊆ NX5

=
{X12, X13, X2, X3, X6, X7, X10, X9, X15} and U ⊆ NX8 = {X4, X3, X6, X7, X11, X17}.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: (a) True DAG (b) Undirected graph at some point in the PC algorithm

3 THE PATH-DRIVEN INDEPENDENCE TESTING (PIT) ALGORITHM

3.1 THE IDEA

Is it possible to reduce the search over all subsets U of the neighborsNX andNY in the PC algorithm?
Lemma 2 is conservative in the sense that among the parents of X (resp. Y), some may not be even
indirectly connected to Y (resp. X). When checking the link X1 → Y in Example 1, node Y has
many parents, but none are connected to X1. Therefore, X1 and Y are not d-separated in the true
DAG conditioned on any combination of the parents of Y . Similarly, X1 has no parent. Hence,
an efficient algorithm should perform only n marginal independent tests between Y and each of
X1, . . . , Xn once the undirected structure in Fig. 1-b is reached. This observation suggests that the
parents PaX (resp. PaY) in Lemma 2 should be limited to those that are connected to the other node
Y (resp. X) by some path. We define the notion of covering paths accordingly.

Definition 1 (Covering path) A covering path/trail for nodes X and Y is a trail between X and Y
of length at least two. A covering path is short if the length is exactly two and long otherwise. The
set of all covering, short-covering, and long-covering paths between X and Y are denoted by TXY ,
T s
XY , and T l

XY .

Rather than the whole parents PaX , one may condition only on those that belong to the interior of
the covering paths between X and Y , which we refer to as the essential parents of X (with respect to
Y), denoted by PaX,Y = PaX ∩ {int(T) : T ∈ TXY }. This is the same as those parents of X that
can reach node Y (excluding Y itself), i.e., PaX,Y = PaX ∩RY \ {Y }. In Figure 1-a, PaXi,Y = ∅
for all i, and in Figure 2-a, PaX5X8 = {X3}.
A second conservative aspect of PC is in the way Lemma 2 is used. As discussed earlier, since the
parents are not a priori known in the undirected graph, PC may search through eventually all possible
combinations of NX . However, to reduce the number of possible combinations, is it possible to
always include some nodes in the search, namely, to always include a neighbor, say Z ∈ NX , in
the CI tests as X ⊥ Y |Z,U? Generally, no, because node Z may be the center node of a collider
on a trail connecting X and Y . Then observing Z may activate the trail and prevent X and Y from
becoming independent. An example is in Fig. 2-a in Example 2, where X2 is not a parent of X5 and
observing it makes the trail (X5, X2, X1, X4, X8) active. Nevertheless, there are situations where
observing some nodes does not make the connecting trails active. For example, if instead of just X2,
we observe all of the interior nodes of the trail, i.e., X2, X1, and X4, then the trail becomes inactive.
So we can include these nodes in the conditioned nodes in all of the CI tests. That is, rather than
checking X5 ⊥ X8 | U for all U ⊆ NX and U ⊆ NY , we can check X5 ⊥ X8 | X2, X1, X4,U ′

for all U ′ ⊆ NX \ {X2} and U ′ ⊆ NY \ {X4}, reducing the search space. The following result
illustrates the nodes that can be always observed.

Lemma 3 Consider a DAG G and let T ∈ T l
XY be a long-covering trail between nodes X and Y

in G. Then the followings hold: (i) there is an interior node of T that if observed, makes the trail
inactive; (ii) if two adjacent interior nodes of T are observed, then the trail is inactive, regardless of
whether some of the remaining nodes are observed; (iii) if all interior nodes of T are observed, the
trail becomes inactive.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Lemma 3 suggests that either all nodes or any pair of adjacent nodes of the interior of a long-covering
path should be always observed in the CI tests. However, observing the interior of the long-covering
path may activate some other trails, such as a collider between X and Y , which should be avoided.
More specifically, an interior node of a long-covering path may be a collider node or a descendant
in some short-covering path. For example, node X10 in Fig. 2-a belongs to the long-covering path
(X5, X9, X10, X11, X8) but is a descendant of X7 that forms a collider with X5 and X8. Observing
X10 activates the collider and renders X5 and X8 dependent.

Definition 2 (Potentially trigger node) Consider a graph G with nodes X and let X,Y ∈ X . A
potentially trigger node of X and Y is a node that is connected to the interior node of some short-
covering path of X and Y via a path that does not include X and Y . A path is potentially trigger if it
contains a potentially trigger node. The set of all potentially trigger nodes of X and Y is denoted by
WXY .

So X10 is a potentially trigger node of the long-covering path (X5, X9, X10, X11, X8). Thus, in
Fig. 2-b when performing the CI tests over the neighbors NX , we cannot set X10, and consequently
the interior of the covering path (X5, X9, X10, X11, X8), to be always observed. The definition is not
limited to the nodes connected to colliders and covers all nodes connected to any short-covering trail.
The connected nodes may or may not activate a collider, and hence, the term “potentially” trigger.
The reason for this uncertainty is that in the undirected graph used in the structure learning algorithm,
the edge directions and hence colliders are unknown. The remaining covering paths do not include
potentially trigger nodes and are defined in the following. A connected component of a graph is a
connected subgraph (every pair of nodes of which are connected by some trail) that itself is not a
subgraph of any other connected subgraph. Given graph G with node set X , the graph G[V] induced
by the subset V ⊆ X is a graph with node set V where two nodes are linked if and only if they are
linked in the original graph G.

Definition 3 (Blindly blockable) Consider graph G with nodes X and let X,Y ∈ X . A (blindly)
blockable path between X and Y is a long covering path without potentially trigger nodes, that is, a
path T ∈ T l

XY such that T ∩WXY = ∅. The set of (blindly) blockable paths between X and Y is
denoted by T b

XY . The maximal blockable set of X and Y is defined by

CXY ≜ X \ (WXY ∪ {X,Y }).
The maximal blockable neighborhood of X relative to Y is defined by

B̄XY = {Z1, Z2 ∈ T : Z1 ∈ NX , Z2 ∈ NZ1
, T ∈ T b

XY }.
The (minimal) blockable neighborhood of X relative to Y , denoted BXY , is the smallest subset
of B̄XY such that at least two consecutive nodes of every blockable path is included in BXY . A
connected blockable neighborhood of X relative to Y is a connected component of the graph G[BXY].
An off-path blockable set of X and Y is a subset of CXY \ T b

XY .

In Figure 2-a, the blockable paths between X5 and X8 are (X5, X13, X14, X2, X1, X4, X8),
(X5, X2, X1, X4, X8), and (X5, X15, X16, X17, X8). The maximal blockable set is the com-
plement node set of X and Y and the potentially trigger nodes in between, i.e., CX5X8 =
{X12, X13, X14, X2, X1, X4, X15, X16, X17}. In view of Lemma 3, this is the maximum set
of nodes that can be “blindly” conditioned on without rendering X and Y independent. The
maximal blockable neighborhood is the union of the neighbors and the neighbors of the neigh-
bors of X on all non-potentially trigger covering paths between X and Y , i.e., B̄X5X8

=
{X13, X14, X2, X1, X15, X16}. The idea is that according to Lemma 3, by observing two adja-
cent nodes on the blockable paths, they become inactive regardless of whether one of the two
nodes is a collider node (and hence the term “blindly blockable”). The (minimal) blockable neigh-
borhood is the same as the maximal blockable neighborhood, where some “redundant” paths that
start from X and end at a neighbor of X , say Z1, are ignored, because they do not need to be
blocked if Z1 and its neighbor Z2 are blocked. The path (X5, X13, X14, X2) is redundant, yielding
BX5X8 = {X2, X1, X15, X16}. The connected blockable neighborhoods are B1X5X8

= {X2, X1}
and B2X5X8

= {X15, X16}. An off-path blockable set is a collection of blindly blockable nodes that
are not on any blindly blockable path between X and Y , i.e., OX5X8

= {X12}.
Now, based on our discussion on the notion of covering paths (Definition 1), PaX in Lemma 2 can
be restricted to the essential parents PaX,Y . On the other hand, some essential parents belong to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

a blindly blockable path and may be excluded from the search space provided that the blockable
neighborhood BXY is observed. Indeed, one can show that X ⊥ Y | PaX,Y ∪ BXY , suggesting that
the structure learning algorithm can search through NX \ BXY to find U = PaX,Y \ BXY and then
the CI test X ⊥ Y | U ∪ BXY can be performed.

However, in a structure learning algorithm that starts with a complete graph and iteratively deletes
edges by checking CI tests, the set BXY is not initially identified, because neither isWXY . Given
graph G that is obtained at a specified iteration, we use superscript G for the sets that are defined based
on G, e.g.,WG

XY and BGXY . In the beginning, the set of potentially trigger nodesWG
XY consists of all

nodes except for X and Y and no node path is blindly blockable, resulting in BGXY = ∅. Once some
edges are removed over the iterations,WG

XY shrinks and BGXY equals the union of some connected
blockable neighborhoods of X relative to Y , denoted BCXY , and some superfluous blockable neigh-
borhoods that are actually an off-path blockable set, i.e., OXY , due to some superfluous edges to be
removed in future iterations. We, therefore, modify the parents PaX in Lemma 2 to the following.

Definition 4 (Separator) Consider DAG G with nodes X and let X,Y ∈ X . A (path-driven)
separator for X relative to Y is defined by

M∗
XY ≜ PaX,Y ∪ BCXY ∪ OXY

where BCXY is the union of an arbitrary (possibly empty) collection of connected blockable neighbor-
hoods of X relative to Y , and OXY is an off-path blockable set of X and Y .

In Fig. 1-a, for all i,M∗
XiY

can be ∅ or more generally, any subset of {X1, . . . , Xn} \ {Xi} which
is an off-path blockable set. In Fig. 2-a, the possible values forM∗

X5X8
are {X3}, {X3, X2, X1},

{X3, X12}, {X3, X2, X1, X12}, {X3, X15, X16}, and {X3, X15, X16, X12}.
The separator is asymmetric with respect to X and Y , i.e.,M∗

XY ̸=M∗
Y X . The following counterpart

to Lemma 2 implies that it is necessary and sufficient for two non-adjacent variables to be independent,
conditioned on their separators. The proofs are provided in the Appendix.

Lemma 4 Consider random variables X with joint distribution P that admits a P-map G. Nodes
X and Y are not adjacent in G if and only if X ⊥ Y | M∗

XY for every separator M∗
XY or

X ⊥ Y | M∗
Y X for every separatorM∗

Y X .

3.2 THE ALGORITHMS

We develop three sound and complete structure-learning algorithms. The idea is to find the essential
parents PaX,Y (or PaY,X) for every non-adjacent pair of nodes X and Y . Edge directions are
unknown in the undirected graph, preventing us to know the parents of X and Y . Thus, similar to PC,
where PaX was extended to N G

X , we extend PaX,Y to N G
X,Y , i.e., neighbors of X that have a path

to Y , and search through its subsets. That is to restrict the candidate conditioning set U in the PC
algorithm to only the neighbors of X that have a path to Y when verifying the link between X and
Y . The result is the Path-Driven Independence Testing (PIT) Algorithm(PIT)–Algorithm 1.

Next is Algorithm 2, which is based on Lemma 4. Those parents that are included in the blockable
paths can be always observed and are not required to be searched through. So instead of N G

X,Y , we
only need to search through N G

X,Y \ BXY . As discussed earlier, BXY is unknown from the start
though. Instead, at every iteration m, BGXY is available, that is the blockable set in the undirected
graph G obtained before iteration m. So we search through N G

X,Y \ B
G
XY which can be shown to be

the same as N G
X ∩W

G
XY . The setsWG

XY and BGXY are obtained from Algorithm 4. The adjacency
set of X in graph G is Adj(G, X), andRG

Y is the reachable set of node Y in graph G.

Although the intuition of Algorithm 2 is based on covering paths, which are expensive to find–
generally of order O(2N)–the algorithm does not explicitly find covering paths. When investigating
the existence of a certain link X − Y , instead of finding every long-covering path between X and Y
to see whether it is blockable by checking if any of its interior nodes is connected by some trail to
the center node of a short covering path between X and Y , the following can be done (Algorithm
4): First, find all interior nodes Z of the short-covering paths. This is done by simply taking the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1: The Path-Driven Independence Testing (PIT) Algorithm
Input: A set of variables X and their joint probability distribution P
Output: A partially directed acyclic graph

1 Form the complete undirected graph G over nodes X ;
2 Sepset(X,Y) = ∅ for all X,Y ∈ X ;
3 m = 0
4 while maximum node degree in G is greater than m do
5 for X ∈ X
6 for Y ∈ Adj(G, X)

7 for U ⊆ RG\{X}
Y ∩Adj(G, X) and |U| = m

8 if X ⊥ Y | U
9 Remove the edge X − Y from G;

10 Sepset(X,Y)← U ;
11 m = m+ 1;
12 Orient the edges using the orientation rules in (Spirtes et al., 2000).

Algorithm 2: The Blocked-Path Driven Independence Testing (BPIT) Algorithm
Input: A set of variables X and their joint probability distribution P
Output: A partially directed acyclic graph

1 Form the complete undirected graph G over nodes X ;
2 Sepset(X,Y) = ∅ for all X,Y ∈ X ;
3 m = 0
4 while maximum node degree in G is greater than m do
5 for X ∈ X
6 for Y ∈ Adj(G, X)
7 for U ⊆ WG

XY ∩Adj(G, X) and |U| ∈ [m− |BGXY ∩Adj(G, X)|,m]
8 if X ⊥ Y | BGXY ∪ U
9 Remove the edge X − Y from G;

10 Sepset(X,Y)← (BGXY ∩Adj(G, X)) ∪ U ;
11 m = m+ 1;
12 Orient the edges using the orientation rules in (Spirtes et al., 2000).

intersection N G
X ∩ N

G
Y . Next, iteratively find and remove the reachable set RZ of each such node

Z ∈ N G
X ∩ N

G
Y from the graph G \ {X,Y }. Finding the reachable set of a node in a graph with

N nodes can be done by for example using the adjacency matrix in O(N2) (Gersting, 2006). The
removed nodes formWG

XY and what remains is the maximal blockable set CGXY . For the blockable
neighborhoods, we first find the reachable nodes of Y when the potentially trigger and the neighbors
of X are removed from the graph, resulting in R′

Y . Then for each neighbor of X that is in the
blockable set CGXY , if it shares a neighbor inR′

Y , then it has a path to Y that does not pass another
neighbor of X . Hence, they can both be blocked.

A more efficient version of Algorithm 2 is Algorithm 5, where fewer number of candidate U sets
are searched. The idea is that if the setWG

XY has not changed at a certain iteration m compared
to the last iteration m − 1, then the set BGXY has not changed (except that it could have become
smaller to exclude some of the nodes in OG

XY). Then testing U’s with a cardinality smaller than m
would be redundant as they were already checked in the previous iterations. In general, at iteration
m, we need to search for candidate U’s of size less than m only if new variables are included in
the set BGXY compared to the last iteration m − 1. These new variables come fromWG

XY ; hence,
when searching through the candidates U , we should consider the case where these new variables are
already included in U , and hence, start the search for U sets with size m minus the number of the
new variables, resulting in Algorithm 5.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3.3 EXAMPLES

The following example illustrates how the new algorithm reduces the number of required CI tests
to obtain the true DAG compared to PC. The second example illustrates the usage of the blockable
paths.

Example 1 (revisited) By using Algorithm 2 to obtain the true DAG in Fig. 1-a, first, a complete
undirected graph is constructed, and then similar to PC, the graph in Fig. 2-b is obtained after
performing the iterations for m = 0. However, then for checking each of the links Y − Xi,
i ∈ {1, . . . , n}, No covering path exists for each pair of variables Y and Xi, i.e.,

T s
XiY = T l

XiY = T b
XiY = BXiY =WXiY = ∅.

Consequently, the edge deletion part terminates. The resulting number of CI tests is O(n3) while for
the PC algorithm, it was O(2n−1).

Example 2 (revisited) Regarding X5 − X8 in Fig. 2-b, we have WX5X8
=

{X3, X6, X7, X9, X10, X11, X15, X16, X17}, BX5X8
= {X2, X1}. Thus,WX5X8

∩ Adj(G, X) =
{X3, X6, X7, X9, X15}, BX5X8

∩ Adj(G, X) = {X2}. So by checking all subsets
U ∈ {X3, X6, X7, X9, X15} where the size of U belongs to the interval [m − 1,m], a
separator is guaranteed to be found for m = 1 or 2, e.g.,M∗

X5X8
= {X3} or {X3, X2}.

3.4 SOUNDNESS, COMPLETENESS, AND COMPLEXITY

Theorem 1 Consider random variables X with joint distribution P that admits a P-map. The output
graph Ĝ of each of the Algorithms 1, 2, and 5 is a P-map class PDAG for P .

The complexity of Algorithms 1, 2, and 3 is of order 2N , as in a fully connected graph, all edges must
be tested using all possible CI tests. However, the number of CI tests in these Algorithm is always
less than or equal to that of the standard PC algorithm (Propositions 1 and 2). Table 1 compares these
algorithms across various graph structures, including naive Bayes (where one node is connected to
all others), star (the same structure but with reversed edges), and a forest skeleton (a DAG with the
skeleton without cycles). Here, d represents the maximum number of neighbors, while s denotes the
maximum number of neighbors that have a path to a common node, where s ≤ d.

Proposition 1 Consider random variables X = {X1, . . . , XN} with joint probability distribution
P that admits a P-map. Assume that for each m, subsets U in both Algorithms 1, 2, and 3 are tested
according to the lexicographical order. Then the total number of CI tests performed by Algorithm 2 is
less than or equal to that in Algorithm 3.

Table 1: Number of CI tests for special structures.

METHOD BOUNDED DEGREE STAR NAIVE BAYES FOREST SKELETON

PC Nd+2 2N−1 2N−1 Nd+2

PIT Ns+2 N2 N3 N3

4 EXPERIMENTS

We compared the performance of Algorithm 1 (PIT) and its variations, Algorithm 2 (BPIT), and
Algorithm 5 (Opt. BPIT), with PC, PC-stable (Colombo & Maathuis, 2014), Hill-climbing (HC), and
Tabu algorithms on the datasets (“true” DAGs) ASIA (Lauritzen & Spiegelhalter, 1988), CANCER
(Korb & Nicholson, 2010a), EARTHQUAKE (Korb & Nicholson, 2010b), ALARM (Beinlich et al.,
1989), INSURANCE (Binder et al., 1997), CHILD (Spiegelhalter & Cowell, 1992), WATER (Jensen
et al., 1989), HAILFINDER (Abramson et al., 1996), MUNIN (Andreassen et al., 1989), ANDES
(Conati et al., 1997), and DIABETES (Andreassen et al., 1991). The computations were performed
on a system with 2 xAMD Rome 7532@ 2.4GHz 256M cache. For each true DAG, a dataset was
generated by sampling 10,000 (resp. 1,000 and 10) times from the DAG and its conditional probability

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

distributions, resulting in 16 datasets, each containing 10,000 data instances (resp. 1000 and 10).
This dataset was passed to the learning algorithms to estimate the true DAG. For each dataset and
each algorithm, we reported runtime (Table 2), the number of CI tests (Table 3), and the structural
Hamming distance, that is, the number of incorrect edges, either missing or extra, compared to the
true graph and divided by the total number of edges in the true DAG (Table 4). The results for 100
and 1000 samples are in the Appendix.

PIT was a clear winner. According to the Wilcoxon signed ranked test, PIT was significantly faster
(up to 7 times faster; p = .029) and conducted significantly fewer CI tests (p < .001) compared
to PC and, in turn, PC-stable. PIT was also often more accurate or no worse compared to PC and
PC-stable, although there was no significance difference (p = .61, p = .78). The results for 100 and
1000 samples complemented the above results: PIT was significantly better in terms of CI tests and
accuracy, but no significant difference in terms of runtime. PIT was also significantly faster than
BPIT and Opt. BPIT and comparable in terms of the number of CI tests and accuracy.

BPIT and Opt. BPIT performed significantly fewer CI tests compared to PC and PC-stable, and while
they were comparable in terms of speed, they exhibited significantly lower accuracy. Additionally,
we evaluated these methods with an oracle for the CI tests (Table 14 and 15). Both methods were
significantly faster than PC and PC-stable for datasets with 100 and 1000 samples, with no significant
speed difference observed for datasets with 10,000 samples. This underscores the bottleneck caused
by the large conditional sets used in the CI tests for these two methods.

We additionally compared the algorithms with two score based methods, Hill Climbing and Tabu,
with maximum number of iterations set to 1,000,000 and ϵ = .0001. We increased the number of
initial conditions from 1 to 10 to 100 to ensure that the algorithms spent at least as much time on
local searches as that of PIT for each dataset, i.e., the same runtime. However, still these methods
were always much less accurate than PIT (Table 12).

Table 2: Run time (second)

DATASET BPIT OPT. BPIT PIT PC PC-STABLE

EARTHQUAKE 0.064 0.07 0.063 0.198 0.226
CANCER 0.033 0.038 0.032 0.191 0.203
SURVEY 0.138 0.147 0.077 0.28 0.291
ASIA 0.336 0.36 0.335 0.472 0.65
SACHS 26.1 26.5 25.7 25.8 30.8
CHILD 12.4 12.9 10.7 47.5 67
INSURANCE 69.2 96.9 55.9 83.5 106.4
WATER 16.2 16.3 6.8 6.98 11.1
MILDEW 481.1 477 153.6 184.6 284.4
ALARM 30 30.7 25.1 27.8 53
HAILFINDER 32671 33020 27845 30604 53834
HEPAR2 315 331 84.2 741 1033
WIN95PTS 132 151 87.2 121 179
MUNIN 17602 20421 14758 14042 28262
ANDES 6199 8859 1996 1446 1831
DIABETES 245345 291704 163769 > 1209600 > 1209600

5 CONCLUSION

We introduced PIT as efficient enhancements to the PC algorithm for Bayesian network structure
learning. By restricting the conditioning sets to neighbors that have paths to the target variable when
verifying a link, PIT substantially reduces the number of required conditional independence (CI) tests.
This straightforward modification leads to significant improvements in both speed and accuracy.

The algorithms are both sound and complete, ensuring the identification of the correct P-map under
ideal conditions–something many fast algorithms compromise on. Unlike score-based methods that
rely on local search approximations, PIT delivers high accuracy without relying on extensive CI testing.
Moreover, PIT achieves these performance gains without necessitating additional computational
resources, such as distributed or parallel computing. Instead, it complements these methods by
seamlessly integrating into existing parallel or distributed frameworks where local learning algorithms
are employed.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Number of CI tests.
DATASET BPIT OPT. BPIT PIT PC PC-STABLE

EARTHQUAKE 31 31 31 57 64
CANCER 17 17 17 45 46
SURVEY 29 29 29 55 55
ASIA 96 96 102 124 128
SACHS 971 971 972 971 1248
CHILD 1102 1120 1262 2124 3213
INSURANCE 4342 4339 4604 5078 6588
WATER 1274 1272 1293 1346 1747
MILDEW 3345 3359 3464 3629 4969
ALARM 2845 2837 2933 3283 5293
HAILFINDER 117437 116979 107143 117198 174944
HEPAR2 5487 5485 7020 23202 29320
WIN95PTS 9660 9646 10184 12501 17700
MUNIN 443405 446327 439255 448460 927403
ANDES 41557 66216 42172 68375 80914
DIABETES 1816592 1813867 1812709 – –

Table 4: Structural Hamming Distance divided by the total number of edges (Percent)

DATASET BPIT OPT. BPIT PIT PC PC-STABLE

EARTHQUAKE 0 0 0 0 0
CANCER 0 0 0 0 0
SURVEY 0 0 0 0 0
ASIA 12.5 12.5 12.5 12.5 12.5
SACHS 0 0 0 0 0
CHILD 4 4 0 4 4
INSURANCE 36.5 32.7 32.7 32.7 30.8
WATER 59.1 59.1 59.1 59.1 59.1
MILDEW 45.7 63 15.2 17.4 19.6
ALARM 17.4 17.4 10.9 8.7 8.7
HAILFINDER 87.9 87.9 86.3 78.8 74.2
HEPAR2 51.2 51.2 42.3 51.2 50.4
WIN95PTS 41.1 41.1 34.8 37.5 38.4
MUNIN 94.5 96.7 72.2 70 64.1
ANDES 41.1 63 19.2 19.5 19.8
DIABETES 107 108 56.5 – –

Empirical evaluations demonstrated that PIT outperforms PC and PC-stable in terms of accuracy for
small to medium-sized datasets and offers considerable speed advantages for large datasets. This dual
benefit addresses the core challenges in structure learning: maintaining high accuracy with limited
data and ensuring computational efficiency with large-scale data.

Advanced versions, BPIT and Opt-BPIT , build upon the path-driven approach by distinguishing
between different types of connecting paths and determining if they can be “blindly” blocked. While
this blind-blocking technique reduces CI tests even further, it also presents new challenges in terms
of conditioning set size. However, if future CI tests can maintain accuracy while scaling linearly with
conditioning size, this approach could become a game-changing advancement in the field.

Future work includes optimizing path computations to enhance algorithm efficiency and exploring
robust CI testing methods that maintain accuracy with larger conditioning sets. Furthermore, integrat-
ing our approach with distributed and parallel learning techniques could enable scalability to even
larger datasets, broadening the applicability of our methods in diverse real-world scenarios.

Ultimately, the contributions of PIT and BPIT strike a critical balance between precision, speed, and
scalability, offering an algorithm that not only pushes the boundaries of current graph-based learning
methods but also sets the stage for future innovation in causal discovery.

REFERENCES

B. Abramson, J. Brown, W. Edwards, A. Murphy, and R.L. Winkler. Hailfinder: A bayesian system
for forecasting severe weather. International Journal of Forecasting, 12(1):57–71, 1996.

S. Andreassen, F.V. Jensen, S.K. Andersen, B. Falck, U. Kjærulff, M. Woldbye, A.R. Sørensen,
A. Rosenfalck, and F. Jensen. MUNIN - an Expert EMG Assistant, chapter 21. Elsevier (North-

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Holland), 1989.

S. Andreassen, R. Hovorka, J. Benn, K. G. Olesen, and E. R. Carson. Andes: A model-based
approach to insulin adjustment. In Proceedings of the 3rd Conference on Artificial Intelligence in
Medicine, 12(1):239–248, 1991.

I.A. Beinlich, H.J. Suermondt, R.M. Chavez, and G.F. Cooper. The alarm monitoring system: A case
study with two probabilistic inference techniques for belief networks. In Proceedings of the 2nd
European Conference on Artificial Intelligence in Medicine, pp. 247–256, 1989.

J. Binder, D. Koller, S. Russell, and K. Kanazawa. Adaptive probabilistic networks with hidden
variables. Machine Learning, 29(2-3):213–244, 1997.

H. Bouhamed, A. Masmoudi, and A. Rebai. Bayesian classifier structure-learning using several
general algorithms. Procedia Computer Science, 46:476–482, 2015.

E. Cai, A. McGregor, and D. Jensen. Improving the efficiency of the pc algorithm by using model-
based conditional independence tests. In NeurIPS 2022 Workshop on Causality for Real-world
Impact, 2022. Also: arXiv preprint arXiv:2211.06536.

D. Colombo and M.H. Maathuis. Order-independent constraint-based causal structure learning.
Journal of Machine Learning Research, 15(1):3741–3782, 2014.

C. Conati, A. S. Gertner, K. VanLehn, and M. J. Druzdzel. Andes: On-line student modeling
for coached problem solving using bayesian networks. In Proceedings of the 6th International
Conference on User Modeling, 12(1):231–242, 1997.

J.L. Gersting. Mathematical Structures for Computer Science. Macmillan, 2006.

J. Gu and Q. Zhou. Learning big gaussian bayesian networks: Partition, estimation and fusion. The
Journal of Machine Learning Research, 21(1):6340–6370, 2020.

R. Guo, L. Cheng, J. Li, P.R. Hahn, and H. Liu. A survey of learning causality with data: Problems
and methods. ACM Computing Surveys (CSUR), 53(4):1–37, 2020.

K.B. Hwang, B.H. Kim, and B.T. Zhang. Learning hierarchical bayesian networks for large-scale
data analysis. In Neural Information Processing: 13th International Conference, ICONIP 2006,
pp. 670–679, Hong Kong, China, 2006.

F.V. Jensen, U. Kjærulff, K.G. Olesen, and J. Pedersen. Et forprojekt til et ekspertsystem for drift
af spildevandsrensning (an expert system for control of waste water treatment - a pilot project).
Technical report, Judex Datasystemer A/S, Aalborg, 1989. In Danish.

N.K. Kitson, A.C. Constantinou, Z. Guo, Y. Liu, and K. Chobtham. A survey of bayesian network
structure learning. 2021.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT
Press, 2009.

K.B. Korb and A.E. Nicholson. Bayesian Artificial Intelligence. CRC Press, 2nd edition, 2010a.

K.B. Korb and A.E. Nicholson. Bayesian Artificial Intelligence. CRC Press, 2nd edition, 2010b.

S. Lauritzen and D. Spiegelhalter. Local computation with probabilities on graphical structures and
their application to expert systems. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 50(2):157–224, 1988.

T.D. Le, T. Hoang, J. Li, L. Liu, H. Liu, and S. Hu. A fast pc algorithm for high dimensional
causal discovery with multi-core pcs. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 16(5):1483–1495, 2016.

I. Ng, Y. Zheng, J. Zhang, and K. Zhang. Reliable causal discovery with improved exact search
and weaker assumptions. In Advances in Neural Information Processing Systems, volume 34, pp.
20308–20320, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

J. Pearl. Causality. Cambridge University Press, 2009.

J. Peters, D. Janzing, and B. Schölkopf. Elements of causal inference: foundations and learning
algorithms. MIT Press, 2017.

A. Shahbazinia, S. Salehkaleybar, and M. Hashemi. Paralingam: Parallel causal structure learning for
linear non-gaussian acyclic models. Journal of Parallel and Distributed Computing, 176:114–127,
2023.

A. Sondhi and A. Shojaie. The reduced pc-algorithm: Improved causal structure learning in large
random networks. Journal of Machine Learning Research, 20(164):1–31, 2019.

D.J. Spiegelhalter and R.G. Cowell. Learning in probabilistic expert systems, pp. 447–466. Clarendon
Press, Oxford, 1992.

P. Spirtes, C.N. Glymour, R. Scheines, and D. Heckerman. Causation, prediction, and search. MIT
Press, 2000.

W. van den Boom, M. De Iorio, and A. Beskos. Bayesian learning of graph substructures. Bayesian
Analysis, 1(1):1–29, 2022.

S. Wadhwa and R. Dong. On the sample complexity of causal discovery and the value of domain
expertise. arXiv preprint arXiv:2102.03274, 2021.

B. Zarebavani, F. Jafarinejad, M. Hashemi, and S. Salehkaleybar. cupc: Cuda-based parallel pc
algorithm for causal structure learning on gpu. IEEE Transactions on Parallel and Distributed
Systems, 31(3):530–542, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

Definition 5 (d-separation) (Koller & Friedman, 2009) Consider DAG G with node set X . A trail
T between two nodes X,Y ∈ X is active relative to (or given) a set of nodes Z ⊆ X if (i) for each
collider on T , at least one of the descendants of the collider node is in Z , and (ii) no other node on
T is in Z . The node subsets X1,X2 ⊆ X are d-separated given Z , denoted d− sepG(X1,X2 | Z), if
there is no active trail between any node X1 ∈ X1 and any node X2 ∈ X2 given Z . The set of all
d-separations in G is denoted by I(G).

Proof of Lemma 3. Since |T | ≥ 2, there is at least one non-collider triple in the trail. So the middle
variable in this triple blocks the trail, which proves the first item. For the second, note that both of the
adjacent nodes say U and V , cannot be collider nodes. So U and its two neighbors on T or V and
its two neighbors on T form a non-collider triple, which again becomes inactive once U and V are
observed. Consequently, the trail is blocked. The third item immediately follows either of the first
two. □

Proof of Lemma 4 (sufficiency) We prove the result forM∗
Y X = PaX,Y ∪ BCXY ∪ OXY , where

BCXY and OXY are the arbitrary sets in Definition 4. In view of Lemma 2, X and Y are independent
conditioned on PaX or PaY . Without loss of generality assume that X ⊥ Y | PaX . It follows that
X ⊥ Y | PaX,Y , because the parents of X that are not reachable by Y in G \ {X} do no activate a
trial between X and Y . Now consider a covering path T between X and Y . If T is not connected to a
node in BCXY ∪OXY by some trail in G \ {X,Y }, then neither BXY nor OXY may trigger a collider
on path T . Hence, T is inactive once conditioned on PaX,Y ∪BC

XY ∪OXY as it was already inactive
when conditioned on PaX,Y . So consider the case where T is connected to a node in BCXY ∪ OXY

by some trail in G \ {X,Y }. Then T is connected to BCXY as OXY is off-path blockable. It follows
that T is connected to some connected blockable neighborhood BcXY that is the union of BXY and a
connected component of CXY , denoted by CcXY . Any node that is reachable by BcXY in G \ {X,Y }
also belongs to the connected component CcXY . Thus, the interior of T belongs to the connected
component CcXY , i.e., int(T) ⊆ CcXY . So T is blockable, and is blocked by observing BXY ∩ T in
view of Lemma 3. On the other hand, BXY ∩ T = BcXY ∩ T . Moreover, Lemma 3 also implies that
observing additional nodes does not make the path active. So T is inactive if PaX,Y ∪ BCXY ∪ OXY

is observed. Therefore, every covering path between X and Y is inactive, implying that X and Y
are d-separated, completing the proof as G is a P-map. (necessity) Should X and Y be independent
conditioned on any set includingM∗

XY , they are d-separated in the P-map G according to Lemma 1.
Thus, they cannot be linked. □

Proof of Theorem 1. We only prove the theorem for Algorithm 2; the others can be proven similarly.
Consider nodes X,Y ∈ X . Should there be an edge between them in the P-map, they would not
become independent conditioned on any subset of the remaining nodes according to Lemma 1. So
none of the CI tests in either of the algorithms will be positive, preserving the edge.

Now consider the case where X and Y are not adjacent in the P-map. In view of Lemma 4, it suffices
to show that at least one separatorM∗

XY and at least one separatorM∗
Y X is found by the algorithm.

We only prove the first one. Consider an arbitrary iteration m of the 2 and let G be the graph before
performing the search over the possible sets U . LetWXY , BXY , and CXY be the set of potentially
trigger nodes, blockable neighbors, and maximal blockable set of the P-map, andWG

XY , BGXY , and
CGXY , the corresponding sets in G. Since G is a subgraph of the P-map,WXY ⊆ WG

XY and in turn
CGXY ⊆ CXY . Hence, every blockable covering path T G of X and Y in G satisfies int(T G) ⊆ CXY .
Thus, if T G also exists in the P-map, then it is a blockable path, otherwise, all interior nodes of T G

are off-path blockable. In the first case, int(T G) belongs to a connected component of CXY , implying
T G ∩ BG

XY = T G ∩ Bc
XY for some connected blockable neighborhood of X relative to Y , BcXY . So

BGXY = BCXY ∪ OXY for a union BCXY of some connected blockable neighborhoods of X relative to
Y and for some off-path blockable set OXY ⊆ CXY . Therefore, PaX,Y ∪ BGXY is a separator.

So it suffices for the set U to equal PaX,Y \ BGXY at some point in the algorithm. On the other hand,
PaX,Y \ BGXY is the intersection of PaX \ BGXY with the reachable set of Y in G \ {X}. Therefore,
PaX,Y \ BGXY = PaX \ CGXY , implying that PaX,Y \ BGXY = PaX ∩WG

XY .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Let |PaX,Y | = k. Consider the iteration with m = k in the algorithm, and let Gk be the corresponding
graph. It holds that PaX,Y \ BGXY = PaX ∩WGk

XY ⊆ N
Gk

X ∩WGk

XY . On the other hand, |PaX,Y \
BGXY | = k − |PaX,Y ∩ BGk

XY |. Moreover, |PaX,Y ∩ BGk

XY | ≤ |N
Gk

X ∪ BGk

XY |. Hence, k − |N Gk

X ∩
BGk

XY | ≤ |PaX,Y \ BGk

XY | ≤ k. Therefore, by searching through all subsets U of N Gk

X ∪ BGk

XY , where
k− |N Gk

X ∩B
Gk

XY | ≤ |U| ≤ k, the desired U is guaranteed to be found, such that X ⊥ Y | BGk

XY ∪ U .
By going through all values of m the value k is also found. So the edge between X and Y will be
deleted. Therefore, the skeletons of Ĝ and the P-map matches.

The orientation step of the edges in the stated algorithms is the same as the one in PC, with the
difference that now Sepset(X,Y) may include additional nodes, i.e., those in BXY , that are not a
common neighbor of X and Y . However, this will not affect the orientations as the purpose of having
the set Sepset(X,Y) is to check if a common neighbor belongs to it, whereas those in BXY are not a
common neighbor of X and Y . □

Proof of Proposition 1. We prove by contradiction. Assume on the contrary that the proposition is
violated for the first time for nodes X and Y and iteration m. Consider the case where the obtained
graph in both algorithms is the same so far. Also, consider the case where there is an edge between
X and Y in the true graph. In PC, all possible U’s of size m from the set Adj(G, X) are checked,
which equals

(|Adj(G,X)|
m

)
many candidates. In Algorithm 2, Adj(G, X) is partitioned intoWG

XY and
Adj(G, X) \WG

XY . Without any optimization, the number of candidates would equal that in PC, i.e.,
to choose k variables fromWG

XY and m− k from Adj(G, X) \WG
XY , i.e.,∑

k

(
|WG

XY |
k

)(
|Adj(G, X) \WG

XY |
m− k

)
=

(
|Adj(G, X)|

m

)
.

However, the choice of m−k variables from the set Adj(G, X)\WG
XY does not happen in Algorithm

2; instead, the whole subset BGXY ⊆ Adj(G, X) \ WG
XY is observed. This reduces the number of

candidate U ’s to
∑

k

(|WG
XY |
k

)
which is less than or equal to

(|Adj(G,X)|
m

)
. Thus, for every iteration m,

the number of candidate U ’s that are searched in Algorithm 2 is no more than that in PC. Now, if the
graph obtained by Algorithm 2 had fewer links compared to that obtained by Algorithm 2, thenWG

XY

might have been smaller, but that does not make the total number of tests to exceed
(|Adj(G,X)|

m

)
.

Now consider the case where there is no edge between X and Y in the true graph. According to
the proof of Theorem 1, if a certain U at iteration m renders X and Y independent in PC, so does
the BGXY ∪ U in Algorithm 2. So if the edge X − Y is removed by PC at iteration m, it will also be
removed by Algorithm 2 by at most iteration m. On the other hand, the same lexicographical ordering
is supposed for both algorithms. This means that Algorithm 2 searches through the candidates for the
set U in the same order that PC does, just that some candidates may not be searched in Algorithm 2,
and that some candidates appear in a smaller cardinality as some members belong to the set BGXY
which are not searched through. This means that the Algorithm 2 takes at most the same number of
iterations as that in PC to find the proper U , a contradiction. □

Proposition 2 Consider random variables X with joint distribution P that admits P-map G. If G
contains no cycle, then the total number of CI tests performed by Algorithms 1, 2, and 5 is O(N3).

Proof of Proposition 2. First, we prove that if between two nonadjacent nodes X and Y at most,
there is one path in the skeleton graph, these nodes are separated by observing at most one node. If a
collider node exists in the path between X and Y , then X and Y are d-separated given the empty
set, and if there is no collider node in the path, by observing each node Z on the path X and Y are
d-separated given Z. So, by checking the marginal independence test between X and Y or the CI
test between X and Y given Z the spurious edge between them is removed. Since there is no cycle
in the skeleton, there is at most one path between any two nodes in the true DAG. Therefore, by
observing at most one variable on the path between any two nodes, all spurious edges can be removed.
Verifying the correctness of the remaining edges does not require additional CI tests, as there are no
alternative paths with mediator nodes between any two adjacent nodes. Thus, the number of CI tests
is O(N3) in the worst case. □

If d represents the maximum number of neighbors in the true DAG, and s denotes the maximum
number of neighbors reachable from another node in the true DAG, the number of CI tests is bounded

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

by O(Ns) in BPIT , while the PC algorithm requires O(Nd) CI tests. Since s is always less than
or equal to d, it follows that O(Ns) ≤ O(Nd). Table 1 indicates the number of CI tests for some
special structures.

Algorithm 3: The PC Algorithm
Input: A set of variables X and their joint probability distribution P
Output: A partially directed acyclic graph

1 Form the complete undirected graph G over nodes X ;
2 Sepset(X,Y) = ∅ for all X,Y ∈ X ;
3 m = 0
4 while maximum node degree in G is greater than m do
5 for X ∈ X
6 for Y ∈ Adj(G, X)
7 for U ⊆ Adj(G, X) \ {Y } and | U |= m
8 if X ⊥ Y | U
9 Remove the edge X − Y from G;

10 Sepset(X,Y)← U ;
11 m = m+ 1;
12 Orient the edges using the orientation rules in (Spirtes et al., 2000).

Algorithm 4: TheW , B and C-finding Algorithm
Input: Undirected graph G; nodes X and Y
Output: WG

XY ,B
G
XY , C

G
XY

1 WG
XY = BGXY = ∅;

2 for Z ∈ Adj(G, X) ∩Adj(G, Y)

3 WG
XY ←W

G
XY ∪R

G\{X,Y }
Z ; // Reachable nodes from common neighbors of X and Y

4 CGXY ← X \ ({X,Y } ∪WG
XY); // The maximal blockable set

5 R′
Y ← R

G\(WG
XY ∪(Adj(G,X)\{Y }))

Y ; // Reachable nodes from Y in the absence of trigger

nodes and X’s neighbors

6 for Z ∈ Adj(G, X) ∩ CGXY // blockable neighbors of X

7 if Adj(G[CGXY], Z) ∩R′
Y ̸= ∅ // that can reach Y via a blockable path

8 BGXY ← B
G
XY ∪ {Z,Adj(G[CGXY], Z)}; // The blockable neighborhood

Algorithm 5: The optimized Path-Driven Independence Testing Algorithm(Optimized PDIT)
Input: A set of variables X and their joint probability distribution P
Output: A partially directed acyclic graph

1 Form the complete undirected graph G over nodes X ;
2 Sepset(X,Y) = ∅ for all X,Y ∈ X ; B̄XY = ∅;W̄XY = ∅;
3 m = 0
4 while maximum node degree in G is greater than m do
5 for X ∈ X
6 for Y ∈ Adj(G, X)
7 for {U ⊆ WG

XY ∩Adj(G, X) and |U| ∈ [m− |BGXY ∩ W̄XY ∩Adj(G, X)|,m]}
8 if X ⊥ Y | BGXY ∪ U
9 Remove the edge X − Y from G;

10 Sepset(X,Y)← (BGXY ∩Adj(G, X)) ∪ U ;
11 W̄XY =WG

XY ;
12 m = m+ 1;
13 Orient the edges using the orientation rules in (Spirtes et al., 2000).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 5: Number of Nodes and Arcs

DATASET NODES ARCS

EARTHQUAKE 5 4
CANCER 5 4
SURVEY 6 6
ASIA 8 8
CHILD 20 25
SACHS 11 17
ALARM 37 46
MILDEW 35 46
WIN95PTS 76 112
INSURANCE 27 52
WATER 32 66
HAILFINDER 56 66
HEPAR2 70 123
MUNIN 186 273
ANDES 223 338
DIABETES 413 602

Table 6: The number of CI tests for datasets with 100 samples

DATASET BPIT OPT. BPIT PIT PC PC-STABLE

EARTHQUAKE 20 20 20 22 26
CANCER 10 10 10 10 10
SURVEY 15 15 15 15 15
ASIA 37 37 37 38 40
CHILD 268 268 275 323 389
SACHS 92 92 95 122 145
ALARM 1092 1092 1097 1199 1437
MILDEW 1006 1006 873 913 1003
WIN95PTS 3231 3231 3216 3360 3404
INSURANCE 642 642 619 661 764
WATER 559 559 559 576 591
HAILFINDER 2131 2131 2135 2205 2332
HEPAR2 2514 2514 2521 2578 2606
MUNIN 40683 40683 40773 41643 40773
ANDES 25390 25390 25436 25778 26083
DIABETES 137400 121099 116671 119096 133959

Table 7: The number of CI tests for datasets with 1000 samples

DATASET BPIT OPT. BPIT PIT PC PC-STABLE

EARTHQUAKE 39 39 39 55 60
CANCER 14 14 14 20 21
SURVEY 18 18 18 20 20
ASIA 96 96 100 103 115
CHILD 759 759 763 1156 1618
SACHS 471 471 471 771 966
ALARM 2042 2041 2073 2287 3353
MILDEW 1588 1588 1624 1675 2354
WIN95PTS 5654 5655 5736 5724 6914
INSURANCE 1571 1693 1571 1824 2448
WATER 702 702 707 770 873
HAILFINDER 13919 13990 14136 15245 20006
HEPAR2 3041 3041 3196 4247 4783
MUNIN 143608 143648 144206 145403 144206
ANDES 29058 29119 32806 34253 38632
DIABETES 385937 381312 371386 371914 556224

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 8: Runtime (seconds) for datasets with 100 samples

DATASET BPIT OPT. BPIT PIT PC PC-STABLE

EARTHQUAKE 0.038 0.05 0.115 0.043 0.15
CANCER 0.012 0.02 0.012 0.12 0.13
SURVEY 0.019 0.03 0.019 0.018 0.019
ASIA 0.054 0.08 0.05 0.051 0.059
CHILD 0.85 1.06 0.53 0.7 1.04
SACHS 0.19 0.23 0.18 0.31 0.43
ALARM 4.7 5.7 2.6 2.5 3.7
MILDEW 19.3 20.5 5.2 5.4 4
WIN95PTS 33.4 46.8 10.7 4.3 4.6
INSURANCE 3 3.4 1.3 1.4 1.8
WATER 1.6 2.2 0.88 0.71 0.8
HAILFINDER 15.5 20.2 7.5 5.9 7.2
HEPAR2 24.2 32.8 7.6 3.3 3.7
MUNIN 1686 2557 511 175 216
ANDES 2450 3901 487 29 30
DIABETES 34688 67043 6572 415 560

Table 9: Runtime (seconds) for datasets with 1000 samples

DATASET BPIT OPT. BPIT PIT PC PC-STABLE

EARTHQUAKE 0.075 0.08 0.073 0.132 0.15
CANCER 0.018 0.023 0.017 0.34 0.38
SURVEY 0.024 0.034 0.23 0.029 0.03
ASIA 0.25 0.27 0.22 0.23 0.27
CHILD 4.12 4.5 2.64 10.7 14.2
SACHS 3.46 3.5 3.4 13.1 18.4
ALARM 12.2 13.6 8.3 9 17.2
MILDEW 47 48 30 27 38
WIN95PTS 54.7 70 22.5 12.2 16.1
INSURANCE 11.9 14.2 6.2 9.5 13.3
WATER 3 3.6 1.72 1.5 2
HAILFINDER 562 581 534 600 918
HEPAR2 49 58 10.8 18.2 26.2
MUNIN 3323 4731 1766 1390 2801
ANDES 2697 5156 580 81 108
DIABETES 50617 91340 5262 9818 7577

Table 10: Structural Hamming Distance divided by the total number of true edges (%) for datasets
with 100 samples

DATASET BPIT OPT. BPIT PIT PC PC-STABLE

EARTHQUAKE 125 125 125 100 75
CANCER 100 100 100 100 100
SURVEY 100 100 100 100 100
ASIA 75 75 75 87.5 87.5
CHILD 56 56 56 80 84
SACHS 47 47 58.8 70.6 70.6
ALARM 80.4 80.4 78.2 63 76
MILDEW 128 128 121 87 91
WIN95PTS 96 96 94 92 90
INSURANCE 86.5 86.5 78.8 75 76.9
WATER 83.3 83.3 83.3 83.3 83.3
HAILFINDER 112 112 109 85 77
HEPAR2 108 108 105 99 94
MUNIN 140 140 136 100 98.5
ANDES 95.5 95.5 90.5 81 79.6
DIABETES 242 242 99.3 73.8 74.8

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 11: Structural Hamming Distance divided by the total number of true edges (%) for datasets
with 1000 samples

DATASET BPIT OPT. BPIT PIT PC PC-STABLE

EARTHQUAKE 25 25 25 50 50
CANCER 50 50 50 50 50
SURVEY 50 50 50 67 67
ASIA 50 50 50 50 50
CHILD 32 32 20 32 32
SACHS 11.7 11.7 11.7 23.5 29
ALARM 26 26 26 30 35
MILDEW 63 63 54 43 48
WIN95PTS 72 73 71 63 66
INSURANCE 59.6 59.6 46.1 48 51.9
WATER 72.7 72.7 72.7 72.7 74
HAILFINDER 92 92 75 72 65
HEPAR2 66 66 68 75 73
MUNIN 105 110 93 85 85
ANDES 63 68.6 44.7 43.8 43.5
DIABETES 133.5 133.5 67.6 67.1 63.3

Table 12: Runtime (second)

DATASET HILL-CLIMBING TABU
100 1000 10000 100 1000 10000

EARTHQUAKE 0.07 0.08 0.09 0.08 0.07 0.09
CANCER 0.04 0.07 0.1 0.06 0.08 0.11
SURVEY 0.06 0.09 0.21 0.06 0.1 0.21
ASIA 0.16 0.22 0.33 0.17 0.24 0.35
CHILD 1.23 1.78 4.22 1.32 1.9 4.61
SACHS 0.32 0.43 0.8 0.34 0.46 0.83
ALARM 3.46 4.71 8.03 3.67 5.11 8.26
MILDEW 2.04 3.21 6.61 2.18 3.49 6.93
WIN95PTS 17.23 25.49 51.04 18.25 27.34 55.2
INSURANCE 2.03 2.81 5.72 2.2 3.01 6.3
WATER 2.42 2.8 5.01 2.61 3.06 5.31
HAILFINDER 14.96 22.28 53.21 15.92 23.91 56.46
HEPAR2 13.14 14.97 30.75 14.64 15.76 33.01
MUNIN 5570 7266 15384 5877 7657 16213
ANDES 22059 25238 50506 22061 25566 72144
DIABETES 36791 99260 254561 38680 100303 251794

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 13: Structural Hamming Distance divided by the total number of edges (Percent)

DATASET HILL-CLIMBING TABU
100 1000 10000 100 1000 10000

EARTHQUAKE 75 50 50 75 50 50
CANCER 100 50 50 100 50 50
SURVEY 100 66.7 50 100 66.7 50
ASIA 62.5 50 50 62.5 50 50
CHILD 120 116 120 120 116 124
SACHS 76.4 52.9 47 76.4 52.9 47
ALARM 84.7 69.5 67.3 82.6 65.2 65.2
MILDEW 91.3 82.6 76 91.3 82.6 76
WIN95PTS 91 83 78.5 95.5 85.7 86.6
INSURANCE 109.6 105.7 98 109.6 105.7 98
WATER 87.8 90.9 81.8 87.8 87.8 80.3
HAILFINDER 168.1 189.3 225.7 168.1 189.3 225.7
HEPAR2 105.6 85.3 6 66.6 106.5 85.3 68.2
MUNIN 105.1 1 93.4 87.1 106.9 91.2 86.4
ANDES 107.3 83.7 71.8 107.3 83.1 67.1
DIABETES 98 93.3 92.8 98 93.8 96

Table 14: Run time (second) using an oracle for the CI tests and 10000 samples

DATASET BPIT OPT. BPIT PC PC-STABLE

EARTHQUAKE 0.077 0.078 0.243 0.272
CANCER 0.084 0.085 0.265 0.297
SURVEY 0.289 0.29 0.796 0.961
ASIA 0.61 0.61 0.738 1.079
CHILD 44.35 33.48 106.40 131.1
SACHS 30.5 30.5 30.3 34.6
ALARM 71.5 69.6 65.5 127.8
MILDEW 1992 1878 1602 4384
WIN95PTS 472 450 752 1058
INSURANCE 1448 1322 1308 2489
WATER 5441 5374 5208 10172
HAILFINDER 550 462 > 604800 > 604800
HEPAR2 7513 4630 > 604800 > 604800
MUNIN 27631 28763 78796 117688

Table 15: Runtime (second) using an oracle for the CI tests for 100 and 1000 samples

DATASET BPIT OPT. BPIT PC PC-STABLE
100 1000 100 1000 100 1000 100 1000

EARTHQUAKE 0.055 0.068 0.068 0.067 0.19 0.3 0.21 0.22
CANCER 0.054 0.067 0.056 0.068 0.18 0.22 0.21 0.24
SURVEY 0.21 0.22 0.2 0.21 0.57 0.62 0.68 0.74
ASIA 0.4 0.43 0.4 0.43 0.48 0.51 0.69 0.75
CHILD 9.8 17 9.6 14.8 39 71 56 89
SACHS 14 22.6 14 23 14 23 17 26
ALARM 32 42 33 42 35 45 69 89
MILDEW 380 912 380 909 443 1021 1158 2794
WIN95PTS 177 263 208 259 208 403 307 557
INSURANCE 570 844 567 827 620 913 1289 1810
WATER 2410 3619 2398 3605 2385 3580 4478 6989
HAILFINDER 140 194 150 198 121752 > 604800 232432 > 604800
HEPAR2 1454 2763 1518 2431 > 604800 > 604800 > 604800 > 604800
MUNIN 9775 94446 12197 54376 11160 27359 21558 44898

19

	Introduction
	Background
	The Path-Driven Independence Testing (PIT) Algorithm
	The idea
	The algorithms
	Examples
	Soundness, completeness, and Complexity

	Experiments
	Conclusion
	Appendix

