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ABSTRACT

Event sequences, characterized by irregular sampling intervals and a mix of cate-
gorical and numerical features, are common data structures in various real-world
domains such as healthcare, finance, and user interaction logs. Despite advances in
temporal data modeling techniques, there is no standardized benchmarks for evalu-
ating their performance on event sequences. This complicates result comparison
across different papers due to varying evaluation protocols, potentially misleading
progress in this field. We introduce EBES, a comprehensive benchmarking tool
with standardized evaluation scenarios and protocols, focusing on regression and
classification problems with sequence-level targets. Our library 1 simplifies bench-
marking, dataset addition, and method integration through a unified interface. It
includes a novel synthetic dataset and provides preprocessed real-world datasets,
including the largest publicly available banking dataset. Our results provide an
in-depth analysis of datasets, identifying some as unsuitable for model comparison.
We investigate the importance of modeling temporal and sequential components,
as well as the robustness and scaling properties of the models. These findings
highlight potential directions for future research. Our benchmark aim is to facilitate
reproducible research, expediting progress and increasing real-world impacts.

1 INTRODUCTION

The world we live in is constantly changing (Laertius, 1925). We continuously collect and analyze
data to understand and navigate this dynamic environment. This ongoing data collection helps capture
the evolving nature of reality and can be captured in sequential datasets, which can be further analyzed
or used for modeling.

Various types of sequential data are usually approached differently based on their characteristics. One
prevalent form of sequential data is time series, regular measurements of some processes. The unifor-
mity of these intervals enables researchers to apply a wide range of developed techniques (Eckner,
2012). Measurements of some processes that are taken or observed at non-uniform time intervals
lead to irregularly sampled time series (ISTS). Fewer methods exist specifically for ISTS (Eckner,
2012), and modeling them brings new challenges (Li & Marlin, 2020). However, modeling them has
a considerable importance since they naturally occur in many real-world areas: ecology (Clark &
Bjørnstad, 2004), astronomy (Scargle, 1982), climate (Schulz & Stattegger, 1997), biology (Eckner,
2012), medicine (Goldberger et al., 2000; Johnson et al., 2016; Reyna et al., 2020), geology (Fang
et al., 2023) and finance (Bazarova et al., 2024).

Another widely explored temporal data type is a stream of discrete events. Intervals between events
are random, and modeling the distribution of inter-event intervals is an essential task with many
applications. Temporal point process (TPP) model is commonly employed to model streams of
discrete events (Du et al., 2016; Mei & Eisner, 2017; Omi et al., 2019; Jia & Benson, 2019; Shchur
et al., 2019; Zhang et al., 2020; Zuo et al., 2020; Zhuzhel et al., 2023; Song et al., 2024).

In this work, we focus on another type of sequential data, event sequences (EvS), which are sequences
of observations made at irregular times characterized by numerical and categorical features. EvS can
be viewed as a generalization of both ISTS and streams of discrete events. Examples of various types
of EvS are illustrated in Figure 1. Many modeling tasks naturally arise when dealing with sequential

1We attach an archive with the code. The code will be publicly available after the conference decision.
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(a) Regularly Sampled
Time Series (RSTS).

(b) Irregularly Sampled
Time Series (ISTS) with
missing data.

(c) A stream of discrete
events, usually, modeled
by Temporal Point Pro-
cess (TPP).

(d) Event sequence with
2 numerical and 2 cate-
gorical features.

Figure 1: Sequential data taxonomy. Event sequences (EvS) generalize both irregularly sampled time
series and streams of discrete events.

data, including whole sequence classification and regression (Shukla & Marlin, 2018), extrapolation
or forecasting (De Brouwer et al., 2019), missing data imputation (Rubanova et al., 2019), point-wise
classification (Hasani et al., 2022), and predicting the next event’s time and type (Xue et al., 2024).
Some of these tasks assume either a continuous or discrete nature of the data, which may not be
known given a raw dataset. For instance, predicting the time of the next event is not reasonable when
dealing with measurements from a continuous process. However, we can perform an assessment of
the entire sequence regardless of the assumptions about the nature of the data.

As a task we consider the whole EvS classification and regression task, which we refer to EvS
assessment. We emphasize the crucial role of EvS classification and regression in medicine (Shukla
& Marlin, 2018), churn prediction (Jain et al., 2021), e-commerce (Zhao et al., 2023), fraud detec-
tion (Xie et al., 2022) and more.

Our contributions are as follows:

• We introduce EBES, a comprehensive benchmarking framework designed for EvS assessment.
EBES features unified interfaces for datasets, models, and experimental protocols, facilitating
future research in EvS assessment. Our library is publicly available.

• We design a benchmark protocol that considers both model and dataset analysis. Our evaluation
includes various scenarios, including some specific to EvS, highlighting important properties of
both the datasets and models.

• Using EBES, we evaluated various methods on established datasets through a multi-phase evalua-
tion protocol. This approach ensures a fair and consistent comparison across different methods.
All results are tested for statistical significance. As a result of our analysis, we provide recommen-
dations for future research. These recommendations include possible pitfalls related to dataset
usage and model evaluation.

2 BENCHMARK GOALS AND APPROACHES

Numerous methods have been proposed for EvS modeling and related problems. However, most
of these methods lack rigorous evaluation, and there is currently no established benchmark for this
domain. Benchmarking machine learning algorithms involves two main components: benchmark
design and datasets, each presenting its challenges and goals. Below, we describe how we address
each challenge in the context of EvS.

2.1 DATASETS

We have chosen three commonly used datasets based on previous studies Shukla & Marlin (2021);
Udovichenko et al. (2024); Babaev et al. (2022); Moskvoretskii et al. (2024), one recent and one of
the largest event sequence datasets MBD Dzhambulat et al. (2024), two medical datasets, and one
synthetic pendulum dataset to validate the importance of time and how models capture the sequential
properties of the data. We present statistics for each dataset in Table 1, and a detailed description of
each dataset can be found in Appendix C.
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Table 1: Statistics of sequential datasets used in our benchmark. The statistics are calculated on the
train set if not specified otherwise. We use the following tasks notation: classification (C), regression
(R) or multi-label classification (MLC). For MLC we report the average class balance.

Dataset Task # classes Class balance, % Target Category

PhysioNet 2012 C 2 86 / 14 Mortality Medical
MIMIC-III C 2 90 / 10 Mortality Medical
Pendulum R NA NA Air resistance Physical (synth.)
AGE C 4 25 / 25 / 25 / 25 Age group Transactions
Retail C 4 27 / 21 / 27 / 24 Age group Transactions
MBD MLC 4 × 2 99.7 ± 0.2 / 0.3 ± 0.2 Purchase items Transactions
Taobao C 2 43 / 57 Purchase event E-commerce

# seq. (train / test) # events (train / test) # events per seq. (mean ± std) # cat. features # num. features

PhysioNet 2012 4k / 4k 299k / 299k 75 ± 23 3 38
MIMIC-III 45k / 11k 2.7m / 657k 58 ± 93 1 10
Pendulum 80k / 20k 2.5m / 631k 32 ± 9 0 2
AGE 24k / 6k 21m / 5.3m 881 ± 125 1 1
Retail 319k / 80k 37m / 9.1m 114 ± 103 7 9
MBD 7.4m / 1.8m 156m / 39m 21 ± 435 11 1
Taobao 18k / 9k 5.1m / 2.8m 280 ± 387 2 0

Data Quality One of the primary challenges in benchmarking is ensuring that the datasets used are
high quality and accurately represent the problem domain. Poor data quality can lead to misleading
benchmark results.

To address data quality, we employ two strategies:

• Synthetic Dataset Development: We create a synthetic Pendulum dataset, particularly useful for
evaluating time-sensitive methods; dataset creation is described in Appendix C.

• Dataset Analysis: We analyze the correlation of model performance with Monte Carlo cross-
validation. Specifically, we consider the relationship between metrics across various folds and the
holdout test set.

Diversity of Datasets. Datasets with similar structures but different domains can vary greatly. For
example, financial transactions differ significantly from medical records. Additionally, datasets can
vary in complexity and difficulty. Our work includes a diverse range: two medical, three banking,
one retail, and one synthetic dataset.

Volume of Data. Large datasets enable models to capture the complexity and nuances of real-world
phenomena, leading to more accurate and reliable predictions. Moreover, different algorithms scale
differently as the data grows. To address this challenge, we included datasets of various sizes.

Open Access to Data. It is crucial that data is available to researchers worldwide for reproducibility,
collaboration, and innovation. While many event-sequence datasets exist, we focus on open-access
ones and welcome contributions from other domains to enhance our collection. For example,
astronomical observations (Carrasco-Davis et al., 2019) are event sequences but are not openly
accessible.

2.2 BENCHMARK DESIGN

Creating effective benchmarks is a complex task, which involves designing tests that accurately reflect
the capabilities of machine learning models across different scenarios:

Model evaluation. Hyperparameters are a fundamental aspect of machine learning that directly
impacts model performance. However, the procedure of hyperparameters tuning is rarely described.
Therefore, this becomes a source of non-reproducibility Arnold et al. (2023); Gundersen et al. (2022).
Moreover, manual hyperparameter tuning can lead to the leakage of the test set into the training
procedure and performance Lones (2021), and testing different hyperparameter values is necessary to
find a model that generalizes well Gundersen et al. (2022).

In our procedure, we first conduct an extensive hyperparameter search. Randomness can destabilize
models, causing large variances in results across training runs. Ignoring this sensitivity can create a
false perception of research progress (Pecher et al., 2024). Therefore, after determining the optimal
hyperparameters, we perform Monte Carlo cross-validation (MCCV) (Xu & Liang, 2001) with 20
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seeds. At each MCCV step we train the model with the best hyperparameters and pick the checkpoint
based on the (randomly sampled) validation set. Finally, the checkpoint is evaluated on the held-out
test set. The mean test score across all seeds is reported as the model performance.

Scalability As datasets grow larger, machine learning algorithms scale differently. Large datasets
enable models to capture real-world nuances, improving prediction accuracy. To address this, we
study the scaling properties of various event sequence assessment algorithms.

Importance of Time and Sequence Order It is possible to perform EvS assessment while disre-
garding the temporal and sequential nature of the data. To evaluate the importance of each component,
we designed two stress tests for event sequences: rearranging the sequence order and replacing time
components with noise. This analysis provides significant insights and highlights future research
directions.

Model Granularity As AI systems grow more complex, assessing which components contribute
to success becomes challenging. In our work, we evaluate different components, such as various
aggregation approaches along the temporal dimension, batch normalization, and the impact of adding
time as a separate feature on overall model performance.

2.3 BENCHMARK ACCESSIBILITY AND MAINTENANCE

The rapid evolution of machine learning makes keeping benchmarks up-to-date challenging. Bench-
marks must reflect the latest advancements, incorporate new data and algorithms, and be maintained
over time. Our work focuses on developing an easy-to-use plug-and-play codebase to facilitate col-
laboration and research. The library’s interface structure enforces the independence of implementing
new datasets, methods, and experiments, making adding and testing new components easy. We
are committed to maintaining this benchmark and encourage contributions from researchers and
practitioners to support reproducible research.

2.4 MODELS

We have carefully selected a diverse set of popular models and approaches that have been previously
applied for EvS assessment. Some of the models, such as MLP, are included as baseline solutions,
some are commonly used for sequential data GRU (Chung et al., 2014), Mamba (Gu & Dao, 2023),
Transformer (Vaswani et al., 2017). The following models were explicitly designed to handle the
unique challenges associated with EvS: mTAND (Shukla & Marlin, 2021), PrimeNet (Chowdhury
et al., 2023) and CoLES (Babaev et al., 2022). Appendix B provides a detailed description of each
model.

3 BENCHMARKING METHODS

3.1 DATASET PREPOSSESSING

In our work we aim to perform as little preprocessing as possible to preserve the originality of the
data in order to prevent data preproccessing from affecting model evaluation. For ease of extensibility,
we convert all datasets into a single format and release scripts that perform the conversion.

Our data preprocessing includes:

• Applying a logarithm to fat-tailed variables, which are selected manually;
• Rescaling time points to make the time range of all sequences to fall in [0, 1];
• For missing values, we propagate them forward for the PhysioNet, MIMIC-III, and Pendulum

datasets based on results in Che et al. (2018), and impute with constants for others.
• We encode categorical features using embedding layer and treat missing values as additional

categories.

3.2 MODEL EVALUATION AND HPO
Hyperparameter optimization (HPO) and Monte Carlo cross-validation are at the core of our bench-
mark design, as they enable us to evaluate numerous design choices and hyperparameters, and to
fairly compare models. Furthermore, we derive important insights from multiple HPO runs. Our
evaluation procedure is twofold:

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

train-val
15% fixed

train
70% fixed

hpo-val
15% fixed

Train neural network
Pick the best 
checkpoint

Pick the best 
hyperparameters

train
85% random testtrain-val

15% random

Train neural network
Pick the best 
checkpoint Report metrics

1. HPO

2. Evaluation

Figure 2: Data splits and their usage in our evaluation procedure.

• HPO step, here we perform hyperparameter optimization for all the models for each dataset.
After obtaining the set of best hyperparameters (BHP), we use them for the next step.

• Final evaluation, during this step we train models with BHP 20 times using different seeds and
random train and train-val splits. Final metrics are reported as average with standard
deviation over 20 runs on test sets after models were trained from scratch.

A detailed algorithm with all the steps is outlined in Appendix D.

Train-Val-Test splits For both steps we utilize data splits as follows: train - for training models,
train-val - for early stopping procedure, we stop training if the model performance does not
improve after several epochs and exceeds patience limit, hpo-val - a subset to evaluate the model to
update HPO sampler, it does not present in Final evaluation step. Both train-val and hpo-val
take 15% from the initial train dataset. See Figure 2 for clarification. For each split we apply on-
target stratification. The number of patience steps is different for each dataset due to computational
constrains.

For datasets, which do not have commonly accepted test sets, we cut 20% as our fixed test set. For
HPO we use Optuna (Akiba et al., 2019) Tree-structured Parzen Estimator (TPE). For the main
performance metrics of our benchmark, see Section 4.1.

4 EXPERIMENTS AND RESULTS

4.1 ASSESSMENT PERFORMANCE

In this section, we address the main question of the benchmark: Which model performs the best?
The results are presented in Table 2, where methods are sorted from top to least performing. Along
with the mean performance we report method’s rank as a superscript. We performed pairwise
Mann–Whitney U test (Mann & Whitney, 1947) with Benjamini–Hochberg correction (Benjamini
& Hochberg, 1995), methods with no significant performance difference (p > 0.01) share the same
superscript. All top three performing methods are based on GRU with different pre-training strategies.
CoLES improves metrics on tasks where the target is a characteristic of an observed sequence, such
as Age, Pendulum, and Retail. However, on datasets where the target is somehow connected to
future events, such as Taobao, MIMIC-III, MBD, and PhysioNet, the pretraining does not provide a
significant boost. MLEM performs similarly to CoLES, likely due to its usage of pretrained CoLES
components.

Transformer and Mamba comes next in rating, suggesting that this architectures are less suitable
for EvS assessment. mTAND (Shukla & Marlin, 2021) excelled on the Pendulum dataset due to its
architecture tailored for modeling the time component, particularly suited for ISTS like Pendulum.
However, its poor performance on other datasets indicates that ISTS methods may not be as effective
for general event sequences.

The MLP performs relatively well, typically within 5% of the top-performing method on all real-world
datasets. This suggests that EvS assessment can be effectively carried out using aggregated statistics
along temporal dimensions, a practice commonly employed in industrial applications with boosting
models (ABIDAR et al., 2023). The difference in performance between MLP and mTAND on the
Pendulum dataset further supports this idea, since we can not apply such aggregation approach to this
dataset.

We see that, all methods show close results on the PhysioNet2012 dataset, based on ranks. This raises
questions about its suitability for evaluating models for EvS assessment task.
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Table 2: Model performance obtained using EBES. Results are averaged over 20 runs with the best
hyperparameters determined through HPO. Statistically indistinguishable (p > 0.01) results share the
same superscripts, indicating the method’s rank for each dataset. The best-performing methods for
each dataset are highlighted. Methods are sorted according to their average rank across all datasets.

Dataset Age MBD MIMIC-III Pendulum PhysioNet2012 Retail Taobao
Metric Accuracy Mean ROC AUC ROC AUC R2 ROC AUC Accuracy ROC AUC

CoLES 0.634± 0.0051 0.826± 0.0012 0.902± 0.0011 0.916± 0.0042 0.840± 0.0042 0.553± 0.0021 0.713± 0.0021

GRU 0.626± 0.0042 0.827± 0.0011 0.901± 0.0021 0.896± 0.0104 0.846± 0.0041 0.543± 0.0022 0.713± 0.0041

MLEM 0.634± 0.0031 0.824± 0.0013 0.899± 0.0022 0.890± 0.0074 0.846± 0.0071 0.544± 0.0022 0.713± 0.0041

Transformer 0.621± 0.0062 0.821± 0.0024 0.894± 0.0023 0.891± 0.0154 0.838± 0.0082,3 0.536± 0.0063 0.692± 0.0132,3

Mamba 0.609± 0.0063 0.820± 0.0034 0.895± 0.0023 0.908± 0.0053 0.835± 0.0063,4 0.538± 0.0033 0.693± 0.0232

mTAND 0.582± 0.0094 0.798± 0.0026 0.888± 0.0034 0.941± 0.0091 0.841± 0.0052 0.519± 0.0035 0.672± 0.0104

PrimeNet 0.583± 0.0114 0.780± 0.0067 0.887± 0.0044 0.842± 0.0175 0.839± 0.0042,3,4 0.521± 0.0035 0.681± 0.0103

MLP 0.581± 0.0074 0.809± 0.0015 0.881± 0.0015 0.165± 0.0056 0.835± 0.0044 0.526± 0.0024 0.659± 0.0354

0.5 0.6 0.7 0.8 0.9 1.0
train metric

0.5

0.6

0.7

0.8

0.9

tra
in

-v
al

 m
et

ric

HPO step
Spearman: 0.581, Pearson: 0.922

0.5 0.6 0.7 0.8 0.9
train-val metric

0.5

0.6

0.7

0.8

0.9

hp
o-

va
l m

et
ric

HPO step
Spearman: 0.819, Pearson: 0.985

0.5 0.6 0.7 0.8 0.9
hpo-val metric

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

te
st

 m
et

ric

HPO step
Spearman: 0.881, Pearson: 0.988

0.80 0.82 0.84 0.86 0.88
train-val metric

0.80

0.82

0.84

0.86

te
st

 m
et

ric

Final evaluation step
Spearman: 0.288, Pearson: 0.308

CoLES GRU MLEM MLP Mamba PrimeNet Transformer mTAND

0.5 0.6 0.7 0.8 0.9
train metric

0.4

0.5

0.6

0.7

0.8

tra
in

-v
al

 m
et

ric

HPO step
Spearman: 0.879, Pearson: 0.955

0.5 0.6 0.7
train-val metric

0.50

0.55

0.60

0.65

0.70

0.75

hp
o-

va
l m

et
ric

HPO step
Spearman: 0.924, Pearson: 0.983

0.5 0.6 0.7
hpo-val metric

0.45

0.50

0.55

0.60

0.65

0.70

te
st

 m
et

ric

HPO step
Spearman: 0.814, Pearson: 0.831

0.60 0.65 0.70 0.75 0.80
train-val metric

0.55

0.60

0.65

0.70

te
st

 m
et

ric

Final evaluation step
Spearman: 0.669, Pearson: 0.546

CoLES GRU MLEM MLP Mamba PrimeNet Transformer mTAND

Figure 3: Performance metric relationships and correlations of different subsets among all methods
on PhysioNet2012 (top row) and Taobao (bottom row) are presented. We do not observe a correlation
between the test metric and train-val on PhysioNet2012, as seen in the right upper corner. For
the Taobao dataset, we do not observe a clear linear trend between hpo-val and the test metric
suggesting the presence of distribution shift.

4.2 DATASET ANALYSIS

In this section, we analyze datasets based on data from the HPO step and Final evaluation phases,
exploring relationships between metrics from different data subsets. Correlations between different
subsets for the PhysioNet2012 and Taobao datasets are depicted in Figure 3, with other datasets
presented in Appendix E.

During the HPO step, we observe overfitting for most datasets, as train metrics increase while
train-val metrics plateau, as seen in Figure 3 on the left. This supports the use of early stopping.

Metrics of hpo-val and test subsets (third column in Figure 3) are strongly correlated unless the
test set is sampled out-of-time, as seen for the Taobao dataset. Here, hpo-val and test metrics
lack a clear linear trend, but train-val and hpo-val metrics do, suggesting a distribution shift
in the test set.

For most datasets, in the Final evaluation phase (fourth column in Figure 3), validation and test set
metrics exhibit a linear trend, except for PhysioNet2012, where different validation metrics attribute
to similar test metrics. This supports our observations in Section 4.1, where results for most models
are not statistically distinguishable for most methods on PhysioNet2012.
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Figure 4: Performance of various models as a function of number of sequences. Metrics from Table 1
are reported. Number of sequences is presented in log scale. Standard deviation across 3 runs is
depicted as vertical lines.

4.3 DATA SCALING RESULTS

To study the scaling properties of various models, we evaluated each model trained with different
numbers of sequences. We focused on two biggest real-world dataset in our benchmark: Retail and
MBD. We sampled different subsets, each containing progressively more data. Each model was
trained from scratch on different-sized subsets with Monte Carlo cross-validation using three random
seeds.

A common approach is to estimate model performance with a fixed data size. However, as seen in
Figure 4, while all models improve with the growth of the data, their ranking does not stay the same,
except for CoLES on the Retail Dataset, where it demonstrates superior performance. With some data
size, even MLP becomes a top performer. Most models, except for MLP, mTAND, and PrimeNet,
converge to similar performance on the MBD dataset given a large data size. It is worth noting that
for each dataset, we used the BHP found for each model when the dataset was at its full size.

The standard deviation, decreases as the data size increases and models perform very differently with
smaller subsets. This makes evaluating model performance on relatively small datasets more prone to
misleading results.

4.4 ASSESSING ARCHITECTURE DESIGN CHOICES

Although our models exhibit a diverse range of architectures, there are several common design
choices among them. We evaluated the impact of these choices as part of our HPO procedure.

We observe that some design choices depend more on the dataset than on the method, highlighting the
importance of HPO for fair evaluation. First, we study the effect of different aggregation approaches
along the temporal dimension on overall performance. We focus on two approaches: mean across all
hidden states and the last sequence state. The best aggregation strategy depends more on the dataset
than on the method. Similarly, batch normalization for numerical features improves performance
for almost all methods and datasets, except for Pendulum. Finally, we evaluate the importance of
hyperparameters according to HPO. There is no clear winner except for the learning rate, which is
often the most important hyperparameter across all HPO runs. Results are presented in Tables 10, 9
and 8 in the Appendix.

4.5 IMPORTANCE OF SEQUENCE ORDER

One aspect of EvS is the order of events in a sequence. To examine its importance, we conducted
two experiments: 1) We took models trained on regular data and evaluated them on test sequences
with permuted order, keeping the time component unchanged. 2) We removed the time component
and retrained the models on sequences with permuted order, then evaluated them on permuted test
sequences.

Testing on Permuted Sequences We evaluated pre-trained models from the Final evaluation
step on perturbed sequences. Missing values were filled prior to shuffling, and time was added as a

7
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Table 3: Robustness to sequence permutation results. We report performance difference relative to
metrics obtained on not permuted sequences. Models were train on non-permuted data; only the
test set was permuted. Values with statistically significant difference (p < 0.01) in performance are
highlighted and marked with asterisk.

Dataset Age MBD MIMIC-III Pendulum PhysioNet2012 Retail Taobao
Metric Accuracy Mean ROC AUC ROC AUC R2 ROC AUC Accuracy ROC AUC

CoLES −1.63%∗ −0.09% −1.86%∗ −219.60%∗ −2.36%∗ −1.57%∗ −0.49%∗

GRU −1.15%∗ −0.10% −4.24%∗ −227.58%∗ −1.49%∗ −2.25%∗ −0.67%∗

MLEM −1.52%∗ −0.30% −1.43%∗ −242.09%∗ −1.71%∗ −2.57%∗ −0.89%∗

MLP −0.00% −0.00% −0.00% −0.00% −0.00% −0.00% −0.00%
Mamba −1.20% −0.06% −3.04%∗ −351.14%∗ −0.65% −2.44%∗ −0.00%

PrimeNet −7.82%∗ −4.08%∗ −3.72%∗ −128.39%∗ −3.95%∗ −26.41%∗ −2.12%∗

Transformer −0.00% 0.00% −0.00% −5.20%∗ 0.03% −0.09% −0.05%
mTAND −8.95%∗ −5.05%∗ −5.05%∗ −133.66%∗ −4.13%∗ −28.09%∗ −4.13%∗

Table 4: Comparison of GRU with BHP and the same GRU with the time component removed,
retrained on the permuted training set. Statistically significant differences are highlighted and marked
with asterisk.

Dataset Age MBD MIMIC-III Pendulum PhysioNet2012 Retail Taobao
Metric Accuracy Mean ROC AUC ROC AUC R2 ROC AUC Accuracy ROC AUC

Vanilla GRU 0.626± 0.004 0.827± 0.001 0.901± 0.002 0.896± 0.010 0.846± 0.004 0.543± 0.002 0.713± 0.004
GRU w/o time w/ perm. 0.630± 0.004 0.819± 0.001∗ 0.890± 0.002∗ 0.581± 0.003∗ 0.844± 0.005 0.546± 0.003 0.702± 0.006∗

numerical feature before shuffling. For all runs, the last events were kept in their original positions,
as some models use the last hidden state in the aggregation step.

Results are presented in Table 3. The Transformer model experienced a significantly small drop due
to its attention mechanism. The MLP model did not experience any drop at all because sequence
order is inherently not important for aggregation. We observed that while performance dropped for
other models, the drop was statistically significant (p < 0.01) but less than expected for all real-world
datasets. Additionally, the MBD dataset did not experience a significant drop with most methods,
suggesting that models do not rely on the order of sequences to make predictions. This indicates that
while sequence order is important, it is not as critical for EvS assessment of real-world datasets as
initially thought. However, we observed that models’ performance degraded on the pendulum dataset,
indicating that the evaluated models can capture the sequential nature of the data.

Training on Permuted Sequences The second experiment further analyzed datasets to determine
if sequential order is important or if sequences can be treated as a “bag of words.”

We selected the GRU with BHP for each dataset, removed the time component from its architecture,
and trained it from scratch with both training and test sequences permuted. The results are in Table 4.
We observed that for some real-world datasets, the performance drop was not statistically significant.
We speculate that such permutation could even serve as a form of data augmentation, since in some
cases mean metrics increased with permutation. Notably, after retraining on permuted sequences, we
observed a significant drop on the MBD dataset. At first, this seems to contradict the results from
the previous section. However, upon considering that the time component was also removed, we
conclude that in the MBD dataset, time component is crucial while the order is not.

From both experiments, we conclude that sequence order is important for EvS assessment, but it is
less critical than expected for real-world datasets and varies from dataset to dataset.

4.6 IMPORTANCE OF TIME

Next, we evaluate the role of time in EvS. Similarly to the previous section, we perform two
experiments: 1) using random time-steps on pre-trained models during testing, and 2) adding or
removing time as an extra feature to train the models.

Incorporation of Event Time Information into Models To evaluate the importance of time, we
follow a simple procedure. First, we note that time is rescaled during preprocessing. After that, there
are three options to incorporate it into the model, all of which are searchable during hyperparameter
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Table 5: Including vs. Excluding time as a feature. We take top 3 sets of hyperparameters from HPO
step for each option and report test metrics. Highlighted bold if adding time significantly improves
performance. MLEM not included since it has fixed time process option - copied from best CoLES

CoLES GRU Mamba MLP mTAND PrimeNet Transformer
Dataset Time process

Age w/o time 0.632± 0.002 0.622± 0.005 0.612± 0.002 0.587± 0.006 0.583± 0.005 0.582± 0.006 0.609± 0.005

with time 0.633± 0.009 0.629± 0.005 0.616± 0.005 0.588± 0.005 0.588± 0.004 0.594± 0.005 0.620± 0.005

MBD w/o time 0.817± 0.002 0.818± 0.001 0.815± 0.001 0.801± 0.002 0.777± 0.013 0.757± 0.011 0.813± 0.001

with time 0.825± 0.000 0.826± 0.001 0.822± 0.001 0.808± 0.000 0.797± 0.000 0.781± 0.003 0.823± 0.000

MIMIC-III w/o time 0.902± 0.002 0.896± 0.003 0.892± 0.001 0.869± 0.002 0.882± 0.001 0.885± 0.002 0.886± 0.001

with time 0.904± 0.001 0.897± 0.002 0.896± 0.001 0.879± 0.001 0.890± 0.005 0.888± 0.002 0.895± 0.001

Pendulum w/o time 0.621± 0.003 0.622± 0.007 0.626± 0.004 0.160± 0.000 0.893± 0.019 0.792± 0.010 0.598± 0.003

with time 0.905± 0.002 0.895± 0.000 0.908± 0.002 0.170± 0.000 0.942± 0.002 0.852± 0.004 0.864± 0.003

PhysioNet2012 w/o time 0.839± 0.002 0.840± 0.003 0.835± 0.001 0.841± 0.002 0.842± 0.002 0.844± 0.001 0.834± 0.004

with time 0.843± 0.002 0.841± 0.006 0.840± 0.004 0.837± 0.004 0.845± 0.001 0.842± 0.003 0.838± 0.003

Taobao w/o time 0.705± 0.005 0.685± 0.014 0.693± 0.004 0.637± 0.042 0.664± 0.004 0.653± 0.007 0.702± 0.007

with time 0.712± 0.004 0.705± 0.010 0.666± 0.058 0.666± 0.018 0.679± 0.003 0.665± 0.040 0.711± 0.002

Retail w/o time 0.551± 0.001 0.543± 0.001 0.539± 0.001 0.525± 0.000 0.518± 0.000 0.518± 0.001 0.530± 0.002

with time 0.551± 0.001 0.543± 0.001 0.539± 0.001 0.525± 0.002 0.519± 0.001 0.524± 0.004 0.541± 0.003

Table 6: Trained models evaluation with random timestamps. Values with statistically significant
difference (p-value < 0.01) in performance are highlighted and marked with asterisk.

Dataset Age MBD MIMIC-III Pendulum PhysioNet2012 Retail Taobao
Metric Accuracy Mean ROC AUC ROC AUC R2 ROC AUC Accuracy ROC AUC

Method Time

mTAND Real 0.582± 0.009 0.798± 0.002 0.888± 0.003 0.941± 0.009 0.841± 0.005 0.519± 0.003 0.672± 0.010
Random 0.581± 0.009 0.795± 0.002∗ 0.886± 0.003 0.580± 0.067∗ 0.840± 0.005 0.519± 0.004 0.666± 0.010

PrimeNet Real 0.583± 0.011 0.780± 0.006 0.887± 0.004 0.842± 0.017 0.839± 0.004 0.521± 0.003 0.681± 0.010
Random 0.582± 0.010 0.775± 0.006 0.884± 0.004 0.260± 0.108∗ 0.840± 0.004 0.521± 0.003 0.680± 0.011

optimization (HPO): No time - Do not use time at all; Time delta - Compute the time difference
from the previous step and concatenate it as a feature; Absolute time - Concatenate the rescaled time
as a feature.

The results in Table 5 indicate that time significantly improves performance, if added, to three datasets:
MBD, MIMIC-III, and Pendulum. Surprisingly, it is important for almost all datasets if we use the
Transformer. However, we cannot make the claim for other methods and datasets that the time is not
important, as there are various other ways to incorporate it into models that may show statistically
significant improvements, but we did not explore them.

Random Timestamps In our work, two methods are specifically designed to model the time
component: mTAND (Shukla & Marlin, 2021) and PrimeNet (Chowdhury et al., 2023). We evaluated
them on test data with noisy timestamps, where the original timestamps were replaced with random
values sorted in ascending order. The results are presented in Table 6. While time is important
for these models on the synthetic Pendulum dataset, it did not contribute significantly to the other
datasets.

From the observations above, we first see that time is important and contributes to EvS assessment.
Secondly, we observe that methods specifically designed to work with time do not effectively capture
temporal dependencies on real-world datasets. This emphasizes the importance of developing or
testing new methods on EvS that can model the time component on real-world datasets.

5 RELATED WORK

Event Sequences is an important domain that encompasses a variety of tasks. There are several
distinct research directions that involve Event Sequences. Predictive Process Monitoring (PPM)
is a crucial branch of process mining focused on forecasting the future states of ongoing business
processes. It involves analyzing event logs to predict various outcomes, such as process completion
time, subsequent events, or final outcomes of process instances Teinemaa et al. (2019); Márquez-
Chamorro et al. (2017); Rama-Maneiro et al. (2021); Tax et al. (2020). One related to PPM but distinct
problem is Event detection Azib et al. (2023), accurately identifying specific events is vital for making
informed decisions. Deep Learning-based Temporal Point Processes, which primarily aims at

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

predicting the type and timing of the next event Xue et al. (2024). Event Sequence Analysis employs
visual methods for data analysis Zinat et al. (2024). This approach focuses on building libraries. In
our work, we focus on another important yet understudied task: Event Sequence assessment, which
primarily includes the classification or regression of entire sequences. Therefore, our research is
distinct from previously studied benchmarks on time series classification and other studies that also
address the domain of EvS.

The UCR Time Series Archive, widely used for time-series classification, is limited to univariate time
series, offering 128 datasets for algorithm evaluation (Dau et al., 2019). Despite its extensive use,
this benchmark does not address the complexity of event sequence data, crucial for many real-world
applications. The torchtime package (Darke et al., 2022) extends the utility of UEA & UCR
datasets by providing reproducible implementations for PyTorch, simplifying data access and ensuring
fair model comparisons, it is still primarily focuses on time series classification. EasyTPP (Xue et al.,
2024) is a new benchmark targeting streams of discrete events, offering a centralized repository for
evaluating TPP models. It emphasizes reproducible research through a standardized benchmarking
framework and provides various research assets. However, EasyTPP cannot be extended to handle
general EvS, as event sequences generally cannot be modeled using TPP. The sequence of card
transactions made by a client is a good example of EvS. Each transaction is characterized by attributes
such as transaction amount and merchant category code, making them unfit for time series or discrete
event streams categories. Authors in Bazarova et al. (2024); Yugay & Zaytsev (2024); Babaev et al.
(2022) evaluate several representation learning approaches on event sequences. In Bazarova et al.
(2024), the authors propose a protocol for evaluating obtained representations on a set of downstream
tasks.

6 CONCLUSION

In this work, we presented EBES, an open and comprehensive benchmark for the standardized
and transparent comparison of event sequence models. The benchmark includes a diverse range of
datasets and models. Additionally, it provides a user-friendly interface and a rich library, allowing
for the easy integration of new datasets and the implementation of new models. With these features,
EBES has the potential to facilitate future research in event sequence modeling significantly.

We emphasize the importance of HPO and cross-validation for fair model evaluation. Moreover, we
recommend performing several runs to validate if the model performance is statistically significant,
especially on small datasets. This is also supported by scaling experiments, where model rankings
tend to change significantly on smaller data sizes and slowly converge to the same point as the data
size grows while the standard deviation decreases.

Our analysis of datasets highlights two crucial points. We found that results on the PhysioNet2012
dataset are not statistically distinguishable. Therefore, future researchers should be cautious when
deriving conclusions for EvS assessment based on results obtained with this dataset. Another
observation is that out-of-time data splits naturally tend to have a distribution shift, and one should
account for it during model validation and HPO. For example, this appears in the low correlation
between the Taobao dataset’s validation and test metric values.

We demonstrate that the importance of time and the sequential nature of the data varies for real-world
datasets concerning EvS assessment. Similarly, different models capture these properties differently.
Developing or testing models that inherently account for the time component on real-world data
could be a promising direction for future research.

7 LIMITATIONS

We acknowledge that conducting a full HPO (Hyperparameter Optimization) process requires sub-
stantial computational resources, which may not be available to all users. The development of more
efficient strategies for proper model evaluation could be a promising direction for future research.

Our work focuses solely on one task—EvS assessment while there are various tasks applied to EvS.
We leave this for future work.

8 REPRODUCIBILITY STATEMENT

We made available all the code necessary to run our experiments and generate the corresponding
figures. Additionally, we include raw logs from all experiments, including valuable data obtained
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during the HPO process. Each experiment was conducted with fixed random seeds, ensuring that
model training yields consistent results when the same seeds are used.

Our code repository includes:

• Configuration files with specifications for the HPO process.
• Implementations of all the methods mentioned in this paper, along with their best hyperpa-

rameters.
• A complete data preprocessing pipeline for each dataset used in our study.

By following the instructions provided in our repository, you should be able to reproduce our results
accurately.
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A APPENDIX

B MODELS DESCRIPTION

GRU We have chosen to use the GRU as one of our base models due to its proven effectiveness
in encoding time-ordered sequences Babaev et al. (2022); Rubanova et al. (2019); Tonekaboni
et al. (2021); Yoon et al. (2019); Udovichenko et al. (2024). In recent study on neural architecture
search Udovichenko et al. (2024)), authors demonstrated that architectures with RNN blocks tend to
exhibit higher performance on average on EvS assesment task.
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MLP The models applied 3 linear layers with the ReLU nonlinearity and dropouts in between to
the aggregated embeddings obtained right after the preprocessing block. So effectively the model is
just a basic MLP applied to aggregations. Models for EvS handles the sequential nature of data in a
special way, ofthen considering the exact time intervals between the events, so we were interested in
the performance of the model, that consciously discards the sequential nature of data.

Mamba Mamba Gu & Dao (2023) is a recent state-space model (SSM) that has been designed
for efficient handling of complex, long sequences. It incorporates selective state spaces to deliver
top-notch performance across different modalities, including language, audio, and genomics, outper-
forming Transformers in some scenarios. For the best of our knowledge Mamba has not been applied
to EvS assessment previously, however, we believe that type of models worth of investigating.

mTAND Authors in Shukla & Marlin (2021) proposed an architecture which learns an embedding
of continuous-time values and utilizes an attention mechanism to produce a fixed-length representation
of a time series. This procedure is specifically designed to deal with ISTS and has been shown
to outperform numerous ordinary differential equations-based models such as Latent ODE and
ODE-RNN Rubanova et al. (2019).

CoLES The contrastive pretraining method for sequential data was proposed by Babaev et al.
(2022). We specifically focus on this method due to its superior performance compared to other
contrastive approaches demonstrated in the work. CoLES learns to encode a sequence into a latent
vector by bringing sub-sequences of the same sequence closer in the embedding space while pushing
sub-sequences from different sequences further apart.

PrimeNet The method proposed in Chowdhury et al. (2023) also, falls under the category of
self-supervised. It utilizes time-sensitive contrastive pretraining and enhances pretraining procedure
with data reconstruction tasks to facilitate the usage of unlabeled data. Authors modify mTAN
architecture by replacing an RNN block with Feature-Feature Attention.

MLEM The Multimodal Learning Event Model Moskvoretskii et al. (2024) is a recently proposed
method for Event Sequences that unifies contrastive learning with generative modeling. It treats
generative pre-training and contrastive learning as distinct modalities. First, a contrastive encoder
is trained, followed by an encoder-decoder that learns latent states using reconstruction loss while
aligning with contrastive embeddings to enhance the embedding information.

C DATASETS DESCRIPTION

PhysioNet2012 dataset2 was first intruduced in Goldberger et al. (2000). It includes multivariate
time series data with 37 variables gathered from intensive-care unit (ICU) records. Each record
contains measurements taken at irregular intervals during the first 48 hours of ICU admission. We
used set-a as a train set and set-b as a test set. Both sets contain 4000 labeled sequences.

MIMIC-III dataset3 Johnson et al. (2016) consists of multivariate time series data featuring sparse
and irregularly sampled physiological signals, collected at Beth Israel Deaconess Medical Center from
2001 to 2012. While we aimed to follow the general pipeline outlined in Shukla & Marlin (2018), we
made several modifications to enhance the accuracy and reproducibility of our approach. Importantly,
we did not alter the original problem statement: we excluded series that last less than 48 hours and
used the first 48 hours of observations from the remaining series to predict in-hospital mortality.
These adjustments were necessary to address certain issues and improve the overall robustness of our
analysis.

Age dataset4 consists of 44M anonymized credit card transactions representing 50K individuals.
The target is to predict the age group of a cardholder that made the transactions. The multiclass target

2https://physionet.org/content/challenge-2012/1.0.0/
3https://physionet.org/content/mimiciii/1.4/
4https://ods.ai/competitions/sberbank-sirius-lesson
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label is known only for 30K records, and within this subset the labels are balanced. Each transaction
includes the date, type, and amount being charged. The dataset was first introduced in scientific
literature in work Babaev et al. (2022).

Retail dataset5 comprises 45.8M retail purchases from 400K clients, with the aim of predicting a
client’s age group based on their purchase history. Each purchase record includes details such as time,
item category, the cose, and loyalty program points received. The age group information is available
for all clients, and the distribution of these groups is balanced across the dataset. The dataset was first
introduced in scientific literature in work Babaev et al. (2022).

MBD is a multimodal banking dataset introduced in Dzhambulat et al. (2024). The dataset contains
an industrial-scale number of sequences, with data from more than 1.5 million clients. Each client
corresponds to a sequence of events. This multi-modal dataset includes card transactions, geo-position
events, and embeddings of dialogs with technical support. The goal is to predict the purchases of four
banking products in each month, given the historical data from the previous month. For our analysis,
we use only card transactions.

Since we focused on the event sequence assessment task, we restricted our setup as follows. To
predict the purchases, we use transactions from the preceding month. For example, we use a sequence
from June to predict a label by the last day of July. We did not use out-of-time validation, as the
labeled time span of the data is less than a year. The authors of the dataset split the data into 5 folds
(0–4), we use fold 4 as the test fold.

Taobao dataset comprises user behaviors from Taobao, including clicks, purchases, adding items
to the shopping cart, and favoriting items. These events were collected between November 18 and
December 15. For our analysis, we treat each week of clicks as a sequence and aim to predict
payments for the subsequent 7 days following the selected week. The training set encompasses data
from November 18 to December 1, while the test set includes clicks from December 2 to December
15.

Pendulum Inspired by Moskvoretskii et al. (2024) we created a pendulum dataset to evaluate
time-dependent models. The Pendulum dataset is specifically designed for event sequence assessment
tasks, featuring irregular timestamps and missing values. Its task requires models to consider multiple
events for predictions, making it effective in evaluating temporal modelling capabilities.

The dataset simulates damped pendulum motion with varying lengths. Observation times are sampled
irregularly using a Hawkes process, emphasizing the importance of accurate event timing for real-
world applications. Each sequence in the dataset consists of events represented by time and two
normalized coordinates (x, y), with some values randomly dropped. The goal is to predict the
damping factor. We publish the reproducible code to generate the dataset.

To model the Hawkes process, we consider the following intensity function λ(t) that is given by (1).

λ(t) = µ+
∑
ti<t

αe−β(t−ti) (1)

We used following parameters for the Hawkes process:

• µ is the base intensity;

• α is the excitation factor, was chosen to be 0.5;

• β is the decay factor, was set to 1.

• ti are the times of previous events before time t.

The time points are sampled within the interval [0, end time], where the end time is sampled from
a uniform distribution U(3, 5). To maintain an approximately constant number of points (30) per
sequence, we adjust the base intensity µ as follows:

5https://ods.ai/competitions/x5-retailhero-uplift-modeling
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µ = 30× 1− α

end time − 1

This ensures each sequence has a dynamic time interval but approximately the same number of points,
preventing the model from learning the timestamp distribution without using timestamp data.

To model the pendulum we consider the second-order differential equation:

θ′′ +

(
b

m

)
θ′ +

( g

L

)
sin(θ) = 0 (2)

where,

• θ′′ is the Angular Acceleration,
• θ′ is the Angular Velocity,
• θ is the Angular Displacement,
• b is the Damping Factor,
• g = 9.81m/s2 is the acceleration due to gravity,
• L is the Length of pendulum,
• m is the Mass of bob in kg.

To convert this second-order differential equation into two first-order differential equations, we let
θ1 = θ and θ2 = θ′, which gives us:

θ′2 = θ′′ = −
(

b

m

)
θ2 −

( g

L

)
sin(θ1) (3)

θ′1 = θ2 (4)

Thus, the first-order differential equations for the pendulum simulation are:

θ′2 = −
(

b

m

)
θ2 −

( g

L

)
sin(θ1) (5)

θ′1 = θ2 (6)

In our simulations, the damping factor b is sampled from a uniform distribution U(1, 3), and the mass
of the bob m = 1. The length L of the pendulum is taken from a uniform distribution U(0.5, 10),
representing a range of possible lengths from 0.5 to 10 meters. The initial angular displacement θ is
sampled from a uniform distribution U(0, 2π), and the initial angular velocity θ′ is sampled from
a uniform distribution U(−π, π), providing a range of initial conditions in radians and radians per
second, respectively.

Our primary objective is to predict the damping factor b, using the normalized coordinates x and y on
the plane. These coordinates are scaled with respect to the pendulum’s length, such that the trajectory
of the pendulum is represented in a unitless fashion. This normalization allows us to abstract the
pendulum’s motion from its actual physical dimensions and instead focus on the pattern of movement.
Additionally, we randomly drop 10% of values for both coordinates. An illustrative example of this
motion is presented in Figure 5.

D HPO DETAILS

Hyperparameter Optimization (HPO) is a critical step in the development and evaluation of machine
learning models. It involves systematically searching for the optimal set of hyperparameters that
maximize model performance. In this section, we outline our main evaluation methodology and HPO
process, which is detailed in Algorithm 1.

Our approach includes two main steps: the HPO step and the final evaluation step. In the HPO step,
we use the Tree-structured Parzen Estimator (TPE) to efficiently search the hyperparameter space.
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Figure 5: Pendulum motion at various instances, with time steps determined by a Hawkes process.

We split the training dataset into three subsets: train (70%), train-val (15%), and hpo-val
(15%). The model is trained on the train set, and its performance is evaluated on the train-val
set to determine when to stop training. The hpo-val set is used to update the TPE sampler and
guide the selection of hyperparameters.

After the HPO step, we proceed to the final evaluation step. Here, we use the best hyperparameters
(BHP) identified in the HPO step to train and evaluate the model multiple times with different random
seeds. This ensures that our results are robust and not dependent on a particular random initialization.
The training dataset is split into train (85%) and train-val (15%) sets, and the model is trained
until performance on the train-val set stops improving or until the training budget is exhausted.
Finally, we evaluate the model on the test set and report the mean and standard deviation of the test
metrics.

For more details about the HPO process, we refer to our Algorithm 1.

Algorithm 1 Our main evaluation methodolgy and HPO, here Nhpo - is HPO budget, MaxIters -
training budget, Nseeds - a number of iterations for random seed runs.

1: MaxIters = 105

2: Nseeds = 20
3: start HPO step
4: split train dataset randomly into three subsets train (70%), train-val (15%) and hpo-val

(15%)
5: initalize TPE
6: for i = 1, 2, . . . , Nhpo do
7: set model hyper parameters with TPE
8: train a model until performance on train-val set stops improving or until we run out from

the budget MaxIters.
9: update TPE sampler using metrics obtained on hpo-val

10: end for
11: select best hyper parameters (BHP) according to hpo-val metrics
12: Start Final evaluation step
13: for seed = 1, 2, . . . , Nseeds do
14: set a new random seed
15: randomly split train dataset into train (85%) and train-val (15%) sets
16: train a model with BHP until performance on train-val set stops improving or until we

run out from the budget MaxIters.
17: evaluate the model on test set
18: end for
19: Report mean and std of test metrics from Final evaluation step
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Figure 6: Performance metric relationships and correlations of different subsets among all methods
on Age dataset
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Figure 7: Performance metric relationships and correlations of different subsets among all methods
on MBD dataset
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Figure 8: Performance metric relationships and correlations of different subsets among all methods
on MIMIC-III dataset
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Figure 9: Performance metric relationships and correlations of different subsets among all methods
on Pendulum dataset
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Figure 10: Performance metric relationships and correlations of different subsets among all methods
on PhysioNet2012 dataset

0.5 0.6 0.7 0.8 0.9
train metric

0.4

0.5

0.6

0.7

0.8

tra
in

-v
al

 m
et

ric

HPO step
Spearman: 0.879, Pearson: 0.955

0.5 0.6 0.7
train-val metric

0.50

0.55

0.60

0.65

0.70

0.75

hp
o-

va
l m

et
ric

HPO step
Spearman: 0.924, Pearson: 0.983

0.5 0.6 0.7
hpo-val metric

0.45

0.50

0.55

0.60

0.65

0.70

te
st

 m
et

ric

HPO step
Spearman: 0.814, Pearson: 0.831

0.60 0.65 0.70 0.75 0.80
train-val metric

0.55

0.60

0.65

0.70

te
st

 m
et

ric

Final evaluation step
Spearman: 0.669, Pearson: 0.546

CoLES GRU MLEM MLP Mamba PrimeNet Transformer mTAND

Figure 11: Performance metric relationships and correlations of different subsets among all methods
on Taobao dataset
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Figure 12: Performance metric relationships and correlations of different subsets among all methods
on Retail dataset

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

F NUMBER OF LEARNABLE PARAMETERS

We report number of learnable parameters of each model from Table 2 in Table7

Age MBD MIMIC-III Pendulum PhysioNet2012 Retail Taobao

CoLES 433,458 9,104,269 236,481 1,065,960 401,617 2,279,823 4,029,658
GRU 122,326 11,224,624 1,069,388 171,563 2,345,326 3,810,738 103,745
MLEM 8,969,377 14,033,623 13,218,268 2,601,028 1,735,431 6,092,930 7,412,749
Mamba 362,712 52,396,837 798,336 2,004,991 35,262,580 22,422,908 1,161,412
Transformer 1,027,268 135,192,356 22,169,736 3,263,399 309,989,960 277,133,402 1,525,924
mTAND 27,460 5,076,127 48,658 761,029 756,580 103,790 4,128,148
MLP 522,440 6,425,603 1,040,840 1,288,793 47,242 347,269 113,566
PrimeNet 38,840 1,661,408 1,516,820 162,029 411,226 94,845 1,328,836

Table 7: Number of learnable parameters in each model from Table 2

G HPO ANALISYS

This section presents a comprehensive evaluation of different aggregation and normalization ap-
proaches, as well as the importance of learning rates, for various models across multiple datasets.

Table 8 compares two aggregation methods: using the last hidden state and the mean of all hidden
states. The results indicate that the choice of aggregation method can significantly impact model
performance. For instance, in the Age dataset, the mean hidden state approach improves performance
for models like GRU and Mamba, while the last hidden state approach is more effective for mTAND.
Similarly, Table 9 evaluates the impact of batch normalization on input features. The results show
that batch normalization can enhance model performance in many cases.

Additionally, Table 10 ranks the importance of learning rate hyperparameter for different models and
datasets using Optuna. The rankings highlight that the learning rate is a critical hyperparameter, with
its importance varying across different dataset and model combinations. For example, the learning
rate is ranked highest for Mamba across all datasets, indicating its significant impact on model
performance. These findings provide valuable insights into the optimal configuration of models for
different datasets and can guide future research in hyperparameter optimization.

Table 8: Different aggregation approaches: mean across all hidden states or last hidden state. We take
top 3 sets of hyperparameters from HPO step for each option and report test metrics. Highlighted
bold if adding time significantly improves performance.

CoLES GRU Mamba MLEM MLP mTAND Transformer
Dataset Aggregation

Age Last hidden 0.631± 0.001 0.616± 0.004 0.593± 0.003 0.637± 0.004 0.340± 0.002 0.588± 0.004 0.600± 0.008

Mean hidden 0.630± 0.004 0.629± 0.005 0.616± 0.005 0.628± 0.008 0.588± 0.005 0.579± 0.001 0.617± 0.004

MBD Last hidden 0.825± 0.000 0.826± 0.001 0.822± 0.001 0.823± 0.001 0.756± 0.000 0.797± 0.000 0.819± 0.000

Mean hidden 0.821± 0.002 0.822± 0.001 0.822± 0.001 0.820± 0.003 0.808± 0.000 0.787± 0.001 0.823± 0.000

MIMIC-III Last hidden 0.904± 0.001 0.897± 0.002 0.889± 0.001 0.897± 0.001 0.879± 0.001 0.890± 0.005 0.895± 0.001

Mean hidden 0.897± 0.002 0.894± 0.002 0.896± 0.001 0.895± 0.001 0.875± 0.001 0.885± 0.003 0.888± 0.003

Pendulum Last hidden 0.905± 0.002 0.884± 0.003 0.886± 0.007 0.889± 0.001 0.130± 0.001 0.942± 0.002 0.848± 0.006

Mean hidden 0.903± 0.002 0.895± 0.000 0.908± 0.002 0.890± 0.004 0.170± 0.000 0.899± 0.025 0.864± 0.003

PhysioNet2012 Last hidden 0.843± 0.002 0.841± 0.006 0.840± 0.004 0.844± 0.004 0.837± 0.004 0.844± 0.000 0.838± 0.003

Mean hidden 0.827± 0.002 0.803± 0.011 0.806± 0.009 0.826± 0.013 0.808± 0.001 0.844± 0.001 0.831± 0.011

Taobao Last hidden 0.712± 0.004 0.705± 0.010 0.671± 0.038 0.714± 0.002 0.611± 0.028 0.679± 0.003 0.711± 0.001

Mean hidden 0.698± 0.017 0.696± 0.026 0.666± 0.058 0.707± 0.003 0.666± 0.018 0.675± 0.002 0.711± 0.002

Retail Last hidden 0.551± 0.001 0.543± 0.000 0.528± 0.000 0.545± 0.002 0.342± 0.001 0.518± 0.001 0.537± 0.001

Mean hidden 0.546± 0.001 0.541± 0.001 0.539± 0.001 0.540± 0.002 0.525± 0.002 0.519± 0.001 0.541± 0.003
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Table 9: Different normalization approaches: with vs without Batch Normalization for input features.
We take top 3 sets of hyperparameters from HPO step for each option and report test metrics.
Highlighted bold if adding time significantly improves performance.

CoLES GRU Mamba MLEM MLP mTAND PrimeNet Transformer
Dataset Normalization

Age with norm 0.629± 0.002 0.628± 0.006 0.616± 0.005 0.636± 0.004 0.588± 0.005 0.588± 0.004 0.584± 0.008 0.616± 0.010

w/o norm 0.636± 0.005 0.624± 0.003 0.614± 0.007 0.639± 0.006 0.582± 0.002 0.585± 0.003 0.594± 0.005 0.617± 0.004

MBD with norm 0.825± 0.000 0.826± 0.001 0.822± 0.001 0.811± 0.010 0.808± 0.000 0.787± 0.002 0.778± 0.003 0.822± 0.001

w/o norm 0.823± 0.000 0.822± 0.001 0.819± 0.000 0.823± 0.001 0.806± 0.001 0.797± 0.000 0.778± 0.005 0.822± 0.001

MIMIC-III with norm 0.904± 0.001 0.897± 0.002 0.896± 0.001 0.897± 0.001 0.879± 0.001 0.890± 0.005 0.886± 0.000 0.895± 0.001

w/o norm 0.884± 0.004 0.882± 0.006 0.880± 0.005 0.880± 0.006 0.849± 0.008 0.877± 0.001 0.888± 0.002 0.874± 0.001

Pendulum with norm 0.872± 0.002 0.853± 0.006 0.884± 0.003 0.844± 0.004 0.144± 0.000 0.921± 0.001 0.829± 0.013 0.864± 0.004

w/o norm 0.905± 0.002 0.895± 0.000 0.908± 0.002 0.892± 0.002 0.170± 0.000 0.942± 0.002 0.852± 0.004 0.859± 0.002

PhysioNet2012 with norm 0.843± 0.002 0.841± 0.006 0.840± 0.004 0.844± 0.004 0.837± 0.004 0.845± 0.001 0.844± 0.001 0.838± 0.003

w/o norm 0.775± 0.009 0.781± 0.012 0.832± 0.003 0.749± 0.011 0.814± 0.009 0.808± 0.010 0.835± 0.009 0.787± 0.006

Taobao with norm 0.712± 0.004 0.705± 0.010 0.666± 0.058 0.714± 0.002 0.666± 0.018 0.679± 0.003 0.665± 0.040 0.711± 0.002

w/o norm 0.706± 0.001 0.703± 0.006 0.685± 0.019 0.709± 0.000 0.568± 0.068 0.654± 0.015 0.655± 0.009 0.708± 0.001

Retail with norm 0.551± 0.001 0.543± 0.000 0.539± 0.001 0.545± 0.002 0.525± 0.002 0.519± 0.001 0.524± 0.004 0.541± 0.003

w/o norm 0.539± 0.004 0.523± 0.004 0.521± 0.003 0.530± 0.003 0.511± 0.001 0.515± 0.003 0.518± 0.001 0.435± 0.012

Table 10: Learning Rate Importance by Optuna Ranking (Smaller Rank = Higher Importance). There
is a unique best Learning Rate for each Dataset/Method combination

Age MBD MIMIC-III Pendulum PhysioNet2012 Taobao Retail

CoLES 1 10 2 7 3 1 4
GRU 2 1 2 3 4 1 1

Mamba 1 1 1 1 1 1 1
MLEM 2 3 6 11 4 1 1

MLP 2 1 3 5 1 2 1
mTAND 1 1 1 1 3 1 1

PrimeNet 11 1 1 2 1 1 1
Transformer 1 4 7 1 10 3 8
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