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ABSTRACT

Low-light image enhancement (LLIE) methods have recently adopted the HVI
color space, which alleviates the entanglement between luminance and color and
improves color fidelity through chrominance polarization and intensity compres-
sion. However, existing approaches may suffer from error accumulation during
the interaction between luminance and chrominance components, and the lack of
fine-grained modeling of color distribution can lead to unsatisfactory enhancement
results. To address these challenges, we propose a novel low-light image enhance-
ment framework, Learning to Enhance Low-Light Images with Reliable Attention
and Reinforced Distribution Alignment. Specifically, we introduce two key mod-
ules: the Reliable Cross Attention (RCA) module, which aggregates luminance
and chrominance features with reliable queries, and the Reinforced Distribution
Alignment (RDA) module, which robustly fits the color distribution in a more
fine-grained manner. These designs significantly improve the quality of enhanced
images under low-light conditions. Extensive experiments on multiple benchmark
datasets demonstrate that our method achieves state-of-the-art performance com-
pared with existing approaches.

1 INTRODUCTION

Images captured by imaging sensors in low-light conditions often suffer from significant noise. To
address this issue, the task of low-light image enhancement has emerged, focusing on improving
brightness, contrast, and the visibility of details in dark environments. In addition to its standalone
benefits, low-light enhancement serves as an important foundation for various downstream vision
tasks, such as object detection Zou et al. (2023), tracking Feichtenhofer et al. (2017), and image
matching Cheng et al. (2025). However, in the conventional RGB color space, color and luminance
are closely intertwined, which can lead to color distortions or unnatural brightness after enhance-
ment. To alleviate these problems, multiple distinct categories of methods have been developed.

Traditional sRGB-based methods Wang et al. (2022a) often cause color shifts and distortions due to
the coupling of luminance and chromaticity. To address this, some approaches Guo & Hu (2023)
convert images to the HSV color space for more precise luminance enhancement. However, HSV
introduces new issues such as red channel discontinuities and black-plane noise, resulting in vi-
sual artifacts and color distortions. To tackle these challenges, CIDNet Yan et al. (2025) introduces
the HVI color space, which is specifically designed for low-light image enhancement. The HVI
color space polarizes the hue-saturation plane to reduce red-channel discontinuities and employs
a learnable intensity compression function to adaptively suppress low-luminance areas, effectively
minimizing black noise artifacts. This design significantly enhances both color fidelity and per-
ceived naturalness in low-light conditions. Nevertheless, residual noise and incomplete decoupling
between luminance and chromaticity still introduce errors during feature interaction, which degrade
the overall naturalness and smoothness of enhanced images. Moreover, due to the challenges in
precisely modeling the distribution in HV space, global color distortions remain a common issue.

From our discussion on HVI-based methods, we have identified two main challenges that need to be
addressed to achieve more accurate and robust low-light image enhancement. (1) How to efficiently
aggregate luminance and chromaticity features while avoiding noise amplification. Previous ap-
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Figure 1: (a) Visualization comparing our method with traditional interactions. (b) Comparison
between point-based and distribution-based modeling, showing that distribution modeling provides
a more fine-grained fit to the target distribution. (c) Visualization of distribution modeling, where
clustering and Gaussian mixture modeling effectively capture the distributions.

proaches often employ conventional transformer-based interactions, which tend to amplify noise
when low-quality regions from luminance and color spaces are aggregated. This leads to noticeable
degradation in overall image quality. To address this issue (see Figure 1(a)), we argue that leveraging
high-quality features to guide aggregation can better align the enhancement process with real-scene
information, thereby improving enhancement quality while suppressing the interference of noisy or
invalid features in dark regions. (2) How to precisely constrain the distribution of chromaticity
features to achieve more natural color rendering. Existing methods commonly adopt point-based
constraints to approximate the feature distribution, but such strategies suffer from a lack of global
consistency and insufficient modeling of the overall distribution (Figure 1(b)). To overcome this
limitation, we propose to approximate the feature distribution with multiple fitted distributions (Fig-
ure 1(c)), enabling a more fine-grained characterization of the joint statistics between luminance and
chromaticity. Furthermore, we introduce a reinforcement learning mechanism to dynamically adjust
the distribution fitting process, allowing the model to adaptively select optimal distribution parame-
ters. This not only preserves global consistency but also enhances the naturalness and robustness of
the enhanced results.

To address the above challenges, we propose Learning to Enhance Low-Light Images with Reliable
Attention and Reinforced Distribution Alignment, which introduces two key modules: the Reli-
able Cross Attention (RCA) and Reinforced Distribution Alignment (RDA). RCA employs reliable
queries to bridge luminance and chromaticity features, replacing traditional transformer interac-
tions. This design suppresses noise from redundant features, improves the naturalness of enhanced
images, and reduces computational complexity for higher efficiency. RDA targets the chromaticity
components (H and V), applying unsupervised clustering and Gaussian modeling to capture multiple
distributions. A reinforcement learning mechanism then dynamically adjusts distribution parame-
ters for better alignment with global chromaticity statistics. As a result, our model achieves more
natural and stable enhancement, especially under low-light conditions.

In summary, our contributions are threefold:

1. We propose a novel framework, Learning to Enhance Low-Light Images with Reliable Atten-
tion and Reinforced Distribution Alignment, achieving state-of-the-art performance in low-light
image enhancement.

2. We propose the Reliable Cross Attention (RCA) module to adaptively aggregate luminance and
chromaticity features, suppress noise, and enhance illumination balance and color fidelity. Addi-
tionally, we introduce the Reinforced Distribution Alignment (RDA) module, which models mul-
tiple chromaticity distributions using Gaussian clustering and dynamically refines them through
reinforcement learning, leading to clearer and more natural results.

3. Extensive experiments and ablation studies on ten benchmark datasets validate the superiority of
our method.

2
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2 RELATED WORKS

In this section, we review existing approaches for low-light image enhancement.
Traditional Methods. Early low-light enhancement methods were largely heuristic and did not
require training data. Histogram equalization Pizer et al. (1987) and gamma correction Rahman
et al. (2016) improve contrast and brightness by redistributing pixel intensities, but often ignore
scene illumination, leading to over-enhanced or washed-out results. Retinex-based approaches Land
& McCann (1971); Rahman et al. (2004) decompose an image into illumination and reflectance
components and refine the illumination with structural priors. Although more physically motivated,
they rely on idealized assumptions and are prone to noise amplification and color distortion in real-
world conditions.
Learning-Based Methods. Deep learning has transformed low-light enhancement into a data-
driven task. RetinexNet Wei et al. (2018) and KinD Zhang et al. (2019) embed Retinex decompo-
sition into CNNs, but remain sensitive to illumination estimation, often amplifying noise or shifting
colors. ZeroDCE Guo et al. (2020) and RUAS Liu et al. (2021) avoid explicit decomposition by
learning pixel-adaptive curves or structural priors, but may introduce artifacts or unstable chromi-
nance. Flow-based methods such as LLFlow Wang et al. (2022a) deliver high-fidelity restora-
tion via normalizing flows, but incur heavy computational costs and require paired data. GAN-
based approaches like EnlightenGAN Jiang et al. (2021) enhance perceptual realism through ad-
versarial training, though sometimes at the expense of unnatural textures. UFormer Wang et al.
(2022b) introduces a Transformer-based U-shaped architecture with a Locally-enhanced Window
Transformer and multi-scale restoration modulator, achieving top performance in image restora-
tion. Restormer Zamir et al. (2022a) presents an efficient Transformer model with a multi-Dconv
head attention mechanism and multi-scale design, excelling in image deraining, deblurring, and
denoising. MIRNet Zamir et al. (2022b) uses multi-scale residual blocks and non-local atten-
tion to preserve spatial details and context, achieving state-of-the-art results in image denoising,
super-resolution, and enhancement. SNR-aware networks Xu et al. (2022) integrate noise priors
to reduce artifacts but still struggle with color inconsistency. Transformer-based models, e.g., LL-
Former Wang et al. (2023) and RetinexFormer Cai et al. (2023), capture long-range dependencies
but lack explicit channel-level alignment. Bread Guo & Hu (2023) mitigates noise–color entangle-
ment in YCbCr space, GSAD Hou et al. (2023) employs a global structure-aware diffusion process,
and QuadPrior Wang et al. (2024) introduces physical priors to constrain illumination enhancement.
However, these methods often face issues such as overexposure, color shifts, or high computational
cost. RetinexMamba Bai et al. (2024) combines traditional Retinex theory with deep learning to
improve illumination estimation and noise suppression for low-light enhancement. More recently,
CIDNet Yan et al. (2025) explored the HVI color space to alleviate red discontinuities and black
noise. Our method builds upon existing low-light image enhancement techniques, addressing key
challenges in feature aggregation and chromaticity distribution modeling to achieve superior results.

3 METHOD

The proposed method is illustrated in Figure 2. The input image is first mapped to the HVI color
space to separate luminance from chromaticity, and then passed through the Reliable Cross Atten-
tion (RCA) module. This module aggregates luminance and chromaticity features using reliable
queries, effectively suppressing noise and enhancing naturalness. Next, the Reinforced Distribution
Alignment (RDA) module models chromaticity distributions through unsupervised clustering and
Gaussian mixture modeling, while reinforcement learning dynamically adjusts parameters for better
global alignment. Finally, the enhanced HVI representation is mapped back to the RGB color space.
The role of the HVI transformation is explained in the Appendix A.1.

3.1 RELIABLE CROSS ATTENTION MODULE

To establish robust and reliable interactions between the luminance and chromaticity features and
mitigate noise amplification during cross-domain feature aggregation, we propose the Reliable Cross
Attention (RCA) module. The RCA module employs a set of learnable query vectors Q0 ∈ RM×d

(where M denotes the number of query vectors) initialized close to zero to extract a compact col-
lection of high confidence descriptors denoted as RQ from the joint intensity-chromaticity repre-
sentation via cross attention. The input feature maps of the intensity and chrominance branches are

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

H

L

H
V

 C
o
lo

r 
M

a
p

N

H
V

IT

P
H

V
IT

V

I

Intensity Map

L
ea

r
n

a
b

le
 

Q
u

er
ie

s 
 𝑸

𝟎

Cross 

Attention

Reliable Cross Attention Module

R
C

A

R
C

A

R
C

A

R
C

A

𝑹𝑪𝑨×𝟐

Skip Connection

Skip Connection

Residual

𝑭𝑰
𝟏

𝑭𝒉𝒗
𝟏

𝑭𝒉𝒗
𝟏

𝑭𝑰
𝟏 𝑭𝑰

𝟐

𝑭𝒉𝒗
𝟐

RDA

Module

𝑭𝒉𝒗
𝟐

𝑭𝑰
𝟐

Reliable

Queries 𝑹𝑸

Q

Q

𝑲𝑰

𝑲𝒉𝒗

𝑹𝑴
𝑰

𝑹𝑴
𝑯𝑽

𝑽𝑰

𝑽𝒉𝒗

Density-k Guidance Addition

Concat

N(0,1)

∆𝝁

∆𝝈
Rewards

N(a,𝒃𝟐)
Reinforcement learning

RL 

Gaussian

Sampler

𝑳𝒅

𝝁

𝝈𝟐

E
n

co
d

er D
ec

o
d

erResample

N(a,𝒃𝟐)

𝑳𝒔

Reinforced Distribution Alignment Module 

𝑭𝒉𝒗
𝟐

𝑭(𝒉,𝒏)
𝟑

Clustering

𝑭(𝒉,𝒏)
𝟐

×2n

𝑭(𝒗,𝒏)
𝟐

H axis

V axis
(Same as above)

𝑭𝒉𝒗
𝟑

𝑭(𝒗,𝒏)
𝟑

𝑿𝑰

𝑿𝑯𝑽

Figure 2: The overall pipeline of our method process begins by transforming the input into the HVI
space. The Reliable Cross Attention (RCA) module aggregates luminance and chromaticity features
with reliable queries, suppressing noise and improving naturalness. The Reinforced Distribution
Alignment (RDA) module models chromaticity distributions via clustering and Gaussian modeling,
with reinforcement learning dynamically refining parameters for better global alignment. The final
enhanced image is reconstructed in the sRGB color space.

denoted by F 1
I ∈ RC×H×W and F 1

hv ∈ RC×H×W , respectively, which are flattened along spatial
dimensions to obtain token matrices XI ∈ RN×C and Xhv ∈ RN×C with N = H ·W .

RCA operates in two stages: extracting reliable queries from the joint intensity-chromaticity repre-
sentation, and guiding each branch with per-branch reliability maps that modulate the value tensors
before residual fusion. In the first stage, branch-specific linear projections produce keys and values,

KI = XIW
I
K , VI = XIW

I
V ,

Khv = XhvW
hv
K , Vhv = XhvW

hv
V ,

(1)

where W I
K ,W I

V ,Whv
K ,Whv

V ∈ RC×d are learned projection matrices and d is the scaling factor to stabilize
gradients. Through concatenation, joint key/value matrices are formed as:

Kjoint = Concat(KI ,Khv) ∈ RN′×d, Vjoint = Concat(VI , Vhv) ∈ RN′×d, (2)

when N ′ = 2N . The empty queries Q0 probe the joint matrix via scaled dot-product cross-attention to produce
a compact set of reliable query descriptors R ∈ RM×d:

Ajoint = softmax

(
Q0K

⊤
joint√
d

)
∈ RM×N′

, RQ = Ajoint Vjoint ∈ RM×d. (3)

In the second stage, the reliable queries RQ act as queries against each branch key to yield per-query compati-
bility maps for the intensity and HV branches:

RI
M = softmax

(
RQK

⊤
I√

d

)
∈ RM×N , RHV

M = softmax

(
RQK

⊤
hv√

d

)
∈ RM×N . (4)

where x ∈ {1, . . . , N}, RI
M and RHV

M denote the per-query compatibility maps in the I and HV branches,
respectively. Finally, these per-branch reliability maps multiplicatively modulate the branch value tensors
element-wise,

F̃ 2
I = RI

M VI(x), F̃ 2
hv = RHV

M Vhv(x), (5)

where F 2
I and F 2

hv denote the intermediate feature representations of the intensity and HV branches, respec-
tively. The modulated responses are projected back into the channel space and reshaped to the original spatial
resolution, then fused with input features via residual addition. Subsequently, LayerNorm is applied to stabilize
the feature distribution and enable reliable optimization, this step is omitted from Figure 2 for visual clarity.
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Overall, the RCA module selectively aggregates reliable information across intensity and chromaticity branches
while suppressing noise amplification, thereby improving enhancement quality and reducing computational
complexity from O(N2) to O(MN) where M is significantly smaller than N , compared to conventional
global attention mechanisms.

3.2 REINFORCED DISTRIBUTION ALIGNMENT MODULE

After obtaining high-quality luminance and chrominance components through the RCA module, we further
consider the distribution modeling of the chrominance branch. Previous methods lack targeted constraints in
this aspect, and common approaches that approximate the distribution via point-wise constraints often suf-
fer from insufficient global consistency and inadequate modeling of overall statistics. To address this issue,
we design the proposed RDA module, which models the distribution as a Gaussian Mixture Model (GMM)
Rasmussen (1999) through unsupervised clustering Xie et al. (2016). Furthermore, reinforcement learning is
employed to drive the policy that adaptively adjusts the posterior distribution along the H and V directions,
thereby fitting an optimal chrominance distribution for low-light image enhancement.

Formally, given the chrominance components FH , FV ∈ Rn×d, we first perform deep embedded clustering
Xie et al. (2016); Guo et al. (2018) to partition the features into K groups. Each group is then parameterized
by a Gaussian mixture model (GMM):

p(x) =

K∑
k=1

πk N (x | µk,Σk), (6)

where πk denotes the mixture weight, and µk,Σk are the mean and covariance of the k-th Gaussian compo-
nent. This formulation allows us to capture fine-grained statistics compared to single-point constraints. Given
clustered features F 2

h,n and F 2
v,n, the encoder predicts the mean and variance (µ, σ2). By adopting the repa-

rameterization trick
z = µ+ σ ⊙ ϵ, ϵ ∼ N (a, b). (7)

The training objective of the RDA module consists of two components: the reconstruction loss and the KL di-
vergence regularization, which are designed to ensure visual consistency of the enhanced results and alignment
of feature distributions. Given the decoder outputs F 3

h,n, F
3
v,n and the original input features F 2

h,n, F
2
v,n, we

require them to remain consistent in the feature space. Accordingly, the reconstruction loss is defined as:

Ls = Eqϕ(z|F2)

[
∥F 3

h,n − F 2
h,n∥22 + ∥F 3

v,n − F 2
v,n∥22

]
, (8)

where qϕ(z | F 2) denotes the posterior distribution parameterized by the encoder. This term constrains the
decoder to faithfully recover the input features under low-light conditions, thereby enhancing detail fidelity
and luminance consistency. To prevent the posterior distribution from straying too far from the prior, which is
defined by the Gaussian Mixture Model (GMM), we introduce a KL divergence regularization term:

Ld = DKL

(
qϕ(z | F 2

h,n) ∥ p(z)
)
+DKL

(
qϕ(z | F 2

v,n) ∥ p(z)
)
, (9)

where p(z) represents the mixture prior distribution obtained via unsupervised clustering and Gaussian mod-
eling. This regularization encourages the encoder outputs to better align with the global statistics, effectively
suppressing instability of chrominance components and avoiding undesired color shifts or distribution collapse
during enhancement.

In conventional frameworks, the posterior distribution parameters (µ, σ) are directly predicted by the encoder
and regularized to align with the prior. However, such static alignment is insufficient in low-light scenarios,
where chrominance distributions exhibit large variations and noise amplification becomes severe. To overcome
this limitation, we introduce a reinforcement learning (RL) mechanism into the RDA module, enabling dynamic
adjustment of Gaussian parameters guided by enhancement quality feedback. We regard (µ, σ) as adjustable
parameters and employ an RL policy network to output correction terms (∆µ,∆σ), yielding the updated
distribution:

µ′ = µ±∆µ, σ′ = σ ±∆σ, (10)
where (∆µ,∆σ) are actions sampled from the policy πθ(a | s) given the current state s. The state encodes the
current distribution fitting quality (e.g., KL divergence and histogram statistics), allowing the policy to flexibly
adapt the distribution shape under different conditions. To directly link policy optimization with enhancement
performance, we design the reward r as:

r =
1

∥F 3
h − F 3

hv,gt∥1
, (11)

where F 3
h represents the enhanced chrominance features, F 3

hv,gt represents the ground truth chrominance fea-
tures, and ∥ · ∥1 denotes the L1 norm. The inverse of the L1 loss encourages the policy to reduce the difference
between the enhanced and ground truth features, thereby improving the enhancement quality.
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We adopt the REINFORCE algorithm to optimize the policy network. The objective is defined as the expected
cumulative reward:

J (θ) = Ea∼πθ(·|s)[r], (12)
where r represents the reward, which is the feedback signal given for a particular action, and πθ is the policy
network that determines the probability distribution of actions a given the state s. The parameter θ denotes the
parameters of the policy network. The gradients of this objective are estimated as:

∇θJ (θ) ≈ 1

N

N∑
i=1

ri∇θ log πθ(ai | si), (13)

where N denotes the number of sampled actions, ai is the action taken in the i-th sample, and si is the corre-
sponding state for the action. This optimization procedure enables the policy to iteratively refine the distribution
parameters according to the feedback received from the image quality, thus enhancing the model’s stability and
adaptability in low-light conditions.

In order to directly link policy optimization with the enhancement performance, we design the RL loss Lr as:
Lr = −Ea∼πθ(·|s) [r · log πθ(a | s)] , (14)

which encourages the policy to minimize the discrepancy between the enhanced chrominance features and
the ground truth, improving the enhancement quality by reducing the L1 loss between the predicted and true
chrominance values.

3.3 LOSS FUCTION

To constrain the training of the proposed framework, we employ a comprehensive loss that combines the pri-
mary reconstruction loss in both the RGB and HVI spaces with the VCF and CDA losses. Specifically, let Iout
and Igt represent the enhanced and ground-truth images in the RGB domain, and let IHVI

out and IHVI
gt represent

their counterparts in the HVI color space. The reconstruction loss is defined as:
Lt = ∥Iout − Igt∥1 + λ1

∥∥∥IHVI
out − IHVI

gt

∥∥∥
1
, (15)

where ∥ · ∥1 denotes the ℓ1-norm. The total loss function is then formulated as:
L = Lt + λ2Ls + λ3Ld + λ4Lr, (16)

where λ1, λ2, λ3 and λ4 are weighting coefficients.

4 EXPERIMENTS

4.1 DATASETS AND SETTINGS
Datasets. To validate the effectiveness of the proposed method, we conduct experiments on seven LLIE
benchmark datasets, including three paired datasets: LOLv1 Wei et al. (2018), LOLv2 Yang et al. (2021), and
SICE Cai et al. (2018), and four unpaired datasets, including DICM Lv et al. (2018), LIME Guo et al. (2016),
MEF Ma et al. (2015), NPE Wang et al. (2013), and VV Vonikakis et al. (2018). The LOLv1 dataset has 485
paired training images and 15 for testing. LOLv2 consists of two subsets: LOLv2-Real (689 training, 100
testing) and LOLv2-Synthetic (900 training, 100 testing). The SICE dataset includes 589 paired low-light and
well-exposed images, with 100 randomly selected for testing and the rest for training and validation. For SID,
we convert raw images to sRGB without gamma correction, resulting in extremely dark images. We crop the
training images into 256 × 256 patches and train for 1,000 epochs with a batch size of 4.
Experiment Settings. We implement the proposed method using PyTorch and train all models on a single
NVIDIA RTX 3090 GPU. The optimizer is Adam Kingma & Ba (2014) with parameters β1 = 0.9 and β2 =
0.999. The initial learning rate is set to 1×10−4 and is gradually reduced to 1×10−7 using a cosine annealing
schedule Loshchilov & Hutter (2016). During training, the batch size is consistently set to 8 and input images
are cropped into 400×400 patches for all datasets except the LOLv2-Synthetic subset, for which full-resolution
images are used without cropping. The λ1, λ2, λ3 and λ4 set to 1, 1, 0.5 and 0.5, respectively.
Evaluation Metrics. Following our baseline Yan et al. (2025), for paired datasets, we adopt Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) Wang et al. (2004) as distortion-based metrics
to evaluate reconstruction fidelity. To further assess the perceptual quality of the enhanced results, we re-
port the Learned Perceptual Image Patch Similarity (LPIPS) Zhang et al. (2018), computed using a pretrained
AlexNet Krizhevsky et al. (2012a). For unpaired datasets, we employ two no-reference image quality assess-
ment metrics, BRISQUE Krizhevsky et al. (2012b) and NIQE Mittal et al. (2012), to evaluate perceptual real-
ism. Moreover, to provide a comprehensive comparison, our method is benchmarked against 11 state-of-the-art
supervised learning methods, including RetinexNet Wei et al. (2018), KinD Zhang et al. (2019), LLFlow Wang
et al. (2022a), EnlightenGAN Jiang et al. (2021), SNR-Aware Xu et al. (2022), Bread Guo & Hu (2023), Pair-
LIE Fu et al. (2023), LLFormer Wang et al. (2023), RetinexFormer Cai et al. (2023), GSAD Hou et al. (2023)
and CIDNet Yan et al. (2025), as well as 3 unsupervised learning methods, such as ZeroDCE Guo et al. (2020),
RUAS Liu et al. (2021), QuadPrior Wang et al. (2024),RetinexMamba Bai et al. (2024), UFormer Wang et al.
(2022b), Restormer Zamir et al. (2022a) and MIRNet Zamir et al. (2022b) across all datasets.
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Table 1: Quantitative results of PSNR↑/SSIM↑/LPIPS↓ on LOL (v1 and v2) datasets. Best perfor-
mance in purple, second best in cyan.

Methods LOLv1 LOLv2-Real LOLv2-Synthetic
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

RetinexNet Wei et al. (2018) 18.915 0.427 0.470 16.097 0.401 0.543 17.137 0.762 0.255
KinD Zhang et al. (2019) 23.018 0.843 0.156 17.544 0.669 0.375 18.320 0.796 0.252

ZeroDCE Guo et al. (2020) 21.880 0.640 0.335 16.059 0.580 0.313 17.712 0.815 0.169
RUAS Liu et al. (2021) 18.654 0.518 0.270 15.326 0.488 0.176 13.765 0.638 0.305

EnlightenGAN Jiang et al. (2021) 20.003 0.691 0.317 18.230 0.617 0.309 16.570 0.734 0.220
LLFlow Wang et al. (2022a) 24.998 0.871 0.117 17.433 0.831 0.315 24.870 0.919 0.067
UFormerWang et al. (2022b) 19.610 0.755 0.197 19.410 0.657 0.194 19.660 0.871 0.075

RestormerZamir et al. (2022a) 22.430 0.823 0.184 19.940 0.827 0.183 21.410 0.830 0.062
MIRNetZamir et al. (2022b) 24.140 0.830 0.154 20.020 0.820 0.175 21.940 0.876 0.058
SNR-Aware Xu et al. (2022) 26.716 0.851 0.152 21.480 0.849 0.163 24.140 0.928 0.056

Bread Guo & Hu (2023) 25.299 0.847 0.155 20.830 0.847 0.174 17.630 0.919 0.091
PairLIE Fu et al. (2023) 23.526 0.755 0.248 19.855 0.778 0.317 19.074 0.794 0.230

LLFormer Wang et al. (2023) 25.758 0.823 0.167 20.056 0.792 0.211 24.038 0.909 0.066
RetinexFormer Cai et al. (2023) 27.140 0.850 0.129 22.794 0.840 0.171 25.670 0.930 0.059

GSAD Hou et al. (2023) 27.605 0.876 0.092 20.153 0.846 0.113 24.472 0.929 0.051
QuadPrior Wang et al. (2024) 22.849 0.800 0.201 20.592 0.811 0.202 16.108 0.758 0.114

RetinexMambaBai et al. (2024) 24.030 0.827 0.146 22.450 0.844 0.174 25.890 0.935 0.054
CIDNet Yan et al. (2025) 28.201 0.889 0.079 24.111 0.871 0.108 25.705 0.942 0.045

Ours 29.123 0.880 0.075 24.892 0.875 0.110 26.512 0.947 0.040

4.2 RESULTS ON PAIRED DATASETS

We evaluate our proposed method on three widely-used low-light image enhancement benchmarks: LOLv1,
LOLv2-Real, and LOLv2-Synthetic. As illustrated in Table 1, our approach consistently achieves the best
performance across PSNR, SSIM, and LPIPS metrics. In contrast, existing methods exhibit notable weaknesses:
RUAS and LLFlow often produce over-smoothed or distorted textures, PairLIE and GSAD suffer from unstable
color rendition with visible hue shifts, while CIDNet fails to adequately suppress residual noise, resulting in
unnatural tone mapping.

Table 2: Complexity of Different Methods.
ZeroDCE RUAS LLFlow EnlightenGAN SNR-Aware Bread PairLIE LLFormer

Params/M 0.075 0.003 17.42 114.35 4.01 2.02 0.33 24.55
FLOPs/G 4.83 0.83 358.4 61.01 26.35 19.85 20.81 22.52

Benefiting from the Reliable Cross Attention (RCA) module and Reinforced Distribution Alignment (RDA)
module, our method effectively suppresses noisy or inconsistent features and ensures better alignment between
luminance and chromaticity statistics. This enables more balanced illumination and natural color reproduction,
particularly in extremely dark regions. Quantitatively, our approach achieves a PSNR of 29.123 on LOLv1,
outperforming the previous state-of-the-art by 0.771 dB, and reaches 24.892 on LOLv2-Real with an SSIM
improvement of 0.022 over the second best. On LOLv2-Synthetic, our method attains 26.512 PSNR and 0.947
SSIM, both ranking first. These results highlight the effectiveness and robustness of our design, which delivers
state-of-the-art visual quality while maintaining competitive computational efficiency. Furthermore, compared
with CIDNet, the proposed method introduces only a marginal increase in parameters (+0.28M) and FLOPs
(+2.96G)2, yet consistently outperforms it across multiple benchmark metrics, which validates the efficiency
of our design and demonstrates its favorable trade-off between complexity and performance.

Figure 3 presents a qualitative comparison of the enhancement results on the LOL (v1 and v2) and SICE
datasets, showcasing the performance of our method in comparison to several state-of-the-art approaches, in-
cluding RUAS, LLFlow, PairLIE, GSAD, EnlightenGAN, RetinexFormer, and CIDNet. As seen in the fig-
ure, our method demonstrates superior performance in enhancing low-light images, effectively improving both
brightness and contrast while preserving details in the images. Our approach outperforms the competing meth-

Table 3: Quantitative result on SID, SICE and the five unpaired datasets (DICM, LIME, MEF, NPE,
and VV). The top-ranking score is in Bold.

Methods SICE SID Unpaired
PSNR↑ SSIM↑ PSNR↑ SSIM↑ BRISQUE↓ NIQE↓

RetinexNet 12.424 0.613 15.695 0.395 23.286 4.558
ZeroDCE 12.452 0.639 14.087 0.090 26.343 4.763
RUAS 8.656 0.494 12.622 0.081 26.372 4.800
LLFlow 12.737 0.617 16.226 0.367 26.087 4.221
CIDNet 13.435 0.642 22.904 0.676 23.521 3.523
Ours 16.195 0.714 23.116 0.727 22.894 3.417
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Figure 3: Qualitative comparison of enhancement results on the LOL (v1 and v2) and SICE dataset,
generated by various methods.
ods in terms of naturalness and color fidelity, particularly in challenging low-light scenarios. The enhanced
images show clearer details and reduced noise, providing a more visually pleasing result compared to the other
methods, as highlighted in the visual comparison. The effectiveness of our method is particularly evident in the
SICE dataset, where it significantly enhances the image quality without introducing noticeable artifacts.

4.3 RESULTS ON UNPAIRED DATASETS

We conduct comprehensive evaluations on unpaired datasets. For the unpaired datasets (DICM, LIME, MEF,
NPE, and VV), we report two widely used no-reference perceptual quality measures, BRISQUE and NIQE,

Figure 4: Qualitative comparison of enhancement results on the unpaired dataset, generated by
various methods.
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Figure 5: Ablation study on the LOLv2-real dataset.

to evaluate visual realism. As shown in Table 3, our method consistently achieves the best results across all
metrics. Specifically, it outperforms existing supervised methods such as RetinexNet, LLFlow, and CIDNet, as
well as unsupervised approaches including ZeroDCE and RUAS. On the five unpaired datasets, our model also
yields the lowest BRISQUE and NIQE scores, indicating superior perceptual quality. These results demonstrate
that our method not only preserves structural fidelity in paired scenarios but also generalizes effectively to real-
world unpaired conditions.

4.4 ABLATION STUDIES

To validate the effectiveness of each component in our proposed framework, we perform a series of ablation
experiments on the LOLv2-real dataset. As summarized in Table 4, the model’s performance is assessed using
PSNR and SSIM metrics. In the ablation studies, we sequentially remove individual modules to analyze their
contributions. The removal of the RCA results in a noticeable decline in performance, underscoring the impor-
tance of adaptively aggregating luminance and chromaticity features. Additionally, excluding the RDA module
or our design loss Ld or Ls leads to further performance degradation, highlighting the critical role of precise
chromaticity distribution modeling in achieving more natural and accurate color rendering.

Table 4: Ablation studies of modules, w means with and w/o means without.

exp. RCA RDA Ld Ls PSNR↑ SSIM↑

1 w/o w/o w/o w/o 24.111 0.871
2 w w/o w/o w/o 24.459 0.872
3 w w w/o w/o 24.681 0.874
4 w w w w/o 24.792 0.875
5 w w w w 24.892 0.875

Moreover, as demonstrated in Figure 5(a), removing the RDA module causes significant degradation in color
fidelity, as it eliminates the mechanism for aligning chromaticity distributions. The absence of the RCA module
leads to substantial deterioration in both luminance and chrominance quality, highlighting its critical role in
suppressing noise and maintaining balanced illumination and accurate color restoration during enhancement.

In the ablation study shown in Figure 5(b), we evaluate the impact of the number of query vectors, L, on
performance. Increasing L from 6 to 8 leads to significant improvement, with diminishing returns as L exceeds
8. This suggests that L = 8 offers a good balance between performance and computational efficiency.

4.5 CONCLUSION

In this work, we introduce a novel low-light image enhancement framework, Learning to Enhance Low-Light
Images with Reliable Attention and Reinforced Distribution Alignment, which effectively addresses the chal-
lenges of noise amplification and color distortion in low-light conditions. Our framework combines the Reliable
Cross Attention (RCA) module and the Reinforced Distribution Alignment (RDA) module to improve the inter-
action between luminance and chromaticity features while preserving color fidelity and naturalness. The RCA
module suppresses redundant features and enhances the efficiency of feature aggregation, while the RDA mod-
ule refines chromaticity distributions through unsupervised clustering and reinforcement learning. Extensive
experiments on ten benchmark datasets demonstrate that our method achieves state-of-the-art performance, of-
fering superior visual quality and strong generalization across various lighting conditions. Our results confirm
that VCR is an effective and efficient solution for low-light image enhancement, pushing the boundaries of
image quality under challenging conditions.
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A APPENDIX

A.1 HVI COLOR SPACE

In the standard sRGB color space, image brightness and chromatic information are tightly coupled across the
three color channels, which may disrupt the perceived illumination or color balance of the entire image when
making adjustments to any individual channel. Although the HSV color space separates intensity from chro-
maticity, it inadvertently amplifies noise in regions of extreme red and near-black areas, producing pronounced
”red-discontinuity” and ”black-plane” artifacts during enhancement. To address the above limitations, the HVI
color space has been proposed to alleviate inherent color noise, which is composed of three channels: Imax,
Ĥ , and V̂ , designed to mitigate the artifacts introduced by the HSV representation. Here, Ck(x) denotes a
learnable intensity collapse function that remaps the maximum intensity Imax(x) for stabilizing low-light re-
sponses. The parameter k, termed density-k, controls the density of black-plane points in HVT/PHVIT, thereby
balancing noise suppression and detail preservation. According to the Max-RGB, for each individual pixel x,
the intensity map of image I can be estimated:

Imax(x) = max
c∈{R,G,B}

Ic(x). (17)

Meanwhile, according to the sRGB-HSV transformation, the saturation s of the image can be obtained:

s =

0, Imax = 0
Imax −min(Ic)

Imax
, Imax ̸= 0

(18)

and the hue h of the image is formulated as follows:

h =



0, if s = 0(
IG − IB

Imax −min(Ic)

)
mod 6, if Imax = IR

2 +
IB − IR

Imax −min(Ic)
, if Imax = IG

4 +
IR − IG

Imax −min(Ic)
, if Imax = IB

(19)

where s and h correspond to any pixel in the saturation map S(x) and hue map H(x), respectively. Moreover,
corresponding to HVT in Figure 2, the horizontal chromaticity component Ĥ(x) and the vertical component
V̂ (x) are constructed by polarizing the hue angle from HSV into Cartesian space, defined as:

Ĥ(x) = Ck(x) · S(x) · cos
(
πH(x)

3

)
,

V̂ (x) = Ck(x) · S(x) · sin
(
πH(x)

3

)
,

(20)

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

where Ck(x) is a learnable intensity collapse function defined as:

Ck(x) = k ·

√
sin

(
πImax(x)

2

)
+ ε, (21)

with k as a trainable parameter and ε as a small constant (set to 10−8) for training stability. Moreover, as shown
in Fig. 2, the Perceptual-inverse HVI Transformation (PHVIT) is performed to convert the HVI space back to
HSV. The hue H(x), saturation S(x), and value V (x) are estimated as:

H(x) =
1

2π
· arctan

(
v̂(x)

ĥ(x)

)
mod 1,

S(x) = αS ·
√

ĥ2(x) + v̂2(x),

V (x) = αI · Imax(x),

(22)

where αS and αI are linear scaling parameters that control the output image’s saturation and brightness, re-
spectively. The normalized intermediate chromaticity coordinates are computed as:

ĥ(x) =
Ĥ(x)

Ck(x) + ε
,

v̂(x) =
V̂ (x)

Ck(x) + ε
.

(23)

A.2 BLIND/REFERENCELESS IMAGE SPATIAL QUALITY EVALUATOR (BRISQUE)

BRISQUE Krizhevsky et al. (2012b) is a blind image quality assessment method that leverages natural scene
statistics (NSS) in the spatial domain. It normalizes local luminance values and characterizes their distribution
through an asymmetric generalized Gaussian distribution (AGGD). From this distribution, descriptive statistics
such as shape and variance are derived. A support vector regression model, trained with subjective quality
annotations, maps these statistics to a perceptual quality score. Lower BRISQUE values correspond to higher
visual quality. Since it operates without reference images, BRISQUE is particularly suitable for evaluating
real-world or unpaired data.

A.3 NATURALNESS IMAGE QUALITY EVALUATOR (NIQE)

NIQE Mittal et al. (2012) is another no-reference quality assessment approach, designed to capture deviations
from the statistical regularities of natural images. It first constructs a multivariate Gaussian model using NSS-
based features (e.g., mean-subtracted contrast-normalized coefficients and local pixel correlations) extracted
from pristine natural images. For a test image, the same features are computed, and the Mahalanobis distance
to the Gaussian model is used as the quality score:

NIQE(I) =
√

(f − µ)⊤Σ−1(f − µ),

where f represents the feature vector of the test image, and µ,Σ denote the mean and covariance estimated
from natural data. A lower NIQE value implies stronger alignment with natural image statistics and thus better
perceptual quality.

A.4 FAILURE CASES

Figure 6 presents typical failure cases on the unpaired dataset (DICM). In extreme scenarios, our method
occasionally struggles with inadequate brightness restoration and insufficient noise suppression. We plan to

Figure 6: Failure cases.
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address these limitations in future work by integrating explicit noise priors, enforcing temporal consistency in
video sequences, and introducing locally adaptive color temperature adjustment.

A.5 USE OF LARGE MODELS

In this work, large language models are employed solely for language polishing and improving the readability
of the manuscript. They are not involved in problem formulation, algorithm design, model implementation, or
experimental analysis. All technical contributions and experimental results are independently developed and
verified by the authors.
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