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ABSTRACT

Data free quantization of neural networks is a practical necessity as access to
training data in many situations is restricted due to privacy, proprietary concerns,
or memory issues. We introduce a data free weight rounding algorithm for Deep
Neural Networks (DNNs) that does not require any training data, synthetic data
generation, fine-tuning, or even batch norm statistics. Instead, our approach fo-
cuses on preserving the direction of weight vectors during quantization. We
demonstrate that traditional weight rounding techniques, that round weights to
the nearest quantized level, can result in large angles between the full-precision
weight vectors and the quantized weight vectors, particularly under coarse quan-
tization regimes. For a large class of high-dimensional weight vectors in DNNs,
this angle error can approach 90 degrees. By minimizing this angle error, we
significantly improve top-1 accuracy in quantized DNNs. We analytically derive
the angle-minimizing rounding boundaries for ternary quantization under the as-
sumption of Gaussian weights. Then, leaving the Gaussian assumption behind,
we propose a greedy data-free quantization method based on the cosine similarity
between the full-precision weight vectors and the quantized weight vectors. Our
approach consistently outperforms existing state-of-the-art data-free quantization
techniques and, in several cases, surpasses even data-dependent methods on well-
established models such as ResNet-18, VGG-16, and AlexNet with aggressive
quantization levels of 3 to 6 bits on the ImageNet dataset. Code will be made
available at time of publication.

1 INTRODUCTION

Deep Neural Networks (DNNs) excel at many computer vision tasks. However, deploying these
models on resource-constrained devices poses significant challenges due to their computational and
storage requirements. Quantization is one promising approach to tackle these challenges. There
are two common approaches to quantization, quantization aware training (QAT) and post training
quantization (PTQ). QAT trains the model from scratch using the quantized weights and activation.
Many works have shown the effectiveness of QAT (Hubara et al., (2016), Esser et al., (2019), Cour-
bariaux et al., (2015), Rastegari et al.,(2016), Choi et al., (2015), Judd et al., (2015)). While these
approaches hold promise, they are not always feasible in practical application areas. Accessing the
original training data may not always be possible due a number or reasons including its size, privacy
concerns, proprietary nature of the data, etc.

Post training quantization (PTQ) is particularly important as it allows users to deploy models in
memory constrained environments without access to the entire original training data set. Yet many
post training quantization methods are still dependent on a small subset of training data for calibra-
tion. Numerous papers have shown great results using quantization methods that rely on a small
amount of training data for calibration (Nagal et al.,(2020), Hubara et al., (2021), Choukroun et
al., (2019), Migacz et al., (2017), Lin et al., (2016), Han et al., (2015)). Yet there are still many
situations where even accessing small amounts of data is impossible. For this reason industry has
largely focused on model quantization schemes that do not require access to the training data for
fine-tuning ( Nagel et al., (2019), Zhao et al., (2019)). Data Free quantization methods are therefore
very important.
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Recently, a new method of data free quantization was introduced- synthetic data generation. This
allows quantization aware training without any training data. Several papers have shown impressive
results in Qzero, DSG, ect (Cai et al., 2020, Qin et all 2023). However as noted in papers publishing
new methods without data generation such as Squant and UDFC (Guo et al., 2022, Bai et al., 2023)
generating the synthetic samples introduces extra computational costs, is complex, and depends on
the availability of BN layers. The trade offs between these varied methods at times makes fair com-
parison difficult. The authors of DFQ (Nagel et al., 2018) previously proposed 4 levels of practical
quantization applicability. Level 1, no training data and no back-propagation required. Level 2,
requires data but no back-propagation. Level 3, requires data and back-propagation and works for
any model. Level 4, requires data and back-propagation but only works for specific models. Now
we propose an additional quantization level 0 that does not require any training of synthetic data nor
back-propagation. In this paper we present a method that meets the level 0 quantization standard.

With the exception of Zhang et al., (2019) there is a dearth of data-free methods that consider
quantization based angle errors. Data free weight quantization techniques have generally tried to
minimize the quantization error by taking the MSE optimization approach which leads to a round-
to-nearest quantization scheme. In this work we propose an alternative view. We show that at
low bit implementations, quantization causes a large angle between the full precision weight vector
associated with a single neuron and its rounded counterpart. This angular error changes the decision
boundary and associated input space for which the Relu nonlinearity turns ON/OFF. Therefore, it
has a large effect on the accuracy of the neural network. We propose a greedy algorithm to greatly
reduce the angle error associated with course weight quantization. Below the contributions of this
paper are summarized.

• We show that for a large class of weight vectors common in DNNs, round to nearest quan-
tization can lead to very large angle errors, i.e. the angle between the full precision and the
quantized weight vectors. High dimensional weight vectors, with the majority of weights
near zero, can generate angle errors close to 90 degrees. In particular, we show that in
the limit, the angle error can tend to 90 degrees under certain conditions. We will pro-
vide conditions under which large angles can occur under conventional round to nearest
quantization and provide some illustrative examples from popular DNNs.

• We analytically derive the optimum rounding threshold for minimizing the angle error for
ternary weight quantization (weights ∈ {−1, 0, 1} ), assuming the weights have a Gaussian
distribution.‘ We show that the rounding threshold for minimizing the angle error is much
smaller than the round to nearest threshold (0.5) and depends on the distribution of the
weights.

• We introduce a data free greedy algorithm for weight rounding that drastically reduces
the angular error associated with weight quantization. This algorithm works for any word
length implementation and makes no assumptions on the underlying distribution of the
weights.

• Using our proposed rounding algorithm we show significant top-1 accuracy boosts on two
well benchmarked models AlexNet, VGG16, and Resnet-18 on the imagenet dataset. These
results highlight the importance of the angular error and its effect on model accuracy.

2 RELATED WORK

The near endless applications of effective edge AI have motivated a plethora of works in the DNN
model quantization area. The problem of model compression for deployment in resource constrained
environments is well known. Post-training-quantization (PTQ) methods had remarkable success in
using fine-tuning with a small amount of training data to aggressively quantized pre-trained models.
In this section we will discuss previous works that are relevant to our proposed method. We focus
on works that present results on very course quantization of weights to below 8 bits.

Lybrand Saab (2021) presented a Greedy Path-Following Quantization (GPFQ) that employed a
deterministic quantization of the model layers in an iterative fashion without requiring a complex
re-training. Zhang et al.,(2023) later improved and generalized the GPFQ method. This method
showed near full precision accuracy results for weight quantization as low as 3 bits on the VGG16
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and Alexnet models on Imagenet. While their results are very impressive they still rely on a small
calibration set of training images to implement their quantization.

Recently, there has been a renewed focus on data free quantization techniques for Deep Neural
networks (DNNs) that do not require any access to the original data set. These techniques are
important when the underlying training data is private, proprietary, or difficult to process. This
is an additional step beyond post training quantization (PTQ), as the latter sometimes still uses a
small calibration subset of the original dataset to fine-tune the quantized model. Banner et al.,(2018)
introduced a novel technique that exploited per channel quantization to achieve 4 bit quantization
of DNNs with only small top-1 accuracy loss. This method was further notable as it did not require
training data to fine-tune the quantized model weights. Although it uses some training data to
determine clipping values for the activation, it a data-free method in terms of weight quantization.
Nagel et al., (2019) proposed a data free quantization method that equalized the weight ranges across
in a DNN to reduce quantization error bias. This method improved top-1 accuracy of quantized
methods on well known DNNs without relying on a calibration subset of the original training data.
While each of the above mentioned data-free quantization methods have unique contributions (per
channel quantization, clipping, weight equalization, ect.) one commonality is that many employ
a round to the nearest integer, or signed integer, quantization. These methods do not consider the
angular error that quantization creates between a weight vector and its quantized counter part.

There are to the best of our knowledge relatively few data-free PTQ methods that consider the an-
gle error. In the area of QAT binary quantization, Anderson et al. (2017) showed that the angle
between a random vector (from a standard normal distribution) and its binarized counter part con-
verges to 37 degrees as the dimension of the vector goes to infinity. Zhang et al., (2019) introduced
a data-free PTQ method called Target None Re-training Ternary (TNT). The algorithm was of com-
plexity O(N logN) and experiments were performed for a uniform and a gaussian distribution of the
weights in a high dimensional vector. The experiments showed that for very long vectors with gaus-
sian distribution cosine similarity was approximately 0.9, while there was significant uncertainty in
the range of cosine similarity for shorter vectors. Using simulation experiments, the authors also
investigated the optimal number of non-zero entries in the vector in order to obtain this maximum
cosine similarity and concluded that the distribution and the number of non-zero elements have a
large impact on the achievable cosine similarity. In the subsection on ternary quantization, our paper
will revisit these topics in an analytical manner where cosine similarity is analyzed using the quan-
tization boundary rather than the number of nonzero vector entries. Further this work provides an
angle aware data free quantization (Angle-DFQ) method that extends beyond the ternary case and
can be implemented for any bit width without any assumption on the underlying distribution of the
weights.

3 METHODOLOGY

In this section we motivate the need to reduce quantization angle errors and offer a detailed explana-
tion of our method. We show how quantization induced angle errors affect DDNs at the neuron level
in section 3.1. In section 3.2 we show that significant quantization induced angle errors can occur for
a large class of vectors commonly found in popular DNNs. In section 3.3 we present the illustrative
special case of tertiary weight rounding (weights ∈ {−1, 0, 1}), where the rounding boundary for
minimizing the decision plane angle error is much smaller than the round to the nearest value of
0.5. In section 3.4 we present our data free greedy weight rounding method that greatly reduces the
angle error associated with course weight quantization.

3.1 ANGLE ERRORS AT THE NEURON LEVEL

Let us consider a single neuron with weight vector v and input vector x. Then the operation of a
neuron is modeled by the ReLU non-linearity in the following manner:

Output = ReLU(x · v + b)

where b is a scalar, i.e., the bias. If the argument of the ReLU nonlinearity is positive, the ReLU is
ON and produces its argument as its output, otherwise it is OFF and produces a zero output. The
relationship between v, x, and the ReLU output is shown for the 2-D case for b = 0 in Figure 1.
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Decision boundary (red line)
ReLU ON (blue area)
ReLU OFF (red area)
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v

Q(v)

Decision boundary for Vn

Decision boundary for Q(v)
ReLU ON (blue area)
ReLU OFF (red area)
v
Q(v)
Affected input space

Figure 1: (Left) The weight vector v and its associated decision boundary determine the input space
for the ReLU ’ON/OFF’ result. (Right) The quantization-induced angle error of weight vector v
changes the associated input space for the ReLU ’ON/OFF’ result.

Any input vector in the red region creates a negative inner product result that would be zeroed out
by the ReLU. Any input vector on the red line would be perpendicular to the v vector, resulting in
a inner product of zero. The red line demarks the region between the ReLU ‘on’ input space and
the ReLU ‘off’ input space and is always perpendicular to the weight vector v because of the inner
product definition. We refer to this red line as the hyperplane decision boundary.

Quantization changes the direction of the weight vector, so there exists an angle ϕ between v and its
quantized counterpart Q(v). This angle error changes the input space for a positive inner product
result, i.e., the ReLU is ‘ON’. This effect is shown in Figure 1

3.2 LARGE QUANTIZATION INDUCED ANGLE ERRORS

Consider a weight vector v ∈ RN associated with a single neuron. Lets define two vectors, u and w
where u,w ∈ RN and

u =



ϵ1
ϵ2
...

ϵN−p

0
...
0


, w =



0
...
0

wN−p+1

...
wN


,

|ϵi| <
1

2
, |wi| ≥

1

2

Further assume the entries ϵi to come from a distribution that is symmetric around zero (i.e., zero
mean) and to have a variance of σ2. Assume the elements of w to be fixed as well as their number,
i.e., p. We can now define the entire weight vector v to be:

v = u+w =



ϵ1
ϵ2
...

ϵN−p

wN−p+1

...
wN


(1)
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Figure 2: Histogram of the angle errors of all weight vectors in classifier[1], the largest layer of
AlexNet (left) and classifier[0], the largest layer of VGG16 (right), under round to nearest ternary
quantization(weights ∈ {−1, 0, 1}). The average angles for the layers are 85.35 degrees (AlexNet)
and 87.30 degrees (VGG16).

Note that while elements in v are partially ordered, the order of elements in a vector has no effect
on the angle between this vector and its quantized version, since neither affects the 2-norm of either
vector nor their inner product.

Defining Q(v) as the quantized vector of v where quantization is performed elementwise, i.e.,

Q(v) : RN → ZN

Q(v) =


q(v1)
q(v2)

...
q(vN )


with q(·) being an odd function and Z is the set of integers. Using magnitude rounding (rounding to
nearest), we have equation 1 below:

Q(v) =



0
...
0

Q(wN−p+1)
...

Q(wN )


= Q(w) (2)

Theorem 1: Let v be defined as in (1), Then the angle ϕ between v and Q(v) tends to π
2 for

N → ∞, i.e.,

lim
N→∞

ϕ(N) =
π

2

assuming p and wi, i = N − p + 1, . . . , N are fixed and the elements ϵi come from the same
distribution with variance σ2.

Proof: With

cosϕ =
v ·Q(v)

(∥v∥2) (∥Q(v)∥2)
, (3)

and using (1) and (2) we obtain:
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cosϕ =

∑N
i=N−p+1 wiQ(wi)√∑N−p

i=1 ϵ2i +
∑N

i=N−p+1 w
2
i ·

√∑N
i=N−p+1 Q(wi)2

(4)

Keeping p and the wi fixed, we obtain with N → ∞ :

lim
N→∞

cos(ϕ) = lim
N→∞

∑N
i=N−p+1 wiQ(wi)√

(N − p)
(∑N−p

i=1 ϵ2i
N−p

)
+
∑N

i=N−p+1 w
2
i ·

√∑N
i=N−p+1 Q(wi)2

= lim
N→∞

∑N
i=N−p+1 wiQ(wi)√

(N − p)σ2 +
∑N

i=N−p+1 w
2
i ·

√∑N
i=N−p+1 Q(wi)2

= 0, and hence ϕ → 90◦ for N → ∞.

This shows that as N approaches infinity, the angle ϕ between v and Q(v) asymptotically tends to
90°, assuming that a constant and finite number of vector entries in v are larger than 1

2 while the
number of entries smaller than 1

2 in magnitude tends to infinity.

Remark: The conditions on the entries of vector w can be shown to be somewhat conservative, i.e.,
they are not necessary conditions for the theorem to hold. In fact, the angle error can approach π

2

for N → ∞ even if p also tends to infinity, but at a slower rate than
√
N and with the condition that

its elements are bounded. For example, for N → ∞, p can grow with logN and the angle ϕ would
still tend to π

2 if elements of w remain bounded. On the other hand, if p grows with cN , c being
a small positive real number between 0 and 1, the error angle will not converge to π

2 for N → ∞.
In practice, this means that when weight vectors in DNNs become longer, if the ratio of entries
larger than (the round to nearest threshold) 1

2 to those smaller than 1
2 is approximately constant, the

asymptotic error angle will be less than π
2 and can be computed using equation (3) in the proof.

In other words, long vectors with narrow weight distributions around zero that also have a few large
entries can produce large angles ϕ. This theoretical result is consistent with the angle errors we
observe when quantizing popular DNNs. In figure 2 we present a histogram of the angle errors of
the weight vectors in the largest layer of AlexNet and VGG-16 under ternary round to the nearest
quantization and report an average angle error of 85.35 and 87.30 degrees for repsective layers. In
Resnet-18, the largest layer is the last convolutional layer which has an average angle error of 77.02
degrees under 2 bit round to nearest with the coresponding figure in appendix a2.

3.3 AN ANGLE MINIMIZING ROUNDING THRESHOLD FOR TERNARY QUANTIZATION

In this section we will analytically derive the angle minimizing rounding threshold for ternary quan-
tization and show that rounding to nearest is non-optimal for minimizing the angle error, under
the assumption of Gaussian distributed weights. We will further show that the angle minimizing
rounding threshold approaches zero as the variance of the underlying distribution of the weights
approaches zero. This depends on the characteristics of the pdf of the weights. The lessons learned
about the angle minimizing rounding threshold in illustrative special case of ternary quantization
(weights ∈ {−1, 0, 1}) provide insight for higher word length situations. In round to the nearest
quantization a rounding threshold of magnitude 0.5 would be used. Below we show that the round-
ing threshold k that minimizes the quantization angle error is not 0.5 in the Gaussian case.

Assume a Gaussian weight distribution with a mean of zero and a variance of σ2. Further assume
there are only three q-levels, namely -1,0,and 1 and the weight vector to be of dimension N → ∞.
With an odd quantization non-linearity and rounding thresholds -k and k, we can derive the following
equation on the angle error ϕ.

cos2(ϕ) =

(
1
π

)
e−

k2

σ2

(1− cdf [k])

This expression was derived in the appendix A for the asymtotic case, i.e. N → ∞. This is an
expression for the angle error in terms of the variance of the weights and the rounding threshold k.
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Figure 3: Plots of the cosine similarity squared cos2(ϕ) as a function of k, for different values of σ.

Given a variance for the weights we can now show that the optimum k value is generally not the
round to nearest threshold of 0.5. Figure 3 explains the dependency of cos2(ϕ) as a function of the
rounding boundary k, parameterized for three different values of σ. The locations of the function
maxima depend on k, and are attained approximately at k = 5

8σ. This maximum function value
of cos2(ϕ) is approximately 0.81 and independent of σ and it corresponds to a minimal attainable
angle of 25.8◦. This clearly shows that for small σ approaching zero, the rounding boundary k will
also approach zero. Also observe that k = 0 results in an angle of approximately 37◦ which is also
independent of the value of σ, since all functions intersect at the point k = 0. Note that a rounding
boundary of k = 0 corresponds to binary quantization, i.e., only the two quantization levels 1 and
-1 are used.

The interesting special case of rounding boundary k= 0 implying a binary quantization was previ-
ously analyzed by Anderson et. al (2017). For k = 0 the above expression becomes:

cos2(ϕ) =

(
1
π

)
e0

(1− cdf [0])
=

2

π

showing the angle error ϕ = 37 degrees in such a situation.

In this section we have derived an angle minimizing weight rounding threshold for ternary quantiza-
tion in the Gaussian case. Our analytical result shows a maximum function value of cos2(ϕ) = 0.81,
independent of σ, and corresponds to the minimal attainable angle of 25.8◦. This matches simulation
experiments by Zhang et al. (2019) that showed that for very long vectors with Gaussian distribution
cosine similarity was approximately 0.9.

3.4 A DATA-FREE GREEDY WEIGHT ROUNDING ALGORITHM TO IMPLEMENT ANGLE-DFQ

In this section we present a data-free greedy weight rounding algorithm. We will discuss this method
in the context of signed integer per layer weight rounding but it is also relevant to per channel
implementations. We have already showed in section 3.2 how to do optimal rounding for in the
special case of tertiary quantization where the weights arise from a normal distribution. Here we
wish to show a more general method that extends beyond tertiary quantization and is applicable
regardless of the underlying distribution. This greedy method aims to minimize the angle between
v the full precision weight vector of a single neuron with n weights, and Q(v) the quantized v.
We round each element in the vector up or down depending on the effect on the angle error before
moving to the next element. Once the layer is quantized we calculate the magnitude error factor Em

of each Q(v) introduced by the angle aware weight rounding.

Em =
∥Q(v)∥
∥v∥

We then multiply all out going weights from the neuron associated with the particular Q(v) with
the reciprocal. If due to the structure of the network its difficult to track the down stream weights,

7
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divide all weights in the layer by the average Em. The algorithm is described precisely in algorithm
1.

Algorithm 1: Angle-DFQ

1. Choose a layer in a neural network to quantize to bit width m.

2. Scale the layer to fit within the integer range determined by m (for per layer quantization).

3. For each weight vector v in the scaled layer:

(a) Initialize Q(v) with the first two elements of v.
(b) Round the elements in such a way that minimizes the angle ϕ between the first two

elements of Q(v) and the first two elements of v by computing the angle for all four
rounding options.

(c) For i = 2 to the length of v:
i. Round the i-th element of vn up and append it to Q(v).

ii. Compute and record the angle between Q(v) and the first i elements of v.
iii. Now remove the i-th element of Q(v) and append the rounded down i-th element

of v to Q(v) and again compute the angle between Q(v) and the first i elements
of v.

iv. Select the rounding that minimizes the angle and append the rounded element to
the quantized weight to Q(v).

4. Compute the magnitude error for the quantized vector:

(a) Calculate Em = ∥Q(v)∥
∥v∥ for each vector to get the magnitude error introduced by

Angle-DFQ.
(b) Then for each neuron multiply all outgoing weights by the reciprocal of the magnitude

error, 1
Em

to correct the magnitude error, or divide all weights by the average Em

across the whole layer if down stream are difficult to track

In the next section we will apply this method to several well bench marked models on the ImageNet
Dataset and show near full precision accuracy at very low bit implementations. We will now high-
light some implementation details, starting with quantization granularity. The trade-offs between
per layer and per channel quantization are well known. Per channel quantization yields higher ac-
curacy but requires more overhead and can be more difficult to implement across different hardware
(Gholami et al., 2022,Nagel et al. 2021). To have a fair comparison we will follow convention and
compare to other techniques that are at least per layer in granularity. For activation quantization
quantization (per layer) we use the same data free approach as in DFQ (Nagel et al. 2019) where
the range is set with the batch norm statistics. If the model does not have batch norm layers then a
small amount of data is used (200 training images) to collect statistics for the ranges of the activa-
tion quantization. This does not violate our data free policy as we are presenting a data free weight
rounding algorithm. All novel contributions in this work pertain strictly to weight rounding.

3.5 MIXED PRECISION QUANTIZATION

Mixed precision quantization is a common technique used by many popular quantization methods.
From the methods we compare against, for example, MSE (Banner et al. 2018) for example uses
mixed precision even at the per channel level, and GPFQ by not quantizing their last layers on some
implementations. We can further take advantage of our knowledge of quantization induced angle
error for mixed precision implementations. Since we know from our proof in section 3.2 that high
dimensional weight vectors have the largest angle error we will apply our Angle-DFQ to these layers
where angle error dominates. Since these layers have the most high dimensional vectors they are the
largest layers in models in terms of total numbers of weights. We quantize them to very course bit
widths since we know that the Angle-DFQ can correct the extreme angle error. For the remaining
layers of the models where angle error does not heavily dominate, round-to-nearest quantization is
employed. The per layer bit allocation is assigned in such a way as to equalize the angle error across
the layers. We detail the precise bit allocations for each layer and each model in Appendix A.2
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Figure 4: (Left) Histogram of the angle errors of all weight vectors in classifier[1], the first fully
connected layer of AlexNet for ternary Angle-DFQ weight quantization (weights ∈ {−1, 0, 1}).
The average angle for the layer is 26.16 degrees, much lower than the earlier RTN result. (Right)
Histogram of the angle errors of all weight vectors in classifier[0], the first fully connected layer of
VGG16 for ternary Angle-DFQ weight quantization (weights ∈ {−1, 0, 1}). The average angle for
the layer is 26.94 degrees, much lower than the earlier RTN result.

and report our weighted average of total bits per weight for the given DNNs - these are rounded for
simplicity in table 1.

4 EXPERIMENTS

In this section we showcase the significant impact that reducing quantization based angle errors can
have on top-1 accuracy of Deep Neural Netowrks. We present results on three popular and well
bench marked models: Resnet-18 (He et al. 2016), AlexNet (Krizhevsky et al. 2012), and VGG16
(Simonyan Zisserman, 2014) on the ImageNet dataset.

4.1 ANGLE-DFQ AND ANGLE ERROR REDUCTION

In section 3.1 we discussed the large angle errors that could occur from round to the nearest (RTN)
quantization. We presented histograms in figure 2 showing the angle errors in the largest layers of
AlexNet and VGG-16 under ternary round to the nearest weight quantization. A similar result can be
found for Resnet-18 in the appendix for the 2 bit asymmetric case. We showed that the largest layer
had an average angle error of 85.35 degrees in AlexNet, an average angle error of 87.30 degrees in
VGG-16, and an average angle error of 77.01 degrees in Resnet-18. After applying our Angle-DFQ
to these layers we show large improvements in the average angle error. Figure 4 presents a histogram
of the angle errors in the largest layer of AlexNet, VGG-16 after Angle-DFQ showing an average
angle error of only 26.16 and 26.94 respectively. Figure 5 in appendex shows the largest layer of
Resnet-18 after Angle-DFQ has an angle error of only 29.49 degrees These results are close to the
theoretical minimum angle error of 25.8 for ternary quantization in the Gaussian case established in
section 3.3. These results show that Angle- DFQ is able to significantly reduce the angle error due
to quantization in DNNs. In the next section we will show the Top-1 accuracy boosts derived from
this angle error correction.

4.2 ANGLE-DFQ ON POPULAR DNNS

Table 1 shows our results along with other several other notable methods on low bit weight quanti-
zation. Note that where the † is used for the GPFQ method in table 1 it indicates that the last layer
is left in full precision. In the case of the TNT algorithm by Zhang et al., (2019) they leave both
the first and the last layer in full precision and thus we have reported a mixed precision average bit
width in Table 1. We distinguish which methods are data-free and which are not for weight round-
ing. For the purposes of weight rounding we consider MSE data free as discussed previously. To
show the flexibilty of the Angle-DFQ method we report results for unsymmetrical integer quanti-
zation for Resnet-18 and symmetrical integer quantization for AlexNet and VGG-16. Obviously,
we can not compete against methods that use data generation or very fine granularity quantization

9
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Table 1: Top-1 accuracy results for different models and quantization approaches on ImageNet. (D:
synthetic/training data free, PL: at least per layer quantization implementation)

but as discussed in the introduction the implementation trade-offs for such methods are well known.
Nonetheless, we list some such methods in Table 1 for completeness.

Our Angle-DFQ method shows state of the art results superior to other data-free quantization meth-
ods on the Resnet-18, VGG-16 and AlexNet datasets for the reported bit widths in table 1. We
further show accuracy improvements superior to the data-dependent method GPFQ on VGG-16 for
bit widths all reported bit widths (3 to 5) and to MSE (Banner, 2018) on the 3 bit weight 8 bit acti-
vation case. Moreover, we show results superior to GPFQ on AlexNet even for the 4 and 5 bit case
when they do not quantize the last layer (GPFQ†). Angle-DFQ also out preforms the data dependent
OMSE method on the 4 bit case for Alexnet. These results showcasing the importance of correcting
angle errors in the quantization process.

5 CONCLUSION

This paper presents an in-depth analysis of quantization effects on the angle of the weight vector
and equivalently the angle of the decision hyperplane of a neuron. It is shown that under certain
conditions the angle between the full precision and the quantized weight vector can approach 90◦,
which corresponds to almost half of the input space being classified incorrectly by the ReLU non-
linearity. It is also shown that the error angle minimizing quantization boundary is not n + 1

2 as is
the default method when minimizing the 2-norm of the error vector under the round to the nearest
method. Using the case of ternary quantization, it is shown that the optimal quantization boundary
depends on the distribution of weights and can be close to a quantization point, i.e., zero in the case
of tertiary quantization.

Armed with this theoretical foundation, we introduced Angle-DFQ; a data-free quantization method
that greatly boosts quantized model accuracy without the need for data or fine-tuning. While the
Angle-DFQ algorithm is not guaranteed to always find the optimal quantized weight vector, it shows
low complexity and exhibits accuracy improvements for weight quantization in Resnet-18, AlexNet
and VGG-16. The simplicity and straight forward nature of the Angle-DFQ method is a further
advantage for adaptation of this work in industry. The Angle-DFQ technique is well fitted for de-
ploying models in the memory constrained environments required in many edge AI applications.
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7 REPRODUCIBILITY

We agree that reproducibility is an important part of scientific research. To further this end we
have been clear and obvious with each step of our implementation. We provided a full proof of
our theoretical results in appendix A1 and specific tables in appendix A2 that show the exact bit
allocation of our mixed precision implementations.
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A APPENDIX

A.1 DERIVATION FROM SECTION 3.3: AN ANGLE MINIMIZING ROUNDING THRESHOLD
FOR TERNARY QUANTIZATION

Consider a weight vector v in a neural network. Let v ∈ RN and Q(v) ∈ ZN , with R being the
set of all real numbers and Z the set of all integers. Define a mapping Q : v → Q(v) such that
Q(v) = (q(v1), q(v2), . . . , q(vN )), where v = (v1, v2, . . . , vN ). In other words, quantization q() is
done elementwise where q is: R → Z.

Furthermore, let q(vi) be an odd function, that is, q(−vi) = −q(vi). Therefore, we have: (−vi) ·
q(−vi) = (−vi) · (−q(vi)) = vi · q(vi).
Denoting |v| as |v| = (|v1|, |v2|, . . . , |vN |), it becomes clear that: V ·Q(v) = |v| ·Q(|v|),
This implies that the inner product between v and Q(v) is independent of the sign of vector elements.

Also note that the 2-norm of any vector is independent of the sign of the vector entries, i.e., ||v||2 =
|||v|||2
Since,

cosϕ =
v ·Q(v)

(||v||2)(||Q(v)||2)
,

12
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we can also write

cosϕ =
|v| ·Q(|v|)

(|||v|||2)(||Q(|v|)||2)

i.e., the angle ϕ between v and Q(v) does not change if all elements of v are replaced by their
absolute value.

Considering the asymptotic case for N to infinity we now transition from the discrete to the contin-
uous case.

Let the elements of v be distributed according to pdf(vi), where pdf is the probability density
function that describes the probability of vector elements vi occurring.

Assuming that
pdf(vi) = pdf(−vi)

i.e., a symmetric pdf with respect to zero (0), we have

pdf(|vi|) =
{
2 · pdf(vi) for vi ≥ 0,

0 for vi < 0.

Therefore, in the case of symmetric pdfs around zero, one can analyze the angle between v and Q(v)
by analyzing the angle between |v| and Q(|v|) using pdf(|vi|).
Now consider ternary Quantization:

Q : RN → {−1, 0,+1}N

i.e., a quantizer with only 3 quantization levels.

Before proceeding further, we need to point out another property of the inner product between Q(v)
and v:

Q(v) · v = Q(v̂) · v̂
where V̂ is generated by reordering the elements of v.

In fact, since v and v̂ have the same entries (just at different positions) ∥v∥2 = ∥v̂∥2 also holds.

Now consider a vector v with the following normal pdf:

pdf(v) =
1√
2πσ

e−
v2

2σ2

and therefore for the vector |v|, the pdf is given by:

pdf(|vi|) =

{
2√
2πσ

e−
v2
i

2σ2 for vi ≥ 0

0 for vi < 0

(Note that ϕ(v,Q(v)) = ϕ(|v|, Q(|v|)) as shown above.)

We reorder the elements of |v| in descending order:

ˆ|v| = (ε1, . . . , εβN , µ1, . . . , µ(1−β)N )

where εi ≥ εi+1, εβN ≥ µ1, µi ≥ µi+1, µ(1−β)N ≥ 0 with 0 < β ≤ 1,

q(εi) = 1, q(µi) = 0

Therefore in ˆ|v|, there are βN elements that round to 1 and (1− β)N elements that round to zero.

Evaluating ˆ|v| ·Q( ˆ|v|) we get:

cosϕ =
|v̂| ·Q(|v̂|)

∥ ˆ|v|∥2 · ∥Q(|v̂|)∥2

we obtain with the above equations:
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cos(ϕ) =

∑βN
i=1 ϵi√∑βN

i=1 ϵ
2
i +

∑(1−β)N
i=1 µ2

i

√
βN

With defining ϵ̄ as the mean of all ϵi , we have:

ϵ̄βN =

βN∑
i=1

ϵi

Therefore we obtain for cos2(ϕ) :

cos2(ϕ) =
(ϵ̄βN)2(∑βN

i=1 ϵ
2
i +

∑(1−β)N
i=1 µ2

i

)
(βN)

Using:
N∑
i=1

v2i =

βN∑
i=1

ϵ2i +

(1−β)N∑
i=1

µ2
i


and

σ2 =

∑N
i=1 v

2
i

N

we obtain:

cos2(ϕ) =
ϵ̄2β

σ2

Expressing β in terms of k, where k is the rounding boundary:

β =

∫ ∞

k

pdf(|vi|) dvi = 2

∫ ∞

k

pdf(vi) dvi

Now we will write ϵ in terms of k.

ϵ̄ =

∫∞
k

vi pdf(vi) dvi∫∞
k

pdf(vi) dvi

The expression for cos2(ϕ) will therefore become:

cos2(ϕ) =

(∫∞
k

vi pdf(vi) dvi
)2 · (2 ∫∞

k
pdf(vi) dvi

)(∫∞
k

pdf(vi) dvi
)2 · σ2

= 2

(∫∞
k

vi pdf(vi) dvi
)2

(cdf [∞]− cdf [k]) · σ2

Using the identity for normal PDFs ∫ ∞

k

x pdf(x) dx =

=

(
σ2

√
2πσ

)
e−

k2

2σ2

we obtain:
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cos2(ϕ) = 2

(
σ4

2πσ2

)
e−

k2

σ2

(cdf [∞]− cdf [k]) · σ2
=

(
1
π

)
e−

k2

σ2

(1− cdf [k])

A.2 MIXED PRECISION BIT ALLOCATION PER LAYER

The reported mixed precision bit widths represent a weighted average bit per weight in the DNN.
These per layer bit widths are reported below. Some of these are rounded in the main text of the
paper but we report the exact bit per weight average here. Note that the percentage of weights found
in the first fully connnected layer is a majority of the total weights in the DNN for both AlexNet and
VGG16.

Table 2: ResNet-18 bit allocation per layer for 6-bit case.
Layer 6-bit case
layer4[1].conv2.weight.data 2†

layer4[1].conv1.weight.data 6
layer4[0].conv2.weight.data 6
All other layers 8

† Quantized with Angle-DFQ

Table 3: Alexnet bit allocation per layer
Layer 2.92 bit case 3.92 bit case 4.96 bit case
features[0].weight.data = 8 9 11
features[3].weight.data = 8 9 11
features[6].weight.data = 8 9 11
features[8].weight.data = 8 9 11
features[10].weight.data = 8 9 11
classifier[1].weight.data = 2† 3† 3†

classifier[4].weight.data = 3† 4† 7
classifier[6].weight.data = 8 9 11

†Quantized with

Angle-DFQ
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Table 4: VGG 16 bit allocation per layer
Layer 2.82 bit case 2.95 bit case
features[0].weight.data = 8 9
features[2].weight.data = 8 9
features[5].weight.data = 8 9
features[7].weight.data = 8 9
features[10].weight.data = 8 9
features[12].weight.data = 8 9
features[14].weight.data = 8 9
features[17].weight.data = 8 9
features[19].weight.data = 8 9
features[21].weight.data = 8 9
features[24].weight.data = 8 9
features[26].weight.data = 8 9
features[28].weight.data = 8 9
classifier[0].weight.data = 2† 2†

classifier[3].weight.data = 2† 2†

classifier[6].weight.data = 8 9

† Quantized with Angle-DFQ

A.3 ANGLE ERROR OF RESNET-18

45 50 55 60 65 70 75 80 85
Angle Error (degrees)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fr
eq

ue
nc

y

30 35 40 45
Angle Error (degrees)

0

5

10

15

20

25

30

35

40

Fr
eq

ue
nc

y

Figure 5: Angle error in layer4[1].conv2 of Resnet-18 before and after Angle-DFQ

A.4 DATA AND MODELS

The models used (Resnet-18, AlexNet and VGG-16) are the pre-trained models from the PyTorch
torchvision library. They have the BSD 3-Clause License.
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