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Abstract

Neural networks have been successfully applied in modeling partial differential1

equations, especially in dynamical systems. Commonly used models, such as2

neural operators, are performing well at deterministic prediction tasks, but lack a3

quantification of the uncertainty inherent in many complex systems, for example4

weather forecasting. In this paper, we explore a new approach that combines Fourier5

neural operators with generative modeling based on strictly proper scoring rules6

in order to create well-calibrated probabilistic predictions of dynamical systems.7

We demonstrate improved predictive uncertainty for our approach, especially in8

settings with very high inherent uncertainty.9

1 Introduction10

Many complex phenomena in the sciences are described via time-dependent partial differential11

equations (PDEs), making their study a crucial research topic. Recent developments in machine12

learning led to an effective class of neural networks for solving PDEs, called neural operators13

[Kovachki et al., 2023]. In dynamical systems, these models aim to learn the operator that maps14

an initial system state to the corresponding solution across time and have been applied to problems15

such as weather forecasting [Pathak et al., 2022] or fluid dynamics [Renn et al., 2023]. However,16

neural operators are usually studied in the context of deterministic predictions, not accounting for the17

inherent uncertainty in complex and chaotic dynamical systems. Several methods have been proposed18

to enhance neural network architectures to quantify uncertainty. While some approaches focus19

on perturbing initial conditions [Pathak et al., 2022], many approaches are applied to the network20

post-hoc. These include statistical post-processing [Bülte et al., 2024] or Bayesian methods [Gal21

and Ghahramani, 2016]. For neural operators, which learn an output in function space, uncertainty22

quantification can be more complex. Gal and Ghahramani [2016] propose to generate samples from23

a posterior predictive distribution by utilizing dropout in the model inference phase. Weber et al.24

[2024] and Magnani et al. [2024] use a Laplace approximation for the Fourier neural operator, which25

utilizes a linearized neural network to generate a tractable posterior distribution in function space.26

In the context of spatial predictions, especially weather forecasting, methods based on the notion27

of proper scoring rules are commonly applied and have shown to work very well in combination28

with neural networks [Pacchiardi et al., 2024, Chen et al., 2024]. However, this has not yet been29

transferred to the setting of operator learning, which requires additional analysis of the corresponding30

scoring rules in infinite dimensional spaces. In this paper, we utilize proper scoring rules in separable31

Hilbert spaces in order to train a neural operator to estimate a predictive distribution over functions.32

We theoretically prove that this is well-motivated by showing that the energy score is strictly proper in33

infinite dimensional spaces. Our primary aim is to demonstrate the advantages of the approach in pre-34

dicting dynamical systems. Our approach, which we refer to as probabilistic Fourier neural operator35

(PFNO), leads to better-calibrated predictive distributions and adequate uncertainty representations36

even for long dynamical trajectories.37
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2 Neural operators38

The aim of operator learning is to utilize a neural network to learn a mapping between two function39

spaces from a finite collection of input-output pairs. Consider an operator G : A → U , acting on two40

separable Banach spaces of functions. A neural operator is a map Gθ : A → U , that is parametrized41

by finitely many weights θ ∈ Rp and trained on observational data {(an, un)}Nn=1, which aims to42

approximate the operator G. Here, an is usually an initial system state and un is the solution state43

of the PDE after some time T . The most commonly used architecture is the Fourier neural operator44

(FNO) [Li et al., 2021], which acts on an input function a by specifying several layers of integral45

kernels that are parametrized in Fourier space. By utilizing the convolution theorem, one so-called46

Fourier block is given as47

Givi(x) = σ
(
F−1(Ri · F(vi))(x) +Wivi(x)

)
, (1)

where F and F−1 are the Fourier transform and its inverse. Here, the matrix-valued functions Ri48

are directly parametrized in the Fourier domain as neural network weights. The whole network is49

specified as a combination of several Fourier blocks with some additional lifting and projection50

functions.51

3 Probabilistic predictions using neural operators52

The method we propose is based on generating a predictive distribution via a sample-based empirical53

distribution. We denote the initial condition and the solution of the PDE as a and u, respectively, the54

spatio-temporal domain as D and the empirical predictive distribution, for a fixed initial condition55

a, as P̂M
θ = {ûm}Mm=1 with samples ûm for m = 1, ...,M . For this analysis, we restrict ourselves56

to data from separable Hilbert spaces, which includes most solution spaces of PDEs, such as the57

Sobolev space Hk, k ∈ N.58

Scoring rule minimization A scoring rule S is a function that assigns a real-valued score to the59

fit between a probability distribution and a corresponding observation [Gneiting and Raftery, 2007].60

Define the so-called expected score as S(Q,P ) := EX∼P [S(Q,X)]. The scoring rule is called61

proper with respect to a class of probability measures P if S(P, P ) ≤ S(Q,P ),∀P,Q ∈ P and it is62

called strictly proper if equality implies P = Q. In other words, a scoring rule is strictly proper if the63

true distribution of the observation uniquely minimizes the expected score. More details on proper64

scoring rules can be found in Appendix A. Here, we focus mainly on the well-known energy score65

[Gneiting and Raftery, 2007], which is defined as66

ES(P, x) := EP [∥X − x∥H]− 1

2
EP [∥X −X ′∥H], (2)

where X,X ′ i.i.d∼ P, x ∈ H and H is a separable Hilbert space. Pacchiardi et al. [2024] show how67

generative neural networks can be trained via scoring rule minimization in the finite-dimensional68

setting. Consider data observation pairs of the form (ai, ui)
n
i=1, where ai ∼ PA and ui ∼ PU follow69

some distributions over a separable Hilbert space and let Pθ(· | a) denote an approximate posterior70

generated by the network. In the conditional data setting, we assume that ui ∼ P ∗(· | ai). For a71

(strictly) proper scoring rule, the minimization objective is given as72

argmin
θ

Ea∼PAEu∼P∗(·|a)S(Pθ(· | a), u)

and leads to Pθ(· | a) = P ∗(· | a) almost everywhere. In the finite data setting, this objective is73

approximated with a Monte Carlo estimator. While closed-form expressions of S are not always74

available, the energy score has a representation that admits an unbiased estimator, which requires75

the output from our neural network to consist of multiple samples of the predictive distribution, e.g.76

(ûm)Mm=1 ∼ Pθ(· | a). In our case, the minimization objective for the neural network with the energy77

score then becomes78

argmin
θ

1

n

n∑
i=1

 1

M

M∑
m=1

∥ûm
i − ui∥H − 1

2M(M − 1)

M∑
m,h=1
m ̸=h

∥ûm
i − ûh

i ∥H

 . (3)
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In this paper, we extend this approach to the infinite-dimensional setting of neural operators. This79

is mathematically motivated, as we prove in Appendix A that the energy score is strictly proper80

in separable Hilbert spaces, which allows network training via scoring rule minimization. As the81

base architecture we utilize FNOs, and refer to our approach as probabilistic Fourier neural operator82

(PFNO). In order to create an empirical distribution as the network output, we focus on utilizing83

stochastic forward passes via dropout [Gal and Ghahramani, 2016]. To further account for the84

structure of the FNO, we apply additional dropout over the parameters in Fourier space, which then85

acts globally on the network prediction. The PFNO has the advantage that it is easy to implement86

in an existing architecture and creates a nonparametric predictive distribution, allowing for more87

flexibility. We compare the PFNO against the MCDropout and Laplace approximation as baselines.88

Baselines: Gal and Ghahramani [2016] show that a neural network with dropout before each layer89

is mathematically equivalent to a variational approximation of a Gaussian process. This leads to90

a simple and efficient way of creating a predictive distribution, referred to as MCDropout. In our91

setting, the predictive distribution is given as92

P̂M
θ = {G∗

θ (a,ωm)}Mm=1, (4)
where ωm is the random dropout variable and G∗

θ denotes a neural operator trained.93

Weber et al. [2024] propose to utilize the Laplace approximation (LA) for FNOs, which is based94

on building a second-order approximation of the weights around the maximum a posteriori (MAP)95

estimate. By assuming a Gaussian weight prior, the weight-space uncertainty of the LA is given by96

p(θ, C) ≈ N (θ; θMAP,Σ), Σ := −(∇2
θL(C; θ)|θMAP

)−1, (5)
where C = {(an, un)}Nn=1. The corresponding predictive distribution in function space is an97

analytically available Gaussian and is used to generate M predictive samples. In contrast to the98

PFNO, both methods quantify uncertainty for an already trained neural operator.99

4 Experimental results100

We analyze our methods on two highly uncertain dynamical systems. First, the Kuramoto-Sivashinsky101

(KS) equation, which is a one-dimensional chaotic fourth-order parabolic PDE, described by102

∂tu(x, t) + u∂xu(x, t) + ∂2
xu(x, t) + ∂4

xu(x, t) = 0, u(x, 0) = u0(x). (6)
We generate 10.000 samples (10% for validation/evaluation) over the domain D = [0, 100]× [0, 300].103

In addition, we evaluate the models on a 2-meter surface temperature prediction task, where we104

utilize the ERA5 dataset, provided via the WeatherBench benchmark [Rasp et al., 2024] with a spatial105

resolution of 0.25◦ across Europe and a time resolution of 6h. We use data from 2011-2022 with the106

last two years as validation and test data respectively. For the KS data the model takes and predicts107

20 timesteps, for the ERA5 it takes and predicts 10 timesteps (60 hours). For evaluation, we consider108

the following metrics:109

RMSE(P̂M
θ , u) = ∥uM − u∥L2 , (7)

ES(P̂M
θ , u) =

1

M

M∑
m=1

∥ûm − u∥L2 −
1

2M(M − 1)

M∑
m̸=h

∥ûm − ûh∥L2 , (8)

Cα(P̂M
θ , u) =

∫
D
1

{
u(x, t) ∈ [q̂

α/2
θ (x, t), q̂

1−α/2
θ (x, t)]

}
dx dt, (9)

Table 1: Evaluation metrics on the Kuramoto-Sivashinsky equation and the 2-meter surface tempera-
ture. The best model is highlighted in bold.

Validation data Test data
RMSE ES C0.05 RMSE ES C0.05

KS
PFNO 0.8674 0.6108 0.8781 0.8677 0.6110 0.8774
MCDropout 0.8446 0.7298 0.3595 0.8457 0.7310 0.3580
Laplace 0.8352 0.8247 0.0197 0.8359 0.8250 0.0207

T2M
PFNO 0.1677 0.1182 0.9427 0.3291 0.2427 0.7865
MCDropout 0.1834 0.1427 0.6325 0.3035 0.2535 0.4284
Laplace 0.1910 0.1421 0.3231 0.3145 0.2491 0.2387
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where uM denotes the mean prediction, and q̂αθ denotes the empirical α quantile of the predictive110

distribution. All metrics are then averaged over the validation or test dataset. The RMSE evaluates111

the match between the mean of the predictive distribution and the observation, while the energy112

score evaluates the match for the predictive distribution as a whole. The coverage Cα is calculated113

pointwise and describes, whether the predictive 1 − α interval entails the true value. It should be114

close to 1− α for a well-calibrated prediction.115

For a fair comparison, all methods use the same architecture, namely an FNO with 20 hidden channels,116

10 modes in the time dimension, and 12 modes in the spatial dimension (2d or 3d respectively), and117

generate a predictive distribution of size M = 100. Furthermore, we tune the dropout for all methods118

separately via grid search, as they highly depend on this parameter. The results for both experiments119

can be found in Table 1, while Figure 1 shows an additional analysis of the temporal behavior of the120

estimations for the Kuramoto-Sivashinsky equation.121
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Figure 1: The figure shows the squared error, standard deviation, and 95%-coverage for the different
methods on a random test sample of the Kuramoto-Sivashinsky equation. The mean coverage values
from left to right are 30.90%, 4.82% and 89.32%.

5 Conclusion122

The PFNO obtains the best fit between the observation and the predictive distribution in terms of the123

energy score. Furthermore, for the temperature prediction task, the RMSE is comparable to or even124

lower than the other methods, although it is not explicitly minimized by the network. Finally, the125

PFNO provides the best-calibrated prediction intervals, although the coverage is generally below the126

optimal value. For the temperature prediction task, the performance is significantly worse on the127

test set for all models and future research might revolve around making the approaches more robust128

against out-of-distribution data. While the Laplace approximation is very easy to use and admits129

an approximate analytically available Gaussian distribution, this might not be flexible enough for130

complex dynamical systems, if, for example, the uncertainty does not follow a symmetric distribution.131

Although it leads to a better mean estimation, as it is based on the MAP estimate, the predictive132

uncertainty is not as adequate. The MCDropout method lacks calibration in terms of coverage but133

also generally provides a good mean prediction.134

While our approach shows improved performance, is easy to implement, and can be used with135

basically any architecture, it requires an additional training step and more computational power, as136

multiple samples are necessary to calculate the loss function. Still, these findings are very promising137

and encourage further analysis of neural operators trained with scoring rule minimization for complex138

dynamical systems. Some aspects to investigate are different suitable scoring rules, different ways of139

generating the samples, as well as ways to improve coverage and calibration of the prediction.140
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A Proper scoring rules in separable Hilbert spaces189

This section aims to provide more detailed insights into proper scoring rules and generalizations over190

separable Hilbert spaces. The results and notations draw mainly on Ziegel et al. [2024], Steinwart and191

Ziegel [2021]. Let (X ,A) be a measurable space and let M1(X ) denote the class of all probability192

measures on X . Let k : X × X → R be a symmetric and positive function referred to as kernel193

and define Mk
1(X ) :=

{
P ∈ M1(X) |

∫
X

√
k(x, x)dP (x) < ∞

}
. A measurable and bounded194

kernel is called characteristic if the kernel embedding defined by Φ(P ) :=
∫
k(·, ω)dP (ω), with195

P ∈ Mk
1(H) is injective [Steinwart and Ziegel, 2021].196

For P ⊆ M1(X ), a scoring rule is a function S : P × X → [−∞,∞] such that the integral197 ∫
S(P, x)dQ(x) exists for all P,Q ∈ P . Define the so-called expected score as S(Q,P ) :=198 ∫
S(Q, x) dP (x) = EX∼P [S(Q,X)]. Then S is called proper with respect to P if199

S(P, P ) ≤ S(Q,P ), for all P,Q ∈ P, (10)

and it is called strictly proper if equality in (10) implies P = Q. For a more detailed overview200

compare Gneiting and Raftery [2007]. Proper scoring rules are closely connected to characteristic201

kernels, in fact Steinwart and Ziegel [2021] showed that the kernel score is strictly proper if and only202

if the underlying kernel is characteristic. The kernel score Sk associated with a measurable kernel k203

on X is the scoring rule Sk : Mk
1 ×X → R defined by204

Sk(P, x) =
1

2
EP [k(X,X ′)]− EP [k(X,x)] +

1

2
k(x, x),

where x ∈ X and X,X ′ i.i.d∼ P ∈ Mk
1 .205

We will use the notion of the kernel score to derive a functional version of the commonly used energy206

score [Gneiting and Raftery, 2007] and show that it is a strictly proper scoring rule in separable207

Hilbert spaces.208

Theorem A.1 (Energy score). Let H denote a separable Hilbert space. The energy score ES :209

Mk
1(H)×H → R defined as210

ES(P, x) := EP [∥X − x∥H]− 1

2
EP [∥X −X ′∥H],

with x ∈ H and X,X ′ i.i.d∼ P ∈ Mk
1 is strictly proper relative to the class Mk

1(H).211

Proof. Lyons [2013, Theorem 3.25] states that every separable Hilbert space is of so-called strong212

negative type, which implies the existence of a positive definite distance kernel induced by the metric213

∥·∥H given as k(z, z′) = ∥z− z0∥H+ ∥z′− z0∥H−∥z− z′∥H for some fixed z0 ∈ H. Furthermore,214

Sejdinovic et al. [2013, Proposition 29] state that the corresponding kernel k is characteristic. Defining215

kd(z, z
′) := d(z, z0) + d(z′, z0)− d(z, z′), with d(x, x′) := ∥x− x′∥H and z0 ∈ H leads to216

Skd
(P, x) = −EP [kd(X,x)] +

1

2
EP [kd(X,X ′)] +

1

2
kd(x, x)

= −EP [d(X, z0) + d(x, z0)− d(X,x)] +
1

2
EP [d(X, z0) + d(X ′, z0)− d(X,X ′)]

+
1

2
(d(x, z0) + d(x, z0)− d(x, x))

= EP [d(X,x)]− 1

2
EP [d(X,X ′)]− 1

2
EP [d(X, z0)] +

1

2
EP [d(X

′, z0)]− EP [d(x, z0)] + d(x, z0)

= EP [d(X,x)]− 1

2
EP [d(X,X ′)] = ES(P, x)

Since kd is characteristic, by Steinwart and Ziegel [2021] the energy score is strictly proper relative217

to the class Mkd
1 (H).218
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