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Abstract

Neural networks have been successfully applied in modeling partial differential
equations, especially in dynamical systems. Commonly used models, such as
neural operators, are performing well at deterministic prediction tasks, but lack a
quantification of the uncertainty inherent in many complex systems, for example
weather forecasting. In this paper, we explore a new approach that combines Fourier
neural operators with generative modeling based on strictly proper scoring rules
in order to create well-calibrated probabilistic predictions of dynamical systems.
We demonstrate improved predictive uncertainty for our approach, especially in
settings with very high inherent uncertainty.

1 Introduction

Many complex phenomena in the sciences are described via time-dependent partial differential
equations (PDEs), making their study a crucial research topic. Recent developments in machine
learning led to an effective class of neural networks for solving PDEs, called neural operators
[Kovachki et al., 2023]. In dynamical systems, these models aim to learn the operator that maps
an initial system state to the corresponding solution across time and have been applied to problems
such as weather forecasting [Pathak et al., 2022] or fluid dynamics [Renn et al., 2023]. However,
neural operators are usually studied in the context of deterministic predictions, not accounting for the
inherent uncertainty in complex and chaotic dynamical systems. Several methods have been proposed
to enhance neural network architectures to quantify uncertainty. While some approaches focus
on perturbing initial conditions [Pathak et al., 2022], many approaches are applied to the network
post-hoc. These include statistical post-processing [Bülte et al., 2024] or Bayesian methods [Gal
and Ghahramani, 2016]. For neural operators, which learn an output in function space, uncertainty
quantification can be more complex. Gal and Ghahramani [2016] propose to generate samples from
a posterior predictive distribution by utilizing dropout in the model inference phase. Weber et al.
[2024] and Magnani et al. [2024] use a Laplace approximation for the Fourier neural operator, which
utilizes a linearized neural network to generate a tractable posterior distribution in function space.

In the context of spatial predictions, especially weather forecasting, methods based on the notion
of proper scoring rules are commonly applied and have shown to work very well in combination
with neural networks [Pacchiardi et al., 2024, Chen et al., 2024]. However, this has not yet been
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transferred to the setting of operator learning, which requires additional analysis of the corresponding
scoring rules in infinite dimensional spaces. In this paper, we utilize proper scoring rules in separable
Hilbert spaces in order to train a neural operator to estimate a predictive distribution over functions.
We theoretically prove that this is well-motivated by showing that the energy score is strictly proper in
infinite dimensional spaces. Our primary aim is to demonstrate the advantages of the approach in pre-
dicting dynamical systems. Our approach, which we refer to as probabilistic Fourier neural operator
(PFNO), leads to better-calibrated predictive distributions and adequate uncertainty representations
even for long dynamical trajectories.

2 Neural operators

The aim of operator learning is to utilize a neural network to learn a mapping between two function
spaces from a finite collection of input-output pairs. Consider an operator G : A → U , acting on two
separable Banach spaces of functions. A neural operator is a map Gθ : A → U , that is parametrized
by finitely many weights θ ∈ Rp and trained on observational data {(an, un)}Nn=1, which aims to
approximate the operator G. Here, an is usually an initial system state and un is the solution state
of the PDE after some time T . The most commonly used architecture is the Fourier neural operator
(FNO) [Li et al., 2021], which acts on an input function a by specifying several layers of integral
kernels that are parametrized in Fourier space. By utilizing the convolution theorem, one so-called
Fourier block is given as

Givi(x) = σ
(
F−1(Ri · F(vi))(x) +Wivi(x)

)
, (1)

where F and F−1 are the Fourier transform and its inverse. Here, the matrix-valued functions Ri

are directly parametrized in the Fourier domain as neural network weights. The whole network is
specified as a combination of several Fourier blocks with some additional lifting and projection
functions.

3 Probabilistic predictions using neural operators

The method we propose is based on generating a predictive distribution via a sample-based empirical
distribution. We denote the initial condition and the solution of the PDE as a and u, respectively, the
spatio-temporal domain as D and the empirical predictive distribution, for a fixed initial condition
a, as P̂M

θ = {ûm}Mm=1 with samples ûm for m = 1, ...,M . For this analysis, we restrict ourselves
to data from separable Hilbert spaces, which includes most solution spaces of PDEs, such as the
Sobolev space Hk, k ∈ N.

Scoring rule minimization A scoring rule S is a function that assigns a real-valued score to the
fit between a probability distribution and a corresponding observation [Gneiting and Raftery, 2007].
Define the so-called expected score as S(Q,P ) := EX∼P [S(Q,X)]. The scoring rule is called
proper with respect to a class of probability measures P if S(P, P ) ≤ S(Q,P ),∀P,Q ∈ P and it is
called strictly proper if equality implies P = Q. In other words, a scoring rule is strictly proper if the
true distribution of the observation uniquely minimizes the expected score. More details on proper
scoring rules can be found in Appendix A. Here, we focus mainly on the well-known energy score
[Gneiting and Raftery, 2007], which is defined as

ES(P, x) := EP [∥X − x∥H]− 1

2
EP [∥X −X ′∥H], (2)

where X,X ′ i.i.d∼ P, x ∈ H and H is a separable Hilbert space. Pacchiardi et al. [2024] show how
generative neural networks can be trained via scoring rule minimization in the finite-dimensional
setting. Consider data observation pairs of the form (ai, ui)

n
i=1, where ai ∼ PA and ui ∼ PU follow

some distributions over a separable Hilbert space and let Pθ(· | a) denote an approximate posterior
generated by the network. In the conditional data setting, we assume that ui ∼ P ∗(· | ai). For a
(strictly) proper scoring rule, the minimization objective is given as

argmin
θ

Ea∼PAEu∼P∗(·|a)S(Pθ(· | a), u)

and leads to Pθ(· | a) = P ∗(· | a) almost everywhere. In the finite data setting, this objective is
approximated with a Monte Carlo estimator. While closed-form expressions of S are not always
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available, the energy score has a representation that admits an unbiased estimator, which requires
the output from our neural network to consist of multiple samples of the predictive distribution, e.g.
(ûm)Mm=1 ∼ Pθ(· | a). In our case, the minimization objective for the neural network with the energy
score then becomes

argmin
θ

1

n

n∑
i=1

 1

M

M∑
m=1

∥ûm
i − ui∥H − 1

2M(M − 1)

M∑
m,h=1
m ̸=h

∥ûm
i − ûh

i ∥H

 . (3)

In this paper, we extend this approach to the infinite-dimensional setting of neural operators. This
is mathematically motivated, as we prove in Appendix A that the energy score is strictly proper
in separable Hilbert spaces, which allows network training via scoring rule minimization. As the
base architecture we utilize FNOs, and refer to our approach as probabilistic Fourier neural operator
(PFNO). In order to create an empirical distribution as the network output, we focus on utilizing
stochastic forward passes via dropout [Gal and Ghahramani, 2016]. To further account for the
structure of the FNO, we apply additional dropout over the parameters in Fourier space, which then
acts globally on the network prediction. The PFNO has the advantage that it is easy to implement
in an existing architecture and creates a nonparametric predictive distribution, allowing for more
flexibility. We compare the PFNO against the MCDropout and Laplace approximation as baselines.

Baselines: Gal and Ghahramani [2016] show that a neural network with dropout before each layer
is mathematically equivalent to a variational approximation of a Gaussian process. This leads to
a simple and efficient way of creating a predictive distribution, referred to as MCDropout. In our
setting, the predictive distribution is given as

P̂M
θ = {G∗

θ (a,ωm)}Mm=1, (4)

where ωm is the random dropout variable and G∗
θ denotes a neural operator trained.

Weber et al. [2024] propose to utilize the Laplace approximation (LA) for FNOs, which is based
on building a second-order approximation of the weights around the maximum a posteriori (MAP)
estimate. By assuming a Gaussian weight prior, the weight-space uncertainty of the LA is given by

p(θ, C) ≈ N (θ; θMAP,Σ), Σ := −(∇2
θL(C; θ)|θMAP

)−1, (5)

where C = {(an, un)}Nn=1. The corresponding predictive distribution in function space is an
analytically available Gaussian and is used to generate M predictive samples. In contrast to the
PFNO, both methods quantify uncertainty for an already trained neural operator.

4 Experimental results

We analyze our methods on two highly uncertain dynamical systems. First, the Kuramoto-Sivashinsky
(KS) equation, which is a one-dimensional chaotic fourth-order parabolic PDE, described by

∂tu(x, t) + u∂xu(x, t) + ∂2
xu(x, t) + ∂4

xu(x, t) = 0, u(x, 0) = u0(x). (6)

We generate 10.000 samples (10% for validation/evaluation) over the domain D = [0, 100]× [0, 300].
In addition, we evaluate the models on a 2-meter surface temperature prediction task, where we
utilize the ERA5 dataset, provided via the WeatherBench benchmark [Rasp et al., 2024] with a spatial

Experiment Method RMSE ES C0.05

KS
PFNO 0.8793 (± 0.0072) 0.6195 (± 0.0049) 0.7640 (± 0.0191)
MCDropout 0.8635 (± 0.0048) 0.7541 (± 0.0049) 0.3600 (± 0.0082)
Laplace 0.8772 (± 0.0055) 0.7332 (± 0.0103) 0.3955 (± 0.0189)

T2M
PFNO 0.0242 (± 0.0000) 0.0174 (± 0.0000) 0.8623 (± 0.0033)
MCDropout 0.0240 (± 0.0001) 0.0202 (± 0.0000) 0.4456 (± 0.0015)
Laplace 0.0251 (± 0.0001) 0.0195 (± 0.0006) 0.6956 (± 0.1169)

Table 1: Evaluation metrics and respective standard deviation for the Kuramoto-Sivashinsky equation
and the 2-meter surface temperature prediction. The best model is highlighted in bold.

3



resolution of 0.25◦ across Europe and a time resolution of 6h. We use data from 2011-2022 with the
last two years as validation and test data respectively. For the KS data the model takes and predicts
20 timesteps, for the ERA5 it takes and predicts 10 timesteps (60 hours). For evaluation, we consider
the following metrics:

RMSE(P̂M
θ , u) = ∥uM − u∥L2 , (7)

ES(P̂M
θ , u) =

1

M

M∑
m=1

∥ûm − u∥L2 −
1

2M(M − 1)

M∑
m̸=h

∥ûm − ûh∥L2 , (8)

Cα(P̂M
θ , u) =

∫
D
1

{
u(x, t) ∈ [q̂

α/2
θ (x, t), q̂

1−α/2
θ (x, t)]

}
dx dt, (9)

where uM denotes the mean prediction, and q̂αθ denotes the empirical α quantile of the predictive
distribution. All metrics are then averaged over the validation or test dataset. The RMSE evaluates
the match between the mean of the predictive distribution and the observation, while the energy
score evaluates the match for the predictive distribution as a whole. The coverage Cα is calculated
pointwise and describes, whether the predictive 1 − α interval entails the true value. It should be
close to 1− α for a well-calibrated prediction.

For a fair comparison, all methods use the same architecture, namely an FNO with 20 hidden channels,
10 modes in the time dimension, and 12 modes in the spatial dimension (2d or 3d respectively), and
generate a predictive distribution of size M = 100. Furthermore, we tune the dropout for all methods
separately via grid search, as they highly depend on this parameter. Finally, we run each experiment
ten times to obtain robustness across the evaluation. The results for both experiments can be found in
Table 1, while Figure 1 shows an additional analysis of the temporal behavior of the predictions for
the Kuramoto-Sivashinsky equation.

0

10

20

30

t

MCD LA PFNO

0

10

20

30

t

0 20 40 60 80 100
x

0

10

20

30

t

0 20 40 60 80 100
x

0 20 40 60 80 100
x

0

2

4

6

Sq
ua

re
d 

er
ro

r

0.0

0.5

1.0

1.5

2.0

St
an

da
rd

 d
ev

ia
tio

n

0

1

Co
ve

ra
ge

 (
=

0.
05

)

Figure 1: The figure shows the squared error, standard deviation, and 95%-coverage for the different
methods on a random test sample of the Kuramoto-Sivashinsky equation. The mean coverage values
from left to right are 36.19%, 45.74% and 76.27%.

5 Conclusion

The PFNO obtains the best fit between the observation and the predictive distribution in terms of the
energy score. Furthermore, for the temperature prediction task, the RMSE is comparable to or even
lower than the other methods, although it is not explicitly minimized by the network. Finally, the
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PFNO provides the best-calibrated prediction intervals, although the coverage is generally below the
optimal value. For the temperature prediction task, the performance is significantly worse on the
test set for all models and future research might revolve around making the approaches more robust
against out-of-distribution data. While the Laplace approximation is very easy to use and admits
an approximate analytically available Gaussian distribution, this might not be flexible enough for
complex dynamical systems, if, for example, the uncertainty does not follow a symmetric distribution.
Although it leads to a better mean estimation, as it is based on the MAP estimate, the predictive
uncertainty is not as adequate. The MCDropout method lacks calibration in terms of coverage but
also generally provides a good mean prediction.

While our approach shows improved performance, is easy to implement, and can be used with
basically any architecture, it requires an additional training step and more computational power, as
multiple samples are necessary to calculate the loss function. Still, these findings are very promising
and encourage further analysis of neural operators trained with scoring rule minimization for complex
dynamical systems. Some aspects to investigate are different suitable scoring rules, different ways of
generating the samples, as well as ways to improve coverage and calibration of the prediction.
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A Proper scoring rules in separable Hilbert spaces

This section aims to provide more detailed insights into proper scoring rules and generalizations over
separable Hilbert spaces. The results and notations draw mainly on Ziegel et al. [2024], Steinwart and
Ziegel [2021]. Let (X ,A) be a measurable space and let M1(X ) denote the class of all probability
measures on X . Let k : X × X → R be a symmetric and positive function referred to as kernel
and define Mk

1(X ) :=
{
P ∈ M1(X) |

∫
X

√
k(x, x)dP (x) < ∞

}
. A measurable and bounded

kernel is called characteristic if the kernel embedding defined by Φ(P ) :=
∫
k(·, ω)dP (ω), with

P ∈ Mk
1(H) is injective [Steinwart and Ziegel, 2021].

For P ⊆ M1(X ), a scoring rule is a function S : P × X → [−∞,∞] such that the integral∫
S(P, x)dQ(x) exists for all P,Q ∈ P . Define the so-called expected score as S(Q,P ) :=∫
S(Q, x) dP (x) = EX∼P [S(Q,X)]. Then S is called proper with respect to P if

S(P, P ) ≤ S(Q,P ), for all P,Q ∈ P, (10)

and it is called strictly proper if equality in (10) implies P = Q. For a more detailed overview
compare Gneiting and Raftery [2007]. Proper scoring rules are closely connected to characteristic
kernels, in fact Steinwart and Ziegel [2021] showed that the kernel score is strictly proper if and only
if the underlying kernel is characteristic. The kernel score Sk associated with a measurable kernel k
on X is the scoring rule Sk : Mk

1 ×X → R defined by

Sk(P, x) =
1

2
EP [k(X,X ′)]− EP [k(X,x)] +

1

2
k(x, x),

where x ∈ X and X,X ′ i.i.d∼ P ∈ Mk
1 .

We will use the notion of the kernel score to derive a functional version of the commonly used energy
score [Gneiting and Raftery, 2007] and show that it is a strictly proper scoring rule in separable
Hilbert spaces.
Theorem A.1 (Energy score). Let H denote a separable Hilbert space. The energy score ES :
Mk

1(H)×H → R defined as

ES(P, x) := EP [∥X − x∥H]− 1

2
EP [∥X −X ′∥H],

with x ∈ H and X,X ′ i.i.d∼ P ∈ Mk
1 is strictly proper relative to the class Mk

1(H).

Proof. Lyons [2013, Theorem 3.25] states that every separable Hilbert space is of so-called strong
negative type, which implies the existence of a positive definite distance kernel induced by the metric
∥·∥H given as k(z, z′) = ∥z− z0∥H+ ∥z′− z0∥H−∥z− z′∥H for some fixed z0 ∈ H. Furthermore,
Sejdinovic et al. [2013, Proposition 29] state that the corresponding kernel k is characteristic. Defining
kd(z, z

′) := d(z, z0) + d(z′, z0)− d(z, z′), with d(x, x′) := ∥x− x′∥H and z0 ∈ H leads to

Skd
(P, x) = −EP [kd(X,x)] +

1

2
EP [kd(X,X ′)] +

1

2
kd(x, x)

= −EP [d(X, z0) + d(x, z0)− d(X,x)] +
1

2
EP [d(X, z0) + d(X ′, z0)− d(X,X ′)]

+
1

2
(d(x, z0) + d(x, z0)− d(x, x))

= EP [d(X,x)]− 1

2
EP [d(X,X ′)]− 1

2
EP [d(X, z0)] +

1

2
EP [d(X

′, z0)]− EP [d(x, z0)] + d(x, z0)

= EP [d(X,x)]− 1

2
EP [d(X,X ′)] = ES(P, x)

Since kd is characteristic, by Steinwart and Ziegel [2021] the energy score is strictly proper relative
to the class Mkd

1 (H).
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