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Abstract

Evaluating the worst-case performance of a reinforcement learning (RL) agent
under the strongest/optimal adversarial perturbations on state observations (within
some constraints) is crucial for understanding the robustness of RL agents. How-
ever, finding the optimal adversary is challenging, in terms of both whether we
can find the optimal attack and how efficiently we can find it. Existing works on
adversarial RL either use heuristics-based methods that may not find the strongest
adversary, or directly train an RL-based adversary by treating the agent as a part of
the environment, which can find the optimal adversary but may become intractable
in a large state space. This paper introduces a novel attacking method to find the
optimal attacks through collaboration between a designed function named “actor”
and an RL-based learner named “director”. The actor crafts state perturbations for
a given policy perturbation direction, and the director learns to propose the best
policy perturbation directions. Our proposed algorithm, PA-AD, is theoretically
optimal and significantly more efficient than prior RL-based works in environ-
ments with large state spaces. Empirical results show that our proposed PA-AD
universally outperforms state-of-the-art attacking methods in various Atari and
MuJoCo environments. By applying PA-AD to adversarial training, we achieve
state-of-the-art empirical robustness in multiple tasks under strong adversaries.

1 Introduction

Deep Reinforcement Learning (DRL) has achieved incredible success in many applications. However,
some recent works [8, 31] reveal that a well-trained RL agent may be vulnerable to test-time evasion

attacks, making it risky to deploy RL models in high-stakes applications. As in most related works,
we consider a state adversary which adds imperceptible noise to the observations of an agent such
that its cumulative reward is reduced during test time.

In order to understand the vulnerability of an RL agent and to improve its certified robustness, it is
important to evaluate the worst-case performance of the agent under any adversarial attacks with
certain constraints. In other words, it is crucial to find the strongest/optimal adversary that can
minimize the cumulative reward gained by the agent with fixed constraints. Therefore, this paper
focuses on the following question:

Given an arbitrary attack radius (budget) ✏ for each step of the deployment, what is the worst-
case performance of an agent under the strongest adversary?
Finding the strongest adversary in RL is challenging. Many existing attacks [8, 32] are based on
heuristics, crafting adversarial states at every step independently, although steps are interrelated in
contrast to image classification tasks. These heuristic methods can often effectively reduce the agent’s
reward, but are not guaranteed to achieve the strongest attack under a given budget. This type of
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attack is “myopic” since it does not plan for the future. Figure 1 shows an intuitive example, where
myopic adversaries only prevent the agent from selecting the best action in the current step, but the
strongest adversary can strategically “lead” the agent to a trap, which is the worst event for the agent.

myopic

myopic

Victim 

strongest

Figure 1: An example that a myopic
adversary is not the strongest.

Achieving computational efficiency arises as another challenge
in practice, even if the strongest adversary can be found in
theory. A recent work [32] points out that learning the optimal
state adversary is equivalent to learning an optimal policy in a
new Markov Decision Process (MDP). A follow-up work [31]
shows that the learned adversary significantly outperforms prior
adversaries in MuJoCo games. However, the state space and the
action space of the new MDP are both as large as the state space
in the original environment, which can be high-dimensional in
practice. For example, video games and autonomous driving
systems use images as observations. In these tasks, learning the
state adversary directly becomes computationally intractable.

To overcome the above two challenges, we propose a novel attack method called Policy Adver-
sarial Actor Director (PA-AD), where we design a “director” and an “actor” that collaboratively
finds the optimal state perturbations. In PA-AD, a director learns an MDP named Policy Adversary

MDP (PAMDP), and an actor is embedded in the dynamics of PAMDP. At each step, the director
proposes a perturbing direction in the policy space, and the actor crafts a perturbation in the state
space to lead the victim policy towards the proposed direction. Through a trail-and-error process, the
director can find the optimal way to cooperate with the actor and attack the victim policy. Theoretical
analysis shows that the optimal policy in PAMDP induces an optimal state adversary. Our PAMDP is
generally more compact than the adversarial MDP defined by Zhang et al.[31] and thus is easier to be
learned efficiently using off-the-shelf RL algorithms. With our proposed director-actor collaborative

mechanism, PA-AD outperforms state-of-the-art attacking methods on various types of environments,
and improves the robustness of many DRL agents by adversarial training.

Summary of Contributions (1) We propose a novel attack method PA-AD which learns the
optimal adversary efficiently. PA-AD is a general method that works on stochastic and deterministic
victim policies, vectorized and pixel state spaces, as well as discrete and continuous action spaces.
(2) Empirical study shows that PA-AD generates the strongest attack compared with prior attacking
methods in various environments, including MuJoCo and Atari games. (3) Combining our PA-AD
with adversarial training, we achieve the most robust RL models in both MuJoCo and Atari games
under evasion attacks.

2 Preliminaries and Notations

The Victim RL Agent In RL, an agent interacts with an environment modeled by a Markov
Decision Process (MDP) denoted as a tuple M = hS,A, P,R, �i, where S is a state space with
cardinality |S|, A is an action space with cardinality |A|, P : S ⇥ A ! �(S) is the transition
function 1, R : S ⇥A ! R is the reward function, and � 2 (0, 1) is the discount factor. In this paper,
we consider a setting where the state space is much larger than the action space, which arises in a
wide variety of environments. For notation simplicity, our theoretical analysis focuses on a finite
MDP, but our algorithm applies to continuous state spaces and continuous action spaces, as verified
in experiments. The agent takes actions according to its policy, ⇡ : S ! �(A). We suppose the
victim uses a fixed policy ⇡ with a function approximator (e.g. a neural network) during test time.
We denote the space of all policies as ⇧, which is a Cartesian product of |S| simplices. The value of
a policy ⇡ 2 ⇧ for state s 2 S is defined as V ⇡(s) = E⇡,P [

P1
t=0 �

t
R(st, at)|s0 = s].

Evasion Attacker Evasion attacks are test-time attacks that aim to reduce the expected total reward
gained by the agent/victim. As in most literature [8, 20, 32], we assume the attacker knows the
victim policy ⇡. However, the attacker does not know the environment dynamics, nor does it have
the ability to change the environment directly. The attacker can observe the interactions between the
victim agent and the environment, including states, actions and rewards. We focus on a typical state

adversary [8, 32], which perturbs the state observations returned by the environment before the agent
observes them. Note that the underlying states in the environment are not changed.

1�(X) denotes the the space of probability distributions over X .
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Figure 2: A state adversary h perturbs s into h(s) 2 B✏(s) in the state space; hence, the victim’s policy
⇡ is perturbed into ⇡h within the Adv-policy-set BH

✏ (⇡); as a result, the expected total reward the victim
can gain becomes V ⇡h instead of V ⇡ . A prior work SA-RL [31] directly uses an RL agent to learn the best
state adversary h

⇤, which works for MDPs with small state spaces, but suffers from high complexity in larger
MDPs. In contrast, we find the optimal state adversary h

⇤ efficiently through identifying the optimal policy
adversary ⇡h⇤ . Our proposed attack method called PA-AD contains an RL-based “director” which learns to
propose policy perturbation ⇡h in the policy space, and a non-RL “actor”, which targets at the proposed ⇡h and
computes adversarial states in the state space. Through this collaboration, the director can learn the optimal
policy adversary ⇡h⇤ using RL methods, such that the actor executes h⇤ as justified in Theorem 4.

Formally, we model a state adversary by a function h which perturbs state s 2 S into s̃ := h(s), so
that the input to the agent’s policy is s̃ instead of s. The amount of perturbation ks̃� sk is usually
small so that the attacks are hard to be perceived. In this paper, we consider the common `p-norm
ball constraint: s̃ should be in B✏(s), where B✏(s) denotes an `p norm ball centered at s with radius
✏ � 0, a constant called the budget of the adversary for every step. With the budget constraint, we
define the admissible state adversary and the admissible adversary set as below.
Definition 1 (Set of Admissible State Adversaries H✏). A state adversary h is said to be admissible

if 8s 2 S , we have h(s) 2 B✏(s). The set of all admissible state adversaries is denoted by H✏.

Then the goal of the attacker is to find an adversary h
⇤ in H✏ that maximally reduces the cumulative

reward of the agent. In this work, we propose a novel method to learn the optimal state adversary
through the identification of an optimal policy perturbation defined and motivated in the next section.

3 Understanding Optimal Adversary via Policy Perturbations

In this section, we first motivate our idea of interpreting evasion attacks as perturbations of policies,
then discuss how to efficiently find the optimal state adversary via the optimal policy perturbation.

Figure 3: Equivalence between eva-
sion attacks and policy perturbations.

Evasion Attacks Are Perturbations of Policies Although
existing literature usually considers state-attacks and action-
attacks separately, we point out that evasion attacks, either
applied to states or actions, are essentially equivalent to per-
turbing the agent’s policy ⇡ into another policy ⇡h in the policy
space ⇧. For instance, as shown in Figure 3, if the adversary
h alters state s into state s̃, the victim selects an action ã based
on ⇡(·|s̃). This is equivalent to directly perturbing ⇡(·|s) to
⇡h(·|s) := ⇡(·|s̃). (See Appendix B for more detailed analysis including action adversaries.)

Since every state adversary h corresponds to a specific policy perturbation, the admissible state
adversary set H✏ leads to a set of perturbed policies in the policy space. Therefore, we define an
Admissible Adversarial Policy Set (Adv-policy-set) BH

✏
(⇡) ⇢ ⇧ as the set of policies perturbed from

⇡ by all admissible state adversaries h 2 H✏. In other words, when a state adversary perturbs states
within an `p norm ball B✏(·), the victim policy is perturbed within BH

✏
(⇡). In this paper, we aim to

find the optimal state adversary h
⇤ through the identification of the “optimal policy perturbation” ⇡h⇤ ,

as depicted in Figure 2. See Appendix C for formal definition of BH

✏
(⇡) and discussion about the

relation between h
⇤ and ⇡h⇤ .

Advantages of Considering Policy Perturbations (1) ⇡h(·|s) usually lies in a lower dimensional
space than h(s) for an arbitrary state s 2 S . For example, in Atari games, the action space is discrete
and small (e.g. |A| = 18), while a state is an image of dimension C⇥H⇥W , where C,H,W are the
number of channels, the height and the width of the image, respectively. Then the state perturbation
h(s) has dimension C ⇥H ⇥W , much higher than the corresponding policy perturbation ⇡h(·|s)
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which has dimension |A|. (2) It is easier to characterize the optimality of a policy perturbation than a
state perturbation. How a state perturbation changes the value of a victim policy depends on both the
victim policy network and the environment dynamics. In contrast, how a policy perturbation changes
the victim value only depends on the environment. Our Theorem 7 in Appendix C and Theorem 12
in Appendix D both provide insights about how V

⇡ changes as ⇡ changes continuously. (3) Policy
perturbation captures the essence of evasion attacks, and unifies state and action attacks. Although
this paper focuses on state-space adversaries, the learned “optimal policy perturbation” can also be
used to conduct action-space attacks against the same victim.

4 PA-AD: Optimal and Efficient Evasion Attack

In this section, we first formally define the optimality of an attack algorithm and discuss some existing
attack methods. Then, based on the theoretical insights in Section 3, we introduce our algorithm,
Policy Adversarial Actor Director (PA-AD) that has an optimal formulation and is efficient to use.

Although many attack methods for RL agents have been proposed [8, 20, 32], it is not yet well-
understood how to characterize the strength and the optimality of an attack method. Therefore, we
propose to formulate the optimality of an attack algorithm, which answers the question “whether the
attack objective finds the strongest adversary”.
Definition 2 (Optimal Formulation of Attacking Algorithm). An attacking algorithm Algo is said to

have an optimal formulation iff for any MDP M, policy ⇡ and admissible adversary set H✏ under

attacking budget ✏, the set of optimal solutions to its objective, H
Algo
✏

, is a subset of the optimal

adversaries against ⇡, i.e., H
Algo
✏

✓ H
⇤
✏
:= {h⇤|h⇤ 2 argmin

h2H✏
V

⇡h(s), 8s 2 S}.

Intuitively, an attack method is optimally formulated if any optimal solution to its objective is an
optimal adversary for a victim ⇡ and for a given budget ✏ � 0. Many heuristic-based attacks, although
are empirically effective and efficient, do not meet the requirements of optimal formulation. In
Appendix F.3, we categorize existing heuristic attack methods into four types, and theoretically prove
that there exist scenarios where these heuristic methods may not find the strongest adversary. A recent
paper [31] proposes to learn the optimal state adversary using RL methods, which we will refer to
as SA-RL in our paper for simplicity. SA-RL can be viewed as an “end-to-end” RL attacker, as it
directly learns the optimal state adversary such that the value of the victim policy is minimized. The
formulation of SA-RL satisfies Definition 2 and thus is optimal. However, SA-RL learns an MDP
whose state space and action space are both the same as the original state space. If the original state
space is high-dimensional (e.g. images), learning a good policy in the adversary’s MDP may become
computationally intractable, as empirically shown in Section 6.

Can we address the optimal attacking problem in an efficient manner? As shown in Figure 2, a
state perturbation leads to a policy perturbation, and then the policy perturbation results in a value
perturbation; only the latter process depends on the environment dynamics and requires learning,

Environment

Actor 

Reward 

Action State 

Policy Perturbing  
Direction 

Victim Policy

The actor's task: similar to a (targeted) evasion attack in supervised learning. 
Can be solved by optimization methods (FGSM, PGD, etc).

The director's task: minimize the total reward gained from the environment. 
Can be solved by RL methods (PPO, DQN, etc).

Director 

Our Method: Policy Adversarial Actor Director: 
Optimal And Efficient 

Environment
State 

Reward Action 

Victim Policy

State 
Adversary

An End-to-end RL Attacker (SA-RL): 
Optimal But Inefficient 

EnvironmentState 
Action 

Victim Policy

A Heuristic Attacker: 
Efficient But Non-optimal 
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Figure 4: An overview of PA-AD compared with a heuristic attacker and an end-to-end RL attacker. Heuristic
attacks are efficient, but may not find the optimal adversary as they do not learn from the environment dynamics.
An end-to-end RL attacker directly learns a policy to generate state perturbations, but is inefficient in large-
state-space environments. In contrast, our PA-AD solves the attack problem with a combination of an RL-based
director and a non-RL actor, so that PA-AD achieves both optimality and efficiency.
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while the former process is similar to evasion attacks in a supervised learning problem and does
not require learning. Therefore, we propose a novel algorithm, Policy Adversarial Actor Director

(PA-AD), that has optimal formulation and is generally more efficient than an end-to-end RL adversary.
PA-AD decouples the whole attacking process into two simpler components: policy perturbation and
state perturbation, solved by a “director” and an “actor”, respectively. The director learns the optimal
policy perturbing direction with RL methods, while the actor crafts adversarial states at every step
such that the victim policy is perturbed towards the given direction. In Appendix H.2, we provide a
comprehensive comparison between PA-AD and SA-RL from multiple aspects.

Formally, for a given victim policy ⇡, our proposed PA-AD algorithm solves a Policy Adversary

MDP (PAMDP) defined in Definition 3. An actor denoted by g is embedded in the dynamics of the
PAMDP, and a director searches for an optimal policy ⌫

⇤ in the PAMDP.

Definition 3 (Policy Adversary MDP (PAMDP) cM). Given an MDP M = hS,A, P,R, �i, a

fixed stochastic victim policy ⇡, an attack budget ✏ � 0, we define a Policy Adversarial MDP cM =
hS, bA, bP , bR, �i, where the action space is bA :={d 2[0, 1]|A|

,
P|A|

i=1 di = 0}, and 8s, s0 2 S, 8ba 2 bA,

bP (s0|s,ba) =
X

a2A
⇡(a|g(ba, s))P (s0|s, a), bR(s,ba) = �

X
a2A

⇡(a|g(ba, s))R(s, a),

where g is the actor function defined as

g(ba, s) = argmax
s02B✏(s)k⇡(s

0)�⇡(s)k subject to
�
⇡(s0)�⇡(s)

�Tba = k⇡(s0)�⇡(s)kkbak. (G)

If the victim policy is deterministic, i.e., ⇡D := argmax
a
⇡(a|s), (subscript D stands for determinis-

tic), the action space of PAMDP is bAD :=A, and the actor function gD is

gD(ba, s) = argmax
s02B✏(s)

�
⇡(ba|s0)�maxa2A,a 6=ba⇡(a|s0)

�
. (GD)

Detailed definition of the deterministic-victim version of PAMDP is in Appendix E.1.

A key to PA-AD is the director-actor collaboration mechanism. The input to director policy ⌫ is the
current state s in the original environment, while its output ba is a signal to the actor denoting “which
direction to perturb the victim policy into”. The actor g takes in the state s and director’s direction ba
and then computes a state perturbation within the attack budget. Therefore, the director and the actor
together induce a state adversary: h(s) := g(⌫(s), s), 8s 2 S. The definition of PAMDP is slightly
different for a stochastic victim policy and a deterministic victim policy, as described below.
For a stochastic victim ⇡, the director’s action ba 2 bA is designed to be a unit vector lying in the
policy simplex, denoting the perturbing direction in the policy space. The actor, once receiving the
perturbing direction ba, will “push” the policy as far as possible by perturbing s to g(ba, s) 2 B✏(s), as
characterized by the optimization problem (G). In this way, the policy perturbation resulted by the
director and the actor is always in the outermost boundary of BH

✏
(⇡) w.r.t. the victim ⇡, where the

optimal policy perturbation can be found according to Theorem 7.
For a deterministic victim ⇡D, the director’s action ba 2 bAD can be viewed as a target action in the
original action space, and the actor conducts targeted attacks to let the victim execute ba, by forcing
the logit corresponding to the target action to be larger than the logits of other actions.

In both the stochastic-victim and deterministic-victim case, PA-AD has an optimal formulation as
stated in Theorem 4 (proven in Appendix F.2).
Theorem 4 (Optimality of PA-AD). For any MDP M, any fixed victim policy ⇡, and any attack

budget ✏ � 0, an optimal policy ⌫
⇤

in cM induces an optimal state adversary against ⇡ in M. That

is, the formulation of PA-AD is optimal, i.e., H
PA-AD ✓ H

⇤
✏

.

Efficiency of PA-AD As commonly known, the sample complexity and computational cost of
learning an MDP usually grow with the cardinalities of its state space and action space. Both SA-RL
and PA-AD have state space S , the state space of the original MDP. But the action space of SA-RL is
also S , while our PA-AD has action space R|A|�1 for stochastic victim policies, or A for deterministic
victim policies. In most DRL applications, the state space (e.g., images) is much larger than the
action space, then PA-AD is generally more efficient than SA-RL as it learns a smaller MDP.

The attacking procedure is illustrated in Algorithm 1. At step t, the director observes a state st, and
proposes a policy perturbation bat, then the actor searches for a state perturbation to meet the policy
perturbation. Afterwards, the victim acts with the perturbed state s̃t and interacts with the environment,
then the director updates its policy based on the opposite value of the victim’s reward. Note that the
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actor’s goal is to solve a constrained optimization problem, which can be implemented in various
ways. In Appendix E.2, we provide our implementation details for solving the actor’s optimization,
which empirically achieves state-of-the-art attack performance as verified in Section 6. Our PA-AD
can also be extended to environments with continuous action spaces, where the actor minimizes the
distance between the policy action and the target action, i.e., argmax

s02B✏(s)k⇡(s
0) � bak. More

details of the variant of PA-AD in continuous action space are provided in Appendix E.3.

Algorithm 1: Policy Adversarial Actor Director (PA-AD)
1 Input: Initialization of director’s policy ⌫; victim policy ⇡; budget ✏; start state s0

2 for t = 0, 1, 2, ... do
3 Director samples a policy perturbing direction bat ⇠ ⌫(·|st)
4 if Victim is deterministic then
5 Actor perturbs st to s̃t = gD(bat, st) according to Equation (GD)
6 else
7 Actor perturbs st to s̃t = g(bat, st) according to Equation (G)
8 Victim takes action at ⇠ ⇡(·|s̃t), proceeds to st+1, receives rt
9 Director saves (st,bat,�rt, st+1) to its buffer

10 Director updates its policy ⌫ using any RL algorithm

5 Related Work

Heuristic-based Evasion Attacks on States There are many works considering evasion attacks on
the state observations in RL. Huang et al. [8] first propose to use FGSM [5] to craft adversarial states
such that the probability that the agent selects the “best” action is minimized. The same objective is
also used in a recent work by Korkmaz [10], which adopts a Nesterov momentum-based optimization
method to further improve the attack performance. Pattanaik et al. [20] propose to lead the agent
to select the “worst” action based on the victim’s Q function and use gradient descent to craft state
perturbations. Zhang et al. [32] define the concept of a state-adversarial MDP (SAMDP) and propose
two attack methods: Robust SARSA (RS) attack that forces the agent to choose actions with minimal
Q values, with a learned stable Q function, and Maximal Action Difference attack that maximizes the
difference between the perturbed policy and the victim policy. The above heuristic-based methods
are shown to be effective in many environments. However, in Appendix F.3, our theoretical analysis
shows the formulation of the above heuristic methods may not be optimal.

RL-based Evasion Attacks on States As discussed in Section 4, SA-RL [31] uses an end-to-end
RL formulation to learn the optimal state adversary. However, this end-to-end RL formulation is
difficult to solve when the state space of the original environment is large. Although Russo et al. [23]
propose that one can use feature extraction to convert the pixel state space to a small state space, such
feature extractions require expert knowledge and are hard to obtain in many real-world applications.
In contrast, our PA-AD simplifies the RL problem with a more compact PAMDP, and learns the
optimal state perturbations without any prior knowledge.

Other Works Related to Adversarial RL There are many other papers studying adversarial RL
from different perspectives, including limited-steps attacking [14, 11], multi-agent scenarios [4],
limited access to data [9], and etc. Adversarial action attacks [30, 26, 27, 13] are developed separately
from state attacks; although we mainly consider state adversaries, our PA-AD can be easily extended
to action-space attacks as formulated in Appendix B. Poisoning [1, 25] is another type of adversarial
attacks that manipulates the training process, different from evasion attacks that deprave a well-trained
policy. Training a robust agent is the focus of many recent works [21, 3, 15, 19, 32, 31]. Although
our main goal is to identify a strong attacker, we also show by experiments that our proposed attack
method can be incorporated into robust training methods to improve the robustness of RL agents.

6 Experiments
In this section, we show that PA-AD produces stronger evasion attacks than state-of-the-art attack
algorithms on various OpenAI Gym environments, including Atari and MuJoCo tasks. Also, our
experiment justifies that PA-AD can evaluate and improve the robustness of RL agents.

Baselines and Performance Metric We compare our proposed attack algorithm with existing
evasion attack methods, including MinBest [8] which minimizes the probability that the agent
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Environment Natural
Reward ✏ Random MinBest [8] MinBest +

Momentum[10] MinQ [20] MaxDiff [32] SA-RL [31] PA-AD
(ours)

DQN

Boxing 96± 4 0.001 95± 4 53± 16 52± 18 88± 7 95± 5 94± 6 19± 11

Pong 21± 0 0.0002 21± 0 �10± 4 �14± 2 14± 3 15± 4 20± 1 �21± 0

RoadRunner 46278± 4447 0.0005 44725± 6614 17012± 6243 15823± 5252 5765± 12331 36074± 6544 43615± 7183 0± 0

Freeway 34± 1 0.0003 34± 1 12± 1 12± 1 15± 2 22± 3 34± 1 9± 1

Seaquest 10650± 2716 0.0005 8177± 2962 3820± 1947 2337± 862 6468± 2493 5718± 1884 8152± 3113 2304± 838

Alien 1623± 252 0.00075 1650± 381 819± 486 775± 648 938± 446 869± 279 1693± 439 256± 210

Tutankham 227± 29 0.00075 221± 65 30± 13 26± 16 88± 74 130± 48 202± 65 0± 0

A2C

Breakout 356± 79 0.0005 355± 79 86± 104 74± 95 N/A 304± 111 353± 79 44± 62

Seaquest 1752± 70 0.005 1752± 73 356± 153 179± 83 N/A 46± 52 1752± 71 4± 13

Pong 20± 1 0.0005 20± 1 �4± 8 �11± 7 N/A 18± 3 20± 1 �13± 6

Alien 1615± 601 0.001 1629± 592 1062± 610 940± 565 N/A 1482± 633 1661± 625 507± 278

Tutankham 258± 53 0.001 260± 54 139± 26 134± 28 N/A 196± 34 260± 54 71± 47

RoadRunner 34367± 6355 0.002 35851± 6675 9198± 3814 5410± 3058 N/A 31856± 7125 36550± 68482773± 3468

Table 1: Average episode rewards ± standard deviation of vanilla DQN and A2C agents under different evasion
attack methods in Atari environments. Results are averaged over 1000 episodes. Note that RS works for
continuous action spaces, thus is not included. MinQ is not applicable to A2C which does not have a Q network.
In each row, we bold the strongest (best) attack performance over all attacking methods.

chooses the “best” action, MinBest +Momentum [10] which uses Nesterov momentum to improve
the performance of MinBest, MinQ [20] which leads the agent to select actions with the lowest action
values based on the agent’s Q network, Robust SARSA (RS) [32] which performs the MinQ attack
with a learned stable Q network, MaxDiff [32] which maximizes the KL-divergence between the
original victim policy and the perturbed policy, as well as SA-RL [31] which directly learns the state
adversary with RL methods. We consider state attacks with `1 norm as in most literature [32, 31].
Appendix G.1 provides hyperparameter settings and implementation details.

PA-AD Finds the Strongest Adversaries in Atari Games We first evaluate the performance of
PA-AD against well-trained DQN [18] and A2C [17] victim agents on Atari games with pixel state
spaces. The observed pixel values are normalized to the range of [0, 1]. The adversaries are learned
with the ACKTR algorithm [29]. As is common in prior works, our implementation of the RL
algorithms for both the victim and the attacker is mostly a proof of concept, thus many advanced
training techniques are not included (e.g. Rainbow DQN). Table 1 presents the experiment results,
where PA-AD significantly and universally outperforms all baselines against both DQN and A2C
victims. Surprisingly, using a relatively small attack budget ✏, PA-AD leads the agent to the lowest
possible reward in many environments such as Pong, RoadRunner and Tutankham, whereas other
attackers may require larger attack budget to achieve the same attack strength. Therefore, we point
out that vanilla RL agents are extremely vulnerable to carefully learned adversarial attacks. Even if
an RL agent works well under naive attacks, a carefully learned adversary can let an agent totally fail
with the same attack budget, which stresses the importance of evaluating and improving the robustness
of RL agents using the strongest adversaries. Our further investigation in Appendix H.3 shows that
RL models can be generally more vulnerable than supervised classifiers, due to the different loss and
architecture designs. In Appendix G.2.1, we show more experiments with various selections of the
budget ✏, where one can see PA-AD reduces the average reward more than all baselines over varying

✏’s in various environments.

PA-AD Finds the Strongest Adversaries MuJoCo Tasks We further evaluate PA-AD on MuJoCo
games, where both state spaces and action spaces are continuous. We use the same setting with [31],
where both the victim and the adversary are trained with PPO [24]. During test time, the victim
executes a deterministic policy, and we use the deterministic version of PA-AD with a continuous

Environment State
Dimension

Natural
Reward ✏ Random MaxDiff [32] RS[32] SA-RL [31] PA-AD

(ours)
Hopper 11 3167± 542 0.075 2101± 793 1410± 655 794± 238 636± 9 160± 136

Walker 17 4472± 635 0.05 3007± 1200 2869± 1271 1336± 654 1086± 516 804± 130

HalfCheetah 17 7117± 98 0.15 5486± 1378 1836± 866 489± 758 �660± 218 �356± 307

Ant 111 5687± 758 0.15 5261± 1005 1759± 828 268± 227 �872± 436 �2580± 872

Table 2: Average episode rewards ± standard deviation of vanilla PPO agent under different evasion attack
methods in MuJoCo environments. Results are averaged over 50 episodes. Note that MinBest and MinQ do not
fit this setting, since MinBest works for discrete action spaces, and MinQ requires the agent’s Q network.
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action space, as discussed in Section 4 and Appendix E.3. We use the same attack budget ✏ as in [31]
for all MuJoCo environments. The results in Table 2 show that PA-AD reduces the reward much
more than heuristic methods, and also outperforms SA-RL in most cases. In the most challenging
Ant environment where the state space is relatively large, our PA-AD achieves much stronger attacks
than SA-RL and other baselines, since PA-AD is more efficient than SA-RL when the state space is
larger than the action space. Because PA-AD learns a smaller MDP than SA-RL, there are two extra
benefits of using PA-AD: (1) Figure 12 in Appendix G.2.3 shows the learning curve of PA-AD and
SA-RL in the Ant environment, where PA-AD converges much faster than SA-RL. (2) Figure 13 in
Appendix G.2.3 shows that PA-AD is less sensitive to hyperparameter settings than SA-RL.

Environment Model Natural
Reward Random MaxDiff [32] RS[32] SA-RL [31] PA-AD

(ours)
Average reward
across attacks

Hopper
(state-dim: 11)

✏: 0.075

SA-PPO [32] 3705± 2 2710± 801 2652± 835 1130± 42 1076± 791 856± 21 1684.8

ATLA-PPO [31] 3291± 600 3165± 576 2814± 725 2244± 618 1772± 802 1232± 350 2245.4

PA-ATLA-PPO (ours) 3449± 237 3325± 239 3145± 546 3002± 129 1529± 284 2521± 325 2704.4

Walker
(state-dim: 17)

✏: 0.05

SA-PPO [32] 4487± 61 4867± 39 3668± 1789 3808± 138 2908± 1136 1042± 153 3258.6

ATLA-PPO [31] 3842± 475 3927± 368 3836± 492 3239± 894 3663± 707 1224± 770 3177.8

PA-ATLA-PPO (ours) 4178± 529 4129± 78 4024± 572 3966± 307 3450± 478 2248± 131 3563.4

Halfcheetah
(state-dim: 17)

✏: 0.15

SA-PPO [32] 3632± 20 3619± 18 3624± 23 3283± 20 3028± 23 2512± 16 3213.2

ATLA-PPO [31] 6157± 852 6164± 603 5790± 174 4806± 603 5058± 718 2576± 1548 4878.8

PA-ATLA-PPO (ours) 6289± 342 6215± 346 5961± 53 5226± 114 4872± 79 3840± 673 5222.8

Ant
(state-dim: 111)

✏: 0.15

SA-PPO [32] 4292± 384 4986± 452 4662± 522 3412± 1755 2511± 1117 �1296± 923 2855.0

ATLA-PPO [31] 5359± 153 5366± 104 5240± 170 4136± 149 3765± 101 220± 338 3745.4

PA-ATLA-PPO (ours) 5469± 106 5496± 158 5328± 196 4124± 291 3694± 188 2986± 864 4325.6

Table 3: Average episode rewards ± standard deviation of robustly trained PPO agents under different evasion
attack methods. Results are averaged over 50 episodes. In each row corresponding to a robust agent, we bold the
strongest attack. The gray cells are the most robust agents with the highest average rewards across all attacks.

Training and Evaluating Robust Agents The ultimate goal of studying optimal attack is to
measure and improve the robustness of RL agents. Therefore, we introduce PA-ATLA, which
alternately trains an agent and a PA-AD attacker, different from ATLA [31] which alternately trains
an agent and an SA-RL attacker. In Table 3, we evaluate the performance of PA-ATLA for a PPO agent
(namely PA-ATLA-PPO) in MuJoCo tasks, compared with state-of-the-art robust training methods,
SA-PPO [32] and ATLA-PPO [31]. (We use ATLA-PPO(LSTM)+SA Reg, the most robust method
reported by [31]) The robust agents are evaluated under multiple different attacks including PA-AD.
From the table, we make the following observations: (1) Our PA-AD attacker can significantly reduce

the reward of the “robust” agents. Take the Ant environment as an example, although SA-PPO and
ATLA-PPO agents gain 2k+ and 3k+ rewards respectively under SA-RL, the previously strongest
attack, our PA-AD still reduces their rewards to about -1.3k and 200+ with the same attack budget.
Therefore, we emphasize the importance of understanding the worst-case performance of RL agents,
even robustly-trained agents. (2) Our PA-ATLA-PPO robust agents gain noticeably higher average

rewards across attacks than other robust agents, especially under the strongest PA-AD attack. Under
the SA-RL attack, PA-ATLA-PPO achieves comparable performance with ATLA-PPO, although
ATLA-PPO agents are trained to be robust against SA-RL. Due to the efficiency of PA-AD, PA-
ATLA-PPO requires fewer training steps than ATLA-PPO, as justified in Appendix G.2.4. The results
of attacking and training robust models in Atari games are in Appendix G.2.5 and G.2.6, where
PA-ATLA improves the robustness of Atari agents against strong attacks with ✏ as large as 3/255.

7 Conclusion
In this paper, we propose an attack algorithm called PA-AD for RL problems, which achieves optimal
attacks in theory and significantly outperforms prior attack methods in experiments. PA-AD can be
used to evaluate and improve the robustness of RL agents before deployment. A potential future
direction is to use our formulation for robustifying agents under both state and action attacks.
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