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ABSTRACT

Signal integrity issues present significant challenges in modern integrated circuit
(IC) design, as crosstalk-induced delay variation and transient glitches caused by
capacitive coupling among interconnects can severely impact IC functional cor-
rectness. Although circuit simulators like SPICE can deliver accurate signal in-
tegrity analysis, their computational cost becomes prohibitive for large-scale de-
signs. In this paper, we propose Si-GT, a novel transformer-based model for fast
and accurate signal integrity analysis in IC interconnects. Our model elaborates
three key designs: (1) virtual NET token to encode net-specific signal character-
istics and serve as net-wise representation, (2) mesh pattern encoding to embed
high-order mesh structures at each node while distinguishing uncoupled wire seg-
ments, and (3) intra-inter net (IIN) attention mechanism to capture structures of
signal propagation path and coupling connections. To support model training and
evaluation, we construct the first interconnect signal integrity dataset comprising
200k delay examples and 187k glitch examples using SPICE simulations as the
golden reference. Our experiments show that our Si-GT surpasses state-of-the-art
graph neural network and graph transformer baselines with substantially reduced
computation compared to SPICE, offering a scalable and effective solution for
interconnect signal integrity analysis in IC design verification.

1 INTRODUCTION

Signal integrity (SI) analysis is essential in integrated circuit (IC) design to ensure reliable signal
transmission and correct timing behavior (Caignet et al., 2001). Among signal integrity problems,
crosstalk is the primary culprit. Dense interconnect layouts and high-speed signaling in modern
ICs exacerbate crosstalk-induced noise and delay variations, leading to potential functional errors,
performance degradation, and even chip failure Li et al. (2022); Song et al. (2015). Engineers have to
run SPICE simulations (Quarles et al., 1994) repeatedly throughout IC design flow to identify circuit
behavior and crosstalk-induced noise and delay violations, allowing careful crosstalk mitigations
(Vittal & Marek-Sadowska, 1997; Stöhr et al., 1998; Duan et al., 2010; Gao & Liu, 1996), which is
computationally prohibitive for very-large-scale integration (VLSI) (Achar & Nakhla, 2001).

Recently, machine learning (ML) has emerged as a computationally efficient surrogate for signal
integrity analysis in IC design (Kahng et al., 2015; Lu & Lim, 2022; Swaminathan et al., 2020;
Wang & Luo, 2019; Cheng et al., 2020; Liang et al., 2022; Liu et al., 2025). However, most prior
efforts primarily concentrate on timing prediction, aiming to “unravel the mystery” of black-box
timing estimation formulas in sign-off timers. These works generally do not model crosstalk effects
explicitly with aggressor–victim switching interactions and signal pattern-dependent analysis.

Advances in graph neural networks (GNNs) (Wu et al., 2020) and graph transformer (GT) (Dwivedi
& Bresson, 2020) have revolutionized machine learning capabilities for graph-structured data, en-
abling breakthrough applications in electronic design automation (EDA) from precise timing (Guo
et al., 2022; Hu et al., 2023; Lin et al., 2025; Zhong et al., 2024; Guo et al., 2025) and parasitics
prediction (Ren et al., 2020; Shahane et al., 2023; Yoon et al., 2025; Liu et al., 2023) to complex
optimization tasks like placement (Lu et al., 2020; Ding et al., 2024; Hou et al., 2025) and routing
(Cheng & Yan, 2021; Liao et al., 2020; Wang et al., 2024). However, developing a graph learn-
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Figure 1: Prediction tasks illustration and Si-GT model performance.

ing model for signal integrity analysis is challenging due to the complex crosstalk effect (Aragones
& Rubio, 2003). In IC interconnects, the crosstalk effect arises from electromagnetic interference
between signals propagating on adjacent wires. On the one hand, the severity and nature of this
interference depend on multiple factors, including switching directions, active/quiet net states, slew
rate, coupling capacitance, and wire characteristics (Wong et al., 2000; You & Soma, 1990). On
the other hand, the crosstalk effect exhibits both long-range dependencies (i.e., signal propagating
from drive to distant load) and adjacent net-wise dependencies (i.e, energy transfer between coupled
nets). The successful application of GNNs to EDA tasks relies on incorporating domain physics into
the graph’s inductive bias (Haoxiang et al., 2022). To design an effective graph learning model for
signal integrity analysis, it’s important to encode both signal switching patterns and structural fea-
tures into the graph inductive bias while accounting for the unique circuit behaviors under crosstalk
effect.

Graph transformers are excellent at capturing long-range dependencies through self-attention mech-
anisms. To this end, we propose Si-GT, a novel graph transformer model for IC interconnect signal
integrity analysis. Si-GT incorporates three key designs: (1) Mesh pattern encoding, which embeds
local mesh structures at each node to enrich node features and separate uncoupled nets; (2) Virtual
<NET> tokens, which encode net-specific signal characteristics (e.g., switching direction and slew
rate) and serve as net-level representations, with their receptive fields restricted to the corresponding
nets via attention masks; (3) Intra–Inter Net (IIN) attention, which explicitly models both the spatial
relationships among nodes within a net and the coupling effects from adjacent nets connected by
coupling capacitors. Our contributions are summarized as follows:

• We propose Si-GT, a Transformer-based model for fast interconnect signal integrity anal-
ysis. To enhance graph inductive bias, Si-GT leverages virtual NET tokens for net-level
signal encoding, mesh pattern encoding for local coupling structures, and intra-inter net
attention to capture signal propagation and coupling effects.

• We construct a dataset for ML-based signal integrity analysis of IC circuits, comprising
200,200 crosstalk delay examples and 187,309 crosstalk glitch examples referring to golden
SPICE simulations. To the best of our knowledge, this is the first large-scale dataset dedi-
cated to IC interconnect signal integrity analysis.

• Experiments highlight the superior performance of Si-GT over advanced GNNs and graph
transformers, as well as in computational efficiency compared to SPICE simulation. We
validate the effectiveness of each design in Si-GT through ablation studies.

2 RELATED WORK

Crosstalk Effect. Crosstalk is a severe signal interference that degrades signal integrity in circuits
(Hall & Heck, 2011). As illustrated in Figure 1, when a signal transitions on the interconnect (ag-
gressor), it induces a voltage disturbance on the adjacent interconnect (victim). This interference can
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manifest either as a crosstalk glitch on the victim, leading to a logic error, or as crosstalk-induced de-
lays in signal propagation, causing timing failures (Vittal et al., 1999). Different switching patterns
of aggressor and victim can create distinct delay scenarios. When aggressor and victim switch in the
same direction, constructive interference occurs, accelerating the victim’s transition and potentially
causing timing violations. When they switch in opposite directions, destructive interference occurs,
slowing the victim’s transition and increasing delay (Wong et al., 2000; You & Soma, 1990).

ML for SI. ML has been applied to reduce the cost of SI analysis in circuit design cycles (Lu &
Lim, 2022). Related studies mainly fall into three categories: (1) early-stage crosstalk mitigation
at the global routing stage, including critical net classification (Liang et al., 2020; 2022), crosstalk-
aware placement (Gao et al., 2022; Yu et al., 2025), gate sizing (Zhou et al., 2022; Lu et al., 2021),
and buffer insertion (Ding et al., 2024); (2) pre-routing timing estimation (Jin et al., 2024); (3)
post-routing timing estimation (Kahng et al., 2015; Cheng et al., 2020; Liu et al., 2025; Ye et al.,
2023). These works for SI only serve for timing prediction and share a key limitation that none of
them consider signal pattern variability in both their dataset and model design, which is central to
accurate and practical signal integrity analysis.

Graph Transformer. Graph transformer (Kreuzer et al., 2021; Yuan et al., 2025; Ying et al.,
2021) encodes structural information into the graph inductive bias and leverages the graph atten-
tion mechanism to capture the long-range dependencies, breaking the limitation of message-passing
GNNs in capturing global context due to its inherent over-smoothing and over-squashing issues
(Pei et al.). A graph transformer layer is composed of a self-attention module followed by a
feed-forward neural network (FFN). Given a graph G having n nodes with node feature matrix
X ∈ Rn×d where d is node feature dimension, self-attention module will project X into query,
key, and value matrices: Q = XWQ, K = XWK , and V = XWV with three trainable weight
matrices WQ,WK ∈ Rd×dK , WV ∈ Rd×dV respectively. Then global attention is calculated with
self-attention module: Attn(X) = softmax(QKT

√
dK

)V .

3 FORMULATION AND BACKGROUND

3.1 INTERCONNECT FEATURIZATION

Aggressor 1

Victim

Aggressor 2

Wire Segment

Drive Sink

Intra-net Inter-net

Equivalent RC Circuit Interconnect GraphCoupled Interconnects

Coupling in closely 
routed signal traces

Figure 2: Graph representation for coupled IC interconnects.

IC interconnects are typically modeled as distributed RC circuits using wire-load models (Jin et al.,
1999). As shown in Figure 2, for three coupled interconnects (two aggressors and one victim)
driven and loaded by inverters, its equivalent RC circuit can be derived by breaking the wire into L
equal-length segments with Π model (Chu & Wong, 2001) and parameterized with wire parasitics
extracted from the physical layout. For each interconnect neti, we define the wire resistance as Ri

w

and wire capacitance as Ci
w for every segment, while Ĉij

s denotes the coupling capacitance between
neti and netj at segment s.

Given a configuration of M coupled interconnects
{
neti

}M

i=1
, as shown in Figure 2, we represent

its equivalent RC circuit as a graph G(V, E). Here, V denotes the vertex set and E denotes the edge
set. Each net neti is a node subset Vi

S =
{
v0i , v

1
i , v

2
i , ..., v

L
i

}
⊂ V , where L is the number of length-

equivalent wire segments. Nodes in Vi
S are connected in their physical sequence along neti and
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Figure 3: Overview of Si-GT.

characterized by the wire capacitance Cw, and each edge is associated with the wire resistance Ri
w.

Edges in the graph represent two types of connections: intra-net connections between nodes within
the individual net, and inter-net connections between nodes of different nets connected with coupling
capacitors. For intra-net connections, we assign [Rw, 0] as the edge feature of wire connection, while
for inter-net connections, we assign [0, Ĉ] as the edge feature of coupling connection. More graph
construction methods are discussed in Appendix B.

3.2 PROBLEM DEFINITION

Crosstalk problems concerning the signal integrity in integrated circuits manifests through three
fundamental scenarios: (1) victim net quiet; (2) victim net active and switching in the opposite
direction to the aggressor; (3) victim net active and switching in the same direction to the aggressor.
Given the above critical scenarios for signal integrity analysis, we address two prediction tasks:

Task1: Crosstalk Glitch Prediction. As shown in Figure 1, when the aggressor is switching and the
victim is quiet, the potential difference across the coupling capacitor will generate a leakage current
flowing to the victim, resulting an undesirable raising or falling glitch on the victim. The height and
width of a glitch indicate the potential severity of a crosstalk event. Therefore, for the quiet victim
case (1), we estimate two key parameters of crosstalk noise at each interconnect segment s on the
victim: the peak voltage vsmax and noise width tswidth. Here, noise width is defined as the time interval
between the glitch’s rising and falling edges at the 50% of its peak voltage.

Task2: Crosstalk Delay Prediction. As shown in Figure 1, when both aggressor and victim are
switching, the coupling capacitor will affect the signal transition on victim , leading to slower or
faster transition time by ∆t. Net delay D is defined as the time delay of a voltage waveform propa-
gating through the net measured at the 50% of the waveform’s voltage level. With crosstalk-induced
variation, the net delay becomes D̂ = D ±∆t. In scenarios (2) and (3) where both aggressor and
victim nets are actively switching, we predict the net delay D̂s

i of the signal propagating through
each segment s along the neti.

4 SI-GT

In this section, we present Si-GT framework. As shown in Figure 3, Si-GT incorporates several key
designs, including mesh pattern encoding, virtual NET tokens, and intra-inter net (IIN) attention. To
integrate the structural information of interconnect graphs into the Transformer model and account
for circuit-specific behaviors under crosstalk effects, we first decompose the interconnect graph into
local mesh structures at each node and encode these structures using GNN layers for absolute po-
sitional encoding. Since the driving signals propagating along nets present different characteristics,
we introduce virtual NET tokens to represent individual nets and encode the net-level information
such as net state, slew rate, and switching direction. Additionally, to structurally differentiate nodes
within a specific net and coupled from different nets, we introduce IIN attention bias into the self-
attention mechanism of Transformer to further improve the graph inductive bias.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1 MESH PATTERN ENCODING

In the equivalent RC circuit, coupling capacitors connect pairs of wire segments, forming a mesh
unit defined as follows: [Couple Mesh Unit.] A couple mesh unit at a node vsi on neti is defined
as a subgraph of G(V, E) with a set of nodes {vs−1

i , vsi , v
s−1
j , vsj} in direction from source to sink,

assuming neti is coupled with an adjacent wire netj with coupling capacitance Ĉij
s . In coupled

interconnects, we define mesh units to represent the coupling interactions between aligned segment
pairs on aggressor and victim nets. As illustrated in Figure 3, for a node vsi located at the end of
the s-th segment on neti, the number of mesh units constructed at vsi is determined by the number
of couplings with other nets. For example, if neti is coupled with two nets netj and netk at the
s-th segment, we construct a subgraph mesh(vsi ) to capture its local structural information with
two mesh units: {vs−1

i , vsi , v
s−1
j , vsj} and {vs−1

i , vsi , v
s−1
k , vsk}. As shown in Figure 2, an aggressor

net is typically coupled with a single victim net, while a victim net may be coupled with multiple
aggressor nets. Therefore, we decompose the interconnect graph into local mesh subgraphs at each
node, enabling the model to capture each node’s local neighborhood while preserving the separation
of uncoupled nets. Since mesh subgraphs are small, we then employ a shallow GNN model with l
layers GNNl to aggregate the local mesh structure information as the embedding of vsi , effectively
encoding high-order mesh structural information into the node features. Finally, we add the GNNl

embeddings to the linear projected node feature as the input to Transformer encoder:

h(0)(vsi ) = GNNl(mesh(vsi )) + en(x(vsi )) ∈ Rd (1)
Since the interconnect is decomposed at the end node of each wire segment, we initialize the em-
beddings of driving nodes (i.e., the starting nodes of each net) to a zero vector: h(0)(v0i ) = 0 ∈ Rd.

4.2 INTRA-INTER NET ATTENTION MECHANSIM

Connections between nodes on each individual net are termed intra-net connections, while those
linking a pair of coupled nets are referred to as inter-net connections. Both types play a critical
role in the crosstalk effect. Intra-net connections capture incremental signal distortions and noise
transformations along the net, whereas inter-net connections provide pathways for signal energy
to transfer between nets. To capture this structural information, we introduce IIN-Attn, a novel
attention mechanism that incorporates both intra-net and inter-net connections through specialized
attention biases. First, as the signal is propagating forward on a single net, both the net delay and
crosstalk noise attributes at any specific node are highly dependent on its former nodes that the signal
has passed through. To this end, we design an intra-net encoding ϕIntra(v

u
i , v

v
i ) : V × V → R to

capture the net structural feature and relative position between intra-nodes:

ϕIntra(v
u
i , v

v
i ) =


1

duv ·Ri
w
, if {vui , v

u+1
i , . . . , vvi } ⊆ Vi

S ,

0, otherwise.
(2)

here, duv = |v − u| denotes the distance from vui to vvi along the net. ϕIntra(v
u
i , v

v
i ) aggregates

the wire resistance along the path from u to v on a net. If u and v are not from the same net, we
set the value to be 0. The intra-net encoding explicitly captures the relative positional information
of nodes connected in a net. Second, considering the interconnections between coupled nets, for
neti corresponding to node set Vi

S and netj corresponding to node set Vj
S , we define function

ϕInter(v
u
i , v

u
j ) : V × V → R:

ϕInter(v
u
i , v

u
j ) :=

Ĉij
u+1, if neti, netjare coupled at (u+ 1)-th segment,

0, otherwise.
(3)

ϕInter(v
u
i , v

u
j ) measures the coupling capacitance between vui and vuj when the (u+ 1)-th net seg-

ment of neti and netj are coupled; otherwise, this value is set to 0. Intuitively, the inter-net encoding
captures the connections between coupled net segments.

To encode structural information of coupled interconnects into attention layers, we directly incorpo-
rate the intra-net and inter-net biases into the attention logits:

Attn-IIN(X) = softmax
(QK⊤
√
dK

+ Φ̃IIN + Φ̃d + Φ̃sp

)
V, (4)
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where the bias matrix Φ̃IIN has entries given by: ϕ̃IIN = ϕ̃Intra + ϕ̃Inter. Here, ϕ̃Intra and ϕ̃Intra are
obtained by applying learnable linear transformations to ϕIntra and ϕIntra respectively. Additionally,
to capture global typological features, we use spatial encoding and edge encoding as extra attention
bias terms to the attention module. Specifically, Φ̃d encodes the distance of the shortest path (SP)
between two connected nodes using learnable embedding table indexed by the distance scalar, while
Φ̃sp encodes the edge features along the path SPij = (e1, e2, ..., en) from node i to j via ϕsp(i, j) =
1
n

∑n
k=1 ekw

T
k . Here, e is the edge feature, and w ∈ Re is the weight embedding with edge feature

dimension Re (Ying et al., 2021).

4.3 VIRTUAL NET TOKEN

As signals propagate along interconnects from source to sink, local electromagnetic interference
between adjacent wire segments not only affects signal integrity at individual segments but also
accumulates, leading to significant distortions at the sinks of all nets. To capture this global net-level
interaction, we introduce virtual <NET> tokens that represent individual nets and attend to all nodes
in the self-attention mechanism. Besides, for net-level attributes such as the switching direction
and slew rate of signals propagating on each net, Si-GT encodes these features into learnable
embeddings of <NET> tokens. Specifically, for each distinct net, we assign a learnable embedding
vector h(0)

<NET> ∈ Rd as the input embedding for the special <NET> node. These embeddings are
then processed alongside other node features within the transformer architecture. To restrict the
receptive field of <NET> token to its corresponding net, as illustrated in Figure 3, we define an
attention mask MNET ∈ R|V |×|V | applied to the softmax logits of the IIN attention:

MNET(i, j) :=

{
−∞, if i represents neti and j /∈ Vi

S ,

0, otherwise.
(5)

MNET ensures that each <NET> node aggregates information exclusively from nodes within its re-
spective net while remaining visible to all other nodes.

5 EXPERIMENTS

5.1 SIGNAL INTEGRITY DATASET

To benchmark graph learning-based models for signal integrity analysis, we construct a dataset
elaborating on crosstalk delay and glitch prediction tasks that covers various net lengths and signal
characteristics. Our dataset is based on the circuits of two aggressors and one victim. To simulate
the circuit behavior of coupled interconnects, we construct RC circuits of the interconnect wires for
SPICE simulation. In practice, circuit simulation begins by converting a physical layout into an RC
model through parasitic extraction, where wires are divided into multiple equal-length segments
and replaced with RC networks. To model varying interconnect lengths, we sweep the number
of segments and follow Intel’s 14 FinFET (Fischer et al., 2015) to set the wire capacitance and
resistance for every segment. Additionally, we sweep other key parameters such as wire separation,
input slew rate, and signal switching direction to create diverse signal and coupling configurations,
as summarized in Table 1. More details on coupling capacitance calculation, circuit simulation, and
dataset construction pipeline are provided in the Appendix A.1. For each setup of RC circuit and its
driving signals, we use Synopsys HSPICE simulator to measure the crosstalk delay and glitch along
the nets, which results in 200,200 delay examples and 187,309 glitch examples in total.

Table 1: Circuit parameters of signal integrity dataset.
Fixed Parameters Sweeping Parameters

Segment
Length

Wire
Resistance

Wire
Capacitance

Net
Length

Wire
Separation

Coupling
Capacitance

Victim
State

Switching
Direction

Slew
Rate

5 µm 2.7 Ω/ µm 0.15fF/ µm 10-100 µm 1-20 µm 0.2214-7.908fF Active/Quiet Low-To-High/High-To-Low 40-60ps

5.2 EXPERIMENTAL SETTINGS

Baselines. We compare our Si-GT model with following baselines: 1) GNNs, including standard
GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2017), GIN (Xu et al., 2018), GraphSAGE
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(Hamilton et al., 2017), and advanced DeepGCN (Li et al., 2019) with residual connections; 2)
recent SOTA graph transformers, including Graphomer (Ying et al., 2021), GraphGPS (Rampášek
et al., 2022), and SGFormer (Wu et al., 2023); and 3) variations of Si-GT using different standard
GNN backbones for mesh pattern encoding. We also evaluate Si-GT against baseline models using
different position/ structural encodings (PE/SE), such as RWSE and LapPE (Dwivedi et al., 2021),
as detailed in Appendix D.1.

Settings. In the main results, we use 5 convolutional layers for standard GNNs and 20 layers for
DeepGCN. For Graphomer, we follow its original configuration with a 5-step limit for shortest path
encoding, while GraphGPS is implemented with RWSE using 16 walk length. Full implementation
details and experimental tests for hyperparameter setting of all baseline models are provided in
Appendix C.3. For Si-GT, we use l = 2 GNN layers with a hidden dimension of 64 to encode the
mesh patterns. We use 6 encoder layers with 4 attention heads and set the embedding size to 64 for
the self-attention module and 128 for the feed-forward network. We train our Si-GT for 60 epochs
with 256 batch size using the AdamW optimizer with polynomial learning rate decay and linear
warmup, where the learning rate decays to 1e-9 over the total training steps, with weight decay set
to 1e-4. All experiments in this paper are implemented with PyTorch 2.2.2, DGL 2.4.0, and Pytorch-
geometric 2.6.1. Models are trained with 2 × NVIDIA A100 80GB GPUs. Detailed training setup
of baseline models are in Appendix C.1 due to space constraints.

5.3 EXPERIMENTAL RESULTS

Table 2: Mean relative accuracy (%) of crosstalk delay prediction results.

Experiment Metric
GNNs Graph Transformer

GCN GAT GIN SAGE DeepGCN SGFormer Graphomer GraphGPS Si-GT
GCN

Si-GT
GAT

Si-GT
GIN

Si-GT
SAGE

AV Segment D̂vic 65.21 58.68 60.02 58.50 85.49 64.64 88.23 88.23 88.32 88.28 88.27 88.28

D̂agg 57.38 43.27 54.17 62.41 71.64 52.60 72.58 72.65 73.67 73.18 73.30 73.81

AV Sink D̂vic 51.14 45.96 51.12 46.67 50.17 53.63 86.52 87.36 87.38 87.39 87.33 87.31

D̂agg 39.72 35.34 45.12 47.58 35.11 44.58 71.02 70.65 71.17 71.82 71.60 71.05

V Segment D̂vic 64.03 60.90 62.64 64.09 86.90 59.51 88.15 88.26 88.31 88.30 88.27 88.34

V Sink D̂vic 51.97 42.77 43.65 43.59 43.89 55.53 87.11 87.18 87.19 87.21 87.38 87.20

Table 3: Mean relative accuracy (%) of crosstalk glitch prediction results.

Experiment Metric
GNNs Graph Transformer

GCN GAT GIN SAGE DeepGCN SGFormer Graphomer GraphGPS Si-GT
GCN

Si-GT
GAT

Si-GT
GIN

Si-GT
SAGE

V Segment twidth 87.86 88.38 87.01 88.23 87.94 84.17 94.97 96.61 97.71 97.08 98.36 97.47
vmax 85.44 85.79 85.45 85.65 85.20 82.84 93.38 97.99 97.89 96.62 97.78 96.89

V Sink twidth 83.97 84.05 83.85 84.01 83.99 83.72 95.46 98.29 98.53 97.83 98.13 98.19
vmax 82.61 83.10 82.42 82.68 82.56 79.08 94.17 97.94 98.63 97.16 97.62 97.96

Main Results. We first report the main experimental results for crosstalk delay prediction in Table 2
and crosstalk glitch prediction in Table 3. Models are separately trained to predict delay and glitch
metrics at each segment (Segment) along individual nets and specifically at their sinks (Sink). The
sink-level results can provide an overview of model performance in predicting pin-to-pin delay and
glitch. For delay prediction, we report accuracy for both aggressor and victim (AV) cases, as well
as for victim-only (V) cases, since the victim is of greater concern in ensuring signal integrity.
Predictions are evaluated against SPICE ground truth using mean relative accuracy.

The results show that: (1) Graph transformer models, particularly Graphomer, GraphGPS, and our
Si-GT, consistently outperform traditional GNNs in signal integrity analysis, achieving significantly
higher accuracy across both delay and glitch prediction tasks; and (2) for the more challenging delay
prediction task, our proposed Si-GT model outperforms all baselines across all experiments. While
GraphGPS also demonstrates strong performance, Si-GT variants consistently achieve the highest
mean relative accuracy in nearly every case.

Accuracy with Interconnect Length. To illustrate the performance of our model across different
interconnect scales, Figure 4 presents the model prediction accuracy with the number of wire seg-
ments of RC circuits for all prediction tasks. From the results, we can observe that: (1) Traditional
GNNs exhibit notably lower accuracy for all tasks, with performance degrading on long intercon-
nects, highlighting their inherent limitations in capturing long-range interactions critical for signal
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Figure 4: Comparison of models in signal integrity analysis under various IC interconnect lengths.

integrity analysis. (2) While DeepGCN shows improved accuracy on longer interconnects, its gen-
eralization across varying interconnect lengths remains limited. (3) Transformer-based models, par-
ticularly our Si-GT, achieve consistently higher accuracy and demonstrate robust performance even
on longer interconnects. (4) All models struggle to generalize effectively to small interconnects. We
analyze that short interconnects present less coupling variety, reflected in fewer data examples in
dataset (detailed in Appendix A.2), resulting in poor generalization to those sparse examples.

Table 4: Accuracy comparison of segment and
sink models in sink-level prediction tasks.

Model Sink Delay Sink Glitch
∆D̂vic ∆D̂agg ∆twidth ∆vmax

DeepGCN +6.36 +11.48 −2.32 +0.51
SGFormer −2.30 −12.86 −3.13 −6.08
Graphomer +0.81 −1.02 −1.73 −5.83
GraphGPS +0.48 +0.89 −0.34 −1.35
Si-GT-GCN +0.08 −1.42 −0.12 −0.18

Segment Models in Sink-level Prediction.
Table 4 compares the performance of seg-
ment models (trained with segment data) and
sink models (trained with sink data) on sink-
level prediction tasks by evaluating their differ-
ences in prediction accuracy. The results show
that: (1) for victim delay prediction, training
Transformer-based models with segment data
can improve sink-level predictions compared
to solely with sink data, while for other tasks,
training with sink data can yield better results; and (2) compared to baselines, the segment-trained
Si-GT exhibits the smallest performance variation, demonstrating its robustness and adaptability to
sink-level prediction, highlighting the robustness of Si-GT in capturing complex crosstalk behaviors
even with limited structural context.

Ablation Study. We evaluate the impact of core design components in Si-GT through ablation
studies, with results summarized in Table 5. The components under investigation include the intro-
duction of virtual <Net> tokens (NET), mesh pattern encoding (MPE), and intra-inter net attention
(IIN). When MPE is removed, we use centrality encoding of Graphomer to construct the input node
features. In the absence of IIN, we only adopt the spatial and edge encoding of Graphomer for the
attention bias in equation 1. More implementation details and fine-grained ablation experiments
are provided in Appendix D.3. Our ablation study shows the critical importance of virtual <Net>
nodes to Si-GT in all prediction tasks, as it yields a large margin performance boost in comparison
with other modules. For crosstalk delay prediction, MPE particularly shows the impact to aggres-
sor delay prediction. Additionally, IIN attention mechanism combining both intra- and inter-net
attention, consistently enhances accuracy across most tasks, which indicates that incorporating IIN
encoding as an additional attention bias effectively enables the Transformer to capture the structural
characteristics of coupled interconnects.
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Table 5: Ablation study results on crosstalk prediction with different designs.

Module Delay Prediction Glitch Prediction

Segment Sink Segment Sink

NET MPE IIN
ϕIntra

IIN
ϕInter

D̂vic D̂agg D̂vic D̂agg twidth vmax twidth vmax

× × × × 88.23 72.58 86.52 71.02 94.97 89.49 95.46 94.17√ × × × 88.28 73.30 87.34 71.04 98.12 97.70 97.92 97.57√ √ × × 88.25 73.48 87.34 71.93 98.18 97.85 98.44 97.90√ √ √ × 88.22 73.40 87.29 71.06 98.12 97.83 97.98 97.44√ √ × √
88.27 73.66 87.26 70.87 97.97 97.39 97.99 97.68√ √ √ √ 88.32 73.67 87.39 71.82 98.36 97.78 98.53 98.63

(a) Delay Si-GT (b) Delay Graphomer (c) Glitch Si-GT (d) Glitch Graphomer

Figure 5: Comparison of attention maps between Si-GT and Graphomer.

Attention Visualization. GraphGPS applies global attention after local message passing updates,
while Graphormer and our Si-GT directly integrate structural information into attention. We com-
pare the learned attention maps of Si-GT and Graphomer in Figure 5. For delay prediction, without
explicitly encoding the coupling patterns into attention bias, Graphomer (Figure 5b) shows strong
attention among coupled segments, highlighting the structural importance of coupling in signal in-
tegrity analysis concerning crosstalk effect. Compared with Graphomer, Si-GT (Figure 5a) further
enables the isolation of two aggressors, aligning with the fact that aggressors are not coupled with
coupling capacitors in physical layout. For glitch prediction, the attention map of Si-GT (Figure 5c)
shows clear coupling pattern, while Graphomer (Figure 5d) only concentrates on the neighbor nodes
of the same net, limiting its ability to model noise propagation across coupled nets.

Figure 6: SPICE vs. Transformer-based models
running time across varying interconnect scales.

Computation Efficiency. We compare
the computational efficiency of promis-
ing Transformer-based model Graphomer,
GraphGPS, and our Si-GT model against
SPICE simulation in this section. All reported
runtimes are measured on CPU. Details of
the computing environment and additional
runtime benchmarks across different hardware
platforms are provided in Appendix C.2. As
shown in Figure 6, the computational cost of
SPICE increases substantially with intercon-
nect length, while Transformer-based models
maintain consistently low inference times. On
average, Graphomer, GraphGPS, and Si-GT
achieve inference times of 2.4 ms, 6.8 ms, and
4.0 ms, respectively, compared to over 100 ms
required by SPICE even for short interconnects, highlighting the practicality of transformer-based
models as efficient and scalable alternatives for signal integrity analysis in large-scale IC designs.

6 CONCLUSION

In this paper, we propose Si-GT, a Transformer-based model for signal integrity analysis of IC
interconnects, and construct the first large-scale benchmark dataset comprising crosstalk predic-
tion tasks relevant to practical SI challenges. We demonstrate that Si-GT consistently outperforms
state-of-the-art GNN and GT baselines across nearly all tasks, while significantly reducing runtime
compared to SPICE. These results highlight the strong potential of Si-GT as an efficient surrogate
for interconnect signal integrity analysis to accelerate IC design verification.
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A DATASET DETAILS

A.1 DATASET PREPARATION

Given the separation between adjacent wires, as the length, width, and the relative electric permittiv-
ity εr of the substrate are constant per wire segment, we calculate the coupling capacitance according
to Eq.6, based on the two-dimensional capacitance formula from (Sakurai & Tamaru, 1983).

Cc = εr ∗ Segment Length of Wire * Wire Width
Wire Seperation

(6)

With the sweeping parameter setting in Table 1, we use Algorithm 1 to create the netlist of various
RC circuits modeling coupled interconnects. After the netlist is created, we supply a pulse input
with 0.7 magnitude to every active interconnect wire. SPICE simulation is carried out to measure
the voltage waveforms at each segment along individual nets. Only examples that successfully
complete SPICE simulations without failures are retained in the dataset.

Algorithm 1 Generate RC netlist for coupled interconnects

Require: wr: wire resistance per micron, wc: wire capacitance per micron, {Cc}: set of coupling
capacitance values; {l}: wire segment length.
Sample number of segments N ∼ U(2, 20)
Initialize segment index s← 1
Set wire segment length: l← 5µm
while s ≤ N do

Set wire resistance: Rw ← l · wr
Set wire capacitance: Cw ← l · wc
Sample coupling capacitance between victim and aggressor 1: Ĉs ∼ Random Select({Cc})
Sample coupling capacitance between victim and aggressor 2: Ĉs ∼ Random Select({Cc})
s← s+ 1

end while
=0

A.2 DATASET DISTRIBUTION

To show the composition of our signal integrity dataset, we analyze the distribution of examples
across different wire segments. Figure 7 illustrates the number of examples for both the crosstalk
delay (Figure 7a) and crosstalk glitch (Figure 7b) prediction tasks.

(a) Crosstalk Delay (b) Crosstalk Glitch

Figure 7: Distribution of the signal integrity dataset across wire segments.

B GRAPH FEATURIZATION.

Directed or Undirected. As illustrated in Figure 2, we construct the interconnect graph by mod-
eling edges within each individual net as directed from source to sink. In this section, we evaluate

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

model performance using undirected interconnect graphs as input, aiming to assess the impact of
edge directionality on prediction accuracy. We primarily report the prediction accuracy difference
between undirected and directed settings on segment-level prediction tasks for both aggressor and
victim nets for comparison. The results are reported in Table 6. A positive difference indicates im-
proved performance with undirected graphs, while a negative difference suggests that maintaining
directionality is beneficial for capturing the underlying signal behavior in the circuit.

Table 6: Comparison of segment-level prediction accuracy using directed vs. undirected intercon-
nect graphs.

Model
Undirected

Segment Delay Segment Glitch
∆D̂vic ∆D̂agg ∆twidth ∆vmax

GCN +3.80 +3.62 +1.05 −0.10
DeepGCN +7.98 +11.48 −0.10 −1.08
Graphomer +1.89 +1.26 −0.82 −3.28
GraphGPS −1.35 −0.28 +0.39 −1.53
Si-GT-GCN −0.13 −0.20 +2.30 −0.16

C EXPERIMENT DETAILS

C.1 DETAILED EXPERIMENTAL SETTINGS

For the model training, we use different training schemes for the models included in our experiments:

Standard GNN models. We train the model using the Adam optimizer with a learning rate of 2e-3
and a weight decay of 6e-4. Models are trained with 256 batch size for 100 epochs.

DeepGCN. We train the model using the Adam optimizer with a learning rate of 1e-3 and a weight
decay of 6e-4. Models are trained with 256 batch size for 100 epochs.

GraphGPS. We train the model using the Adam optimizer with a learning rate of 5e-4 and a weight
decay of 1e-5. Models are trained with 256 batch size for 100 epochs.

SGFormer. We train the model using the Adam optimizer with a learning rate of 5e-5 and a weight
decay of 1e-5. Models are trained with 256 batch size for 200 epochs.

Graphomer and Si-GT. We train the model using the AdamW optimizer with an initial learning
rate of 1e-4, polynomial learning rate decay, and linear warmup, where the learning rate decays to
1e-9 over the total training steps, with weight decay set to 1e-4. Models are trained with 256 batch
size for 60 epochs.

All experiments in this paper are implemented with PyTorch 2.2.2, DGL 2.4.0, and Pytorch-
geometric 2.7.0.

C.2 COMPUTING ENVIRONMENT

All models are trained with 2× NVIDIA A100 80GB GPUs. SPICE simulations are carried out with
the commercial Synopsys HSPICE simulator on an Intel Core i7-11700K Processor. In Figure 6,
we report the running time of Transformer-based models executed on an Intel Xeon Gold 6448Y
Processor. Additionally, we compare the running time of Graphomer, GraphGPS, and Si-GT on the
A100 GPU in Figure 8. As our graph sizes are relatively small, GPU inference may exhibit higher
latency due to kernel launch overhead and underutilization of GPU parallelism.

C.3 BASELINE IMPLEMENTATION.

For crosstalk delay prediction, the model outputs a single delay value, so the output dimension is set
to 1. For crosstalk glitch prediction, we predict both the peak voltage and noise width, so the output
dimension is set to 2. The model architectures of the baselines are summarized as follows:
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Figure 8: Model inference time.

Standard GNN models. We set convolutional layers to 5 and the hidden dimension to 64 for glitch
prediction and 128 for delay prediction. Each convolutional layer is followed by ReLU activation
and PairNorm normalization, except for the final layer.

DeepGCN. We set convolutional layers to 20 and the hidden dimension to 64 for glitch prediction
and 128 for delay prediction. It stacks 20 DeepGCNLayer blocks, each composed of a GCNConv
layer for message passing, LayerNorm for normalization, a ReLU activation, and 0.1 dropout. These
blocks use a configurable residual connection strategy to enable stable training of deep GNNs (Li
et al., 2019).

SGFormer. SGFormer integrates a GCN-based GraphModule and a Transformer-style SGModule.
In our implementation, we set the hidden dimension to 64. The SGModule uses 2 transformer layers,
each with 4 attention heads and 0.5 dropout, to model long-range interactions via dense attention. In
parallel, the GraphModule applies 3 layers of GCNConv with dropout 0.5 and residual connections
to extract localized features. The outputs from both modules are averaged to form the final node
representation.

Graphomer. We use 6 encoder layers with a hidden dimension of 64 and 4 attention heads; each
layer includes a feed-forward network with an embedding dimension of 128, and a dropout rate of
0.1 is applied after multi-head self-attention. Graphomer uses the shortest path between any pair of
nodes for spatial and edge encoding. Follow (Ying et al., 2021), the length limit of the shortest path
is set to 5 by default.

GraphGPS. For the PE/SE of GraphGPS, we use RSWE with a walk length of 16 by default. In
our implementation, the input node features are projected to 64 dimensions, with 16 dimensions for
PE/SE. The model stacks 10 GPSConv layers, each integrating a GINEConv-based local aggregator
and multi-head attention mechanism with 4 heads to capture global interactions. A 3-layer MLP
with decreasing dimensions is applied for the final prediction.

Si-GT. We use 6 encoder layers with a hidden dimension of 64 and 4 attention heads; each layer
includes a feed-forward network with an embedding dimension of 128, and a dropout rate of 0.1 is
applied after multi-head self-attention. For mesh pattern encoding, we use 2 convolutional layers
(e.g., EGATConv, GraphConv, SAGEConv, GINConv in DGL.) with residual connection, and we
set 0.2 dropout rate for node embeddings.

We report the trainable model parameters of all models in Table 7.

Table 7: Trainable parameter size of models.

Model GCN GAT GIN SAGE DeepGCN SGFormer Graphomer GraphGPS Si-GT
GCN

Si-GT
GAT

Si-GT
GIN

Si-GT
SAGE

Parameter Size 49,921 52,486 115,971 99,329 85,953 210,561 273,261 422,417 282,029 306,733 282,029 290,221
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C.4 TRAINING CURVE

We plot the training loss curves for crosstalk delay and glitch prediction tasks in Figure 9. Across
both tasks, Si-GT consistently achieves faster convergence and lower final training loss compared to
other models.

(a) Crosstalk Delay Training Curve (b) Crosstalk Glitch Training Curve

Figure 9: Training curve of models for signal integrity analysis tasks.

D MORE EXPERIMENTS

D.1 MORE EXPERIMENTS WITH DIFFERENT STRUCTURAL ENCODING

In this section, we conduct experiments with random walk structural encoding (RWSE) and
Laplacian-based positional encoding (LapPE) for GraphGPS and our Si-GT. Specifically, we replace
the mesh pattern encoding in Si-GT with RWSE and LapPE variants, and compare the performance
against GraphGPS. In the experiments, we vary the random walk length with 4, 8, 16 for RWSE-
based position encoding of GraphGPS model (e.g., RWSE16) and set 8 top eigenvectors of the
graph Laplacian for LapPE (e.g., LapPE8). Additionally, we compare Si-GT with GraphGPS using
composite position encoding (e.g., LapPE8+RWSE16), following the implementation in (Rampášek
et al., 2022), we concatenate the LapPE and RWSE vectors to form the final positional encoding.
Experimental results are reported in Table 8.

Table 8: Mean relative accuracy (%) of crosstalk delay and glitch prediction results.

Model PE/SE

Segment Delay Segment Glitch

D̂vic D̂agg twidth vmax

GraphGPS LapPE8 87.76 71.69 96.15 97.30
GraphGPS RWSE4 88.12 72.19 95.67 97.21
GraphGPS RWSE8 88.24 71.97 95.14 97.69
GraphGPS RWSE16 88.23 72.65 96.61 97.99
GraphGPS LapPE8+RWSE16 88.28 72.92 96.49 97.83

Si-GT LapPE8 87.72 73.50 95.25 93.18
Si-GT RWSE16 88.21 73.78 97.44 96.30
Si-GT LapPE8+RWSE16 87.85 73.47 96.87 95.32
Si-GT MPE 88.32 73.67 98.36 97.78

As shown in Table 8, Si-GT consistently achieves higher accuracy in delay and glitch width predic-
tion tasks compared to GraphGPS across various positional encoding configurations. These results
highlight the effectiveness of our mesh pattern encoding (MPE) and demonstrate the robustness of
Si-GT when combined with both LapPE and RWSE encodings.

D.2 INFERENCE EXAMPLES

We visualize the predicted values of key signal integrity metrics against the SPICE-measured ground
truth in Figure 10. For crosstalk glitch and crosstalk delay of victim prediction tasks, Si-GT con-
sistently provides the closest match to the ground truth across all metrics, demonstrating its ability
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(a) Crosstalk Glitch twidth (b) Crosstalk Glitch vmax

(c) Crosstalk Delay D̂vic (d) Crosstalk Delay D̂agg

Figure 10: Comparison of crosstalk prediction accuracy with the number of wire segments.

to accurately model both local coupling effects and global signal dependencies. Additionally, we
present an example of aggressor delay prediction. Since capacitive coupling primarily affects the
victim net, signal integrity analysis mainly focuses on victim-side behavior.

D.3 FINE-GRAINED ABLATION EXPERIMENTS

Ablation experiment setup. Table 5 summarizes the ablation results for the core architectural
components introduced in Si-GT. All ablations are performed using the strongest Si-GT backbone
selected for each prediction task, e.g., GCN for delay-segment, GAT for delay-sink, GIN for glitch-
segment, and GCN for glitch-sink, following the configurations reported in Table 2 and Table 3.

Additional analyses. To further understand the contribution of each component, we conduct more
fine-grained ablation studies. In Equation 4, spatial encoding and edge encoding are incorporated as
attention bias terms to better capture the global structural context of interconnect topology. In this
section, we remove Φ̃d and Φ̃sp from the attention bias to isolate their effect on model performance.

Table 9: Ablation study on the removal of spatial and edge encoding biases.

Model
Delay Prediction Glitch Prediction

Segment Sink Segment Sink
D̂vic D̂agg D̂vic D̂agg twidth vmax twidth vmax

Si-GT-without Φ̃d, Φ̃sp 87.25 72.84 87.03 71.50 97.74 97.13 97.59 97.57
Si-GT 88.32 73.67 87.39 71.82 98.36 97.78 98.53 98.63
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