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ABSTRACT

Tapping into the uncharted multimodal representation learning in online handwrit-
ing verification (OHV), we propose SPECTRUM, a temporal-frequency synergistic
model tailored to enhance handwriting representations. SPECTRUM comprises
three core components: (1) a multi-scale interactor that interweaves fine-grained
temporal and frequency features across multiple scales through complementary
domain interaction; (2) a self-gated fusion module, dynamically integrating global
temporal and frequency features via self-driven balancing. Collectively, these two
components achieve micro-to-macro multimodal integration; (3) a multimodal
distance-based verifier that fully harnesses temporal and frequency representations,
sharpening genuine-forged discrimination beyond conventional temporal-only ap-
proaches. Extensive experiments demonstrate SPECTRUM’s pronounced outper-
formance over existing OHV methods. Furthermore, we reveal that incorporating
multiple handwritten biometrics fundamentally improves the discriminatory power
of individual writing features. These findings not only validate the efficacy of
multimodal learning in OHV but also encourage broader multimodal research
across both feature and biometric domains, potentially opening new avenues for
future explorations. Code will be publicly available.

1 INTRODUCTION

Evolving from quill and ink to the digital age, handwriting verification has long been a fundamental
technique for identity authentication, playing crucial roles in diverse applications such as banking
and legal proceedings. Generally, handwriting verification can be categorized into online and offline
methods Diaz et al. (2019). Online verification utilizes dynamic data produced in the writing process
such as speed and pressure for verification. In contrast, the offline counterpart analyzes digitized
handwritten images obtained by scanning or photographing. This paper focuses on online handwriting
verification (OHV). While signatures Tolosana et al. (2021); Lai et al. (2022) have traditionally
dominated this field, recent research has expanded to include more handwritten biometrics such as
isolated digits Tolosana et al. (2020a;b) or consecutive digit strings Zhang et al. (2022), broadening
the realm of OHV with enhanced utility and versatility.

The development of a robust OHV system hinges on extracting powerful feature representations to
capture the unique writing patterns of diverse individuals. This pursuit has driven considerable effort
in enhancing the representation learning skills, such as improvements on local feature extraction
Kamel et al. (2008); Jiang et al. (2022) or incorporation of global spatial attention Lai et al. (2022).
Concurrently, the burgeoning field of multimodal learning has demonstrated impressive results across
various domains, such as image-text alignment Radford et al. (2021); Liu et al. (2023), vision-
frequency interaction Qian et al. (2020); Rao et al. (2023), and omni-modality coverage Girdhar et al.
(2023); Han et al. (2024). The remarkable success of multimodal learning raises a natural question:
Could OHV similarly benefit from multimodal representation learning? If so, How?

However, the OHV community embraces predominantly single-modal learning paradigms, particu-
larly focusing on temporal representation learning Lai & Jin (2019); Tolosana et al. (2021); Lai et al.
(2022); Jiang et al. (2022). In signal processing, frequency is an intrinsically connected modality to
the time domain, often derived from the temporal sequence through techniques like Fourier transform.
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Figure 1: Spectrograms of time-domain features extracted by short-time Fourier transform (STFT)
on genuine and forged handwriting samples, in which angular acceleration and pressure are taken as
example features. The frequency responses showcase obvious discrepancies between genuine and
forged handwriting, which could enrich the temporal features for multimodal discrimination.

The potency of frequency modeling has been verified in other forgery verification fields, such as face
forgery detection Qian et al. (2020); Miao et al. (2023) and speaker verification Liu et al. (2022; 2024).
Similarly, in online handwriting analysis, frequency features provide a unique discriminatory perspec-
tive, capturing crucial writing traits like rhythms and periodicities that aid in distinguishing genuine
from forged samples. As shown in Fig. 1, the spectrograms extracted by short-time Fourier transform
(STFT) reveal significant discrepancies between genuine and forged samples in the frequency domain.
Despite the potential of frequency modeling, its exploration in OHV has been confined to being used
as a sole, superficial feature extraction stage without further modeling Nakanishi et al. (2006); Nanni
& Lumini (2008), resulting in limited feature representation capabilities. In addition, prior studies
suffer from modality isolation, myopically focusing on either the temporal or frequency domains
but overlooking the potential integration of both. A multimodal approach that synergizes temporal
and frequency features would unlock more discriminative handwriting representations, intuitively
suggesting a compelling direction for developing better OHV systems.

Motivated by this insight, we propose SPECTRUM, a SPECtral-TempoRal Unified Model that
integrates temporal and frequency modalities for multimodal online handwriting verification. First,
we devise two components to achieve micro-to-macro multimodal integration (M4I) across temporal
and frequency domains. (1) Micro integration. We propose a multi-scale interactor to facilitate fine-
grained interaction between temporal and frequency features. Handwriting sequences are split into
even and odd sub-sequences for independent temporal and frequency analyses. We utilize a projection
layer to preserve the temporal features, while formulating the frequency modeling by combining
a 1D (inverse) Fourier transform with learnable complex weights of scale l to emphasize salient
frequency features Rao et al. (2023). The two sub-sequences are then recombined to enable mixed-
domain interaction. By varying scale l, we develop the multi-scale interactor to aggregate multi-scale
contexts for scale-reciprocal complementations. (2) Macro integration. We introduce a self-gated
fusion module that dynamically weights the contributions of global temporal and frequency features,
attempting for self-optimized feature fusion. Collectively, these two modules accomplish temporal
and frequency integration in a micro-to-macro manner, ensuring comprehensive multimodal interplay.
Second, we propose a multimodal distance-based verifier (MDV), which combines Dynamic Time
Warping distance computed with temporal features and Euclidean distance with frequency features to
enhance discrimination between genuine and forged samples. It naturally harnesses representations of
both modalities under a unified multimodal framework, transcending the reliance on merely temporal
features in prior works and resulting in better verification accuracy.

We evaluate the proposed SPECTRUM using three online handwriting datasets: MSDS-ChS Zhang
et al. (2022) (Chinese Signature), MSDS-TDS Zhang et al. (2022) (Token Digit String (TDS)),
and DeepSignDB Tolosana et al. (2021) (Latin Signature). Experiments demonstrate a pronounced
outperformance of our model over state-of-the-art OHV methods that solely depend on temporal
representation learning, evidencing the effectiveness of the M4I mechanism and MDV in incorporating
frequency features for multimodal learning. In addition, we investigate multimodal fusion between
multiple biometric modalities, where the Chinese signature and TDS are combined to enrich individual
writing representations. This approach yields further improvements in verification performance,
suggesting that multimodal learning can be extended across not only feature domains (temporal
and frequency) but also biometric domains (Chinese signature and TDS), potentially opening new
avenues for further research in this field. Our main contributions are summarized as follows:
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• We propose SPECTRUM, a multimodal representation model for OHV, empowering tradi-
tional temporal modeling with frequency analysis to enable effective multimodal learning.

• SPECTRUM features a multi-scale interactor and self-gated fusion module, infusing the
model with micro-to-macro multimodal feature integration. In addition, we design a multi-
modal distance-based verifier to enhance verification by naturally leveraging both temporal
and frequency representations within the multimodal context.

• Experiments demonstrate the superiority of SPECTRUM over existing OHV methods. We
further reveal the effectiveness of incorporating multiple biometric modalities to enhance
representation discrimination and OHV performance, potentially inspiring future research.

2 RELATED WORK

Online Handwriting Verification Techniques. Online handwriting verification (OHV) has seen
substantial progress in recent decades, primarily focusing on online signature verification Diaz
et al. (2019) due to its pervasive usage. This technique typically constitutes two stages: feature
representation and decision making. (1) Feature representation. The evolution from traditional hand-
crafted extraction methods Sharma & Sundaram (2017); Tang et al. (2018); Farimani & Jahan (2018);
Okawa (2021) to modern deep learning methods has established new state-of-the-art performance.
Current deep learning approaches broadly operate in two paradigms. The first type concentrates on
local feature modeling, often developed in conjunction with Dynamic Time Warping (DTW). PSN
Wu et al. (2019b) and TA-RNNs Tolosana et al. (2021) pre-align handwriting sequences using DTW
before inputting them to CNN/RNN-based models. DeepDTW Wu et al. (2019a) uses a DTW on top
of a Siamese CNN to enhance local invariance learning. RAN Lai & Jin (2019) proposes a length-
normalized path signature descriptor to describe local signature trajectories. DsDTW Jiang et al.
(2022) integrates the differentiable soft-DTW into the loss function to improve local discriminative
learning. The second paradigm captures global representations. Park et al. Park et al. (2019) utilize
an LSTM-CNN network to analyze features at both stroke and signature levels. Li et al. Li et al.
(2019) progressively model the stroke features and the holistic signature with RNN. Sig2Vec Lai
et al. (2022) proposes a selective pooling module to pool the temporal sequence, converging subspace
features into a fixed-length vector with global context awareness. (2) Decision making. Typically
configured in an open-set manner, OHV systems are trained on limited data but tested on unlimited
unseen data. This requires models to generate feature vectors to assess similarities between templates
and queries, thereby verifying queries’ authenticity. Common approaches include Euclidean/DTW
distance-based verifiers that authenticate queries falling within specific thresholds Lai & Jin (2019);
Lai et al. (2022); Jiang et al. (2022), subject-independent classifiers evaluating sample-wise distances
Wu et al. (2019a;b), and sigmoid scoring based on pre-given thresholds Tolosana et al. (2021).

Recently, the OHV field has expanded beyond signatures to encompass emerging handwritten
biometrics like digit/digit strings. Tolosana et al. propose the e-BioDigit Tolosana et al. (2020a)
and MobileTouchDB Tolosana et al. (2020b) datasets for second-level identity authentication using
separate digits. Zhang et al. Zhang et al. (2022) propose the MSDS dataset, including the MSDS-ChS
and MSDS-TDS subsets. This work demonstrates that mainstream signature verification methods can
be seamlessly transferred to other handwritten biometrics, such as Token Digit String (TDS).

Frequency Learning for Online Handwriting Verification. While contemporary methods primarily
rely on the temporal domain for handwriting analysis, earlier research has explored frequency analysis
for handwriting characterization due to the straightforward transformation from temporal to frequency
domain. The Wavelet transform Nakanishi et al. (2006); Nanni & Lumini (2008); Fahmy (2010);
Chavan et al. (2017); Yang & Liu (2017); Miaba et al. (2018); Alpar (2018) and Fourier transform
hua Quan et al. (2006); Yanikoglu & Kholmatov (2009); Chavan et al. (2017); Miaba et al. (2018)
are mostly adopted, while additional frequency features such as Discrete Cosine/Hartley/Walsh-
Hadamard/Kreke/Mellin transform Nanni & Lumini (2008); Chavan et al. (2017); Fallah et al. (2011)
are also explored. Despite these efforts, frequency learning for OHV has been shackled by two
critical drawbacks. (1) Limited feature extraction. Most studies rely solely on frequency transforms
for feature extraction without further modeling, usually yielding insufficiently discriminative features.
(2) Modality isolation. Prior methods rely exclusively on the frequency modality but overlook the
potential synergy with temporal modeling, which is an oversight that also persists in current cutting-
edge temporal-centric approaches. To address these issues, we propose SPECTRUM, a multimodal
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Figure 2: Overall framework of the proposed SPECTRUM. Top: Model training process. Middle:
Detailed architecture of SPECTRUM, which performs micro-to-macro multimodal learning through
two stacked M4I blocks. The multi-scale interactor in the last M4I block exclusively outputs frequency
features, which are pooled to yield fF . Bottom: Model inference (verification) process, where MDV
harnesses both temporal and frequency representations to enhance verification robustness.

learning model that interweaves temporal and frequency in a micro-to-macro integration paradigm,
empowering handwriting representation from the multimodal perspective.

3 METHODOLOGY

Fig. 2 illustrates the overall framework of the proposed SPECTRUM. Our model synergizes temporal
and frequency domains through the multi-scale interactor and self-gated fusion module (Sec. 3.1),
while using the multimodal distance-based verifier (MDV) (Sec. 3.2) to enhance verification.

3.1 MICRO-TO-MARCO MULTIMODAL INTEGRATION (M4I) MECHANISM

Figure 3: Schematic of the multi-scale interactor.

To fully combine temporal and frequency
features, we propose the multi-scale in-
teractor and the self-gated fusion mod-
ule for micro-to-macro multimodal integra-
tion (M4I), which corresponds to the M4I
blocks depicted in Fig. 2.

Micro-level multimodal learning. We de-
sign a multi-scale interactor to capture fine-
grained interactions between temporal and
frequency features. The multi-scale inter-
actor fundamentally consists of multiple
single-scale interactors, with architectures
detailed in Fig. 3 (a) and Fig. 3 (b) for each.
We begin with deliberating on the design
of a single-scale interactor. Given an input temporal handwriting sequence x ∈ Rd×L (d is the embed-
ding dimension and L is the sequence length), we split it into two sub-sequences xeven ∈ Rd×dL/2e
and xodd ∈ Rd×dL/2e by separating even and odd timesteps along the spatial dimension. xeven
is dedicated to preserving information and undergoes a simple 1 × 1 convolution to derive yeven.
In contrast, xodd is assigned for frequency modeling. Inspired by Rao et al. (2023), we perform
1D discrete Fourier transform (DFT) on xodd to calculate its spectrum response X . Given each
embedding dimension i ∈ [0, d− 1]Z, the frequency response X[i] for xodd[i] is calculated as:

X[i, k] =

N−1∑
n=0

xodd[i, n]e−j
2πk
N n ∈ R1×N , k ∈ [0, N − 1]Z, (1)

where N = dL/2e, j is the imaginary unit, and X[k] represents the frequency response of x[n] at
the frequency point ωk = 2πk

N . By aggregating X[i], we can obtain the entire frequency features
X = {X[i]} ∈ Rd×N . For real-valude inputs x[i, n], its DFT response is inherently symmetric
Dubois & Venetsanopoulos (1978); Rao et al. (2023), i.e., X[i,N − k] = X∗[i, k]. Therefore, the
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half of DFT, i.e., X̂ = {X[i, k]} ∈ Rd×dN/2e, k ∈ [0, dN/2e − 1]Z, is sufficient to cover the full
frequency characteristics of x[n].

Subsequently, we introduce a 1D learnable complex weights w ∈ Rd×l, designed to modulate the
frequency features X̂ and selectively amplify the discriminative aspects. The length l of w reflects the
"scale" term of the single-scale interactor. However, the predefined length l in the model configuration
may not match the spectral length N . To reconcile this, we first interpolate w to length dN/2e using
bilinear interpolation, resulting in w̄, and then multiply it with X̂:

w̄ = interpolate(w, dN/2e),
X̄ = X̂ � w̄,

(2)

where � denotes point-wise multiplication. With the modulated frequency features, we perform
1D inverse Discrete Fourier transform (IDFT) on X̄[i] of each embedding dimension i. Since X̄[i]
represents the half-spectrum due to the conjugate symmetry, we first reconstruct it to the full-spectrum
X̃[i] and then perform the IDFT:

X̃[i, k] =

{
X̄[i, k], 0 ≤ k < dN/2e,
X̄∗[i,N − k], dN/2e ≤ k < N,

yodd[i, n] =
1

N

N−1∑
k=0

X̃[i, k]ej
2πk
N n ∈ Rd×N .

(3)

Here, we derive the remapped output yodd, representing frequency-modulated writing features. In im-
plementation, we adopt the more efficient while functionally equivalent Fast Fourier transform (FFT)
and inverse Fast Fourier transform (IFFT) to compute DFT and IDFT. This reduces the computation
complexity from O(N2) to O(NlogN), essentially expediting both training and inference.

Given the temporal output yeven and frequency output yodd, we restore them to a new sequence
according to their original even and odd positions to interwind the temporal and frequency features.
The interleaved features are then passed through a 1 × 1 convolution to derive the output y of
a single-scale interactor. Afterward, we build the multi-scale interactor by using m single-scale
interactors with varying scales l, feeding the input x to each of them and consolidating their output
by average pooling. We further impose a standard multi-head self-attention Vaswani et al. (2017) to
the averaged sequence and obtain the final mixed-modality output. m is empirically set to 3.

Figure 4: Schematic of the
self-gated fusion module.

Macro-level multimodal learning. As shown in Fig. 2, the tempo-
ral features passed through the convolution module (Conv) are fed
into the multi-scale interactor for fine-grained temporal-frequency
learning. More globally, the frequency-modulated features can be
further fused with the external temporal features. To this end, we
introduce a self-gated fusion module for global multimodal interac-
tion as illustrated in Fig. 4. Given temporal features ftime ∈ RL×d
and frequency features ffreq ∈ RL×d, they are concatenated along
the channel dimension to yield f ∈ RL×2d. We then compute a gate
coefficient g to dynamically fuse the two modality features:

g = f@WT + b,W ∈ Rd×2d, b ∈ Rd,
ffused = ftime � g ⊕ ffreq � (1− g),

(4)

where @ denotes matrix multiplication, � signifies point-wise multiplication, ⊕ signifies point-wise
addition, W and b are weights and biases of a linear layer. The fused features ffused are combined
by adaptively weighting the contributions of temporal and frequency features through the self-derived
gate g, accomplishing global multimodal feature integration.

Discussion. In the multi-scale interactor, the segmented sub-sequences xeven and xodd retain much
of the original sequence’s dynamic and structural integrity despite the reduced resolution, ensuring
sufficient fundamental handwriting characteristics for subsequent temporal and frequency analyses.
Our frequency modeling approach closely follows Rao et al. (2023), but is tailored specifically for
1D handwriting sequences rather than 2D images. Through xeven’s transformation into the frequency
domain and the modulation of learnable weights, our model adaptively emphasizes the unique writing
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patterns among specific frequency bands while filtering out noise. The following recombination
naturally interweaves the temporal and frequency sequences, promoting deep interaction and comple-
mentarity between the two modalities. Furthermore, the self-gated fusion facilitates a more holistic
multimodal consolidation with self-driven feature balance. These designs collaboratively enable a
comprehensive micro-to-macro integration of temporal and frequency features.

3.2 MULTIMODAL DISTANCE-BASED VERIFIER

Similar to Sig2Vec Lai et al. (2022) and DsDTW Jiang et al. (2022), SPECTRUM exploits a distance-
based verifier that compares the feature representations of template and query handwriting for
verification. Nevertheless, prior methods are confined to solely utilizing temporal embeddings. Given
the dual temporal and frequency awareness in our SPECTRUM, we propose a multimodal distance-
based verifier (MDV) to leverage representations from both modalities for enhanced discrimination.
As shown in the right panel of Fig. 2, given two handwriting xi and xj , they undergo model feature
extraction φ and derive the temporal feature sequences f iT , f

j
T ∈ RLT×d and frequency feature

vectors f iF , f
j
F ∈ Rd (LT is the sequence length and d is the embedding dimension). We compute

the Dynamic Time Warping (DTW) distance between temporal sequences and Euclidean distance
between frequency vectors as:

dT (xi, xj) = DTW (φ(xi), φ(xj)) = DTW (f iT , f
j
T ),

dF (xi, xj) = ||φ(xi)− φ(xj)||2 = ||f iF − f
j
F ||

2,
(5)

Given n template handwriting {x1u, ..., xnu} attributed to writer u, we compute average pairwise
distance between their temporal features, denoted as d̄uT (d̄uT = 1 if n = 1). For a query handwriting
xq claiming to be writer u, we compute temporal and frequency scores between xq and all templates:

sp,uT (xq) = dT (xpu, x
q)/
√
d̄uT ,

sp,uF (xq) = dF (xpu, x
q)/
√
d̄uT ,

(6)

where p ∈ [1, n]Z. After acquiring all scores, we can compute the mean and minima of the temporal
scores suavgT , suminT , and frequency scores suavgF , suminF . Then, we use the frequency scores to
adaptively weight the temporal scores, determining whether to accept the query by:

suminT (1 + sigmoid(suminF )) + s
uavg
T (1− sigmoid(s

uavg
F )) < c, (7)

where c is a pre-set threshold. If the distance summation fulfills Eq. 7, the query xq is deemed
genuine for writer u and accepted, otherwise it is determined as a forgery and rejected. By varying
the threshold c, we can compute the Equal Error Rate metric (Sec. 4.1) for performance evaluation.

By harmonizing both temporal and frequency representations, MDV naturally fits in the multimodal
framework of SPECTRUM and sharpens the distinction between genuine samples and forgeries. This
dual action transcends the limitation of solely using temporal features for verification in previous
studies. Eq. 7 implies enhancing the more discriminative temporal scores while minimizing the less
influential ones by adaptively re-weighting temporal scores with frequency scores. Importantly, the
weights are dynamically derived from frequency features rather than manually set, ensuring flexible
and robust adaptation to diverse handwriting scenarios.

3.3 MODEL OPTIMIZATION

As described in Sec. 2 and Sec. 3.2, SPECTRUM performs open-set verification using the output
temporal and frequency feature representations. Therefore, we adopt metric-learning to optimize the
model’s representation ability. As shown in Fig. 2, fT ∈ RLT×64 denotes the temporal features of
an input processed by GRU and Head following two M4I blocks. The Head module is a multi-layer
perceptron. We then input fT into a lifted-structure triplet loss Oh Song et al. (2016) to separate
genuine samples and forged samples in the embedding-space, where we use soft-DTW (γ = 5) as the
inner distance function following DsDTW Jiang et al. (2022). The computational details are also
similar to DsDTW, which yields an intra-writer variation term Lintra controlled by a parameter λ and
a vanilla triplet loss term Ltri. In addition, the frequency features fF of the last multi-scale interactor
are compressed by a selective pooling layer Lai et al. (2022) and the Head module into binary logits.
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The logits are supervised by a binary cross entropy loss LBCE (genuine sample→label 1; forged
sample→label 0). The full optimization objective is formulated as:

L = λLintra + Ltri + LBCE . (8)

4 EXPERIMENT

4.1 EXPERIMENT PROTOCOL

Dataset. We assess SPECTRUM on three OHV datasets, including the two subsets of the MSDS
dataset Zhang et al. (2022), i.e., MSDS-ChS (Chinese signature), MSDS-TDS (Token Digit String),
and DeepSignDB Tolosana et al. (2021) (Latin signature). These datasets are the currently largest
public datasets for their respective handwriting type. We split the data to ensure that testing user data
is entirely unseen during training, adhering to the open-set setting. MSDS-ChS and MSDS-TDS share
the same 402 writers. As per Zhang et al. (2022), we divide the first 202 individuals as the training
set while assigning the rest 200 users as the testing set. This results in 8,080/8000 training/testing
samples from 202/200 users for each dataset. We use the two-session (across-session) data of each
dataset by default. DeepSignDB consists of five subsets, in which, however, the Biosecure DS2
subset Ortega-Garcia et al. (2010) currently releases only training data but not testing data. To ensure
fair comparisons, we follow Lai et al. (2022); Jiang et al. (2022) and utilize the same subsets as them
during training and testing, where the official "development" and "evaluation" sets of all subsets are
utilized as training/testing data, respectively. This results in 21,104/20,596 training/testing samples
from 528/512 users. We perform data preprocessing on the online handwritten data and extract 15
time-function features as input to the models, as detailed in Appendix A.

Metric. We adopt Equal Error Rate (EER) as the evaluation metric, which refers to the point where
False Acceptance Rate equals False Rejection Rate. The proposed MDV is employed to compute
EER%, with details provided in Sec. 3.2. Following the original papers of MSDS and DeepSignDB,
we report EERs under both a global threshold and a local (user-specific) threshold and display the
results in the format of EERg/EERl on MSDS-ChS and MSDS-TDS, while reporting only EERs
under the global threshold on DeepSignDB. All results are reported in percentage.

Impostor types. We consider both skilled and random forgeries as impostor types. Skilled forgeries
are selected from the skillfully forged samples of each user that are originally provided in the datasets,
while random forgeries are selected from the genuine samples of other users.

Template selection. The number of genuine handwriting templates used during verification essentially
affects model performance. For MSDS-ChS and MSDS-TDS, we follow the original paper and use
one to four templates against one query in skilled forgery verification, denoted as 4 vs 1, 3 vs 1, 2 vs
1, and 1 vs 1; while using four and one templates in random forgery verification. For DeepSignDB,
we follow the original paper to employ four and one templates in verification for both skilled forgery
and random forgery scenarios. To guarantee the reproducibility of test results, we consistently take
the first n samples among all genuine samples of the user as templates.

4.2 COMPARISON WITH STATE-OF-THE-ART METHOD

We compare the handwriting verification performance of SPECTRUM against existing state-of-
the-art (SOTA) methods on MSDS-ChS, MSDS-TDS, and DeepSignDB, with results respectively
summarized in Tables 1 to 3. DTW Vintsyuk (1968) denotes directly computing Dynamic Time
Warping distance on the input time-function features for handwriting matching without training,
while other methods are all trained models. From the results, we draw the following observations.

(1) As evidenced in Tables 1 and 2, SPECTRUM surpasses existing methods in most cases on
the MSDS-ChS and MSDS-TDS datasets. Under skilled forgery scenarios, it achieves EERs of
5.30/2.47 (EERg/EERl) on MSDS-ChS and 3.38/1.20 on MSDS-TDS, outperforming the second-
best performance of 5.91/2.90 and 4.13/1.42 by significant margins, substantiating its superiority.
Under random forgery scenarios, SPECTRUM outstrips other models like DsDTW and Sig2Vec on
both datasets, especially on MSDS-TDS. Although the DTW method slightly edges out SPECTRUM,
the margin is narrow, underscoring SPECTRUM’s competitiveness. The outperformance primarily
stems from the multimodal learning that integrates both temporal and frequency domains, imbuing
SPECTRUM with more powerful handwriting representation ability than other single-modal methods.
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Table 1: Comparison of SPECTRUM and existing OHV methods on MSDS-ChS Zhang et al. (2022).
The best results are marked in bold and the second-best results are marked with underline.

Method Venue
Skilled Forgery ↓ Random Forgery ↓

4 vs 1 3 vs 1 2 vs 1 1 vs 1 4 vs 1 1 vs 1
DTW Vintsyuk (1968) - 11.66/7.70 11.37/7.44 12.42/7.26 17.26/8.93 0.58/0.20 1.03/0.27

DeepDTW Wu et al. (2019a) ICDAR’19 7.14/3.70 7.16/3.71 7.53/3.71 12.60/4.77 0.61/0.16 5.41/1.10

TA-RNNs Tolosana et al. (2021) TBIOM’21 7.69/5.22 7.91/5.67 8.34/6.36 9.04/5.05 2.67/0.47 1.55/0.57

Sig2Vec Lai et al. (2022) TPAMI’22 9.03/4.97 8.78/4.92 9.87/5.16 15.10/7.27 1.93/0.74 5.09/1.18

DsDTW Jiang et al. (2022) TIFS’22 5.91/2.90 5.69/2.90 5.96/2.77 9.58/3.99 0.84/0.11 1.87/0.17

SPECTRUM (Ours) This Work 5.30/2.47 5.33/2.53 5.88/2.62 10.70/4.97 0.72/0.11 2.72/0.32

Table 2: Comparison of SPECTRUM and existing OHV methods on MSDS-TDS Zhang et al. (2022).

Method Venue
Skilled Forgery ↓ Random Forgery ↓

4 vs 1 3 vs 1 2 vs 1 1 vs 1 4 vs 1 1 vs 1

DTW Vintsyuk (1968) - 9.99/5.75 9.94/5.78 10.01/5.95 14.46/6.76 0.25/0.01 0.30/0.04

DeepDTW Wu et al. (2019a) ICDAR’19 5.75/1.94 5.60/1.93 5.49/1.95 9.56/2.11 0.63/0.28 5.16/0.40

TA-RNNs Tolosana et al. (2021) TBIOM’21 5.11/2.91 5.44/3.06 5.77/3.16 5.94/2.60 1.71/0.40 0.85/0.21

Sig2Vec Lai et al. (2022) TPAMI’22 5.18/2.07 5.24/2.22 5.94/2.17 7.01/3.26 1.66/0.26 1.76/0.28

DsDTW Jiang et al. (2022) TIFS’22 4.13/1.42 4.05/1.41 4.40/1.32 5.76/1.85 0.42/0.07 0.59/0.14

SPECTRUM (Ours) This Work 3.38/1.20 3.48/1.11 3.57/1.18 5.20/2.10 0.30/0.04 0.76/0.02

(2) Table 3 demonstrates that SPECTRUM delivers generally comparable performance compared
to the SOTA methods on the DeepSignDB dataset. Although the Sig2Vec model primarily holds
sway, our SPECTRUM exhibits the best/second-best results in some cases, such as in the skilled
forgery verification based on stylus-/finger-written signatures. However, we can observe a notable
performance decline on random forgery verification under the finger scenario. This suggests that, for
finger-written Latin signatures, frequency features could benefit discerning genuine samples against
skilled forgeries but may be less effective in distinguishing genuine samples of different writers.

(3) Our model exhibits better performance on the MSDS-TDS dataset than on the MSDS-ChS
dataset, resonating with the phenomenon discovered in Zhang et al. (2022) that the accuracies of TDS
verification are higher than those of Chinese signature verification. Importantly, the MSDS-ChS and
MSDS-TDS are collected from the same 402 users and share identical user data splitting, ensuring
fair comparisons. This performance consistency reinforces that TDS could be a more effective and
reliable handwritten identifier than Chinese signature, prompting us to pay more attention to this
biometric medium.

(4) Compared to DeepSignDB, verification performances on MSDS-ChS and MSDS reveal more
room for improvement, indicating that Chinese signature and TDS could be more challenging
handwritten biometrics than Latin signature. Our model significantly improves EERs on MSDS-ChS
and MSDS-TDS, particularly the latter one, narrowing the performance gap between the emerging
TDS and traditional Latin signature and bolstering its applicability. This not only demonstrates
the effectiveness of SPECTRUM but also advances the adoption of more emerging handwritten
biometrics for more practical OHV.

4.3 ABLATION STUDY

We conduct ablation studies on the MSDS-TDS and MSDS-ChS datasets to investigate the effective-
ness of individual components in the proposed SPECTRUM. Baseline indicates a model consists
of merely two Conv modules (Fig. 2) and a GRU. Frequency refers to incorporating a single-scale
interactor for frequency modeling along with the basic temporal modeling. 8 indicates the removal
of specific modules, except for replacing the self-gated fusion module with an addition operation.
Results are summarized in Table 4.

Comparing lines 1 and 2, we observe that the initial incorporation of a single-scale interactor for
frequency modeling impairs model performance. However, lines 3-4 reveal that introducing the
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Table 3: Comparison of SPECTRUM and existing OHV methods on DeepSignDB Tolosana et al.
(2021).

Method Venue

Stylus Finger

Skilled Forgery ↓ Random Forgery ↓ Skilled Forgery ↓ Random Forgery ↓

4 vs 1 1 vs 1 4 vs 1 1 vs 1 4 vs 1 1 vs 1 4 vs 1 1 vs 1

DTW Vintsyuk (1968) - 4.53 7.06 1.23 1.98 10.66 14.74 1.02 1.25

TA-RNNs Tolosana et al. (2021) TBIOM’21 3.30 4.20 0.60 1.50 11.30 13.80 1.00 1.80

Sig2Vec Lai et al. (2022) TPAMI’22 2.54 4.08 0.48 0.84 6.97 10.87 0.79 1.86

DsDTW Jiang et al. (2022) TIFS’22 2.54 4.04 0.97 1.69 6.99 11.84 1.81 2.89

SPECTRUM (Ours) This Work 2.61 4.31 1.13 1.99 6.96 11.44 2.38 4.63

Table 4: Ablation study on MSDS-TDS Zhang et al. (2022) and MSDS-ChS Zhang et al. (2022).
Baseline indicates a model consists of merely two Conv modules (Fig. 2) and a GRU. Frequency
denotes introducing a single-scale interactor for frequency modeling. 8 for the self-gated fusion
module denotes replacing it with an addition.

Line Baseline Frequency Multi-Scale Self-Gated Fusion MDV

MSDS-TDS MSDS-ChS

Skilled Forgery ↓ Random Forgery ↓ Skilled Forgery ↓ Random Forgery ↓

4 vs 1 1 vs 1 4 vs 1 1 vs 1 4 vs 1 1 vs 1 4 vs 1 1 vs 1

1 X 4.13/1.30 6.09/2.09 0.36/0.05 1.21/0.08 5.98/2.80 11.30/5.13 1.19/0.22 4.25/0.57
2 X X 5.02/1.38 7.28/2.39 0.49/0.08 1.39/0.09 6.50/2.91 11.22/4.94 0.98/0.14 3.35/0.36
3 X X X 4.95/1.36 7.28/2.39 0.50/0.09 1.39/0.09 6.13/2.86 11.22/4.94 0.93/0.15 3.35/0.36
4 X X X X 4.05/1.43 5.90/2.07 0.34/0.04 0.70/0.03 5.49/2.45 10.40/4.68 0.90/0.17 3.22/0.47
5 X X X X 4.67/1.46 7.02/2.25 0.59/0.05 1.54/0.08 6.20/3.12 12.33/5.85 1.05/0.14 3.96/0.54
6 X X X X 3.44/1.22 5.20/2.10 0.25/0.04 0.76/0.02 5.51/2.75 10.70/4.97 0.74/0.10 2.72/0.32
7 X X X X X 3.38/1.20 5.20/2.10 0.30/0.04 0.76/0.02 5.30/2.47 10.70/4.97 0.72/0.11 2.72/0.32

multi-scale interactor rather than the single-scale one significantly improves model performance,
evidenced by the gains of 0.90%/0.64% (global threshold) in the most difficult skilled forgery scenario
on MSDS-TDS and MSDS-ChS, respectively. Furthermore, comparing lines 5 and 7, removing the
multi-scale interactor from the entire model results in 1.29% and 0.90% declines (global threshold;
skilled forgery; the same as follows) on MSDS-TDS and MSDS-ChS. These outcomes strongly
demonstrate the significance of the multi-scale interactor in introducing fine-grained frequency
features and enhancing stylistic representations. In addition, the self-gated fusion module brings
0.67% and 0.19% improvements on the two datasets, respectively (lines 4 and 7). The MDV further
boosts performance by 0.06% and 0.21% (lines 6 and 7) on two datasets. Notably, incorporating all
our designs leads to the best overall performance. The ablation results substantiate the effectiveness
of the modules in SPECTRUM, validating the enhanced representation performance brought about
by our multimodal learning approach.

4.4 BIOMETRIC-BASED MULTIMODAL REPRESENTATION LEARNING

We further investigate multimodal learning from the perspective of multiple biometric mediums. Since
the Chinese signature (ChS) in MSDS-ChS Zhang et al. (2022) and Token Digit String (TDS) Zhang
et al. (2022) in MSDS-TDS come from the same writers, it offers a natural avenue to incorporate
both ChS and TDS to explore their collaborative potential for OHV. Therefore, we construct a
dual-path model, in which both paths leverage identical established models but respectively receive
ChS and TDS as inputs. Two established OHV models and the proposed SPECTRUM are applied in
this dual-path architecture for experiments. We concatenate sequence representations along spatial
dimensions or average logits from the two paths for optimization and testing. The data of MSDS-ChS
and MSDS-TDS is merged, following the split in Sec. 4.1, to create consolidated training and testing
sets while maintaining the open-set setting. Experimental results are presented in Table 5.

As observed, on the three methods, combining ChS and TDS generally strengthens performance
compared to employing either modality alone, particularly in the most challenging skilled forgery
scenario. These improvements bring forth several inspirations. (1) Simultaneously utilizing multiple
handwritten biometrics indeed improves verification performance. The improvement is likely due to
the richer feature set obtained by combining two biometrics, which essentially amplifies the stylistic
representations of individuals and enhances the discriminatory power. (2) Under the combined-
biometric context, SPECTRUM attains consistently optimal results in skilled forgery verification and
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Table 5: Multimodal fusion between two biometrics: Chinese signature and Token Digit String, using
data from MSDS-ChS Zhang et al. (2022) and MSDS-TDS Zhang et al. (2022), respectively.

Method Biometric
Skilled Forgery ↓ Random Forgery ↓

4 vs 1 3 vs 1 2 vs 1 1 vs 1 4 vs 1 1 vs 1

Sig2Vec Lai et al. (2022)

ChS 9.03/4.97 8.78/4.92 9.87/5.16 15.10/7.27 1.93/0.74 5.09/1.18

TDS 5.18/2.07 5.24/2.22 5.94/2.17 7.01/3.26 1.66/0.26 1.76/0.28

Both 5.04/1.83 5.23/1.83 5.28/1.78 8.89/2.96 0.63/0.12 1.42/0.20

DsDTW Jiang et al. (2022)

ChS 5.91/2.90 5.69/2.90 5.96/2.77 9.58/3.99 0.84/0.11 1.87/0.17

TDS 4.13/1.42 4.05/1.41 4.40/1.32 5.76/1.85 0.42/0.07 0.59/0.14

Both 3.77/0.89 3.65/0.93 3.80/1.03 6.22/2.08 0.15/0.03 0.94/0.16

SPECTRUM (Ours)

ChS 5.30/2.47 5.33/2.53 5.88/2.62 10.70/4.97 0.72/0.11 2.72/0.32

TDS 3.38/1.20 3.48/1.11 3.57/1.18 5.20/2.10 0.30/0.04 0.76/0.02

Both 3.15/0.80 3.11/0.81 3.23/0.78 5.76/1.25 0.21/0.05 1.08/0.06

near-top results in random forgery verification. In this context, SPECTRUM achieves multimodal
learning not only across feature domains (temporal and frequency) but also biometric domains,
bolstering verification performance through the unprecedented synergy of feature and biometric
modalities. (3) In experiments, even simple concatenation or averaging of representations extracted
from ChS and TDS could yield improved performance. Designing more sophisticated modality
fusion mechanisms to delve deeper into the commonalities between two handwritten biometrics could
further enhance model outcomes, pointing out a promising future direction.

5 LIMITATION AND DISCUSSION

Although SPECTRUM achieves optimal or SOTA-comparable performances on three datasets, the
performance enhancement on Chinese/Latin signatures is less pronounced than on Token Digit String
(TDS). This calls for further efforts to improve the generalizability of temporal-frequency multimodal
learning on diverse handwritten data types. Additionally, our exploration of multimodal learning has
hitherto been confined to temporal and frequency domains. However, it is possible to investigate
other modalities such as the spatial modality (rendering online data to offline images) and the video
modality (capturing hand movements during writing), as well as the integration of more than two
feature modalities, to further enhance the robustness of handwriting verification.

Furthermore, the successful integration of multiple handwritten biometrics points out another simple
yet effective avenue to improve OHV performance, with potential benefits for real-world applications
such as banking. Despite its straightforwardness, this approach remains unexplored, and available
datasets are scarce. This underscores the need for further exploration in this area, such as using a
broader range of handwritten biometrics beyond just signature and TDS, collecting more comprehen-
sive multi-biometric datasets, developing specialized techniques for more effective biometric merging,
and integrating handwritten biometrics with other behavioral biometrics (e.g., face, fingerprint).

6 CONCLUSION

In this paper, we propose SPECTRUM, a novel OHV model driven by multimodal representation
learning. We propose a multi-scale interactor for blending local temporal and frequency features
across multiple spatial scales, coupled with a self-gated fusion module that integrates global temporal
and frequency features through a self-balance. In addition, a multimodal distance-based verifier is
proposed, which naturally harnesses both temporal and frequency representations in the multimodal
context to sharpen the distinction between genuine and forged samples. Extensive experiments
demonstrate the superior performance of SPECTRUM over existing OHV methods, underscoring
its effectiveness in multimodal representation learning. Furthermore, we discover that combining
multiple handwritten biometrics essentially results in more discriminatory individual representations
and facilitates verification. These findings not only confirm the significance of multimodal represen-
tation learning in OHV but also highlight promising future directions in enhancing the reliability and
applicability of OHV technologies.
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APPENDIX

A DATA PREPORCESSING

Table 6: Time-function features.

# Features
1-2 Horizontal and vertical component velocity x, y: ẋ, ẏ
3-4 Line velocity and acceleration: v =

√
ẋ2 + ẏ2, v̇

5 Path-tangent angle: θ = arctan ẏ
ẋ

6-7 Cosine and sine of angle: cos θ, sin θ

8-9 Angular velocity and acceleration: θ̇, θ̈
11 Centripetal acceleration magnitude: 4v = v · θ̇
12 Total acceleration magnitude: a =

√
v̇2 +4v2

13-15 Pressure and its first- and second-order derivatives: p, ṗ, p̈

We utilize the x, y coordinates, and pressure p of the raw online handwritten data for further
preprocessing. To mitigate variations in size and location, we perform center normalization on x
and y, relocating the handwriting center to (0,0) and normalizing coordinates to the range of (-1,1)
with preserved aspect ratio. A min-max normalization is also applied to the pressure information.
Subsequently, following the official papers, we resample the data in MSDS-ChS and MSDS-TDS
into 120Hz and the data in DeepSignDB into 100Hz, using bi-cubic interpolation. We extract 15
time-function features based on the normalized x, y, and p as model input, as outlined in Table 6. The
z-score normalization is applied to the time-function features to standardize them with zero means
and unit variance in all experiments.

Figure 5: Visualization of the final feature representations on Chinese signature and Token Digit
String data using MSDS-ChS and MSDS-TDS Zhang et al. (2022). The "Temporal" features are
output by the Baseline model (as described in Sec. 4.3) that merely involves temporal domain learning,
while the "Temporal & Frequency" features are obtained from our SPECTRUM. The handwritten
data are desensitized through cropping to protect privacy.
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B IMPLEMENTATION DETAIL

We train SPECTRUM for 40 epochs, using AdamW Loshchilov & Hutter (2019) with β1 = 0.9,
β2 = 0.999, and weight decay of 1e-2 as the optimizer. The learning rate is initially set to 5e-4 and
decreases to 5e-7 following the cosine schedule. In each batch, we randomly sample handwriting
from four writers, comprising five genuine samples, five skilled forgeries, and five random forgeries
per writer, resulting in a batch size of 4× (5 + 5× 2) = 60. Genuine samples and skilled forgeries
are drawn from the genuine and skillfully forged data available in the dataset, while random forgeries
are randomly selected genuine handwriting of five other writers. λ in the loss function is set to 0.1.

C VISUALIZATION

To more intuitively demonstrate the effectiveness of the temporal-frequency synergistic learning
of SPECTRUM, we visualize the output feature sequence based on single-modal and multimodal
learning. Features are extracted from the same handwriting samples for comparison. We utilized
the final output features of the Baseline model (as described in Sec. 4.3) for visualization in the
temporal domain, while using the output features of the proposed SPECTRUM for visualization in
the temporal-frequency domain. Visualizations are presented in Fig. 5, which are performed on the
Chinese signature data of MSDS-ChS and Token Digit String data of MSDS-TDS, respectively.

Comparing the left and right columns of each data type, the heatmaps on the right column showcase
richer and denser regions with high response values, particularly evident in the Token Digit String
data. This suggests that incorporating frequency features with temporal features strengthens the
sensitivity of individual writing patterns, resulting in more informative handwriting representations
and improved verification accuracy. In addition, as seen in the right-column heatmaps, the high-
response regions are concentrated in areas such as stroke twirls, stroke hyphenations, and the start/end
of strokes. These regions likely contain richer writing style characteristics, which are effectively
captured by the frequency modeling approach. By highlighting these stylistically rich areas, our
model demonstrates its ability to focus on crucial elements that distinguish individual writing patterns,
further validating the strength of our multimodal approach.
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