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Abstract001

The reward model has become increasingly im-002
portant in alignment, assessment, and data con-003
struction for large language models (LLMs).004
Most existing researchers focus on enhancing005
reward models through data improvements, fol-006
lowing the conventional training framework for007
reward models that directly optimizes the pre-008
dicted rewards. In this paper, we propose a009
hybrid alignment framework HAF-RM for re-010
ward model training by introducing an addi-011
tional constraint on token-level policy proba-012
bilities in addition to the reward score. It can013
simultaneously supervise the internal prefer-014
ence model at the token level and optimize the015
mapping layer of the reward model at the se-016
quence level. Theoretical justifications and ex-017
periment results on five datasets show the va-018
lidity and effectiveness of our proposed hybrid019
framework for training a high-quality reward020
model. By decoupling the reward modeling pro-021
cedure and incorporating hybrid supervision,022
our HAF-RM framework offers a principled023
and effective approach to enhancing the perfor-024
mance and alignment of reward models, a criti-025
cal component in the responsible development026
of powerful language models. We release our027
code at https://haf-rm-anonymized.github.io.028

1 Introduction029

Recent periods have witnessed a continuous evolu-030

tion of Large Language Model (LLM) techniques,031

especially pre-training (Devlin et al., 2019; Rad-032

ford et al., 2019; Brown et al., 2020) and instruction033

tuning (Wei et al., 2021; Wang et al., 2022; Yue034

et al., 2023). Researchers start to shift their focus035

from generating correct responses to aligning re-036

sponses more closely with human preferences (Rus-037

sell, 2014). As an efficient alternative to human038

feedback, the reward model for generative language039

models emerges, facilitating scalable alignment in040

training (Christiano et al., 2017; Stiennon et al.,041

2020), response generation (Gao et al., 2023; Mud-042

gal et al., 2024; Jinnai et al., 2024), data construc- 043

tion(Yuan et al., 2023) etc. 044

Despite the availability of numerous sophisti- 045

cated reward models (Kopf et al., 2023; Zhu et al., 046

2023), these exist several key limitations. First, 047

most reward models originate from industry and 048

are not open-source, making further training and 049

transfer impossible. Second, prior studies have 050

highlighted incorrect and ambiguous preferences 051

within the training data of these reward models (Bai 052

et al., 2022; Pitis, 2023). These two issues both 053

limit the quality and generalizability of existing 054

reward models, necessitating further enhancement 055

either from the data perspective or the training pro- 056

cess. While recent researches mainly focus on 057

enriching data sources for better reward models, 058

including utilizing external tools or information 059

sources to enhance generalization (Li et al., 2023a; 060

Sun et al., 2023) or leveraging fine-grained sig- 061

nals (Wu et al., 2023; Cao et al., 2024) and their 062

combinations (Go et al., 2023; Lai et al., 2024), we 063

focus on the training framework of reward models 064

in this work. 065

A reward model is typically structured with two 066

components: a transformer-based model (referred 067

to as the internal preference model) that outputs 068

preference vectors for each token, and a projec- 069

tion module called “reward layer” (usually a linear 070

layer with normalization) that maps these vectors 071

to sequence-level rewards. The standard practice 072

for training the reward model involves utilizing 073

the ranking loss of paired rewards. However, op- 074

timizing both two components using such a sin- 075

gle sequence-level objective may cause insufficient 076

supervision for token-level preference modeling. 077

We argue that hybrid optimization of the two com- 078

ponents of the reward model with corresponding 079

token-level and sequence-level objectives will lead 080

to more consistent improvement. 081

Since a policy model is also based on an internal 082

preference model to predict the expected reward 083
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Figure 1: The standard reward model substitutes the policy layer from the policy model, while our HAF model
retains the policy layer. By optimizing the model’s two outputs, we achieve a better alignment process for the reward
model with little additional training overhead.

for each action/token, essentially acting as a Q-084

function under token-level supervision (Rafailov085

et al., 2024), we propose a Hybrid Alignment086

Framework (HAF). This framework jointly opti-087

mizes the reward model and policy model with a088

shared internal preference model. With the policy089

loss, we can directly supervise the internal prefer-090

ence model at the token level while simultaneously091

optimizing the mapping layer of the reward model092

using the reward loss, enabling more effective align-093

ment of the reward model.094

We provide both theoretical justifications and095

empirical experiments to demonstrate the effective-096

ness of our HAF. In the experiment section, we097

compare the performance of reward models trained098

using our framework against those resulting from099

baseline approaches across four public datasets.100

The results highlight the advantage of HAF with101

different policy losses integrated. Further analysis102

reveals that using additional policy loss can im-103

prove the performance of policy model calibration,104

which opens a new horizon for training high-quality105

reward models.106

2 Preliminary107

The objective of our framework is to train the re-108

ward model r based on a pairwise comparison109

dataset (also known as “preference dataset”) D,110

following typical reward model training settings. 111

2.1 Notation 112

• D = {(xi, yi, y′i)}
n
i=1 represents the dataset 113

used to train the reward model, where xi, 114

yi and y′i are the query, preferred and non- 115

preferred responses respectively. 116

• P = {(x, y) | (x, y, y′) ∈ D} ∪ {(x, y′) | 117

(x, y, y′) ∈ D} is the set of query-response 118

pairs from the dataset D. 119

• r is the reward model which can be split into 120

two parts as r(x, y) = F ◦ ϕ (x, y), to out- 121

put the reward of a response y given a query 122

x. Here, ϕ (·, ·) denotes the model’s internal 123

preference model, while F serves as the re- 124

ward prediction layer mapping the model’s 125

internal preference to the final reward. We use 126

the symbol ◦ to signify function nesting, i.e., 127

F ◦ ϕ (x, y) = F (ϕ (x, y)). 128

• π is the policy model, and π (x, y) is the 129

generation probability of y given x. It can 130

also be divided into two parts as π (x, y) = 131

K ◦ ϕ (x, y) where the policy prediction layer 132

K maps the model’s internal preference to the 133

generation probability. 134

• The oracle (optimal) value is denoted as 135
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the corresponding letter with an asterisk136

such as r∗(oracle reward model), ϕ∗(optimal137

model preference), F∗(optimal reward predic-138

tion layer) and K∗(optimal policy prediction139

layer).140

2.2 Training Loss141

We use D1 to represent the distribution discrepancy142

between the reward model’s output and the oracle143

reward model’s output, and D2 for the outputs of144

the policy model and the oracle policy model.145

Reward Loss The standard reward loss Ls con-146

siders the precision of rewards alone, being a sim-147

ple and direct metric to quantify the quality of a148

reward model.149

Ls := E
d∼P

[D1 (r (d) , r
∗ (d))] (1)150

For notational convenience, we use d to denote151

(x, y) and use argmin
r

Ls or argmin
F,ϕ

Ls to represent152

the model training with the standard reward loss.153

Policy Loss Similar to the reward loss, standard154

policy loss aims to measure the error of the policy155

model.156

LP := E
d∼P

[D2 (π (d) ,π∗ (d))] (2)157

Hybrid Alignment Loss To fully leverage the158

similarity between the reward model and the policy159

model, we incorporate an additional supervising160

term D2 on the policy model into the loss func-161

tion. By calibrating the shared preference space,162

we effectively align the model in a hybrid manner:163

LH := E
d∼P

[D1 (r (d) , r
∗ (d))

+α · D2 (π (d) ,π∗ (d))]

= E
d∼P

[D1 (F ◦ ϕ (d) ,F∗ ◦ ϕ∗ (d))

+α · D2 (K ◦ ϕ (d) ,K∗ ◦ ϕ∗ (d))]

(3)164

where α is a hyperparameter to balance losses from165

the reward and policy model, ϕ is the shared in-166

ternal preference model which receives gradients167

from both loss terms. Similarly, argmin
F,K,ϕ

LH and168

argmin
r,π

LH represent the model training with our169

hybrid alignment loss.170

3 Hybrid Alignment Framework 171

3.1 Model Implementation 172

The most commonly used decoder-only LLM con- 173

sists of stacked transformer blocks (Vaswani et al., 174

2017) or similar structures, and a linear layer for 175

policy projection. In the reward model, only the 176

shape of the final linear layer is adjusted to match 177

the format of the reward value output compared 178

to the policy model. We retain two linear layers 179

for our model, enabling it to output rewards and 180

probabilities simultaneously. 181

To significantly reduce the resources required 182

for training, it is standard practice to initialize the 183

internal preference module of the reward model 184

with a fine-tuned language model as it retains the 185

model’s language modeling capabilities. 186

3.2 Loss Calculation 187

There is consensus on the specific calculation 188

method for the reward loss. In avoiding the is- 189

sue of uncertain reward values, the Bradley-Terry 190

model (Christiano et al., 2017) is used to transform 191

the reward modeling problem into a probability 192

optimization problem. Treating the problem as a 193

binary classification task yields the popular form 194

of reward loss function: 195

Ls = E
d∼P

[D1 (r (d) , r
∗ (d))]

= E
(x,y,y′)∼D

[
− log σ

(
r (x, y)− r

(
x, y′

))]
(4) 196

where σ (·) is the sigmoid function. 197

Given the preference data, there currently does 198

not exist a universally optimal policy loss. How- 199

ever, since the derivation of the DPO loss is based 200

on assumptions similar to those made for the re- 201

ward loss (as detailed in Appendix C.2), we choose 202

to use the DPO loss as the method for calculating 203

the policy loss. 204

LP = E
d∼P

[D2 (π (d) ,π∗ (d))]

= E
(x,y,y′)∼D

[− log σ (τ (pdwin − pdlose))]

(5) 205

where 206

pdwin = log π(x,y)
πref (x,y)

, pdlose = log π(x,y′)
πref (x,y′)

. 207

πref is the reference policy model and τ is the 208

hyperparameter set to 0.1. 209

Combining the two losses, we have our HAF 210

loss calculate in the following manner: 211

LH = Ls + α · LP (6) 212
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We will elaborate in Appendix C.1 on why Eq. 4213

and Eq. 5 hold and why there is no optimal model214

on the right-hand side.215

3.3 Theoretical Analysis216

In this subsection, we present several properties of217

HAF that are independent of the specific calcula-218

tion methods of the two loss functions. We will219

start from Section 2.2.220

In practice, functions such as F and ϕ are rep-221

resented by parameterized models with finite pa-222

rameters, and thus cannot precisely model arbitrary223

distributions. Here we show that under certain as-224

sumptions, using the hybrid alignment loss can225

yield a better solution than simply using the stan-226

dard reward loss.227

Proposition 1. Unless K can exactly fit K∗, there228

exists ϵ > 0, such that229

E
d∼P

[D2(KH ◦ ϕH(d),K
∗ ◦ ϕ∗(d))]

⩽ min
K

E
d∼P

[D2(K ◦ ϕs(d),K
∗ ◦ ϕ∗(d))]− ϵ

α

230

holds for all α ∈ (0.1, 2), where KH , ϕH =231

argmin
K,ϕ

LH in Equation 3 and ϕs = argmin
ϕ

Ls232

in Equation 4.233

Here we use argmin to represent the best models234

optimized with the corresponding loss functions,235

so ϕH and ϕs are not equal to ϕ∗ although ϕ∗ is the236

minimum mathematically. Intuitively this indicates237

that the model learned from the joint calibrated238

loss outperforms the one learned solely from the239

preference space using the standard reward loss.240

Proposition 2. Assume that ϕ∗ is unique, K∗ is241

locally Lipschitz continuous, , and 0.1 < α < 2,242

there exists k, δ > 0, such that243

E
d∼P

[|ϕH(d)− ϕ∗(d)| − |ϕs(d)− ϕ∗(d)|] <

gmax − gmin

gmin
E

d∼P
|ϕs(d)− ϕ∗(d)|+ 2δ − ϵ

α · k
244

The detailed derivations for both propositions245

are provided in Appendix D. Here we obtain an246

upper bound on the model preference error. By247

tuning the hyperparameter α, the right term can248

be strictly negative. In other words, model pref-249

erence space trained with our calibrated loss can250

be strictly closer to the true preference space com-251

pared to the standard reward loss. (In practice,252

there is no need for an exhaustive search, we find253

α = 0.2 already yields satisfactory results. We254

give a discussion about this in B)255

Name Size Words/QA Tokens/QA

Harmless 12,915 42.9 61.5
Helpful 13,543 54.3 77.2
BS 47,625 69.3 88.5
AHP 8,722 59.6 81.9
CA 19,466 165.5 257.6

Table 1: Statistics of the Training Datasets

4 Experiment setup 256

4.1 Datasets 257

We comprehensively assess the performance of 258

our framework using five public datasets, namely 259

Anthropic-HH-Harmless (HH-harmless) (Bai et al., 260

2022), Anthropic-HH-Helpful (HH-Helpful) (Bai 261

et al., 2022), Beaver Safe (BS) (Ji et al., 2023), 262

Alpaca Human Pref (AHP) (Dubois et al., 2023) 263

and Chatbot Arena (CA) (Zheng et al., 2023). Note 264

that AHP and CA do not have original data split 265

for evaluation, we randomly extract 10% from the 266

original data as a test set, the details of the used 267

datasets are shown in Tab 1. 268

4.2 Comparative Models 269

Baseline We compare our framework with the 270

standard training approach, in which the reward 271

model only has a reward layer for reward prediction 272

and is optimized via Eq. 4. 273

DPO Although DPO loss (Eq. 5) is typically used 274

for training policy models rather than reward mod- 275

els, it can implicitly convert the model’s outputs 276

into reward values (Rafailov et al., 2023). There- 277

fore, the DPO model can also be considered a re- 278

ward model (Rafailov et al., 2024). Following the 279

work of Lambert et al. (2024), we also evaluate the 280

model trained with DPO loss. 281

HAF Under our framework, the reward model 282

has both the reward and policy layer for predicting 283

sequence-level rewards and providing token-level 284

probabilities. 285

In our implementation, we use Phi-2-2.7B and 286

Mistral-7B-Instruct-v0.2 as our base model. We 287

train Phi-2 and Mistral-7B using full-parameter and 288

Low-rank Adaptation (LoRA) (Hu et al., 2022), 289

respectively. More experiment setup can be found 290

in Appendix A. 291

4



Method Helpful Harmless CA BS AHP Avg

DPO(Phi-2) 69.70 66.30 66.80 87.80 52.60 68.64
Baseline(Phi-2) 64.30 69.50 79.30 76.00 58.40 69.50
HAF (Phi-2) 76.40 70.40 79.00 84.00 60.80 74.12

DPO(Mistral) 74.29 70.30 81.90 92.70 60.30 75.90
Baseline(Mistral) 76.20 72.70 79.80 80.80 56.30 73.16
HAF (Mistral) 75.80 73.10 81.90 88.70 63.10 76.52

Table 2: Overall results on each dataset for accuracy, which denotes the proportion that the better response is scored
higher. The best performance is highlighted in boldface and the suboptimal result is underlined.
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Figure 2: Comparison of models trained with HAF/baseline/DPO methods on the mixed dataset.

5 Experiment Results292

5.1 Intrinsic performance of Reward Models293

The primary function of a reward model is to eval-294

uate the quality of responses to a given question,295

which involves accurately comparing two answers296

to the same question. Using judgment accuracy as297

the evaluation metric, we conduct several experi-298

ments to assess the effectiveness of HAF in training299

the reward model.300

5.1.1 Overall Performance301

Firstly we compare the performance of HAF with302

the baseline and two judging models across the five303

datasets. Table 2 presents the overall results. HAF304

has higher accuracy than the baseline in most cases,305

indicating that the model can more sensitively iden-306

tify whether an answer is good and give a more307

accurate high (or low) score. At the same time,308

those results worse than the baseline or DPO are309

generally only slightly worse, indicating that our310

method is basically not weaker than the baseline311

under various circumstances.312

5.1.2 Mixed Data313

For the mixed data setting, we construct two314

datasets by sampling and combining examples315

from multiple sources: Anthropic-HH (Anthropic 316

Helpful + Anthropic Harmless) and Mixed (evenly 317

sampled from each of the five datasets in our cor- 318

pus). As shown in Figure 2, our proposed hybrid 319

alignment framework achieves the best generaliza- 320

tion performance across all reward models when 321

evaluated on these mixed data distributions. This 322

suggests our approach can better learn the diversity 323

present in the combined datasets for generalization. 324

5.1.3 OOD Data 325

Data within the same dataset often exhibits certain 326

distributional similarities due to similar or even 327

identical data cleaning and processing methods. To 328

simulate a distribution shift in real-world applica- 329

tion, we also evaluate generalization to entirely 330

held-out OOD datasets. Specifically, we train mod- 331

els on one dataset and evaluate on the remaining 332

four. Although different datasets have distinct dis- 333

tributions, their main preferences can be general- 334

ized as “overall better” (AHP, CA and Helpful) and 335

“safer” (BS and Harmless), which we use rAcc (“r” 336

stands for “relevant”) to represent model’s general- 337

ization ability within similar preferences. 338

The results are detailed in Table 3. We can tell 339

from the table that the rAcc of HAF is basically 340

higher than that of both Baseline and DPO, indi- 341
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Acc(%) AHP CA Helpful BS Harmless AVG rAcc

Phi-2-2.7B

AHP * 67.40(1.00↓)
(30.30↑) 67.60(3.40↑)

(17.10↑) 39.80(0.20↑)
(14.80↓) 41.90(5.40↓)

(9.30↓) 54.18(0.70↓)
(5.83↑) 67.50(1.20↑)

(23.70↑)

CA 60.20(0.50↑)
(8.20↑) * 64.70(3.20↓)

(15.00↑) 37.60(0.80↑)
(13.00↓) 42.10(5.60↑)

(9.40↓) 51.15(0.92↑)
(0.20↑) 62.45(1.35↓)

(11.60↑)

Helpful 60.20(2.90↑)
(6.90↑) 72.00(1.10↓)

(32.70↑) * 36.20(1.40↓)
(10.30↓) 38.50(6.90↓)

(0.30↓) 51.73(1.62↓)
(7.25↑) 66.10(0.90↑)

(19.80↑)

BS 47.90(0.20↓)
(1.20↓) 41.00(2.50↑)

(9.20↑) 35.70(1.40↓)
(9.30↓) * 70.60(5.60↑)

(4.60↑) 48.80(1.62↑)
(0.82↑) 70.60(5.60↑)

(4.60↑)

Harmless 43.80(1.30↑)
(6.20↓) 29.40(0.50↑)

(5.70↓) 32.60(0.80↑)
(9.10↓) 76.90(1.50↑)

(8.60↑) * 45.67(1.02↑)
(3.10↓) 76.90(1.50↑)

(8.60↑)

Mistral-7B-Instruct

AHP * 75.50(6.20↑)
(17.90↑) 68.90(10.60↑)

(7.60↑) 55.70(7.20↑)
(5.90↑) 48.00(1.20↑)

(1.40↓) 62.02(6.30↑)
(7.50↑) 72.20(8.40↑)

(12.75↑)

CA 60.80(0.20↓)
(6.80↑) * 65.80(1.20↓)

(12.50↑) 38.50(6.60↓)
(3.00↓) 36.80(4.00↓)

(6.80↓) 50.47(3.00↓)
(2.37↑) 63.30(0.70↓)

(9.65↑)

Helpful 60.90(1.00↓)
(8.20↑) 73.90(0.60↑)

(20.30↑) * 36.00(9.30↓)
(5.40↓) 37.50(0.00)

(2.10↑) 52.08(2.42↓)
(6.30↑) 67.40(0.20↓)

(14.25↑)

BS 52.90(4.00↑)
(1.10↓) 55.20(9.50↑)

(12.30↑) 43.80(3.40↓)
(8.10↓) * 71.90(1.40↑)

(3.00↑) 55.95(2.87↑)
(1.52↑) 71.90(1.40↑)

(3.00↑)

Harmless 46.50(1.00↑)
(0.40↓) 38.30(4.60↑)

(10.50↓) 32.40(0.50↑)
(2.10↓) 76.70(2.40↑)

(5.70↑) * 48.48(2.13↑)
(1.82↓) 76.70(2.40↑)

(5.70↑)

Table 3: Results for the OOD experiment. The results in the same row are derived from the same backbone and
the same training dataset, while the columns represent different test datasets. The displayed accuracies are for
HAF , with superscripts and subscripts indicating the performance differences relative to the baseline and DPO,
respectively. ↑ denotes an improvement with HAF , whereas ↓ indicates a decline. rAcc is the average accuracy
among grey blocks.

cating HAF possesses a strong ability to learn pref-342

erences and effectively generalize them to similar343

preference distributions, despite great differences344

in language style and topic. Touvron et al. (2023)345

noted that RLHF involves distributional shifts in346

the policy model during training, necessitating iter-347

ative training for the reward model. The robustness348

of HAF against such distributional shifts could po-349

tentially be a key factor in alleviating this problem.350

Comparing Table 3 and Table 2, we can observe351

that models trained using CA or Helpful datasets352

outperform those directly trained on AHP dataset353

when the test set is AHP. This suggests two things:354

firstly, there is a certain similarity in preferences355

across the three datasets, and secondly, the amount356

of AHP data may be insufficient to support the357

complete training of the reward model, as shown358

in Table 1. Consequently, the model’s preference359

learning is incomplete, which results in low test360

outcomes for AHP in Table 2.361

On this observation, it can be noted that the362

HAF-mistral model, when fully trained using CA363

or Helpful datasets, performs worse on BS and364

Harmless compared to Baseline. However, when 365

insufficiently trained using AHP dataset, its test 366

results are better than the baseline. This might indi- 367

cate that during the training process of the reward 368

model, the learning of reward mapping precedes 369

the learning of preferences. When the model is not 370

fully trained, HAF’s advantage in learning speed 371

enables it to outperform. Yet, once fully trained, the 372

baseline’s weaker preference learning ability might 373

allow it to exhibit some degree of cross-preference 374

generalization. This hypothesis requires further 375

validation in future work. 376

One easily overlooked result is that nearly all the 377

test outcomes of the DPO model converge to ap- 378

proximately 50% in a highly exaggerated manner, 379

indicating a complete loss of modeling capability 380

for out-of-distribution data. This issue is likely re- 381

lated to its inherent nature as a language model: 382

the generation process of language models exhibits 383

strong stylistic tendencies, which, in turn, leads 384

to a significantly higher preference for responses 385

that align with its style (as reflected in the gener- 386

ation probabilities and the implicit reward values 387
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Figure 3: Win rate of responses selected by the HAF
model compared to the baseline model.

of the DPO model). Consequently, when the re-388

sponse distribution deviates from its stylistic norms389

(e.g., responses that are too short or too long, or390

use different vocabulary), the output probabilities391

become highly inaccurate. This indicates that the392

DPO model is not suitable for use as a conventional393

reward model.394

5.2 Extrinsic Evaluation on Downstream Task395

In assessing the practical applicability of reward396

models, intrinsic performances alone provide an397

incomplete picture of their efficacy. To comprehen-398

sively evaluate their utility in real-world applica-399

tions, it is essential to examine how these models400

perform in downstream tasks that simulate practical401

scenarios.402

This section aims to investigate the robustness403

and effectiveness of HAF model in such scenar-404

ios. Specifically, we explore its performance in two405

distinct downstream tasks: best-of-N sampling as406

a training-free response generation strategy (Sti-407

ennon et al., 2020; Gao et al., 2023; Jinnai et al.,408

2024), and RLHF as a training-dependent aligning409

methods.410

5.2.1 Best-of-N411

We demonstrate the reliability of our trained reward412

model through Best-of-N pick, in which the reward413

model should pick the best one (the response with414

the highest reward) from several responses sampled415

from the same language model. The backbone for416

the reward model and the sampling model are the417

same, 8 and 4 responses are provided to the Mistral-418

based reward model the Phi-2-based reward model419

respectively, because Phi-2 is more likely to gener-420

ate the same responses. The prompts for compar-421

isons and ranking are listed in Appendix E, which422

reference AlpacaEval (Li et al., 2023b).423

We report two evaluation metrics. Win rate: We424

use GPT-4-turbo to directly compare the responses425

Top-1(%) Top-2(%)
HAF Baseline HAF Baseline

Phi-2 33.77 26.68 58.30 49.47
Phi-2No harm 37.21 28.97 64.33 53.41
Mistral 13.31 11.55 25.27 23.49
MistralNo harm 15.70 13.88 29.20 27.67

Table 4: Top-k recall for HAF and the baseline. There
are 4 candidate responses for Phi-2 and 8 for Mistral.
The results are averaged over the recall values from all
five datasets. The subscript “No harm” indicates that
the result in that row is averaged over the AHP, CA, and
harmless datasets instead of all datasets.

from HAF reward model and baseline and report 426

the win rate (Jang et al., 2023). Consistency with 427

GPT: we use GPT-3.5-turbo to rank the sampled 428

responses and calculate the recall of the top-1 and 429

top-2 responses. 430

As shown in Figure 3 and Table 4, HAF demon- 431

strates significant advantages over the baseline re- 432

ward model in selecting responses especially for 433

Phi-2 model in terms of both evaluation metrics. It 434

is important to note that the average performance 435

of the baseline reward model is comparable to ran- 436

dom selection, suggesting that it has poor sensi- 437

tivity and cannot effectively distinguish between 438

responses when the quality differences are minimal. 439

In contrast, the reward model obtained using HAF 440

demonstrates good discriminative ability. Consid- 441

ering that the model can only learn to distinguish 442

harmful from non-harmful responses from the BS 443

and Harmless datasets, and that the responses gen- 444

erated by Phi-2 and Mistral are mostly harmless, 445

we also report the average results on the remaining 446

three datasets. When the safety-related datasets 447

are excluded, both HAF and baseline show an im- 448

provement in average performance. Due to space 449

limitations, the detailed results are presented in the 450

appendix in Table 10. 451

5.2.2 RLHF 452

We also test HAF in the regular RLHF process: 453

we train two reward models with HAF and the 454

baseline method and then use them to train the 455

policy models with RLHF. After training, GPT- 456

3.5-turbo is introduced to compare the generations 457

from the two policy models. 458

We conduct experiments using the Mistral model 459

along with the AHP, CA, and Helpful datasets to 460

investigate the reward model’s capability in opti- 461

mizing for comprehensive preferences. Phi-2 is 462

not used here as it shows great unstability during 463
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#Win #Lose Win rates(%)

AHP 285 215 57.00
CA 346 154 69.20
Helpful 243 256 48.70

Table 5: Win rates for the policy model trained with
HAF reward model by RLHF.

training which may not exhibit any performance464

improvement. Setups for reward model training465

and PPO are listed in Appendix A.466

HAF demonstrates a significant advantage on467

the AHP and CA datasets, while showing slightly468

worse performance compared to the baseline on469

the Helpful dataset. This indicates that the HAF470

reward model provides more effective guidance for471

the policy model. Given the widespread applica-472

tion of RLHF-like methods, HAF shows promising473

potential for active use in language model align-474

ment in the near future. However, due to the simple475

experimental setup and the inherent instability of476

RLHF at small scales, the effectiveness of the HAF477

method in language model alignment still requires478

extensive exploration.479

6 Related Work480

Reward model was proposed to modeling human481

language preferences (model that outputs pref-482

erence values based on questions and answers)483

(Christiano et al., 2017), then the explosive growth484

of research on reward models (McKinney et al.,485

2023) and large language models (Wei et al., 2022;486

Park et al., 2023; Zheng et al., 2023) emerged after487

the popularity of ChatGPT.488

From training to practical applications, an in-489

creasing number of studies have also featured the490

presence of quantifiable preferences(usually known491

as “reward”). For example, RLHF (Christiano et al.,492

2017; Stiennon et al., 2020) uses the PPO algo-493

rithm (Schulman et al., 2017) to maximize the re-494

ward of the policy model; RAFT (Dong et al., 2023)495

and RRHF (Yuan et al., 2023) remove substandard496

data by scoring the candidate responses with re-497

ward model; LLM-as-a-judge (Zheng et al., 2023)498

employs GPT-4 to score the text.499

Therefore, how to construct a model offering500

explicit preference feedback has naturally become501

a focal point of much research. To train a precise502

and robust reward model, many studies start from503

training with human preference data, and many504

works in the data field are largely centered around 505

this. (Touvron et al., 2023) and (Zhao et al., 2022) 506

provided different methods for using ranking data; 507

(Wang et al., 2024) explored ways of measuring 508

the strength of the data; while concerning datasets 509

themselves, (Azar et al., 2023), (Knox et al., 2022) 510

and (Hong et al., 2022) analyzed the impact of data 511

preference strength on training from theoretical 512

or practical perspectives. In addition, similar to 513

the RAG technique (Lewis et al., 2020) in large 514

language models, many methods (Li et al., 2023a; 515

Sun et al., 2023) using external tools or references 516

have also emerged, injecting new vitality into the 517

development of reward models. 518

Although many data-oriented methods have 519

greatly enhanced the performance of reward mod- 520

els, the field of reward model optimization has 521

been rarely explored. Currently, the training of 522

reward models basically follows the process pro- 523

posed by OpenAI (Christiano et al., 2017). It in- 524

volves initializing the reward model using a fine- 525

tuned model, then transforming the model’s predic- 526

tions into probability values through the Bradley- 527

Terry model, and optimizing these probabilities us- 528

ing cross-entropy loss. Considering the widespread 529

practical applications of reward models, the atten- 530

tion given to their training paradigms does not 531

match their importance. 532

7 Conclusion 533

In this paper, we extend and improve the train- 534

ing framework of the current reward model. We 535

split the training mechanism of the reward model 536

into two stages: aligning model preference and 537

optimizing the reward layer. Through introducing 538

an additional constraint of policy loss, our hybrid 539

alignment framework supervises the internal prefer- 540

ence model at the token level while simultaneously 541

optimizing the mapping layer at the seqneuce level, 542

significantly improving the training effectiveness. 543

We theoretically verify the validity of our method 544

and demonstrate its reliability through systematic 545

experiments. 546

Our method allows for a consistent customiza- 547

tion of the reward model. In the future, we will thor- 548

oughly explore the potential of the reward model 549

and its variants across various tasks, and investigate 550

whether the logistic distribution is the optimal prior 551

for reward modeling. 552
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Impact Statements553

This paper presents work whose goal may benefit554

the training of large language models in the field555

of deep learning. Among the many possible conse-556

quences, we do not believe that there is a significant557

possibility of adverse effects on society.558

Limitations559

In this paper, we discuss the potential of enhancing560

the alignment process of reward models by incor-561

porating policy constraints, where the policy loss562

functions similarly to a regularization loss, acting563

as an auxiliary function to guide model training.564

However, since DPO can be directly used to train565

an implicit reward model, replacing the reward566

model with a DPO model for downstream tasks567

can also be a feasible approach, while we do not568

explore methods for combining the outputs of the569

policy layer and the reward layer, which remains a570

direction for our future research.571
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A Experiments Setup 828

Our default setup is shown in Table 6. 829

To train the reward model, we use DPO Loss as 830

the policy loss in HAF and set policy ratio α = 831

0.2. The learning rate is 1.0× 10−5 for Phi-2 and 832

Mistral-lora-baseline, 3.0× 10−5 for Mistral-lora- 833

HAF. A single RTX A6000 with 48GB memory 834

is used for training the reward model. The model 835

used for testing is the checkpoint that achieves the 836

highest reward on the validation set. 837

For PPO training in Section 5.2.2, we utilize 838

two RTX A6000 GPUs for parallel training with 839

a total batch size of 4. The maximum number of 840

new tokens generated is set to 128, and the learn- 841

ing rate is 1e-6. The training is conducted over a 842

maximum of 20,000 episodes. We employ score 843

scaling and score normalization and clip the scores 844

between -3 and 3. All other settings follow the im- 845

plementation in the TRL library. The model used 846

for testing is the checkpoint that achieves the high- 847

est reward on the validation set. The generation 848

config includes top_p = 0.8, temperature = 0.5, 849

length_penalty = 1.3, repetition_penalty = 850

1.2, do_sample = True 851

B Discussions for Policy Loss Ratio 852

Figure 4 reveals that incorporating even a mere 0.1x 853

of policy loss can significantly impact the results. 854

Using reward loss alone leads to slow training; to 855

achieve the same loss value, the model with policy 856

loss requires only a fraction of the time. However, 857

this rapid training characteristic also accelerates 858

overfitting, necessitating the use of early stopping 859

strategies to halt training in time. When the policy 860

loss ratio is negative, model performance deterio- 861

rates, and the variations in various metrics resemble 862

those of the baseline. This indicates a correlation 863

between the policy model and the reward model. 864

C Loss Functions 865

C.1 Deriving the Reward Loss Functions 866

In practice, there is no access to the ground truth 867

reward of a response, so it is not applicable to solve 868

the reward regression problem by directly optimiz- 869

ing the discrepancy between every predicted reward 870

and the true reward. The Bradley-Terry model 871

is introduced here to construct a solvable classi- 872

fication problem with one additional assumption 873

– if one response is better than the other, then it 874

wins with the probability of 100%. For a query 875
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setup value setup value setup value
lora rank 64 optimizer AdamW precision bf16
lora alpha 16 adam_beta1 0.9 max gradient norm 1.0

training steps 3200 adam_beta2 0.999 max sequence length 512
evaluation steps 0.025 weight_decay 0.0 global random seed 0

batch size 16 adam_epsilon 1e-5 framework PyTorch

Table 6: Default setup
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Figure 4: Results for different policy ratios. “margin” is the average difference between a better and worse response’s
rewards. A policy ratio of 0 equals to Baseline method.

x, a preferred response y and a dispreferred re-876

sponse y′, the predicted winning probability is877

P(y ≻ y′) = σ(r(x, y)−r(x, y′)), and the ground878

truth P∗(y ≻ y′) = σ(r∗(x, y) − r∗(x, y′)) = 1,879

so the standard reward loss is essentially a cross-880

entropy loss of the predicted winning probability.881

L =− P∗(y ≻ y′) log P(y ≻ y′)

− P∗(y′ ≻ y) log P(y′ ≻ y)

=− log σ(r(x, y)− r(x, y′))

882

The optimal model F∗ and ϕ∗ are secretly hidden883

in the coefficient “1”.884

C.2 DPO as the Policy Loss885

The derivation for policy loss is the same as re-886

ward loss in their essence. The policy model can887

be treated as a reward model with sequence proba- 888

bilities reflecting the rewards (Rafailov et al., 2023, 889

2024). reward(x, y) = π(x, y)/πref (x, y). With 890

the Bradley-Terry model and the assumption of 891

P(y ≻ y′) = 1, DPO is also a legal loss function. 892

From this perspective, the DPO loss and reward 893

loss share the same assumption of P (y ≻ y′) = 1. 894

The reward model and the DPO-trained policy 895

model are essentially doing the same task despite 896

some formal differences (Rafailov et al., 2023, 897

2024). This may provide insight into why DPO 898

is the most suitable among all policy losses. 899
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D Mathematical Derivations900

D.1 Inequality Scaling901

min
F,ϕ,K

E
d∼P

[D1(F ◦ ϕ(d),F∗ ◦ ϕ∗(d))902

+α·D2(K ◦ ϕ(d),K∗ ◦ ϕ∗(d))]903

⩽ min
F=Fs
ϕ=ϕs

K

E
d∼P

[D1(F ◦ ϕ(d),F∗ ◦ ϕ∗(d))904

+α·L2(K ◦ ϕ(d),K∗ ◦ ϕ∗(d))]905

= min
K

E
d∼P

[α ·D2(K ◦ ϕs(d),K
∗ ◦ ϕ∗(d))]906

+ E
d∼P

[D1(Fs ◦ ϕs(d),F
∗ ◦ ϕ∗(d))]907

With the definition of ϕH ,KH ,FH , we have:908

E
d∼P

[D1(FH ◦ ϕH(d),F
∗ ◦ ϕ∗(d))909

+ α ·D2(KH ◦ ϕH(d),K
∗ ◦ ϕ∗(d))]910

⩽ E
d∼P

[D1(Fs ◦ ϕs(d),F
∗ ◦ ϕ∗(d))]911

+min
K

E
d∼P

[α ·D2(K ◦ ϕs(d),K
∗ ◦ ϕ∗(d))]912

⩽ E
d∼P

[D1(FH ◦ ϕH(d),F
∗ ◦ ϕ∗(d))]913

+min
K

E
d∼P

[α ·D2(K ◦ ϕs(d),K
∗ ◦ ϕ∗(d))]914

In practical settings, “⩽”s do not hold at the same915

time (simultaneously optimizing two objectives is916

preferable to optimizing them sequentially). With917

the premise that the model is fully optimized with918

the hybrid alignment loss for any α ∈ (0.1, 2),919

which means both of the objectives have an impact920

on the final optimization result, namely ϕH ̸= ϕs,921

there exists a little gap ϵ > 0 such that922

E
d∼P

[D1(FH ◦ ϕH(d),F
∗ ◦ ϕ∗(d))923

+ α ·D2(KH ◦ ϕH(d),K
∗ ◦ ϕ∗(d))]924

⩽ E
d∼P

[D1(FH ◦ ϕH(d),F
∗ ◦ ϕ∗(d))]925

+min
K

E
d∼P

[α ·D2(K ◦ ϕs(d),K
∗ ◦ ϕ∗(d))]− ϵ926

Then, there goes927

E
d∼P

[D2(KH ◦ ϕH(d),K
∗ ◦ ϕ∗(d))]

⩽ min
K

E
d∼P

[D2(K ◦ ϕs(d),K
∗ ◦ ϕ∗(d))]− ϵ

α

928

Here we get Prop. 1.929

D.2 Derive the Final Inequality with the 3930

Properties931

Convergence:932

Since the trained model K◦ϕ is close to K∗ ◦ϕ∗, 933

we can therefore linearize D2 with a certain positive 934

number k: 935

E
d∼P

[D2(K ◦ ϕ(d),K∗ ◦ ϕ∗(d))]

= E
d∼P

k|K ◦ ϕ(d)−K∗ ◦ ϕ∗(d)|
(7) 936

937

Separating little disturbance: 938

E
d∼P

|N ◦ ϕ(d)| < δ (8) 939

holds for any fully-optimized model K ◦ ϕ with 940

N := K−K∗. Given that the trained model and its 941

preferences closely approximate those of the true 942

model and preferences, we are able to scale down 943

the error terms by a small margin. 944

Gradient scaling: 945

Intuitively, the optimal model is unique, so 946

E
d∼P

|K∗ ◦ ϕ(d) − K∗ ◦ ϕ∗(d)| > 0. Here we 947

make a slightly stronger assumption that K∗ is lo- 948

cally gmax-Lipschitz continuous and has the lower 949

bound gmin, which means for any ϕ that is close to 950

ϕ∗, there exists 951

gmin E
d∼P

||ϕ(d)− ϕ∗(d)||

< E
d∼P

|K∗ ◦ ϕ(d)−K∗ ◦ ϕ∗(d)|

<gmax E
d∼P

||ϕ(d)− ϕ∗(d)||

(9) 952

Based on these three properties, we can derive 953

the result from Prop. 1. 954

Prop. 1 955

Eq. 7
=⇒ E

d∼P
|KH ◦ ϕH(d)−K∗ ◦ ϕ∗(d)| 956

⩽ min
K

E
d∼P

|K ◦ ϕs(d)−K∗ ◦ ϕ∗(d)| − ϵ

α · k
957

Ineq. 8
=⇒ E

d∼P
|K∗ ◦ ϕH(d)−K∗ ◦ ϕ∗(d)| − δ 958

< E
d∼P

|K∗ ◦ ϕs(d)−K∗ ◦ ϕ∗(d)|+ δ − ϵ

α · k
959

Ineq. 9
=⇒ 960

gmin E
d∼P

[||ϕH(d)− ϕ∗(d)|| − ||ϕs(d)− ϕ∗(d)||] 961

< (gmax − gmin) E
d∼P

||ϕs(d)− ϕ∗(d)|| 962

+ 2δ − ϵ

α · k
963

which is Proposition 2. 964
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E GPT Judgement965

Comparing two responses The prompt we used966

for judgement is listed in Table 8. The sen-967

tence between “<SYSTEM PROMPT>” is the sys-968

tem prompt, and the others are the user prompt.969

“{question}”, “{response 1}”, “{response 2}” will970

be replaced with the actual query or responses re-971

spectively. As GPT does not exhibit a strong “po-972

sitional bias” (Wang et al., 2023), so we just ran-973

domly interchange the order of the two responses974

rather than prompting twice with the responses975

swapped.976

Ranking responses Table 7 shows the consump-977

tion approximation for getting top-1, top-2 re-978

sponses and the complete order out of 4/8 re-979

sponses. We consider that performing a single sort-980

ing operation on eight responses with the model981

may result in a loss of precision. Besides, while982

binary comparisons exhibit high accuracy, repeated983

binary comparisons inevitably lead to cumulative984

errors and erroneous outcomes. Therefore, whether985

from a cost or accuracy standpoint, it is not a fa-986

vorable option. In practice, we obtain the top 2987

responses by ranking 4 responses with GPT-3.5-988

turbo at once. For 8 candidate responses, we first989

evenly divide them into two groups and use GPT990

to rank the responses of each group, then we rank991

the two sets of the top 2 responses to get the top 2992

responses among 8 candidates.

Rank for Top-2

Rank for Top-2
Rank for Top-2

Figure 5: Three times of interactions with GPT to get
top-2 responses

993
The prompt for ranking four responses is shown994

in Table 9. GPT’s answer will be parsed in JSON995

format.996

997

998
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Top-1 Top-2 Complete sort
# responses 4 8 4 8 4 8

binary comparison 6 3×2 14 7×2 8 4×2 20 10×2 10 5×2 32 16×2

rank 4 responses 4 1×4 12 3×4 4 1×4 12 3×4 4 1×4 20 5×4

rank 8 responses 4 1×4 8 1×8 4 1×4 8 1×8 4 1×4 8 1×8

Table 7: Approximation for resources consumption. The first column is three different ways of interacting with
GPT. The first row is the target response(s) and the second row is the number of candidate responses. “a× b” means
we should engage with GPT-3.5 a total of a times, with each interaction requiring an input of b responses. For
example, “6 3×2” means when using binary comparison, to get the top-1 response among 4 candidate responses, we
need 3 turns of interactions with each turn requiring an input of 2 responses, hence our expenditure amounts to
approximately 6 units

Prompt for comparing two responses.

<SYSTEM PROMPT>You are a helpful instruction-following assistant that prints the best model by
selecting the best outputs for a given instruction.<SYSTEM PROMPT>
Select the output (a) or (b) that best matches the given instruction. Choose your preferred output, which
can be subjective. Your answer should ONLY contain: Output (a) or Output (b).
Here’s an example:

# Example:
## Instruction:
Give a description of the following job: "ophthalmologist"

## Output (a):
An ophthalmologist is a medical doctor who pokes and prods at your eyes while asking you to read letters
from a chart.

## Output (b):
An ophthalmologist is a medical doctor who specializes in the diagnosis and treatment of eye diseases and
conditions.

## Which is best, Output (a) or Output (b)?
Output (b)

Here the answer is Output (b) because it provides a comprehensive and accurate description of the job of
an ophthalmologist. In contrast, output (a) is more of a joke.

# Task:
Now is the real task, do not explain your answer, just say Output (a) or Output (b).

## Instruction:
{question}

## Output (a):
{response 1}

## Output (b):
{response 2}

## Which is best, Output (a) or Output (b)?

Table 8: We use 1-shot for response comparison.
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Prompt for ranking four responses.

<SYSTEM PROMPT>You are a helpful assistant, that ranks models by the quality of their an-
swers<SYSTEM PROMPT>
I want you to create a leaderboard of different models. To do so, I will give you the instructions (prompts)
given to the models, and the responses of four models. Please rank the models based on which responses
would be preferred by humans. All inputs and outputs should be python dictionaries.

Here is the prompt:
{

"instruction": {question},
}

Here are the outputs of the models:
[

{
"model": "model_1",
"answer": {output_1}

},
{

"model": "model_2",
"answer": {output_2}

},
{

"model": "model_3",
"answer": {output_3}

},
{

"model": "model_4",
"answer": {output_4}

}
]

Now please rank the models by the quality of their answers, so that the model with rank 1 has the best
output. Then return a list of the model names and ranks, i.e., produce the following output:
[

{"model": "model_1", "rank": <model-rank>},
{"model": "model_2", "rank": <model-rank>},
{"model": "model_3", "rank": <model-rank>},
{"model": "model_4", "rank": <model-rank>}

]

Your response must be a valid Python dictionary and should contain nothing else because we will directly
execute it in Python. Please provide the ranking that the majority of humans would give.

Table 9: We rank four responses in order of quality in a single interaction.

AHP BS CA Helpful Harmless
Top-1 Top-2 Top-1 Top-2 Top-1 Top-2 Top-1 Top-2 Top-1 Top-2

Phi-2HAF 28.68 52.51 32.69 53.35 37.52 66.21 45.44 74.26 24.52 45.15
Phi-2baseline 15.46 34.64 29.28 49.72 27.83 51.68 43.62 73.92 17.22 37.29

MistralHAF 17.42 31.22 9.94 17.70 16.00 28.81 13.68 27.57 9.50 21.07
Mistralbaseline 10.97 23.87 7.45 17.08 17.99 32.78 12.68 26.36 8.68 17.36

Table 10: Top-k recall for best-of-N sampling on each dataset. The results are presented as the percentage of the
chosen responses included in top-k responses.
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