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Abstract

This study examines the optimization of day-ahead hybrid electricity markets. The1
shift from centralized systems to public-private models introduces many challenges, in-2
cluding the introduction of independent market players and renewable energy sources3
(RESs). A formal model of market participants’ behavior is developed, and a multi-4
agent reinforcement learning (MARL) framework is proposed to optimize system oper-5
ator strategies, incorporating dynamic pricing and dispatch scheduling to reduce opera-6
tional costs, ensure stability, and align market incentives. A new and adaptable simula-7
tion environment, compatible with state-of-the-art methods, is presented. Evaluations in8
increasingly complex settings demonstrate the efficacy of our framework in managing9
the complexities of modern electricity markets.10

1 Introduction11

This work addresses the day-ahead optimization of an electricity market1 undergoing significant12
structural transformation. Historically centralized and government-controlled, the increasing inte-13
gration of renewable energy sources (RESs) and the advancements in data collection technologies14
are transitioning the market into a complex public-private hybrid model. This presents substantial15
challenges and the need to deal with a highly uncertain operational and regulatory environment Zhu16
et al. (2023).17

To demonstrate some of the challenges involved in managing current energy systems, consider a18
day-ahead market in which the independent system operator (ISO) aims to optimize electricity19
generation based on forecasted demand, generation costs, and grid constraints. The resulting deci-20
sions, made 24 hours in advance, specify the amount of electricity to be produced, the prices, and21
the allocation of reserve capacity, i.e., the ability to generate additional power at short notice, often22
at high environmental costs, in the event of generation failures or unexpected demand surges.23

Adapting the day-ahead market to today’s energy systems requires accounting for the variabil-24
ity and limited controllability of increasingly heterogeneous grid-edge agents, denoted hereon as25
GEAgents, particularly those with local generation and storage capabilities. For example, a house-26
hold with a photovoltaic (PV) unit and a battery can autonomously optimize its energy storage pol-27
icy, learning when to store energy, when to consume it, and when to trade with the grid to maximize28
economic benefits. While such behavior may improve individual utility, it introduces significant29
uncertainty into aggregate demand forecasts and can destabilize the system, especially under sud-30
den shifts in consumption or generation patterns. At the same time, these distributed resources can31
enhance efficiency and resilience by shaving peaks, supplying energy, and reducing the amount of32
centrally dispatched generation required.33

1For anonymity reasons, the specific market under consideration is not disclosed.
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Figure 1: The day-ahead control cycle that repeats every 30-minutes: (1) ISO receives realized de-
mand for the current time step. (2) ISO posts real-time buy/sell tariffs and issues dispatch directives
to the controlled generators (3) GEAgents buy/sell power (4) If needed, peaker reserves are dis-
patched or curtailment is performed (5) Balanced power flows to consumers.

To address these challenges, the ISO adjusts electricity production plan, or dispatch, and feed-in34
and sell prices to influence independent market participants and align their behavior with grid oper-35
ational objectives. Additionally, it retains access to reserves and peaking power plants, which can be36
activated to address unmet demand, ensuring both system stability and operational efficiency. The37
problem the ISO faces is thus one of cost optimization while satisfying the demand in the presence38
of strategic market players that aim to maximize their own profits. The scale and complexity of39
the problem make data-driven approaches, such as reinforcement learning (RL), especially suitable40
Perera & Kamalaruban (2021).41

We make three key contributions. First, we build a multi-agent reinforcement learning (MARL)42
model that captures the incentives and rational decision-making of independent market participants.43
Leveraging these models, we then study the ISO’s optimization problem under various assump-44
tions, revealing how each setting shapes optimal dispatch and pricing policies. Finally, we offer a45
configurable, open-source grid simulator that supports diverse topologies and uncertainty patterns.46
Experiments across increasingly complex settings demonstrate that RL-driven agents can jointly op-47
timise participant and ISO strategies, highlighting the promise of MARL for modern energy-market48
design.49

2 Background and Related Work50

Reinforcement Learning (RL) is a learning paradigm where an agent learns optimal behavior by51
interacting with an environment and receiving rewards or penalties for its actions Sutton & Barto52
(2018). Multi-agent reinforcement learning (MARL) extends RL to scenarios involving multiple53
autonomous agents that concurrently learn and make decisions within a shared or partially shared54
environment Albrecht et al. (2024). Each agent aims to maximize its own utility (typically measured55
as accumulated reward), but its actions can influence both its own outcomes and the outcomes of56
other agents, leading to complex emergent behaviors and the need for coordination and cooperation57
(see Appendix A for more detail).58

The most common MARL model is the stochastic game (SG) (also known as emMarkov game59
or multi-agent MDP) Shapley (1953) defined as a tuple ⟨S,A = {Ai}ni=1, T ,R = {Ri}ni=1, γ⟩,60
where S is the state space, A is the joint action space with Ai as the ith agent action space s.t.61
a ≜ (a1, a2, . . . , an) for a ∈ A, T : S × A × S → [0, 1] is the transition probability function62
T (s′, a, s) such that ∀s ∈ S,∀a ∈ A :

∑
s′∈S T (s, a, s′) = 1, R is the joint reward function with63

Ri : S×A×S → R as the ith agent reward function, and γ ∈ [0, 1) is the discount factor. A solution64
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is a joint policy π ≜ (π1, . . . , πn) associating each agent with policy πi : S × Ai → [0, 1] that65
specifies the probability of agent i taking an action at a given state. The joint policy should achieve66
certain conditions on the expected returns yielded to agents (e.g., Nash equilibrium) Albrecht et al.67
(2024). The value (utility) function V π

i (s) denotes the expected cumulative discounted reward agent68
i receives when starting in state s and the agents follow joint policy π thereafter. The action-value69
function or Q-value Qπ

i (s, a) extends this notion by quantifying the expected value when performing70
a in s, and then continuing according to π. This general definition captures a variety of interactions71
and relationships that can exist between agents in collaborative, competitive, and mixed-incentive72
MARL settings.73

MARL is particularly suitable for modeling energy systems and networks, since they are inherently74
multi-agent environments composed of diverse, distributed, and strategically autonomous entities,75
such as grid-edge components, utility companies, system operators, and market participants Zhu76
et al. (2023). These entities have different objectives, interact over shared physical and economic77
infrastructures, and must respond dynamically to system conditions, prices, and regulations. MARL78
provides a natural framework to model these interactions, enabling agents to learn adaptive poli-79
cies, coordinate under uncertainty, and reason about both cooperative and competitive dynamics.80
Moreover, its ability to simulate emergent behavior and explore decentralized strategies makes it a81
powerful tool for both designing and analyzing modern energy systems.82

Applications of RL and MARL in energy markets often assume a single, all-knowing controller op-83
timizing the entire system. In such formulations, a central agent (analogous to an ISO) directly con-84
trols all generation and storage decisions using global information and perfect foresight, an assump-85
tion that is unattainable in practice. These centralized optimization models can yield system-level86
insights but cannot capture the strategic, profit-driven behavior of individual market participants87
Harder et al. (2023); Perera & Kamalaruban (2021). Moreover, as modern grids grow more het-88
erogeneous and stochastic with high renewable penetration, a monolithic control scheme becomes89
impractical Wolgast & Nieße (2023). Recent studies emphasize that managing numerous distributed90
resources under uncertainty requires moving beyond one-size-fits-all control toward more decentral-91
ized decision-making structures Michailidis et al. (2025); Ahlqvist et al. (2022).92

On the other end of the spectrum, many RL-based models use a fully decentralized approach in93
which each market participant (e.g. a storage unit owner or consumer) acts independently. In these94
formulations, multiple RL agents learn their own policies (for bidding, charging, discharging, etc.)95
based on price signals or local observations, without a central coordinator explicitly optimizing the96
whole systemWerner & Kumar (2023). This bottom-up approach reflects competitive markets by97
giving each market player its own profit-maximizing RL agentGuan et al. (2015); Vázquez-Canteli98
& Nagy (2019); Qiu et al. (2015). However, purely decentralized models typically assume the99
market rules or prices are exogenous or fixed Zhu et al. (2023); Ginzburg-Ganz et al. (2024); Perera100
& Kamalaruban (2021). In our model, the ISO acts as an active participant and directly shapes the101
market dynamics. Related efforts on dynamic dispatch and end-to-end RL in energy systems include102
Yang et al. (2021); Zhang et al. (2019), and comprehensive overviews of RL for power systems can103
be found in Ginzburg-Ganz et al. (2024).104

From an algorithmic view the hard part is the two-way game: a learning ISO adjusts dispatch and105
the price pair ξt, ϕt each step, while strategic agents respond to maximise profit. Most work either106
treats the grid as one central optimiser or fixes ISO actions and lets agents learn in isolation; full107
bidirectional learning is rare Harder et al. (2023); Navon et al. (2024). Our framework closes that108
gap by explicitly modelling the feedback loop between an adaptive coordinator and autonomous109
market players, exactly the setting modern hybrid power markets require.110

3 Energy Market Dynamics111

Historically, the energy market comprised three principal components: power producers (e.g., power112
plants), power consumers (industrial and residential), and the ISO, responsible for market manage-113
ment and coordination. The producers typically used conventional coal-based generation and were114
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either units under the full control of the ISO, or independent units that participated in the market but115
were regulated and bound by production agreements made for different temporal horizons.116

In a typical day-ahead market, as depicted in Figure 1, the ISO predicts the following day’s power117
demand (electricity consumption) and issues a dispatch, a production schedule, while considering118
operational constraints and generation costs. In addition to the generation of the predicted, or nom-119
inal demand, the ISO also manages the reserve, which sets a backup production capability for each120
time step. In real-time, the ISO is tasked with continuously maintaining a balance between demand121
and supply. If there is a surplus, energy is discharged, or curtailed. If production determined by122
the dispatch is not enough to cover the realized demand, reserves, which are more flexible but also123
more expensive and polluting, are deployed. Producers are then compensated based on the System124
Marginal Price (SMP) mechanism, calculated as the marginal cost of producing the final unit of125
energy required to satisfy system demand, based on the least-cost dispatch solution. In this work,126
we abstract the dispatch details and consider only the total amount and cost of power produced127
at each timestamp (see Appendix B and C for details on market dynamics and SMP computation,128
respectively).129

Independent grid-edge GEAgents,private utilities and smart homes, now operate a single Produc-130
tion–Consumption–Storage unit (PCS-unit) that can generate (e.g. PV), consume, and store en-131
ergy. Because they ignore dispatch orders and freely trade to maximise profit, the grid operator132
(ISO) can only shape their behaviour through prices. Its levers are the dispatch schedule ∆t and the133
sell / feed-in tariffs ξt and ϕt set each interval t, chosen to balance supply and demand at minimum134
total cost. The sections that follow analyse this joint dispatch–pricing problem under progressively135
richer market assumptions.136

In the deterministic setting, fully formulated in Appendix B , the ISO receives at the beginning of137
each episode the nominal production and reserve capabilities and costs for market participants, as138
well as the demand for all time steps in the horizon T . Based on this information and the operational139
constraints, it determines the scheduled ∆t and prices ξt(·), ϕt(·) for all timestamps t ∈ [T ] to140
minimize total costs. Formally,141

minC total = min

[
Cdispatch +

T∑
t=1

Conline
t

]
(Deterministic ISO Objective)

where Cdispatch is the total dispatch cost for the complete episode, and Conline
t is the online cost142

(including reserve cost) for time t.143

Since all information is given in advance, the GEAgent can also compute its policy at the beginning144
of each episode and decide how much power to buy from (P b

t ), and sell to (P s
t ) the grid at every145

timestamp t to maximize its total revenue under its operational constraints. Formally:146

max

T∑
t=1

(
ϕt P

s
t − ξt P

b
t

)
(Deterministic GEAgent Objective)

In a stochastic extension of this setting, we account for the inability to exactly predict demand147
and production. In this case, it may be possible to estimate these distributions from historical data148
and observations using machine learning methods to improve decision-making under these forms149
of uncertainty. In this setting, fully formulated in Appendix B, the min and max objectives of the150
ISO and GEAgents are replaced by an expectation-based optimization.151

Accounting for Strategic Demand: In modern energy systems, demand is not only stochastic152
but also strategic since GEAgents can intelligently manage the operation of devices and energy153
resources, in response to system-level signals. This demand (load) flexibility is reshaping energy154
markets by introducing new ways to contribute to their efficient and stable operation Charbonnier155
et al. (2022); Zhu et al. (2023). However, this shift also introduces challenges such as increased156
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system complexity, uncertainty in demand forecasting, and the need for regulatory mechanisms to157
ensure fair and reliable participation.158

In this extended setting, the ISO needs to determine the selling price ξt and feed-in prices ϕt for each159
t according to the demand Dt at time t while accounting for the GEAgents ability to sell, buy, and160
store power. From the perspective of the GEAgent, the price signals ξt(P s

t , P
b
t , . . .) are exogenous161

signals set by the ISO , but they depend on the GEAgents’ sales P s
t and purchases P b

t and other162
variables. This coupling results in a feedback mechanism where the player’s actions influence the163
prices, and the prices, in turn affect the player’s actions. This introduces a game-theoretic dimension164
where the GEAgents’ decisions are influenced by the ISO ’s pricing strategy and vice versa.165

Formally, the GEAgent’s input includes all the parameters that were relevant for the deterministic166
and stochastic settings, including the expected demand lt and production gt at time t. A key differ-167
ence is that the selling price ξt and feed-in prices ϕt can be set either in advance or, depending on168
regulation, dynamically, in response to the market state. The objective of the GEAgent is now:169

max
P b

t ,P
s
t

Elt,gt

[
T∑

t=1

(
ϕt(P

s
t , P

b
t , . . .)− ξt(P

s
t , P

b
t , . . .)

)]
(Strategic Player Objective)

From the perspective of the ISO, as in the stochastic settings, it receives at the beginning of each170
episode (day) all the information about the GEAgents and the controlled producers and needs to171
determine the scheduled amount of production ∆t for each timestamp. However, it is crucial to172
distinguish between two components of the demand. The nominal demand refers to the exoge-173
nous, inelastic portion of load that remains unaffected by local control strategies, real-time market174
incentives, or variations in renewable generation. In contrast flexible demand, refers to the portion175
of demand that can be adjusted in time, quantity, or pattern in response to external signals, such as176
price changes, grid conditions, or availability of renewable energy.177

Since the ISO cannot loyally model the demand without considering the strategic nature of the178
GEAgents, optimization methods that are appropriate for deterministic and stochastic settings won’t179
work here. Thus, as we specify in the next section, we model the market participants as RL agents.180

4 The Energy-Net Simulator181

In spite of a variety of simulators that currently exist Pigott et al. (2022); Moriyama (2018); Vázquez-182
Canteli et al. (2019); Marot (2021), there is no current framework that allows modeling the complex183
structure we want to account for and that is designed to work with off-the-shelf RLand MARL meth-184
ods. We therefore develop a novel simulator, Energy-Net, that we will use to examine our pro-185
posed solutions. Energy-Net is a modular, discrete–time simulator of a hybrid electricity market.186
The environment we develop is flexible and adaptable, and can be used to accommodate differ-187
ent system configurations. At the core of the design of the software is a decoupling between the188
physical dynamics of the electrical system and the strategic agents, i.e., it is built around a strict189
physics–agent split. A high-fidelity physical core advances loads, renewables, batteries, and re-190
serves, while the ISO and GEAgents interact only through a Gym-style step() interface. This191
design (i) lets us plug in any off-the-shelf RL algorithms without touching the power-system code,192
(ii) isolates market rules in a single controller module, and (iii) ensures that learned policies can193
affect the grid only via explicit levers, prices and dispatch tweaks, thus preserving physical realism194
while streamlining experimentation.195

Building on the formal setting introduced in Appendix G, Energy-Net instantiates the 24-hour196
day-ahead electricity market. A single simulation episode therefore comprises T uniform intervals197
of length ∆t (in our experiments T=48 and ∆t = 30mins ), together covering one 24-hour oper-198
ational horizon. At each step t ∈ {1, . . . , T} the environment reveals the current forecast and grid199
state to the agents, applies their actions, propagates the physical dynamics, and returns next-state200
observations and rewards through the standard Gym step interface. See Appendix H for the full201
details.202
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5 Solution Approaches203

The MARL formulation described in Appendix G provides an abstraction that captures the strate-204
gic, price-driven interactions that typify modern hybrid power systems. In this section, we present205
solution approaches that can be adopted by the market participants. Importantly, while our main206
challenge is in computing optimal market management approaches for the ISO, we must equip the207
GEAgents with the strongest policies to guarantee the ISO can predict their response to different208
price signals.209

In principle, the deterministic and stochastic formulations described in Section 3 can be solved210
using state-space and dynamic programming methods, respectively (see Appendix D for an example211
formulation). Even if distributions are not fully known, it may be possible to learn them from data.212
Nevertheless, such methods are not appropriate to our problem, which is inherently challenging213
due to the agents’ ability to strategically adapt their behavior and due to the dual-action learning214
structure, which operates across different time frames.215

A specific challenge is that pricing may be dynamic and set at every time step, while the ∆t action216
for each time step t is decided at the beginning of each episode. This temporal disparity adds a layer217
of complexity, as the reward for a ∆ action is reflected only at the end of the episode. Moreover,218
determining ∆ is a demanding task because it involves generating a time series output that must219
account for dynamic market conditions, which are influenced by behaviors of market participants.220
A further complication arises from the interdependence of these actions. Dispatch decisions are221
influenced by the market agents’ responses to price signals, while optimal pricing strategies depend222
on real-time Dt and ∆t outcomes.223

Because the game is sequential (ISO first, GEAgent second) and highly non-linear, we iteratively224
train each of the policies with deep RL for continuous control in an online regime. If the agents’225
policies converge, it is toward a practical equilibrium in function-approximation space rather than226
a formal Nash point. in Section 6, we empirically examine this using our simulated environment227
described in the next section.228

There are several abstractions that we can use to facilitate computation. One option is to make229
the problem easier is by abstracting away the dispatch optimization, which we denote as dispatch230
abstraction. In this simplified model the ISO has only control over the prices, and we assume that231
the ISO production ∆t is fixed to be equal to the predicted demand D̂t.232

Quadratic Pricing: We employ two pricing regimes, online dynamic and day-ahead tariffs. In233
settings restricted to day-ahead pricing, quadratic pricing allows the ISO to influence consumption234
and injection patterns through price curvature. Following Papadaskalopoulos & Strbac (2015), we235
impose a superlinear surcharge on purchases and a sublinear bonus on feed-in:236

ξt = α0 + α1 P
b
t + α2 [P

b
t ]

2, ϕt = β0 + β1 P
s
t + β2

√
P s
t ,

where the six coefficients (α0, α1, α2, β0, β1, β2) are fixed at the episode’s outset for the subsequent237
T time steps. The superlinear term steepens the marginal purchase price, thereby discouraging238
demand spikes and reducing reliance on peaker reserves, while the sublinear feed-in adjustment239
tempers incentives for excessive injections, promoting smoother system operation (see Appendix E240
for full details and detailed examples).241

6 Empirical Evaluation242

The objective of our empirical evaluation is to assess the benefit of using our MARL formulation243
to optimize the policy of the ISO. For this, we use our Energy-Net environment to model and244
simulate the day-ahead electricity market2.245

2To respect the blind review process, our code base and complete results are in the supplementary material. All will be
made public after acceptance.
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Setup We evaluate our formulation from Appendix G and pricing schemes from Section 5 under a246
variety of scenarios. As discussed in Section 4, Energy-Net cleanly separates physical dynamics247
from agent logic. This allows us to stage the empirical study in three escalating phases of coordi-248
nation for the ISO and GEAgents. First, in ISO-Dispatch, we trained and evaluated the ISO in249
isolation; all GEAgents were disabled, so the operator optimised its dispatch ∆t under a stochastic250
yet non-strategic demand profile. Next, we enabled a PCS-unit3 with a fixed, pre-defined charging251
trajectory and retrained the ISO, thereby quantifying the benefit of price coordination when stor-252
age is present but non-adaptive. We examined this setting with two pricing mechanisms: online253
linear, denoted ISO-L, and quadratic, denoted ISO-Q. We then allowed both agents to learn con-254
currently: the ISO tunes its real-time dispatch and tariffs, while the PCS-unit adapts its behavior to255
these market signals. In settings Joint-Storage-L and Joint-Storage-Q we examined the256
online and linear pricing, respectively, for a storage-only GEAgent, while in Joint-PCS-L and257
Joint-PCS-Q, we added production and consumption capabilities (see Appendix I for the full de-258
tails of the setup). For each episode, we sample the realized demand from a Gaussian noise induced259
predicted demand for each time step t, and, when relevant, the realized load and production for the260
PCS-units. (see Table 3 in the appendix for a full description). We ran each training phase for 40261
iterations with 4800 time steps each (1000 days) and was evaluated for 20 times. All settings were262
run using the same demand pattern and performance parameters described in Appendix I with Allo-263
cated resources of : 10 cores of Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10 GHz and 1 × NVIDIA264
GeForce GPU (12 GB). .265

Results Due to space constraints, we present our full results in Appendix J and show here only266
our key findings. Our focus is on optimizing the ISO and measuring its ability to avoid failure and267
minimize cost, thus preferring to exploit renewable energy generated by the GEAgents and avoiding268
usage of reserves as much as possible. We therefore present in Table 4 the average energy usage269
achieved for all multi-agent settings compared to baseline ISO-Dispatch. To fully appreciate the270
effect of each agent setup, we present a breakdown of the total energy in MWh into three compo-271
nents: dispatch, reserve, and exchange (variance values in parentheses).272

Results show that for settings ISO-L and ISO-Q, in which the GEAgent is fixed, the ISO manages273
to learn to exploit the power generated by the GEAgents instead of the reserves. In contrast, in274
Joint-Storage-L and Joint-Storage-Q, with a storage-only GEAgent the PCS-unit en-275
ergy does not contribute to the overall efficiency. Instead, it increases the amount the ISO produces276
via dispatch to maintain stability. In Appendix J we show how this effect can be mitigated with277
different cost coefficients. Finally, for the complete setup of Joint-PCS-L and Joint-PCS-Q,278
where the GEAgents have consumption and production capabilities, we see a minimization of the279
reserve with quadratic pricing. To further demonstrate GEAgents contribution, Figure 7 depicts an280
episode from the Joint-PCS-L and Joint-PCS-Q settings. The difference between the dashed281
black line and the blue line (realized demand) represents the gap between the nominal predicted de-282
mand and the realized demand. The dispatch is represented by the light blue bars, while the total283
demand, including the flexible load of the GEAgents is depicted by the red line (total demand). As284
demonstrated in the figure, the reserve activation happens when the red line is above the dispatch285
bars, which is to be avoided. Overall, our experiments show that while fixed-generation players286
(ISO-Land ISO-Q) enable the ISO to substitute market output for reserves and storage-only play-287
ers (Joint-Storage-Land Joint-Storage-Q) can unintentionally boost dispatch, it is only288
the combined consumption–production scenario (Joint-PCS-L) under a quadratic day-ahead tar-289
iff that suppresses reserve activation and maximizes system efficiency.290

7 Conclusion291

We demonstrate the benefit of modeling modern power systems MARL in which physical grid con-292
straints, market signals, and heterogeneous agent behaviors interact in tightly coupled feedback293

3Additional units can be added using the same interface; for clarity, we use one aggregated unit.
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Table 1: Episode–total energy in MWh breakdown across scenarios.

Scenario Dispatch Reserve Exchange

ISO-Dispatch 7 229.86 ± 38.29 249.41 ± 5.04 NA

ISO-L 7 282.34 ± 50.89 176.05 ± 19.07 800 ± 0
ISO-Q 7 506.98 ± 35.02 121.07 ± 3.78 800 ± 0

Joint-Storage-L 8 126.13 ± 1.07 148 ± 0.94 0 ± 0
Joint-Storage-Q 8 126.21 ± 1.01 148 ± 1.06 0 ± 0

Joint-PCS-L 7 322.44 ± 36.02 168.47 ± 4.14 442.14 ± 9.61
Joint-PCS-Q 7 450.62 ± 36.43 117 ± 2.04 324 ± 8.40

Figure 2: Episode-level dispatch and realized demand under scenario Joint-PCS-L (online linear
pricing) at the top, and scenario Joint-PCS-Q (quadratic pricing) at the bottom.

loops. We design our framework to capture both nominal and flexible demand, and enable realis-294
tic and robust evaluation of decentralized control strategies and pricing mechanisms using a new295
simulation environment we developed. Our results show that strategically coordinated ISO poli-296
cies working with price-responsive grid-edge agents can reduce reserve requirements and carbon297
intensity.298

Together with these achievements, our experiments reveal the fragility of current deep-RL policies:299
modest forecasting errors can lead to supply shortfalls or excessive generation. Addressing this brit-300
tleness remains a key research priority. Another challenge lies in scaling the approach operational301
grids. This will require hierarchical or federated MARL architectures and hardware-in-the-loop302
testing. Finally, while algorithmic coordination can reduce reserve usage and lower tariffs, distribu-303
tion benefits are unlikely to be uniform. Ensuring fairness and transparency is a challenge that will304
need to be addressed.305
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Appendix306

A RL and MARL307

A Reinforcement Learning (RL) problem can be defined as a Markov Decision Process (MDP)308
represented by the tuple ⟨S,A,P,R, γ⟩, where:309

• S is the set of states,310
• A is the set of actions,311
• P(s′ | s, a) is the transition probability from state s to s′ under action a,312
• R(s, a) is the reward function,313
• γ ∈ [0, 1] is the discount factor.314

The goal is to find a policy π : S → A that maximizes the expected cumulative reward:315

π∗ = argmax
π

Eπ

[ ∞∑
t=0

γtRt

]
,

where Rt is the reward received at time step t. It is assumed that the MDP is too large to efficiently316
compute π∗, so approximation methods are employed to estimate it. These methods often involve317
learning value functions or directly optimizing parameterized policies using sampled interactions318
with the environment.319

The problem can be modeled as a Markov Decision Process (MDP), defined by the tuple:320

⟨S,A,P,R, γ⟩

where:321

• S: The set of states, defined by S = {(t, σt) | t = 1, . . . , T, 0 ≤ σt ≤ Smax},322
• A: The set of actions, where each action is represented by the pair (P b

t , P
s
t ),323

• P(s′ | s, a): The state transition function, given by:324

P(s′ | s, a) = Pr(σt+1 | σt, P
b
t , P

s
t ),

• R(s, a): The reward function:325

R(s, a) = ϕt(P
s
t )− ξt(P

b
t ),

• γ: The discount factor, γ ∈ [0, 1], which determines the relative importance of future rewards.326

The goal is to find an optimal policy π∗ that maximizes the expected cumulative reward:327

π∗ = argmax
π

Eπ

[
T∑

t=1

γt−1R(st, at)

]
,

where:328

• st = (t, σt) is the state at time t,329
• at = (P b

t , P
s
t ) is the action at time t,330

• R(st, at) is the immediate reward obtained from taking action at in state st.331

rl and marl algorithms can be broadly categorized as model-free, which learn policies directly from332
experience without modeling the environment, and model-based, which learn or use environment333
models to plan or simulate outcomes. Model-free methods (e.g., value-based or policy gradient) tend334
to be more scalable but sample-inefficient, while model-based methods improve sample efficiency335
and enable planning but struggle with modeling complex dynamics Albrecht et al. (2024).336

Reinforcement Learning (rl) is a learning paradigm where an agent learns optimal behavior by inter-337
acting with an environment and receiving rewards or penalties for its actions Sutton & Barto (2018).338

9



Under review for RLC 2025, to be published in RLJ 2025

Multi-agent RL (marl) extends rl to scenarios involving multiple autonomous agents that concur-339
rently learn and make decisions within a shared or partially shared environment. Each agent aims to340
maximize its own utility (typically measured as accumulated reward), but its actions can influence341
both its own outcomes and the outcomes of other agents, leading to complex emergent behaviors342
and the need for coordination and cooperation.343

marl is particularly suitable for modeling energy systems and networks, since they are inherently344
multi-agent environments composed of diverse, distributed, and strategically autonomous entities,345
such as grid-edge components and prosumers, utility companies, system operators, and market par-346
ticipants. These entities have different objectives, interact over shared physical and economic in-347
frastructures, and must respond dynamically to system conditions, prices, and regulations. MARL348
provides a natural framework to model these interactions, enabling agents to learn adaptive poli-349
cies, coordinate under uncertainty, and reason about both cooperative and competitive dynamics.350
Moreover, its ability to simulate emergent behavior and explore decentralized strategies makes it a351
powerful tool for both designing and analyzing modern energy systems.352

The most common marl model is the Stochastic Game (also known as Markov Game or Multi-agent353
MDP) Shapley (1953) defined as a tuple ⟨S,A = {Ai}ni=1, T ,R = {Ri}ni=1, γ⟩, where S is the354
state space, A is the joint action space with Ai as the ith agent action space s.t. a ≜ (a1, a2, . . . , an)355
for a ∈ A, T : S × A × S → [0, 1] is the transition probability function T (s′, a, s) such that356
∀s ∈ S,∀a ∈ A :

∑
s′∈S T (s, a, s′) = 1, R is the joint reward function with Ri : S ×A×S → R357

as the ith agent reward function, and γ ∈ [0, 1) is the discount factor. A solution is a joint policy π ≜358
(π1, . . . , πn) associating each agent with policy πi : S × Ai → [0, 1] that specifies the probability359
of agent i taking an action at a given state. The joint policy should achieve certain conditions on the360
expected returns yielded to agents (e.g., Nash equilibrium) Albrecht et al. (2024). The value (utility)361
function V π

i (s) denotes the expected cumulative discounted reward agent i receives when starting in362
state s and the agents follow joint policy π thereafter. The action-value function or Q-value Qπ

i (s, a)363
extends this notion by quantifying the expected value when performing a in s, and then continuing364
according to π. A Multi-agent Partially Observed MDP (or Partially Observable Stochastic Game)365
also includes for each agent observation set Oi and a sensor function Oi : A× S ×Oi → [0, 1].366

This general definition captures a variety of interactions and relationships that can exist between367
agents in collaborative, competitive, and mixed-incentive MARL settings. Complex agent inter-368
actions may give rise to behaviors that are difficult to anticipate by simply examining each agent369
in isolation. Thus, despite the potential to solve complex problems across various domains, marl370
faces various significant challenges that stem from aspects such as scale, conflicting goals of self-371
interested agents, and the concurrent learning of the different agents Albrecht et al. (2024). All these372
are relevant to MARL in general but are particularly relevant to energy networks with the added need373
to account for the dynamics of the physical environment and the effect decisions may have on the374
functioning of the electricity network.375

RL and MARL algorithms can be broadly categorized as model-free, which learn policies directly376
from experience without modeling the environment, and model-based, which learn or use environ-377
ment models to plan or simulate outcomes. Model-free methods (e.g., value-based or policy gradi-378
ent) tend to be more scalable but sample-inefficient, while model-based methods improve sample379
efficiency and enable planning but struggle with modeling complex dynamics.380

B Energy Market Dynamics381

B.1 Energy Markets and the Dispatch Problem382

Historically, the energy market comprised three principal components: power producers (e.g., power383
plants), power consumers (industrial and residential), and the ISO, responsible for market manage-384
ment and coordination. The producers typically used conventional coal-based generation and were385
either units under the full control of the ISO, or independent units that participated in the market but386
that were fully regulated, i.e., bound by production agreements made with the .387
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A typical structure of a market was based on the day-ahead market in which the ISOpredicts the388
following day’s power demand and issues a dispatch, an offline production schedule to each producer389
while considering operational constraints and generation costs. The dispatch traditionally divides the390
24-hour planning horizon into 48 discrete half-hour time periods. In addition to the generation of the391
predicted, or nominal demand, the ISO also manages the reserve, which sets a backup production392
capability for each time step. If in real-time the controlled production determined by the dispatch is393
not enough to cover the realized demand, reserves, which are more flexible but also more expensive394
and polluting, are activated by an online controller. Producers are then compensated based on the395
System Marginal Price (SMP) mechanism, which is calculated as the marginal cost of producing the396
final unit of energy required to satisfy system demand, based on the least-cost dispatch solution (See397
Appendix C). For the purposes of this work we abstract the dispatch details, and consider only the398
total amount of power produced at each timestamp, as well as its total cost to the ISO with no regard399
to the inner structure of the dispatch.400

Recent reforms in the power market have introduced independent grid-edge market players, which401
we denote as GEAgents, including private electric companies and smart homes. These new market402
players possess the ability to produce electricity, manage internal consumption, and utilize power403
storage capabilities. Unlike traditional controlled producers, they are not legally required to adhere404
to dispatch instructions and may buy from or sell to the grid at will to maximizing their profits. We405
assume GEAgents are rational, so the natural way for the ISO to induce desired behaviors of the406
market players is via price signals. In real-time operations, the ISO manages the grid by buying407
electricity from power producers and selling it to consumers. The selling price at time t, denoted as408
ξt, and the feed-in price, denoted as ϕt, are the primary tools for market control.409

The GEAgent models are essential for the ISO’s planning, as they capture participant strategies410
and behaviors that influence the grid’s supply-demand balance. These models enable the ISO to411
design pricing mechanisms, such as sell prices and feed-in tariffs, to align player incentives with412
grid stability and efficiency. We classify market player behaviors in increasingly realistic environ-413
ments, starting with simpler cases to build intuition before progressing to more complex scenar-414
ios, as the problems share similar structures. In correspondence with current energy markets, each415
GEAgent operates a Production-Consumption-Storage (PCS) unit, which can produce (e.g., via pv),416
consume (e.g., via electrical appliances) and store (e.g., via a battery) energy. It aims at maximizing417
its profit over the period in question.418

To determine dispatch and pricing, the ISO utilizes demand predictions for the subsequent 24 hours,419
denoted D̂t, where t represents the time interval. Based on these predictions, the ISO determines420
a scheduled production dispatch ∆t for each timestamp. It also determines for each time step how421
much reserve to guarantee, specifying the standby capacity to maintain in response to unexpected422
demand surges or generation outages. Reserve energy enhances grid reliability but can be highly423
polluting when supplied by fossil-fuel generators, which operate inefficiently and emit more green-424
house gases.425

In real-time operations, the ISO manages the grid by buying electricity from power producers and426
selling it to consumers. The selling price at time t, denoted as ξt, and the feed-in price, denoted as427
ϕt, are the primary tools for market control.428

The electricity market includes n independent agents representing the GEAgents, indexed by i ∈429
{1, . . . , n}, who operate autonomously to maximize their profits. The ISO has no direct control430
over these agents, and their interactions are governed by market dynamics, which are influenced by431
various regulations. These regulations, coupled with non-economic factors, significantly shape the432
cost structure of the system. However, the ISO can compute costs based on relevant inputs and adapt433
its computational models dynamically to reflect changes in regulations or legislation.434

In this work, we suggest using RL-to model the market participants and ways for the ISO to control435
the dispatch ∆ and price signals ξ, ϕ to minimize the total costs for the ISO (thus the taxpayers)436
while satisfying the demand. A key challenge is that this needs to be done while taking market437
players’ strategic behavior into account.438
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To support optimizing the ISO’s behavior, we analyze how market players react to prices in increas-439
ingly complex settings, from deterministic to stochastic and strategic environments.440

B.2 Market Participants441

The GEAgent models are essential for the ISO’s planning, as they capture participant strategies442
and behaviors that influence the grid’s supply-demand balance. These models enable the ISO to443
design pricing mechanisms, such as sell prices and feed-in tariffs, to align player incentives with444
grid stability and efficiency. We classify market player behaviors in increasingly realistic environ-445
ments, starting with simpler cases to build intuition before progressing to more complex scenar-446
ios, as the problems share similar structures. In correspondence with current energy markets, each447
GEAgent operates a Production-Consumption-Storage (PCS) unit, which can produce (e.g., via PV),448
consume (e.g., via electrical appliances) and store (e.g., via a battery) energy. It aims at maximizing449
its profit over the period in question.450

Having settled on market players’, we proceed to present the task that the ISO faces. The ISO is451
tasked with meeting electricity demand at all times. To achieve this, the ISO controls the dispatch452
of electricity generation. While the specifics of which power plant generates how much power453
are abstracted, the total scheduled electricity production is determined for each time step, ensuring454
sufficient supply to meet anticipated demand.455

The ISO aims to maximize its utility, which may include balancing grid supply and demand, mini-456
mizing operational costs, or promoting renewable integration.457

The total cost incurred by the ISO increases marginally due to the characteristics of the SMP mech-458
anism. The SMP prioritizes electricity from the cheapest sources first, resulting in higher costs for459
additional megawatts of production as cheaper resources are exhausted. Additionally, sharp changes460
in production across time steps introduce significant costs due to ramp-up and cool-down constraints461
of power plants. These transitions strain generation units, necessitating increased operational ex-462
penses. The ISO incorporates these costs into pricing to discourage abrupt fluctuations, maintaining463
grid stability.464

To influence the behavior of market players, the ISO offers sell prices and feed-in tariffs. These465
prices act as economic signals, encouraging players to adjust their electricity consumption, produc-466
tion, and storage behaviors in alignment with grid stability and efficiency goals. By strategically467
setting these prices, the ISO aims to optimize the overall operation of the electricity market under a468
hybrid public-private model.469

This is no longer true: In what follows, we examine three dimensions of complexity: (1) the nature470
of demand, encompassing three levels—deterministic and known, stochastic, and strategic, (2) the471
decision types, including buy/sell and dispatch, and (3) the decision horizon; are decisions made472
offline (for the entire 24-hour horizon), or online (e.g., every 30 minutes). what are the decision473
horizons we consider what are the decision horizons we consider474

In what follows, we examine three levels of complexity that are associated with the nature and475
pattern of the demand (consumption): deterministic and known, stochastic, and strategic.476

B.3 Deterministic Setting477

As a first step, we consider a a fully deterministic environment, where the demand is fully known in478
advance and the prices are set in advance (at time 0 of every day).479

• Storage capacity: Smax.480

• Maximum charging rate: Cmax.481

• Maximum discharging rate: Dmax.482

• Initial storage state of charge: σ0.483
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• Selling price levels ξt set by the ISOfor each time interval and known in advance to the player.484

• Feed-in prices ϕt set by the ISOand known in advance to the player as well.485

Since all information is given in advance, the GEAgent can compute optimal policies at time-step486
0. A GEAgent must decide how much power to buy from (P b

t ), and sell to (P s
t ) the grid at every487

timestamp t to maximize its total revenue under its operational constraints. Formally:488

max

T∑
t=1

(
ϕt(P

s
t )− ξt(P

b
t )
)

(Deterministic GEAgent Objective)

Subject to:489

1. Power Balance Constraints:490
At each time t, the power bought or sold must meet the demand, including charging:491

∀t : P b
t − P s

t = lt + (σt − σt−1) (C1)

Here we assume a lossless battery.492
2. Storage Capacity Constraints:493

The storage level must remain within capacity limits:494

∀t : 0 ≤ σt ≤ Smax (C2)

3. Charging and Discharging Rate Constraints:495

∀t : −Dmax ≤ P b
t − (lt + P s

t ) ≤ Cmax (C3)

4. Non-Negativity Constraints:496

∀t : P b
t , P

s
t , σt ≥ 0 (C4)

5. No Simultaneous Charging and Discharging:497

∀t : P b
t · P s

t = 0 (C5)

distinguish here between the producers and the players distinguish between fixed parameters and498
inputs499

ISO In the deterministic case, at the start of the planning horizon (timestamp 0), the ISO receives500
the following inputs:501

• Nominal? Demand Dt for all timestamps in the horizon.502

• Reserve activation cost Creserve.503

• The number of GEAgents N participating in the market.504

• The maximum discharge rates of each market player Di
max.505

Based on this information, the ISO determines the scheduled amount of production ∆t and prices506
ξt(·), ϕt(·) for all timestamps t ∈ [T ] ahead. Then, at each timestamp t market players can respond507
to the prices by buying or selling power to the grid, contributing a net power demand P net

t . If the net508
demand after accounting for P net

t exceeds the scheduled production ∆t, the ISO activates reserves509
or peaker plants to cover the shortfall. If the market players are assumed to be rational, and the510
ISOmakes the prices public at t = 0, the market players are solving the deterministic problem as511
presented in Section B.3, and the ISO can run the simulation of the market players to optimize the512
dispatch and the price signal.513

The ISO aims to minimize its total costs,514

13



Under review for RLC 2025, to be published in RLJ 2025

minC total = min

[
Cdispatch +

T∑
t=1

Conline
t

]
(ISO objective)

where:515

• Cost of the Dispatch Schedule (Cdispatch):516

Cdispatch =

T∑
t=1

C(∆t) +

T∑
t=2

ρ(∆0, . . . ,∆t),

where ρ is a penalty function that can be tailored to various performance criteria, e.g., for penal-517
izing sharp changes in dispatch levels between consecutive periods.518

• Online Cost per Timeframe (Conline
t ): The sum of the market cost and the reserve activation cost:519

Conline
t = Cmarket

t + C reserve
t (max(0, Dt − P net

t −∆t)),

Notably, we assume that all demand must be met, a constraint that can be relaxed if needed.520

• Market Cost per Timeframe (Cmarket
t ): Payments to market players for the power they sell to521

the grid net of the revenue from selling the power to market players:522

Cmarket
t =

∑
i

ϕ
(i)
t (s

(i)
t )−

∑
i

ξ
(i)
t (b

(i)
t )

where ϕ
(i)
t is the feed-in tariff offered to player i at time t, and s

(i)
t is the amount of power sold523

by player i to the grid.524

Note that this problem is unconstrained, since we assume that when the demand is not met by525
the production and the market, the ISO operates the reserves. The incentive to meet the demand526
using nominal generation is encapsulated ? in the typically high costs associated with activating the527
reserves.528

B.4 Accounting for Stochasticity529

Real-world systems are inherently stochastic, requiring models to account for uncertainty. Key530
sources of randomness include:531

• Internal load variability,532
• Renewable production fluctuations,533
• Price changes driven by external demand uncertainty.534

All these may lead to an inability to exactly predict the demand that will be needed.535

From the point of view of the GEAgent, the main source of uncertainty can come from its To address536
this, the objective function is reformulated as:537

maxElt,ξt

[
T∑

t=1

(
ϕt(P

s
t )− ξt(P

b
t )
)]

. (Stochastic Player Objective)

At each timestamp t, the player observes the realizations of lt, gt, and ξt before deciding on P b
t , and538

P s
t .539

In a stochastic environment, the distributions of lt, gt, and ξt may be unknown. If this is the case, the540
player can estimate these distributions from historical data and observations using machine learning541
methods to improve decision-making under these forms of uncertainty.542
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Figure out how we can deal with stochastic environments from the side of the ISO The main change543
becomes the uncertainty about the demand544

In this case, we have two options, depending on when decisions need to be made.545

B.5 Accounting for Load Flxibility and Strategic Demand546

So far, we considered settings in which all participants were aiming to maximize their revenue (and547
minimize cost) while considering the deterministic or stochastic information that is received at time548
step 0, i.e., at the beginning of the daily episode. This meant that prices and dispatch decisions549
are made at the start of each episode, with the real-time decisions limited to reserve activation or550
curtailment (energy discharge) actions in response to unpredictable demand and the requirement to551
maintain stability.552

In modern energy systems, demand is not only stochastic but also strategic. This is because grid-edge553
agents can intelligently manage the operation of devices and distributed energy resources (DERs),554
in response to system-level signals, such as prices, frequency, or voltage. This load flexibility is555
reshaping energy markets by introducing new ways by which grid-edge agents can contribute to the556
efficient and stable operation of the network Charbonnier et al. (2022); Zhu et al. (2023). However,557
this shift also introduces challenges such as increased system complexity, uncertainty in demand558
forecasting, and the need for regulatory mechanisms to ensure fair and reliable participation.559

In this extended setting, the ISO aims to maximize its utility, but needs to determine the selling price560
ξt and feed-in prices ϕt for each time step t according to the demand Dt at time t. The key challenge561
is that Dt now includes the GEAgents ability to sell, buy, and store power. From the perspective562
of the GEAgent, the price signals ξt(P

s
t , P

b
t , . . .) represent the exogenous prices set by the ISO ,563

which depend on the player’s sales P s
t and purchases P b

t as well as other variables. This coupling564
results in a feedback mechanism where the player’s actions influence the prices, and the prices in565
turn affect the player’s actions. This introduces a game-theoretic dimension to the problem that the566
market player faces, where the player’s decisions on P b

t , and P s
t are influenced by the ISO’s pricing567

strategy and vice versa.568

It is important to clarify what the possibilities are that are available to the ISO with regard to the569
dispatch and pricing decisions it can make. This is not only a technical question, but a regulatory570
and policy-making question that needs to be accounted for. Two common approaches are day-ahead571
and dynamic pricing.572

Formally, the GEAgent’s input includes timesteps t = 1, 2, . . . , T GEAgent’s load: lt, storage573
capacity: Smax, maximum charging rate: Cmax, maximum discharging rate: Dmax, current storage574
state of charge: σ0 as defined in sections B.3 and B.4. The key difference is that now the selling575
price ξt and feed-in prices ϕt can be set by ISOin advance or in a dynamic way, in response to the576
market state.577

The objective is now:578

max
P b

t ,P
s
t

Elt,gt

[
T∑

t=1

(
ϕt(P

s
t , P

b
t , . . .)− ξt(P

s
t , P

b
t , . . .)

)]
. (Strategic Player Objective)

The ISO at the start of the planning horizon (timestamp 0), the ISOreceives the following inputs:579

• The cost function of the production C(∆t) for each t.580

• Predicted demand D̂t for all timestamps in the horizon.581

• Reserve activation cost per unit Creserve.582

• The number of market players N participating in the market.583

• The maximum discharge rates of each market player Di
max.584

15



Under review for RLC 2025, to be published in RLJ 2025

Based on this information, the ISO determines the scheduled amount of production ∆t for each585
timestamp in the horizon. Here, it is crucial to distinguish between nominal and flexible demand586
components. Nominal demand, denoted D refers to the exogenous, inelastic portion of load at587
each grid node that remains unaffected by local control strategies, real-time market incentives, or588
variations in renewable generation. In contrast, flexible demand, denoted l, refers to the portion of589
demand (electricity consumption) that can be adjusted in time, quantity, or pattern in response to590
external signals—such as price changes, grid conditions, or availability of renewable energy.591

The objective of the ISO now becomes592

minED,l

[
Cdispatch +

T∑
t=1

Conline
t

]
(O2)

Since it is impossible for the ISO to precisely model market players’ demand without considering its593
strategic nature, optimization methods that are appropriate for deterministic and stochastic settings594
won’t work here. Thus, as we specify in the next section, we model the market using RL.595

B.6 Deterministic Setting596

As a first step, we consider a a fully deterministic environment, where the demand is fully known in597
advance and the prices are set in advance (at time 0 of every day).598

• Storage capacity: Smax.599

• Maximum charging rate: Cmax.600

• Maximum discharging rate: Dmax.601

• Initial storage state of charge: σ0.602

• Selling price levels ξt set by the ISOfor each time interval and known in advance to the player.603

• Feed-in prices ϕt set by the ISOand known in advance to the player as well.604

Since all information is given in advance, the GEAgent can compute optimal policies at time-step605
0. A GEAgent must decide how much power to buy from (P b

t ), and sell to (P s
t ) the grid at every606

timestamp t to maximize its total revenue under its operational constraints. Formally:607

max

T∑
t=1

(
ϕt(P

s
t )− ξt(P

b
t )
)

(Deterministic GEAgent Objective)

Subject to:608

1. Power Balance Constraints:609
At each time t, the power bought or sold must meet the demand, including charging:610

∀t : P b
t − P s

t = lt + (σt − σt−1) (C1)

Here we assume a lossless battery.611
2. Storage Capacity Constraints:612

The storage level must remain within capacity limits:613

∀t : 0 ≤ σt ≤ Smax (C2)

3. Charging and Discharging Rate Constraints:614

∀t : −Dmax ≤ P b
t − (lt + P s

t ) ≤ Cmax (C3)

4. Non-Negativity Constraints:615
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∀t : P b
t , P

s
t , σt ≥ 0 (C4)

5. No Simultaneous Charging and Discharging:616

∀t : P b
t · P s

t = 0 (C5)
distinguish here between the producers and the players distinguish between fixed parameters and617
inputs618

ISO In the deterministic case, at the start of the planning horizon (timestamp 0), the ISOreceives619
the following inputs:620

• Nominal? Demand Dt for all timestamps in the horizon.621

• Reserve activation cost Creserve.622

• The number of GEAgents N participating in the market.623

• The maximum discharge rates of each market player Di
max.624

Based on this information, the ISO determines the scheduled amount of production ∆t and prices625
ξt(·), ϕt(·) for all timestamps t ∈ [T ] ahead. Then, at each timestamp t market players can respond626
to the prices by buying or selling power to the grid, contributing a net power demand P net

t . If the net627
demand after accounting for P net

t exceeds the scheduled production ∆t, the ISO activates reserves628
or peaker plants to cover the shortfall. If the market players are assumed to be rational, and the629
ISO makes the prices public at t = 0, the market players are solving the deterministic problem as630
presented in Section B.3, and the ISO can run the simulation of the market players to optimize the631
dispatch and the price signal.632

The ISO aims to minimize its total costs,633

minC total = min

[
Cdispatch +

T∑
t=1

Conline
t

]
(ISO objective)

where:634

• Cost of the Dispatch Schedule (Cdispatch):635

Cdispatch =

T∑
t=1

C(∆t) +

T∑
t=2

ρ(∆0, . . . ,∆t),

where ρ is a penalty function that can be tailored to various performance criteria, e.g., for penal-636
izing sharp changes in dispatch levels between consecutive periods.637

• Online Cost per Timeframe (Conline
t ): The sum of the market cost and the reserve activation cost:638

Conline
t = Cmarket

t + C reserve
t (max(0, Dt − P net

t −∆t)),

Notably, we assume that all demand must be met, a constraint that can be relaxed if needed.639

• Market Cost per Timeframe (Cmarket
t ): Payments to market players for the power they sell to640

the grid net of the revenue from selling the power to market players:641

Cmarket
t =

∑
i

ϕ
(i)
t (s

(i)
t )−

∑
i

ξ
(i)
t (b

(i)
t )

where ϕ
(i)
t is the feed-in tariff offered to player i at time t, and s

(i)
t is the amount of power sold642

by player i to the grid.643

Note that this problem is unconstrained, since we assume that when the demand is not met by644
the production and the market, the ISO operates the reserves. The incentive to meet the demand645
using nominal generation is encapsulated ? in the typically high costs associated with activating the646
reserves.647
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B.7 Accounting for Stochasticity648

Real-world systems are inherently stochastic, requiring models to account for uncertainty. Key649
sources of randomness include:650

• Internal load variability,651
• Renewable production fluctuations,652
• Price changes driven by external demand uncertainty.653

All these may lead to an inability to exactly predict the demand that will be needed.654

From the point of view of the GEAgent, the main source of uncertainty can come from its To address655
this, the objective function is reformulated as:656

maxElt,ξt

[
T∑

t=1

(
ϕt(P

s
t )− ξt(P

b
t )
)]

. (Stochastic Player Objective)

At each timestamp t, the player observes the realizations of lt, gt, and ξt before deciding on P b
t , and657

P s
t .658

In a stochastic environment, the distributions of lt, gt, and ξt may be unknown. If this is the case, the659
player can estimate these distributions from historical data and observations using machine learning660
methods to improve decision-making under these forms of uncertainty.661

Figure out how we can deal with stochastic environments from the side of the ISO The main change662
becomes the uncertainty about the demand663

In this case, we have two options, depending on when decisions need to be made.664

B.8 Accounting for Load Flxibility and Strategic Demand665

So far, we considered settings in which all participants were aiming to maximize their revenue (and666
minimize cost) while considering the deterministic or stochastic information that is received at time667
step 0, i.e., at the beginning of the daily episode. This meant that prices and dispatch decisions668
are made at the start of each episode, with the real-time decisions limited to reserve activation or669
curtailment (energy discharge) actions in response to unpredictable demand and the requirement to670
maintain stability.671

In modern energy systems, demand is not only stochastic but also strategic. This is because grid-edge672
agents can intelligently manage the operation of devices and distributed energy resources (DERs),673
in response to system-level signals, such as prices, frequency, or voltage. This load flexibility is674
reshaping energy markets by introducing new ways by which grid-edge agents can contribute to the675
efficient and stable operation of the network Charbonnier et al. (2022); Zhu et al. (2023). However,676
this shift also introduces challenges such as increased system complexity, uncertainty in demand677
forecasting, and the need for regulatory mechanisms to ensure fair and reliable participation.678

In this extended setting, the ISO aims to maximize its utility, but needs to determine the selling price679
ξt and feed-in prices ϕt for each time step t according to the demand Dt at time t. The key challenge680
is that Dt now includes the GEAgents ability to sell, buy, and store power. From the perspective681
of the GEAgent, the price signals ξt(P

s
t , P

b
t , . . .) represent the exogenous prices set by the ISO ,682

which depend on the player’s sales P s
t and purchases P b

t as well as other variables. This coupling683
results in a feedback mechanism where the player’s actions influence the prices, and the prices in684
turn affect the player’s actions. This introduces a game-theoretic dimension to the problem that the685
market player faces, where the player’s decisions on P b

t , and P s
t are influenced by the GSO’s pricing686

strategy and vice versa.687

It is important to clarify what the possibilities are that are available to the ISO with regard to the688
dispatch and pricing decisions it can make. This is not only a technical question, but a regulatory689
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and policy-making question that needs to be accounted for. Two common approaches are day-ahead690
and dynamic pricing.691

Formally, the GEAgent’s input includes timesteps t = 1, 2, . . . , T GEAgent’s load: lt, storage692
capacity: Smax, maximum charging rate: Cmax, maximum discharging rate: Dmax, current storage693
state of charge: σ0 as defined in sections B.3 and B.4. The key difference is that now the selling694
price ξt and feed-in prices ϕt can be set by ISOin advance or in a dynamic way, in response to the695
market state.696

The objective is now:697

max
P b

t ,P
s
t

Elt,gt

[
T∑

t=1

(
ϕt(P

s
t , P

b
t , . . .)− ξt(P

s
t , P

b
t , . . .)

)]
. (Strategic Player Objective)

The ISO at the start of the planning horizon (timestamp 0), the ISOreceives the following inputs:698

• The cost function of the production C(∆t) for each t.699

• Predicted demand D̂t for all timestamps in the horizon.700

• Reserve activation cost per unit Creserve.701

• The number of market players N participating in the market.702

• The maximum discharge rates of each market player Di
max.703

Based on this information, the ISO determines the scheduled amount of production ∆t for each704
timestamp in the horizon. Here, it is crucial to distinguish between nominal and flexible demand705
components. Nominal demand, denoted D refers to the exogenous, inelastic portion of load at706
each grid node that remains unaffected by local control strategies, real-time market incentives, or707
variations in renewable generation. In contrast, flexible demand, denoted l, refers to the portion of708
demand (electricity consumption) that can be adjusted in time, quantity, or pattern in response to709
external signals—such as price changes, grid conditions, or availability of renewable energy.710

The objective of the ISO now becomes711

minED,l

[
Cdispatch +

T∑
t=1

Conline
t

]
(Stochastic ISO Objective)

Since it is impossible for the ISOto precisely model market players’ demand without considering its712
strategic nature, optimization methods that are appropriate for deterministic and stochastic settings713
won’t work here. Thus, as we specify in the next section, we model the market using RL.714

C SMP715

A typical structure of a market was based on the day-ahead market in which the ISOpredicts the716
following day’s power demand and issues a dispatch, an offline production schedule to each producer717
while considering operational constraints and generation costs. The dispatch traditionally divides the718
24-hour planning horizon into 48 discrete half-hour time periods. In addition to the generation of719
the predicted or nominal demand, the ISO also manages the reserve, which sets a backup production720
capability for each time step. If in real-time the controlled production determined by the dispatch is721
not enough to cover the realized demand, reserves, which are more flexible but also more expensive722
and polluting, are activated by an online controller. Producers are then compensated based on the723
System Marginal Price (SMP) mechanism, which is calculated as the marginal cost of producing the724
final unit of energy required to satisfy system demand, based on the least-cost dispatch solution.725

Formally, let:726
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• Pt be the total power production at time t,727
• Dt be the total system demand at time t,728
• C(Pt) be the cost function for production.729

The SMP at timestamp t is defined as:730

κt =
∂C(Pt)

∂Pt

∣∣∣∣∣
Pt=Dt

,

where κt represents the marginal cost of meeting the demand Dt using the least-cost generation731
defined by the merit-order curve.732

In electricity markets, the SMP clears the market by equating supply and demand while satisfying733
the economic dispatch problem:734

min
Pt

C(Pt) subject to Pt = Dt.

The SMP ensures that all dispatched generators receive the same price, incentivizing efficiency and735
cost-reflective bidding in competitive electricity markets. Note that SMP is non-decreasing with736
respect to the amount of power produced, meaning higher power demand usually results in a higher737
price per kWh. Consequently, reducing peak consumption is critical for lowering overall costs in the738
electricity market.739

D Dynamic Programming Formulation for a Storage Only PCS-unit Agent740

The dynamic programming formulation for the optimization problem for storage control is given as:741

• State Variables:742
– Current time step t,743
– Current storage level σt.744

• Decision Variables:745
– Energy bought P b

t ,746
– Energy sold P s

t .747
• Transition Function:748

σt+1 = σt + (P b
t − lt − P s

t ).

• Objective Function: The immediate reward at each time step is:749

r(P b
t , P

s
t ) = ϕt(P

s
t )− ξt(P

b
t ).

The cumulative reward is maximized over all time steps.750
• Recurrence Relation:751

V (t, σt) = max
P b

t ,P
s
t

[
r(P b

t , P
s
t ) + V (t+ 1, σt+1)

]
,

subject to the constraints.752

Similar methods adapted for stochastic optimization could be employed for the case where distribu-753
tion is either known or can be approximated from existing data. In the case of the stochastic demand,754
there may even be an ability to compute a contingent policy that would deal with the stochastic sig-755
nals.756

E Quadratic Pricing757

This example demonstrates the possible impact of price intervention on market dynamics. We as-758
sume deterministic setting for the ISOfor clarity, but the same logic can be applied in the non-759
deterministic scenario. Drawing from the literature Papadaskalopoulos & Strbac (2015), we apply760
superlinear and sublinear pricing adjustments to selling and feed-in tariffs, respectively.761
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The selling price incorporates a superlinear component:762

ξt = λbuy ∗ P b
t + β ∗ [P b

t ]
2,

where λbuy is a baseline price. Similarly, the feed-in price adds a sublinear adjustment:763

ϕt = λfeedin ∗ P s
t + γ ∗

√
P s
t ,

where λfeedin is the baseline feed-in price.764

Once per episode, at t = 0, the ISO commits to six coefficients (α0, α1, α2, β0, β1, β2) that instan-765
tiate the quadratic tariff πbuy/sell(x). These coefficients stay fixed for the ensuing T steps; dispatch766
tweaks δt may still follow online if enabled.767

Baseline Scenario Assume the demand structure as described by Table 2 and ρ = 0.3. Also768
assume a single market player, operating a 30 kWh battery with charging/discharging limits of769
30 kWh without internal load or generation capabilities. Under static prices (λbuy = λfeedin =770
Baseline price, γ = β = 0), the optimal solution for the player is to charge fully at t = 2 and771
discharge fully at t = 5, yielding a profit of 4.5$. Given this behavior, the ISO pays a cost of772
138.75$.773

Timestamp Baseline Price ($) Base Demand (kWh)
1 0.40 40
2 0.35 35
3 0.40 40
4 0.45 45
5 0.50 60
6 0.45 45

Table 2: Baseline demand and prices

Impact of Price Intervention Now assume the ISO is willing to implement the intervention, and774
to set non-linear price signals. The ISO optimizes the price parameters, setting β = 0.002 and775
γ = 0.455 by solving for the objective function described in Equation ISO objective. This price776
adjustment incentivizes the player to redistribute charging and discharging activities, as the player777
solves the problem described in Section B.3. The optimal strategy for the player is as shown in Table778
2, resulting in a higher profit of 6.52$, including a subsidy from the ISOto the player (via sublinear779
feed-in price component) of 3.27$. For the ISOtotal costs are reduced to 118.21$ with the subsidy780
included. The intervention eliminates inefficiencies, benefiting both the ISOand the market player.781

This example highlights the potential of price intervention to align market players’ behavior with782
system-level efficiency goals. Furthermore, it demonstrates that the price intervention is not a zero-783
sum game, and some interventions can be beneficial for all parties involved.784

However, What is described here is just one price intervention type possible. In general, the785
ISOwould explore the space of all possible price interventions to find the optimal one. We sug-786
gest searching in this space using RL methods.787

F Day-Ahead Pricing as a Bandit Problem788

At time 0, the ISO fixes prices in advance for all t, and receives a reward after the 48-timestep789
episode ends. This makes the ISO decide about the prices once per episode, which matches the790
dispatch decision. This turns the problem into a (very complex) bandit problem.791

The bandit problem for dispatch and pricing in an electricity market is defined by the tuple:792

B = ⟨A,R,P, T ⟩
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Figure 1: Original demand

Figure 2: Linear Prices

Figure 3: Quadratic Charging, Sublinear Discharging

Figure 3: Non-linear prices implementation

where:793

• A = {(d, p) | d ∈ D, p ∈ P} is the set of actions, where each action is a pair (d, p):794
– d ∈ D: Dispatch decision representing the amount of power to produce or allocate at a given795

time.796
– p ∈ P: Price levels, including selling prices and feed-in tariffs offered to market participants.797

• R(d, p) is the reward associated with selecting the action (d, p). Here, the reward is defined as the798
negative cost incurred by applying (d, p), such that:799

R(d, p) = −C(d, p),

where C(d, p) represents the total operational cost, including dispatch costs, market costs, and800
reserve activation costs.801

• P(d, p) denotes the probability distribution governing the outcomes (e.g., market responses, de-802
mand realization) associated with the action (d, p).803

• T is the time horizon, representing the total number of decision rounds.804

At each time step t ∈ {1, 2, . . . , T}, the agent selects an action (dt, pt) ∈ A, observes the resulting805
market dynamics and incurred cost C(dt, pt), and receives a reward R(dt, pt) = −C(dt, pt).806

The objective is to minimize the cumulative cost over the time horizon T , minimizing the cumulative807
regret RT , defined as:808

RT =

T∑
t=1

C(d∗, p∗)−
T∑

t=1

E[C(dt, pt)],

where (d∗, p∗) is the optimal dispatch and pricing policy that minimizes the expected cost:809

(d∗, p∗) = arg min
(d,p)∈A

E[C(d, p)].
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This formulation addresses the trade-off between exploration (testing new dispatch and pricing810
strategies to learn their outcomes) and exploitation (applying strategies believed to minimize costs811
based on current knowledge).812

G The Energy Market as MARL813

In modeling modern power systems using marl, it is essential to account for multiple interacting814
perspectives. These include the physical constraints of the grid (e.g., stability limits), agent-level815
decision processes under partial observability, and the heterogeneity of demand profiles encompass-816
ing both nominal and flexible demand verify these are defined. Effective models must also incor-817
porate market and pricing signals that influence agent behavior, and the temporal-spatial scalability818
required for real-world deployment. While these considerations are crucial for realistically and ro-819
bustly capturing decentralized control strategies in complex energy environments, they also pose820
significant challenges to preserving the underlying Markovian structure that traditional agent-based821
decision models rely on.822

G.1 Formal Model823

Through the lens of RL, the ISO aims to learn an optimal policy that balances overall system effi-824
ciency with the mitigation of risk, such as insufficient power supply and grid instability. Simulta-825
neously, market participants seek to maximize their individual utility in response to market signals,826
subject to their own operational constraints and preferences. We formally model this decentral-827
ized setting as a Markov Game (see Section 2), involving two types of agents: the ISO, and the828
GEAgents.829

An important characteristic of the setting we aim to model is that the state space, action space,830
and reward functions are relatively straightforward to define. The complexity of solving this setting831
arises from modeling the joint transition function: the next state of the system and its stability depend832
on the actions performed by all agents.833

Modeling the ISO834

• State Space S: Every time step t, typically representing a half-hour interval, the system state835
is associated with a vector st ∈ S that specifies operational factors that may affect decision-836
making. For the ISO this includes the system-level demand forecast D̂ for the specified horizon,837
the system-level realized demand Dt for the current time step, supply capacities, storage states,838
etc. It may also include factors that indicate the stability state of the system, for example, whether839
the supply-demand balance is violated.840

• Action Space A: The ISO actions include the dispatch directives ∆t that are given for each time841
step t and setting the sell prices ξt(·) and buy prices ϕt(·) for each time step. In real-time the842
ISO also activates reserves and curtails power if needed, but assume these actions are dictated by843
the state and require no decision-making.844

Importantly, we support two types of pricing dynamics. In a day-ahead pricing regime, the ISO-845
makes the prices public at t = 0. In an online pricing setting, the ISO can dynamically set prices846
in response to the market signal. We discuss several pricing mechanisms and their characteristic,847
including the benefits of applying quadratic pricing, in Section 5.848

• Reward Function R: The ISO’s reward integrates the economic efficiency and a risk measure to849
account for potential adverse outcomes arising from strategic GEAgents such that:850

R = −( Cdispatch + Conline
t ) (ISO objective)

Modeling the GEAgents851
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• State Space S: Each GEAgent is associated with a PCS-unit for which the state includes its local852
information (e.g., state-of-charge) as well as the price signal advertised by the ISO.853

• Action Space A: Modern GEAgents have significant decision-making autonomy, allowing them854
to choose how much energy to store, consume, or sell based on their local goals, capabilities, and855
constraints. In this work, we assume the GEAgent sees the current prices and its local state at856
the start of each iteration before deciding how to act. Also, both generation and consumption are857
non-controllable. Specifically, we only support generation via pv and consumption that is part of858
the non-flexible load of the PCS-unit. This means that generation and production are exogenous859
to the agent and are governed by a stochastic process, and the only decision variable is the charge860
and discharge actions, which may have stochastic effects.861

• Reward Function R: For each GEAgent i, the step-wise reward is the net cash flow obtained by862
trading with the grid:863

Ri
t = ϕt

(
P s
t , P

b
t

)
− ξt

(
P s
t , P

b
t

)
.

Maximising the cumulative sum of Ri
t over the horizon is equivalent to the strategic objective864

stated in (Strategic Player Objective), but written here without the expectation or the explicit865
time–index summation.866

Joint Transition Function T : Influence of Multiple Agents: Unlike a single-agent MDP, the867
Markov Game framework allows each agent’s choice (including how GEAgents respond to prices or868
storage opportunities) to influence the next state. As mentioned above, the difficulty of modeling the869
transition function is at the core of the challenge. In general, the transition function can be decoupled870
into the state variables that are covered by the physical dynamics of the system. For example, when871
a charge or discharge action is performed, the battery dynamics obey:872

σt+1 = σt + ηc
[
at
]
+
∆t − η−1

d

[
−at

]
+
∆t,

if an attempted action would violate 0 ≤ SoC ≤ Bmax the short-fall or spillage is automatically873
settled with the grid, and a penalty is incurred. Propagated effect of local decisions, e.g., those874
solved with power flow.875

Perhaps the most challenging aspect stems from the strategic interactions of the agents. These strate-876
gic decisions create a coupled system where each agent’s payoff depends on the actions of others. In877
principle, the Markov Function T (st+1 | st, aISO

t , aPCS−unit
t ) must fold together physical power878

flows, stochastic demand, renewables, battery chemistry and market clearing. Writing a closed-form879
T that captures all these layers is hopeless. Instead, we created the Energy-Net simulator (Sec-880
tion 4) maintain the physics and book-keeping, and we learn directly from roll-outs. This side-steps881
the need for explicit modeling of the complex dynamics and allows extracting value functions and882
policies using deep neural networks, rather than from first principles.883

Episode As is typical in the day-ahead market, at the beginning of each episode (timestep t = 0)884
the ISO receives the predicated demand D̂ for the next 48 half-hour intervals. It also receives the885
production and reserve capacities of its controlled units, the prices of each generated unit, and other886
information that might be relevant (i.e., weather forecast, special events, etc.). If day-ahead pricing887
is applied, the ISO sets and advertises the ξt(·) and feed-in tariff ϕt(·) for the whole episode.888

At each subsequent timestamp ( 1 ≤ t ≤ 48 ), the following sequence of events occurs:889

1. The ISO observes the realized demand Dt.890

2. If dynamic pricing is applied, the ISO sets the sell price ξt(·) and feed-in tariff ϕt(·) for timestamp891
t.892

3. The GEAgents strategically respond to the prices by buying or selling power to the grid.893

4. If the net demand after accounting for the net power P net
t exceeds the scheduled production ( ∆t),894

the ISO activates reserves (e.g., peaker plants) to cover the shortfall or curtails power to cover895
overloads.896
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This iterative process continues until the end of the planning horizon. Both agents seek a stationary897
(possibly stochastic) policy that maximizes their own long-term discounted accumulated reward.898

H The Energy-Net Simulator899

In spite of a variety of simulators that currently exist, there is no current framework that allows mod-900
eling the complex structure we want to account for and that is designed to work with off-the-shelf901
rl and marl methods. We therefore develop a novel simulator, Energy-Net4, that we will use to902
examine our proposed solutions. Energy-Net is a modular, discrete–time simulator of a hybrid903
electricity market. The environment we develop is flexible and adaptable, and can be used to accom-904
modate different system configurations. At the core of the design of the software is a decoupling905
between the physical dynamics of the electrical system and the strategic agents. Energy-Netis906
built around a strict physics–agent split. A high-fidelity physical core advances loads, renewables,907
batteries, and reserves, while the ISO and GEAgent interact only through a Gym-style step()908
interface. This design (i) lets us plug in any off-the-shelf rl/marl algorithm without touching the909
power-system code, (ii) isolates market rules in a single controller module, and (iii) ensures that910
learned policies can affect the grid only via explicit levers-prices and dispatch tweaks, thus preserv-911
ing physical realism while streamlining experimentation.912

Building on the formal setting introduced in Section 3, Energy-Net instantiates the 24-hour day-913
ahead electricity market. A single simulation episode therefore comprises T uniform intervals of914
length ∆t (in our experiments T=48 and ∆t=30min), together covering one 24-hour operational915
horizon. At each step t ∈ {1, . . . , T} the environment reveals the current forecast and grid state to916
the agents, applies their actions, propagates the physical dynamics, and returns next-state observa-917
tions and rewards through the standard Gym step interface.918

H.1 Physical Layer919

Demand. System demand at each step is modelled as920

Dt = fseasonal(t) + εt,

where fseasonal(·) captures the deterministic daily profile and εt ∼ N
(
0, σ2

)
is zero-mean Gaussian921

noise with user–configurable standard deviation σ.922

GEAgent. Every PCS-unit hosts a single–block battery whose state of charge obeys923

σt+1 = σt + ηc
[
at
]
+
∆t − η−1

d

[
−at

]
+
∆t,

subject to 0 ≤ σt ≤ Smax and |at| ≤ Pmax. Here at is the charge (> 0) / discharge (< 0) power,924
ηc, ηd are efficiency factors, and Pmax the power limit.925

Besides storage, each unit experiences stochastic local load lt and PV generation gt, drawn from926
configurable distributions. The net exchange with the grid is therefore927

P net
t = at + gt − lt.

Reserve. If ∆t + P net
t < Dt, spinning reserve is activated and the simulator logs the penalty928

C reserve
t

(
Dt −∆t − P net

t

)
, whose functional form and coefficients are user-configurable.929

H.2 Market Layer930

At each step t the ISO broadcasts a buy tariff ϕt(·) (applied to energy flowing into storage) and931
a sell tariff ξt(·) (applied to energy flowing out of storage). Energy-Net supports two pricing932
regimes:933

4link to repo - removed to respect the blind review process
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a) Online linear. The operator chooses two bounded scalars λbuy
t , λsell

t and sets934

ϕt(P ) = λbuy
t , ξt(P ) = λsell

t .

b) Quadratic (super-/sub-linear). At the beginning of each episode (t = 0) the operator935
fixes four coefficients

{
λbuy, λfeedin, β, γ

}
; they remain unchanged for all subsequent steps.936

Power-dependent tariffs are then computed with exactly the same notation used in Section 5:937

ξt = λbuy P b
t + β

[
P b
t

]2
, (1)

ϕt = λfeedin P s
t + γ

√
P s
t . (2)

Here β adds a super-linear surcharge to purchases, whereas γ grants a sub-linear bonus on938
injections. Optional real-time dispatch perturbations δt can still be issued on top of these939
pre-committed price curves.940

H.2.1 Agent Interfaces941

ISO observations. At each step t the operator receives (t, D̂t, P̂
net
t ), where the hat denotes a942

one–step-ahead forecast of the aggregated exchange of all PCS-units.943

PCS observations. Every storage unit observes the tuple (t, ξt, ϕt, σt).944

ISO actions.945

• Online linear. Set the instant tariff pair (ξt, ϕt) ( + optional dispatch tweak δt).946

• Quadratic (super-/sub-linear). Commit the coefficient quadruple (λbuy, λfeedin, β, γ) that parame-947
terises; these remain fixed for the whole episode.948

PCS action. A single continuous decision at ∈ [−Dmax, Cmax] interpreted as charge [at > 0] or949
discharge [at<0].950

H.2.2 Reward Structure951

Per-step rewards follow the definitions already introduced in Section B.4.952

H.2.3 Multi–Agent Execution953

Energy–Net wraps both agents in a single multi–agent environment that extends the GYMNA-954
SIUM interface Towers et al. (2024). step(...) consumes a dictionary of actions and re-955
turns observation, reward, and termination tuples keyed by agent identity. Internally, a unified956
EnergyNetController advances the simulation in the following sequential order:957

1. Price setting — the ISOchooses tariffs (and, if enabled, dispatch).958

2. Battery control — the PCS-unitresponds with its charge or discharge command.959

3. Energy exchange — supply, demand, and storage flows are balanced; any shortfall triggers960
spinning reserve.961

4. State update and reward — physical states, SoC, and financial ledgers are updated, and rewards962
are computed for both agents.963

This integrated design eliminates manual data transfer between separate environments and exposes964
consistent, step–level metrics for training and evaluation. Notably, additional assets — renewables,965
alternative storage chemistries, custom reward definitions — can be introduced by registering new966
modules that comply with the interfaces above; no modification of the core simulation loop is re-967
quired.968
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I Evaluation Setup969

Table 3: Scenario matrix used throughout Section 6. Columns 2–3 describe the ISO policy elements;
column 4 the PCS. “Learned” means the dispatch network is frozen from the previous scenario while
the remaining degrees of freedom are (re-)trained with TD3.

ID ISO pricing ISO dispatch PCS behaviour

Baseline N/A Equal to predicted demand N/A
ISO-Dispatch N/A Learned N/A

ISO-L Online linear Learned (prior S2) Deterministic / fixed
ISO-Q Quadratic Learned (prior S2) Deterministic / fixed

Joint-Storage-L Online linear Learned (prior S3) Learned
Joint-Storage-Q Quadratic Learned (prior S3) Learned

Joint-PCS-L Online linear Learned (prior S4) Learned + intrinsic load/production
Joint-PCS-Q Quadratic Learned (prior S4) Learned + intrinsic load/production

Global scenario parameters (all baselines).970

• Demand pattern: sinusoidal971

Dt = L0 + A cos
(

2π
P (kt+ ϕ)

)
with base load L0 = 150MWh, amplitude A = 50MWh, interval multiplier k = 8, phase972
shift ϕ = 5, period divisor P = 24.973

• Dispatch energy price: $100 per MWh.974

• Reserve energy price: $300 per MWh.975

• Forecast-error noise (prediction error): σ = 10MWh.976

For each interval t we first sample the realised demand Dt from the sinusoidal profile above. The977
ISO observes only a noisy one-step-ahead prediction978

D̂t = Dt + εt, εt ∼ N
(
0, σ2

)
.

Hence, each experiment measures both the forecast error and the operator’s reaction to it. Note that979
even in the day-ahead pricing scenarios, where the six tariff coefficients chosen at t = 0 remain980
fixed throughout the episode, the instantaneous ISO reward rISO

t is still computed at every step. This981
preserves time-resolved feedback while respecting the regulatory commitment to day-ahead prices.982

J Results983

Local context re-activates storage.984
Without an intrinsic load/production signal (Joint-Storage-L & Joint-Storage-Q) the985
battery never exchange energy and the column PCS-unit Exchange in Table 4 is 0 MWh. Introducing986
even a modest prosumer profile (Joint-PCS-L & Joint-PCS-Q) forces the unit to interact with987
the grid, shifting about 442 MWh (linear tariff) or 324 MWh (quadratic tariff) over the 48-step988
episode.989

Reserve energy is largely supplanted.990
The extra flexibility supplied by the battery allows the ISOto rely less on spinning reserve: the991
quantity drawn falls from 176 MWh (ISO-L) and 121 MWh (ISO-Q) down to 117 MWh in the992
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Table 4: Episode-total cost and energy breakdown across all evaluated scenarios (see Table 3 for
scenario definitions).

Scenario Dispatch Reserve PCS-unit Exchange

Cost [$] Energy [MWh] Cost [$] Energy [MWh] Energy [MWh]

Baseline 720 000 ± 10 7 200 ± 0.1 62 400 ± 30 208 ± 0.1 0

ISO-L 728 235.04 ± 5 089.24 7 282.34 ± 50.89 52 815 ± 5 721 176.05 ± 19.07 800 ± 0
ISO-Q 750 698.08 ± 3 502.32 7 506.98 ± 35.02 36 321 ± 1 134 121.07 ± 3.78 800 ± 0

Joint-Storage-L 812 603.1 ± 1 071.45 8 126.13 ± 1.07 44 400 ± 282 148 ± 0.94 0
Joint-Storage-Q 812 621.48 ± 1 012.64 8 126.21 ± 1.01 44 400 ± 318 148 ± 1.06 0

Joint-PCS-L 732 244.02 ± 3 602.57 7 322.44 ± 36.02 50 541 ± 1 242 168.47 ± 4.14 442.14 ± 9.61
Joint-PCS-Q 745 062.53 ± 343.37 7 450.62 ± 36.43 35 100 ± 612 117 ± 2.04 324 ± 8.40

quadratic joint scenario. Because reserve blocks are the most carbon and price intensive resource,993
substituting them with stored energy directly improves both sustainability and operating margins.994

Quadratic pricing yields the best balance.995
Relative to the online linear tariff, the quadratic day-ahead curve cuts reserve usage by ≈30 % with996
only 324 MWh of battery throughput (cf. 442 MWh under the linear scheme). The slight 128 MWh997
increase in scheduled dispatch is more than offset by the smaller reserve call and lower battery wear.998

Figure 4: Energy, tariff, and cost traces for Joint-PCS-L. Top: dispatch vs. realised demand.
Middle: ISO buy/sell tariff trajectories. Bottom: cumulative cost distribution at episode end.

J.1 Empirical Evaluation Process999

J.1.1 Baseline – Fixed Day-Ahead Schedule1000

This baseline freezes the ISO’s day-ahead schedule at the one-step demand forecast and publishes1001
no real-time prices, so the PCS-unit stays idle. Across the 48 × 30 min horizon the grid delivers1002
7 200 MWh of scheduled generation and calls 208 MWh of spinning reserve, with zero battery1003
exchange. These figures serve as the reference for all percentage comparisons that follow.1004
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Figure 5: Energy-flow profile for Baseline. Top: dashed = forecast demand, solid red = realised
demand, blue bars = fixed day-ahead dispatch. Bottom: battery state of charge stays at 0 and buy/sell
prices coincide, confirming the absence of storage actions or dynamic tariffs.

J.1.2 ISO-Dispatch – Adaptive Dispatch, No Price Signal1005

In this scenario the ISOcan revise the dispatch level every 30 minutes to track its demand forecast,1006
but it still publishes no real-time prices, so the PCS-unit remains idle. The configuration isolates the1007
pure value of feed-forward unit-commitment.1008

Relative to the fixed day-ahead baseline (Baseline):1009

• Scheduled generation rises from 7 200 MWh to 7 229 MWh +0.4 %.1010

• Reserve energy increases from 208 MWh to 249 MWh +19 %.1011

The extra 29 MWh of dispatch more than offsets the reserve reduction, showing that unit-1012
commitment alone cannot handle real-time variability efficiently when no flexible resource is avail-1013
able.1014

J.1.3 ISO-L – Linear Price Signal with Pre-defined PCS Actions1015

In this variant the ISO updates its dispatch each half-hour and also posts a real-time linear buy/sell1016
tariff. The PCS-unit , however, does not react; it follows an offline schedule that charges during the1017
early-morning valley and discharges at the evening peak. All storage moves are therefore determin-1018
istic and price-agnostic.1019

Key energy effects relative to the fixed baseline (Baseline):1020

• Battery activity - The preset cycle moves 800 MWh from low-demand to high-demand hours1021
(Table 4, last column).1022

• Scheduled generation - Dispatch rises from 7 200 MWh to 7 282 MWh (+1.1 %).1023

• Reserve usage - Spinning reserve falls from 208 MWh to 176 MWh (–15 %).1024
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Figure 6: Energy–flow profile for ISO-Dispatch. Top: dashed = forecast demand, solid red =
realised demand, blue bars = adaptive dispatch. Bottom: battery state of charge remains at 0 and the
buy/sell tariff is flat, confirming that no storage actions or dynamic prices are present.

The fixed cycle smooths the net load enough to cut reserve energy by 32 MWh, but that benefit is1025
partly offset by an 82 MWh increase in scheduled generation. In short, a pre-programmed battery1026
can firm the load profile, yet it is still less effective than a storage agent that responds optimally to1027
real-time prices.1028

J.1.4 ISO-Q – Quadratic Price Signal with Pre-defined PCS Actions1029

The ISO now publishes a quadratic buy/sell tariff (three coefficients per side) while the PCS-1030
unit still follows the fixed charge–discharge cycle of ISO-L.1031

Energy impact relative to the fixed baseline (Baseline):1032

• Battery activity - unchanged at 800 MWh (preset cycle).1033

• Scheduled generation - rises to 7 507 MWh, an increase of 307 MWh (+4.31034

• Reserve usage - falls to 121 MWh, a 42% drop versus 208 MWh in Baselineand a further 311035
% reduction compared with the linear-price case (ISO-L).1036

Quadratic pricing therefore achieves the lowest reserve energy of all pre-defined scenarios, even1037
though the battery does not react to prices, by letting the ISO shape its real-time tariff more aggres-1038
sively around the deterministic storage profile.1039

J.2 Joint-Storage-L and Joint-Storage-Q – TD3 ISO, Learned PCS1040

In these scenarios both agents are trained with TD3. The controls real-time prices and dispatch; the1041
PCS-unit is now free to learn its own policy. Regardless of whether the tariff is linear or quadratic,1042
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Figure 7: Energy–flow profile for ISO-Q (quadratic prices, deterministic PCS).

the quickly discovers that posting the maximum allowed buy/sell price removes any profitable1043
arbitrage. The learned PCS-unit therefore chooses to stay idle, and the battery never moves energy.1044

Key energy outcome (identical for L and Q):1045

• Battery exchange - 0 MWh.1046

• Scheduled generation - 8 126 MWh (+13% versus the 7 200 MWh baseline).1047

• Reserve usage - 148 MWh (–29% relative to 208 MWh in Baseline).1048

Key observation. By exploiting its price-setting power the captures all potential surplus, pushing1049
the system into a “monopolistic” equilibrium that eliminates storage activity. Reserve demand does1050
fall, but only at the cost of a large increase in base-load dispatch; the grid loses the flexibility benefit1051
that an active battery would provide.1052

J.3 Joint-PCS-L – Learned ISO and PCS under Endogenous Load & Production1053

The fully learned setting of Section Joint-Storage-L and Joint-Storage-Q collapsed into1054
a “monopolistic” equilibrium because the storage unit had no reason to transact. To restore economic1055
pressure we embed the PCS-unit in a simple prosumer model:1056

• Background HVAC load – square-wave, 8 kW peak.1057

• Rooftop PV – bell-shaped profile, 5 kW peak at solar noon.1058

Whenever the net local balance is negative the battery must buy from the grid; when positive it1059
can inject. Both and PCS-unit continue to train with TD3, and the ’s tariff are online linear or1060
quadratic.1061

Energy outcomes (from Table 4):1062
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Figure 8: Energy–flow profile for Joint-Storage-L. The ISO posts buy/sell tariffs at their upper
limit, leaving the battery inactive (0 MWh exchange).

• Battery exchange - 442 MWh shuffled across the day ( 30% of steps involve a charge or discharge).1063

• Scheduled generation – 7 322 MWh (very close to the deterministic baseline).1064

• Reserve usage – 168 MWh, midway between the linear pre-defined case (176 MWh) and the best1065
quadratic case (117 MWh).1066

Endogenous prosumer dynamics “wake up” the battery: facing real cost when HVAC load peaks1067
and real revenue when PV over-produces, the agent learns to arbitrage once again. The adapts by1068
moderating its price ceiling: tariffs remain high enough to steer the battery but no longer saturate at1069
the upper bound, breaking the deadlock observed in Joint-Storage-L.1070

Acknowledgments1071

Use unnumbered third level headings for the acknowledgments. All acknowledgments, including1072
those to funding agencies, go at the end of the paper. Only add this information once your submission1073
is accepted and deanonymized. The acknowledgments do not count towards the 8–12 page limit.1074

References1075

Victor Ahlqvist, Pär Holmberg, and Thomas Tangerås. A survey comparing centralized and decen-1076
tralized electricity markets. Energy Strategy Reviews, 40:100812, 2022.1077

Stefano V. Albrecht, Filippos Christianos, and Lukas Schäfer. Multi-Agent Reinforcement Learning:1078
Foundations and Modern Approaches. MIT Press, 2024. URL https://www.marl-book.1079
com.1080

Flora Charbonnier, Thomas Morstyn, and Malcolm D McCulloch. Coordination of resources at the1081
edge of the electricity grid: Systematic review and taxonomy. Applied Energy, 318:119188, 2022.1082

32

https://www.marl-book.com
https://www.marl-book.com
https://www.marl-book.com


Efficient Management of Day-Ahead Energy Markets via Multi-Agent Reinforcement Learning

Figure 9: Energy, tariff and battery SoC traces for Joint-PCS-L. The learned PCS cycles 442
MWh in response to its own load/PV profile and ISO prices, cutting reserve demand to 168 MWh.

Elinor Ginzburg-Ganz, Itay Segev, Alexander Balabanov, Elior Segev, Sivan Kaully Naveh, Ram1083
Machlev, Juri Belikov, Liran Katzir, Sarah Keren, and Yoash Levron. Reinforcement learning1084
model-based and model-free paradigms for optimal control problems in power systems: Com-1085
prehensive review and future directions. Energies, 17(21):5307, 2024. ISSN 1996-1073. DOI:1086
10.3390/en17215307. URL https://doi.org/10.3390/en17215307.1087

Chenxiao Guan, Yanzhi Wang, Xue Lin, Shahin Nazarian, and Massoud Pedram. Reinforcement1088
learning-based control of residential energy storage systems for electric bill minimization. In1089
2015 12th Annual IEEE Consumer Communications and Networking Conference (CCNC), pp.1090
637–642. IEEE, 2015.1091

Nick Harder, Anke Weidlich, and Philipp Staudt. Finding individual strategies for storage units in1092
electricity market models using deep reinforcement learning. Energy Informatics, 6(Suppl 1):41,1093
2023. DOI: 10.1186/s42162-023-00293-0.1094

33

https://doi.org/10.3390/en17215307


Under review for RLC 2025, to be published in RLJ 2025

Antoine et al. Marot. Learning to run a power network challenge: a retrospective analysis. In1095
NeurIPS 2020 Competition and Demonstration Track, 2021.1096

Panagiotis Michailidis, Iakovos Michailidis, and Elias Kosmatopoulos. Reinforcement Learning for1097
Optimizing Renewable Energy Utilization in Buildings: A Review on Applications and Innova-1098
tions. Energies, 18(7):1724, 2025. DOI: 10.3390/en18071724.1099

Takao et al. Moriyama. Reinforcement learning testbed for power-consumption optimization. In1100
Methods and Applications for Modeling and Simulation of Complex Systems: 18th Asia Simula-1101
tion Conference (AsiaSim). Springer, 2018.1102

Aviad Navon, Juri Belikov, Ariel Orda, and Yoash Levron. On the stability of strategic energy1103
storage operation in wholesale electricity markets. arXiv preprint arXiv:2402.02428, 2024. URL1104
https://arxiv.org/abs/2402.02428.1105

Dimitrios Papadaskalopoulos and Goran Strbac. Nonlinear and randomized pricing for distributed1106
management of flexible loads. IEEE Transactions on Smart Grid, 7(2):1137–1146, 2015.1107

ATD Perera and Parameswaran Kamalaruban. Applications of reinforcement learning in energy1108
systems. Renewable and Sustainable Energy Reviews, 137:110618, 2021.1109

Aisling Pigott, Constance Crozier, Kyri Baker, and Zoltan Nagy. Gridlearn: Multiagent reinforce-1110
ment learning for grid-aware building energy management. Electric Power Systems Research,1111
2022.1112

Xin Qiu, Tu A Nguyen, and Mariesa L Crow. Heterogeneous energy storage optimization for mi-1113
crogrids. IEEE Transactions on Smart Grid, 7(3):1453–1461, 2015.1114

Lloyd S Shapley. Stochastic games. Proceedings of the national academy of sciences, 1953.1115

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.1116

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,1117
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A stan-1118
dard interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 1:1–8,1119
2024.1120

José R Vázquez-Canteli and Zoltán Nagy. Reinforcement learning for demand response: A review1121
of algorithms and modeling techniques. Applied energy, 235:1072–1089, 2019.1122

José R. Vázquez-Canteli, Jérôme Kämpf, Gregor Henze, and Zoltan Nagy. Citylearn v1.0: An1123
openai gym environmfent for demand response with deep reinforcement learning. Association1124
for Computing Machinery, 2019.1125

Lucien Werner and Peeyush Kumar. Multi-market energy optimization with renewables via rein-1126
forcement learning. arXiv preprint arXiv:2306.08147, 2023. URL https://arxiv.org/1127
abs/2306.08147.1128

Thomas Wolgast and Astrid Nieße. Approximating energy market clearing and bidding with model-1129
based reinforcement learning. arXiv preprint arXiv:2303.01772, 2023. URL https://arxiv.1130
org/abs/2303.01772.1131

Ting Yang, Liyuan Zhao, Wei Li, and Albert Y Zomaya. Dynamic energy dispatch strategy for1132
integrated energy system based on improved deep reinforcement learning. Energy, 235:121377,1133
2021.1134

Bin Zhang, Weihao Hu, Di Cao, Qi Huang, Zhe Chen, and Frede Blaabjerg. Deep reinforcement1135
learning–based approach for optimizing energy conversion in integrated electrical and heating1136
system with renewable energy. Energy conversion and management, 202:112199, 2019.1137

Ziqing Zhu, Ze Hu, Ka Wing Chan, Siqi Bu, Bin Zhou, and Shiwei Xia. Reinforcement learning in1138
deregulated energy market: A comprehensive review. Applied Energy, 345:120360, 2023.1139

34

https://arxiv.org/abs/2402.02428
https://arxiv.org/abs/2306.08147
https://arxiv.org/abs/2306.08147
https://arxiv.org/abs/2306.08147
https://arxiv.org/abs/2303.01772
https://arxiv.org/abs/2303.01772
https://arxiv.org/abs/2303.01772


Efficient Management of Day-Ahead Energy Markets via Multi-Agent Reinforcement Learning

Supplementary Materials1140

The following content was not necessarily subject to peer review.1141
1142

Content that appears after the references are not part of the “main text,” have no page limits, are1143
not necessarily reviewed, and should not contain any claims or material central to the paper. If your1144
paper includes supplementary materials, use the1145

\beginSupplementaryMaterials1146

command as in this example, which produces the title and disclaimer above. If your paper does not1147
include supplementary materials, this command can be removed or commented out.1148

35


