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Abstract
This paper identifies that misinterpreting the001
context can be a significant issue during the rea-002
soning process of large language models, span-003
ning from smaller models like Llama3.2-3B-004
Instruct to cutting-edge ones like DeepSeek-R1.005
We introduce a novel, post-training approach006
called Stick to the Facts (SIFT) to tackle this.007
SIFT leverages increasing inference-time com-008
pute to ground LLM reasoning in contexts. At009
the core of SIFT lies the Sticker, which is gener-010
ated by the model itself to explicitly emphasize011
the key information within the context. Given012
the Sticker, SIFT generates two predictions—013
one from the Sticker alone and one from the014
query augmented with the Sticker. If they dif-015
fer, the Sticker is sequentially refined via for-016
ward optimization (to better align the extracted017
facts with the query) and inverse generation (to018
conform with the model’s inherent tendencies)019
for more faithful reasoning outcomes. Stud-020
ies across diverse models (from 3B to 100B+)021
and benchmarks (e.g., MATH, AIME) reveal022
consistent performance improvements. No-023
tably, SIFT improves the pass@1 accuracy of024
DeepSeek-R1 on AIME2024 from 78.33% to025
85.67% and that on AIME2025 from 69.8% to026
77.33%. Code will be public after acceptance.027

1 Introduction028

Recent advancements in large language models029

(LLMs) (Dubey et al., 2024; Yang et al., 2024;030

Liu et al., 2024) have significantly advanced031

the field of natural language processing. Tech-032

niques including Chain-of-Thought (CoT) Prompt-033

ing (Wei et al., 2022b; Kojima et al., 2022)034

and Self-Consistency (Wang et al., 2023b), as035

well as reasoning-enhanced models, e.g., OpenAI-036

o1 (Jaech et al., 2024), DeepSeek-R1 (Guo et al.,037

2025), and KIMI-k1.5 (Team et al., 2025), have all038

contributed to improvements in multi-step reason-039

ing for solving complex problems.040

Recent discussions in the community suggest041

that advanced reasoning capabilities in LLMs042

Query

Josh decides to try flipping a house.  He buys a house for
$80,000 and then puts in $50,000 in repairs.  This increased
the value of the house by 150%.  How much profit did he
make?

Sticker

Conditions:
1. Josh buys a house for $80,000.
2. He spends $50,000 on repairs.
3. The value of the house increases by 150%.

Question:
What is the total profit Josh made from flipping the house?

Figure 1: An example of a query and its Sticker.

mainly stem from two factors: (i) foundational 043

knowledge acquisition through massive pretrain- 044

ing on diverse data (Dubey et al., 2024; Lin 045

et al., 2025), and (ii) strategic refinement via post- 046

training interventions like supervised fine-tuning 047

(SFT) (Chung et al., 2022) or reinforcement learn- 048

ing (RL) (Guo et al., 2025), which optimize the 049

model’s ability to select contextually relevant rea- 050

soning pathways. However, our studies reveal a 051

critical lacuna in this framework: LLMs of vary- 052

ing sizes systematically misinterpret, overlook, or 053

hallucinate key information in the query context— 054

an emergent vulnerability we term factual drift. 055

For example, Llama3.2-3B-Instruct (Dubey et al., 056

2024) might incorrectly interpret “per” as “total” 057

instead of “for each” in the phrase “10 dollars per 058

kilo,” leading to reasoning errors even with the log- 059

ical steps being correct. As a result, while current 060

research prioritizes optimizing reasoning mecha- 061

nisms in LLMs (Zelikman et al., 2022, 2024; Wu 062

et al., 2024; Zhang et al., 2024b), we argue equal 063

attention should also be placed on whether LLMs 064

are reasoning about the correct problem. 065

We note that advanced reasoning models, such as 066

DeepSeek-R1 (Guo et al., 2025), can partially miti- 067

gate factual drift during the reasoning process via 068

self-verification. For example, the model dynami- 069

cally paraphrases critical constraints (e.g., convert- 070
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Figure 2: Applying SIFT to DeepSeek-R1 yields highly competitive pass@1 accuracy on AIME 2024, AIME 2025,
and MATH-500. Results for the o-series on AIME are referenced from Ye et al. (2025).

ing “at least 3 days” to “minimum duration ≥72071

hours”) to implicitly perform error-checking. This072

helps correct prior misunderstandings of the con-073

text and leads to better-aligned reasoning results.074

However, such self-verification operates as a ran-075

dom safeguard rather than a systematic protocol—076

it is not guaranteed to be triggered in various rea-077

soning scenarios. Namely, the risk of factual drift078

remains, and it can be significant considering the079

results in Figure 2.080

Inspired by that humans usually use sticky notes081

to externalize critical elements when handling com-082

plex tasks, we propose the Stick to the Facts083

(SIFT) method to explicitly ground LLM reasoning084

in contexts using Stickers generated by the model085

itself. SIFT is a post-training approach, leverag-086

ing inference-time compute to improve generation087

quality yet without reliance on reward models as in088

Best-of-N (BoN) (Brown et al., 2024; Snell et al.,089

2024) and Monte-Carlo tree search (MCTS) (Qi090

et al., 2024; Zhang et al., 2025). Concretely, SIFT091

lets the target LLM summarize key facts within092

the input query, including essential conditions and093

the core question, into a structured Sticker (see094

Figure 1), and make two predictions based on the095

Sticker alone and the query augmented with the096

Sticker, respectively. If they differ, the Sticker is097

refined through bidirectional optimization—a for-098

ward one to better align the Sticker with the query099

and an inverse one to conform to the model’s rea-100

soning preference—for more faithful reasoning.101

Experiments demonstrate that SIFT can consis-102

tently improve the reasoning performance across103

various LLMs and benchmarks. Notably, for104

DeepSeek-R1 (Guo et al., 2025), SIFT achieves105

a 1.03% accuracy improvement over the vanilla106

CoT (97.3%) on MATH-500 (Lightman et al.,107

2023). Additionally, on AIME2024 (of Amer-108

ica, 2024) and AIME2025 challenges, it brings109

a significant accuracy improvement of 7.34% and 110

7.54% respectively (see Figure 2), establishing a 111

new state-of-the-art in the open-source commu- 112

nity. We also witness a striking performance im- 113

provement for small-to-medium-sized models in- 114

cluding Llama3.2-3B-Instruct (Dubey et al., 2024), 115

Llama3.1-8B-Instruct (Dubey et al., 2024), and 116

Qwen2.5-7B-Instruct (Yang et al., 2024). 117

2 Related Work 118

Reasoning has long been a significant challenge 119

for LLMs. Several approaches aim to improve 120

the reasoning capabilities of LLMs. These meth- 121

ods can be broadly categorized into training-based 122

alignment, search and planning enhancement, and 123

inference-time augmentation. 124

Some approaches focus on aligning the reason- 125

ing path of LLMs through Supervised Fine-Tuning 126

(SFT) or Reinforcement Learning (RL). STaR (Ze- 127

likman et al., 2022) enables the model to use re- 128

ject sampling and learn from its mistakes by ra- 129

tionalizing its outputs, progressively enhancing 130

its reasoning capabilities. Quiet-STaR (Zelikman 131

et al., 2024) generates multiple rationales in par- 132

allel before each output token, thereby improving 133

the model’s ability to predict subsequent tokens. V- 134

STaR (Hosseini et al., 2024) employs a dual-system 135

framework where the generator creates preference 136

pairs to train the verifier, which then scores the 137

candidate solutions. 138

Additionally, a significant body of work aims to 139

enhance model reasoning abilities through search 140

and planning. Q* (Wang et al., 2024) formalizes 141

multi-step reasoning as a Markov Decision Pro- 142

cess (MDP) and uses the A* algorithm to guide the 143

model in selecting the optimal next step. rStar (Qi 144

et al., 2024) employs Monte Carlo Tree Search 145

(MCTS) to enhance the model’s reasoning explo- 146
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LLM

LLM

LLM

Query
Carla is downloading a 200 GB file. Normally she can
download 2 GB/minute, but 40% of the way through the
download, Windows forces a restart to install updates, which
takes 20 minutes. Then Carla has to restart the download
from the beginning. How load does it take to download the
file?

Incorrect Sticker: 
Key constraints neglected (underline above)

Conditions:
1. Carla is downloading a 200 GB file.
2. Normally she can download 2 GB/minute.
3. Windows forces a restart to install updates, which takes 20
minutes.
4. Then Carla has to restart the download from the beginning.

Question:
How long does it take to download the file?

Query

(...) However, she has to choose between the boots and two
pairs of high heels that together cost five dollars less
than the boots (...) how many dollars are the boots?

Correct Sticker

Conditions:
(...) The two pairs of high heels together cost five
dollars less than the boots. (...)

Question:
How many dollars are the boots?

Incorrect Prediction: Misinterpretation (underline above)

(...) The boots cost five dollars less than the two pairs of
heels, (...)

Figure 3: Illustration of factual drift in our investigation on Stickers. Left: During query-to-sticker generation.
Right: During prediction generation from the sticker.

ration and uses Mutual Verification to evaluate the147

reasoning paths. SR-MCTS (Zhang et al., 2024a)148

combines Self-Refinement and MCTS to iteratively149

improve and optimize newly discovered reasoning150

paths. MCTS-DPO (Xie et al., 2024) leverages151

MCTS to collect step-level preference data and152

uses Decision-Policy Optimization (DPO) to re-153

fine the model’s policy through multiple iterations.154

ReST-MCTS* (Zhang et al., 2025) takes a broader155

approach in evaluating reasoning paths, consid-156

ering not only the correctness of the results but157

also the quality of the reasoning process, such as158

the shortest path and error-free intermediate steps.159

CoRe (Zhu et al., 2022) constructs a dual-system160

approach with System 1 for generation and System161

2 for verification, training, and reasoning simultane-162

ously to simulate human-like reasoning processes.163

AlphaMath (Chen et al., 2024) treats the output of164

the LLM as an action and integrates a value model165

and a policy model, iteratively training the model166

to enhance its reasoning capabilities.167

There are also methods that focus on enhancing168

reasoning abilities during inference. Innovations in169

prompt engineering have contributed to advance-170

ments in reasoning capabilities. Chain-of-Thought171

(CoT) prompting (Wei et al., 2022a; Kojima et al.,172

2022) guides models in stepwise reasoning, such173

as by manually annotating natural language ratio-174

nales or appending “Let’s think step by step” after175

questions. Auto-CoT (Zhang et al., 2022) clusters176

questions and uses zero-shot Chain-of-Thought to177

generate reasoning chains, which are then used as178

prompts to guide the model’s answers. ToT (Yao179

et al., 2023) removes the constraints of chain struc-180

tures by incorporating tree structures and search181

algorithms, allowing models to explore widely 182

during reasoning. The seminal Self-Consistency 183

method (Wang et al., 2023a) aggregates answers 184

through majority voting over multiple reasoning 185

paths, while Madaan et al. (2024) introduces itera- 186

tive self-correction via feedback loops. 187

However, these methods focus on refining how 188

models reason rather than ensuring they address 189

the correct problem. Our approach differs by pri- 190

oritizing factual comprehension to ensure proper 191

problem understanding before answer generation. 192

3 Method 193

We first presents the factual drift issue during LLM 194

reasoning and then elaborates on the proposed Stick 195

to the Facts (SIFT) approach. Find more discussion 196

on the definition of Sticker in Appendix A. 197

3.1 Factual Drift in LLM Reasoning 198

We define factual drift as the phenomenon where 199

the LLM reasoning fails due to misaligned com- 200

prehension of the query context rather than flawed 201

reasoning logic. This occurs when LLMs neglect 202

key constraints, misinterpret semantic relationships, 203

or hallucinate non-existent conditions during rea- 204

soning procedures. 205

We show that factual drift can be a system- 206

atic failure mode of general LLM problem-solving 207

processes beyond reasoning. Specifically, we an- 208

alyze the error statistics of both Qwen2.5-7B- 209

Instruct (Yang et al., 2024) and Llama3.2-3B- 210

Instruct (Dubey et al., 2024) on samples from the 211

GSM8K test set (Cobbe et al., 2021). For each 212

model, we distinguish between two primary error 213

types: those resulting from factual drift and those 214
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25.9

Qwen2.5-7B-Instruct

34.4

Llama3.2-3B-Instruct

Factual Drift Other Errors

Figure 4: Distribution of error types for Qwen2.5-7B-
Instruct and Llama3.2-3B-Instruct on the GSM8K test
set. The factual drift errors are highlighted in orange and
account for a non-negligible proportion in both models.

Query

Josh decides to try flipping a house.  He buys a house for
$80,000 and then puts in $50,000 in repairs.  This increased
the value of the house by 150%.  How much profit did he
make?

Prediction: Self-verification in reasoning content
<think> (...) Now, the problem says that the repairs 
increased the value of the house by 150%. Wait, I need to 
make sure I understand this correctly. Does that mean the 
increase is 150% of the original value, or 150% of the repair 
cost? Hmm. Let's read the sentence again: "This increased 
the value of the house by 150%." The pronoun "this" refers to 
the repairs. So, putting in $50,000 in repairs increased the 
value by 150% of the original value? Or 150% of the repair 
cost? (...)
(...) The problem states: "(...)" So
(...) The problem says (...)
(...) The problem states "(...)". (...) But it just says (...)
But the problem doesn't specify that the 150% is a return on 
the repair cost. It says "increased the value of the house by 
150%". So (...)
Wait, there's a difference between "increased by" and 
"increased to". (...) "increased the value of the house by 
150%" means (...) </think> (...)

Figure 5: Self-verification occurs during DeepSeek-
R1’s reasoning, where the model revisits the query, fo-
cusing on key information, and paraphrases it.

arising from other causes. To annotate these er-215

rors, we utilize GLM-4-Plus (GLM et al., 2024),216

with prompts detailed in Appendix B. The result-217

ing distributions of error types for both models218

are summarized in Figure 4. As shown, a non-219

negligible proportion of errors in both models can220

be attributed to factual drift, highlighting its signif-221

icance as a failure mode in LLM reasoning.222

Another example is from our experiment on de-223

veloping Stickers. When we use Llama3.2-3B-224

Instruct (Dubey et al., 2024) to construct Stick-225

ers for GSM8K test data (Cobbe et al., 2021), we226

observe extensive factual drift errors, with typical227

examples displayed in Figure 3. As shown, when228

mapping the query to Stickers, LLMs may neglect229

the original constraints. Moreover, even when the230

Sticker is correct, LLMs may still misunderstand231

Algorithm 1: LLM reasoning with SIFT
Input :Query Q
Output :Final result of Q

S1 ← SG(Q) ; // Sticker generation
P1 ← CP(Q,S1);
if P1 ̸=; then

return P1 ; // Exit if consensus
else

// Forward
S2 ← FO(Q,S1), P2 ← CP(Q,S2);
if P2 ̸=; then

return P2

else
// Inverse
S3 ← FO(Q, IG(PQ,S2));
P3 ← CP(Q,S3);
return P3 if P3 ̸=; else LLM(Q)

end
end

Algorithm 2: Consensus Prediction (CP)
Input :Query Q, Sticker S
Output :Prediction from Q & S, or ; (unequal)

PS ← LLM(S) ; // Sticker-only
PQ,S ← LLM(Q,S) ; // Query+Sticker
if EQUIVALENT(PS , PQ,S) then

// Consensus validation
return PQ,S

else
return ;

end

it, especially when the question is complex or uses 232

less familiar phrasing. The above observations also 233

highlight that more optimization mechanisms re- 234

garding the Sticker are required to make it (i) more 235

aligned with the query and (ii) able to be easily 236

understood and leveraged by the target LLM. 237

Self-verification of Advanced Reasoning Models. 238

We note that, for advanced models like DeepSeek- 239

R1 (Guo et al., 2025), the reasoning process 240

sometimes involves self-verification—revisiting 241

the original problem, focusing on key information, 242

and paraphrasing it. As illustrated in Figure 5, 243

DeepSeek-R1 often states, “Let’s read the sentence 244

again: . . . ” or “Wait, the problem states: . . . ” as 245

part of its thought process, helping to deepen its 246

understanding of the context or self-correct. 247

The excellent performance of such advanced rea- 248

soning models underscores the efficacy of mitigat- 249

ing factual drift to make the model better respect 250

the context. Nevertheless, this self-verification 251

functions more as a stochastic safeguard than a sys- 252

tematic protocol—it may not always be activated 253

across different reasoning scenarios. Consequently, 254

the risk of factual drift persists. We consequently 255
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LLM

LLM

LLM

Sticker Generation (SG)

Query Sticker

LLM

Consensus Prediction (CP)

Sticker

Query

Sticker

Prediction
from Sticker

Prediction
from

query+Sticker

Optimized Sticker (Align with the query)

Conditions:
1. The price of one glass is $5.
2. Every second glass costs only 60% of (...)
3. Kylar wants to buy 16 glasses.

Question:
What is the total amount Kylar needs to pay for 16 glasses?

Forward Optimization (FO)

Query

Kylar went to the store to buy glasses for his new apartment.
One glass costs $5, but every second glass costs only 60% of
the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?

Incorrect Sticker (Red for error, blue for omission)
Conditions:
1. The cost of a regular glass is $5.
2. The 16th glass costs 60% of the price of a regular glass.

Question:
What is the total cost of the glasses Kylar needs to pay?

Final Optimized Sticker
Conditions:
1. The train travels from the first city to the second
city. (Added)
2. The distance from the second city to the third
city is 100 miles. (Revised sentence structure)
3. The distance from the third city to the first city
is 50 miles less than the combined distance of the
first two legs. (Rephrased)
4. The combined distance of the first two legs is 75
+ 100 = 175 miles. (Rephrased) (...) 

Question: (...)

Inverse Generation (IG)

Original Sticker (Correct but suboptimal)

Conditions:
1. A train travels between 3 different cities.
2. It goes 75 miles from the first city to the second
city. (Redundant Information)
3. It goes 100 miles from the second city to the
third city.
4. The distance from the third city to the first city
is 50 miles less than the combined distance of the
other two segments.
5. The combined distance of the two known
segments is 75 + 100 = 175 miles. (...)

Question: (...)

Query

Final
Optimized
Sticker

Sticker
after IG

Sticker after IG (Align with the model)
Conditions:
1. The train travels from the first city to the second
city.
2. The distance from the second city to the third
city is known.
3. The distance from the third city to the first city
is known. (...) 

Question: (...)

Original
Sticker

Prediction
from

query+Sticker

LLM

FO

Consensus?

Figure 6: Four core operations in SIFT: (i) Sticker Generation (SG), (ii) Consensus Prediction (CP), (iii) Forward
Optimization (FO), (iv) Inverse Generation (IG).

develop the novel SIFT framework to address this.256

3.2 Stick to the Facts (SIFT)257

Below, we introduce SIFT, with the algorithmic258

procedure summarized in Algorithm 1. Refer to259

Figure 6 for the visualization of the four involved260

operators and Appendix E for the used prompts.261

Sticker Generation (SG). To address the factual262

drift issue identified in LLM reasoning, we focus263

on encoding the core information of the query into264

a compact and explicit form, which we call the265

Sticker. This process emphasizes the essential con-266

straints and facts from the original query, aiming to267

make critical information more salient to the model268

and reduce the risk of misinterpretation or omission269

during downstream reasoning.270

Consensus Prediction (CP). Once a Sticker is271

generated, the model can produce answers in two272

ways: using the Sticker alone, or using both the273

Sticker and the original query as input. If the an-274

swers differ, this indicates high uncertainty or po-275

tential misalignment in the model’s understanding—276

suggesting possible factual drift. If the answers277

agree, there is a lower risk of factual drift and the 278

prediction is more likely to be reliable. We formal- 279

ize this procedure as Consensus Prediction (CP), 280

with details summarized in Algorithm 2, which 281

serves as a factual validation mechanism. 282

Unlike traditional self-consistency methods that 283

aggregate diverse reasoning paths (Wang et al., 284

2023a), CP focuses on verifying semantic invari- 285

ance across different problem representations. 286

Forward Optimization (FO). Despite careful ini- 287

tial construction, Sticker Generation itself may still 288

be subject to factual drift, where key constraints 289

are inaccurately captured or misunderstood. To 290

mitigate this, we introduce Forward Optimization 291

(FO): starting from the generated Sticker, we re- 292

fine it further using both the original query and 293

the initial Sticker as context. This step helps to 294

better anchor the Sticker to the true semantics of 295

the source query, correcting misinterpretations and 296

clarifying ambiguous information (e.g., fixing “the 297

16th glass” to “every second glass” as in Figure 6). 298

Inverse Generation (IG). A noteworthy observa- 299

tion in LLM reasoning is that contexts with identi- 300
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Figure 7: Comparison of SIFT and traditional Zero-shot CoT across multiple models and datasets. We divide SIFT
into three stages: Stage 1 only uses SG & CP, while Stage 2 and Stage 3 optimize the Sticker through forward
(+FO) and inverse (+IG) direction, respectively. The bidirectional arrows in the figure highlight the performance
gap between Zero-shot CoT and the complete SIFT (i.e., Stage 3). We see that in nearly all scenarios, SIFT leads to
a significant performance improvement.

cal semantics but different surface forms can pro-301

duce different outcomes. To further address poten-302

tial factual drift and better align the Sticker with303

the model’s internal preferences, we propose In-304

verse Generation (IG). In this step, a new Sticker305

is constructed based on the model’s own predic-306

tion, allowing the representation to better reflect307

the reasoning patterns favored by the LLM. For308

example, as shown in Figure 6, an original Sticker309

might express a condition as “It goes 100 miles310

from the second city to the third city,” while the311

model, in its own prediction, rephrases it as “The312

distance from the second city to the third city is313

100 miles.” Although both statements share the314

same meaning, their surface forms differ, with the315

latter more consistent with the model’s reasoning316

patterns. This process facilitates the refinement317

of the Sticker, making its expression more closely318

aligned with the model.319

4 Experiments320

This section first validates the effectiveness and321

generalization of SIFT (Section 4.1). Next, we ex-322

plore several variants (Section 4.2 & 4.3). Finally,323

we include ablation studies to gain further insights324

into our approach (Section 4.4 and appendix D).325

4.1 Enhancing LLM Reasoning with SIFT 326

Models & Datasets. For details on the models and 327

datasets used in our experiments, see Appendix C. 328

Test Protocol. To isolate the effect of SIFT from 329

the influence of sampling, all tests are conducted 330

using greedy decoding, except for DeepSeek-R1. 331

Because the default settings of the used Volcengine 332

API (temperature=1.0, top-p=0.7) cannot be mod- 333

ified, the SIFT on DeepSeek-R1 is based on sam- 334

pling. Specifically, for DeepSeek-R1 on MATH- 335

500, we perform 3 sampling runs and report av- 336

erage results. For AIME2024, due to its small 337

size, we perform 10 sampling runs and report the 338

average. Additionally, we divide the entire SIFT 339

process into three stages: (i) Stage 1: Only SG and 340

CP are used. (ii) Stage 2: Building upon Stage 1, 341

FO is used to optimize the Sticker. (iii) Stage 3: 342

The complete process outlined in Algorithm 1. The 343

accuracy after each stage is measured: If the CP re- 344

sults are not aligned (;), the model’s direct answer 345

to the query is used instead. All evaluations are 346

performed on OpenCompass (Contributors, 2023). 347

Main Results. The results are shown in Figures 2 348

and 7. As observed, SIFT consistently delivers 349

robust and significant performance improvements 350

compared to traditional Zero-shot CoT across all 351

settings. From a methodological perspective, as 352
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Figure 8: Iterative optimization results for SIFT. The
performance improves as the number of tokens per sam-
ple increases across different stages. Significant gains
are observed in the first repeats of Stage 2 and Stage 3.

the stages increase—i.e., with the forward and in-353

verse optimization of Sticker—the average num-354

ber of tokens used per sample rises, and accuracy355

shows an upward trend as well. From a model356

standpoint, SIFT demonstrates notable effective-357

ness across various scales (ranging from several358

billion to hundreds of billions of parameters), ar-359

chitectures (both dense and MoE), and paradigms360

(traditional and reasoning models). Particularly361

noteworthy is its significant impact on DeepSeek-362

R1. For instance, on MATH-500, it achieves a363

1.03% absolute accuracy improvement over an al-364

ready exceptionally high baseline of 97.3%. On365

AIME2024, it also brings a substantial absolute366

accuracy increase of 7.34%. These results indi-367

cate that even for advanced reasoning models like368

DeepSeek-R1, sticking to the facts remains crucial369

for optimal performance.370

4.2 Iterative Optimization371

In this section, we explore whether the Sticker can372

be continually optimized in SIFT.373

Setup. We test with Llama3.2-3B-Instruct (Dubey374

et al., 2024) on the GSM8K dataset (Cobbe et al.,375

2021). Specifically, we conduct multiple optimiza-376

tion repeats for Stage 2 and Stage 3. The other377

settings are the same as in Section 4.1.378

Results. The experimental results are shown in379

Figure 8. We observe that SIFT shows a test-time380

scaling, with the performance improving as the av-381

erage number of tokens per sample increases. For382

Stage 2, the saturation is rapid, but adding Stage 3383

can result in an additional, noticeable performance384

boost. Nevertheless, the most significant gains are385

observed at the first repeat. One possible expla-386

nation is that extracting the optimal Sticker for387

GSM8K is relatively easy. In more complex con-388

ditions, however, extracting a good Sticker may be389

harder, requiring more repeats to achieve optima.390

Consistency Stage 1 Stage 2 Stage 3Dimension

Greedy 77.56 78.62 79.23
(i) Sticker 78.85 79.65 80.29
(ii) Prediction 85.37 86.20 86.28
(iii) SIFT — — 88.25

Table 1: Performance comparison of different consis-
tency integration strategies for SIFT across multiple
stages. The results show that integrating SIFT with Self-
Consistency (Wang et al., 2023a) leads to significant per-
formance improvements, with SIFT-Consistency achiev-
ing the highest accuracy boost.

Additionally, since we use a training-free approach 391

for SIFT, a model trained to exclusively optimize 392

Sticker could lead to better iterative results. 393

4.3 Sample Augmentation 394

In this section, we explore the use of Self- 395

Consistency (SC) (Wang et al., 2023a) to enhance 396

SIFT, demonstrating how SIFT and SC can be ef- 397

fectively coupled together. 398

Specifically, SIFT and SC can be integrated 399

in three ways: (i) Sticker-Consistency: Multiple 400

Sticker samples are drawn, and consistency is ap- 401

plied to the predictions generated by each Sticker 402

or by the query combined with each Sticker. (ii) 403

Prediction-Consistency: Consistency is applied 404

separately to predictions generated using Sticker 405

alone and those generated with Query + Sticker, 406

considering their respective samples. (iii) SIFT- 407

Consistency: End-to-end sampling is conducted 408

across the entire SIFT to ensure consistency. We 409

test Llama3.2-3B-Instruct (Dubey et al., 2024) on 410

GSM8K (Cobbe et al., 2021) with a temperature of 411

0.6, a top-p of 0.9, and 10 sampling iterations. 412

The results of these configurations are presented 413

in Table 1. It is observed that our method can be 414

combined with SC to achieve better performance. 415

Specifically, integrating SIFT consistently results 416

in performance improvements. Notably, SIFT- 417

Consistency provides the most significant boost, 418

demonstrating that the simplest sampling method— 419

end-to-end—can lead to substantial performance 420

gains for SIFT. 421

4.4 Ablation 422

Evolution of Consensus Across Optimization 423

Stages. The efficacy of SIFT hinges on improv- 424

ing agreement between predictions derived from 425

Sticker-only and Query + Sticker representations 426

through iterative refinement. To quantify this 427
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Figure 9: Venn diagrams illustrating the accuracy of predictions obtained from the “Only Sticker” and “Query &
Sticker” representations at each stage. The percentages represent the accuracy where both methods correctly predict
the same outcomes (i.e., the overlapping purple region). From Stage 1 to Stage 2, the accuracy increases by 6.14%,
and from Stage 2 to Stage 3, it increases by 4.85%. The results show the significant impact of Forward Optimization
(FO) and Inverse Generation (IG) in improving prediction alignment from the two representations.
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Figure 10: Comparison of SIFT and standard Self-
Consistency (SC) in terms of accuracy versus average
tokens per sample. The solid lines represent the out-
put tokens used by SC (blue) and SIFT (red), while the
dashed lines indicate the total tokens consumed. The “*”
symbol in the legend denotes that the total tokens for
SIFT fluctuate due to the additional formatting and ex-
ample constraints used during inference. SIFT achieves
comparable accuracy to SC while using significantly
fewer output tokens, demonstrating its efficiency.

alignment, We select Llama3.2-3B-Instruct (Dubey428

et al., 2024) on the GSM8K dataset (Cobbe et al.,429

2021). We plot the accuracy of predictions ob-430

tained using “Only Sticker” and “Query & Sticker”431

after each stage, visualized in the Venn diagram in432

Figure 9. As shown, both FO and IG significantly433

improve the alignment of the predictions from the434

two representations.435

Comparison of SIFT and Standard Self-436

Consistency. Under the same sampling condi-437

tions (temperature = 0.6, top-p = 0.9), we com-438

pare the performance of standard Self-Consistency439

(SC) with SIFT. The evaluation is conducted using440

Llama3.2-3B-Instruct on GSM8K. For SIFT, we441

sample 10 times and take the average. The results442

are shown in Figure 10. Regarding the total tokens443

used by both methods, the performance curve of444

SIFT generally remains above that of SC. Regard-445
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75

80

85

A
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Figure 11: Comparison of SIFT-Consistency and Self-
Consistency across different numbers of sampled re-
sponses per query. SIFT-Consistency consistently out-
performs Self-Consistency.

ing output tokens, which are more costly during 446

inference, SIFT demonstrates a clear advantage 447

over SC. Specifically, SIFT achieves a comparable 448

performance level while using only two-thirds of 449

the output tokens required by SC. 450

Comparison of SIFT-Consistency and Standard 451

Self-Consistency. In the same sampling environ- 452

ment (temperature = 0.6, top-p = 0.9), we compare 453

the performance of standard Self-Consistency (SC) 454

decoding with SIFT-Consistency, which integrates 455

SIFT with SC. We conduct the evaluation using 456

Llama3.2-3B-Instruct on the GSM8K dataset. The 457

results are shown in Figure 11. As shown in the 458

figure, SIFT-Consistency consistently outperforms 459

standard SC across different sampling iterations. 460

For more ablations, see Appendix D. 461

5 Conclusion 462

This study presents Stick to the Facts (SIFT), a 463

training-free framework that grounds LLM rea- 464

soning in contextual facts through iterative self- 465

refinement. Our approach enhances reasoning reli- 466

ability without requiring extra data or training. 467

8



Limitations468

This work focuses on the training-free setting and469

SIFT require additional tokens. In the future, SIFT470

could be internalized into small LLMs through ded-471

icated training, enabling more efficient on-device472

reasoning. Separately, SIFT can be applied to re-473

duce the output token length of reasoning models,474

improving computational efficiency without com-475

promising accuracy. Additionally, Inverse Gener-476

ation in SIFT offers new inspiration for data gen-477

eration in inverse synthesis tasks. Further studies478

are needed to generalize its effectiveness across a479

wider range of tasks.480
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A Sticker Framework666

The design of the Sticker framework stems from a667

critical gap in LLM reasoning: unstructured natural668

language queries often entangle factual conditions669

with problem-solving objectives, creating ambigu-670

ity that leads to factual misalignment. To resolve671

this, we explicitly separate the input queries into672

two components: Conditions and Question. These673

components form the structure of the Sticker. An674

example of an original query and its corresponding675

Sticker is showed in Figure 1.676

B Prompts for Error Type Annotation677

To annotate the error types in the GSM8K eval-678

uation, we used GLM-4-Plus (GLM et al., 2024)679

with the following prompt. For each model pre-680

diction, the model is provided with the original681

question, the standard answer, and the student’s682

(model’s) answer. The prompt asks the model to683

determine whether the error was due to a misun-684

derstanding of the question (factual drift, labeled685

as read error) or a reasoning/calculation mistake686

(labeled as reason error).687

You are an experienced teacher.
Below, I will provide the
standard answer, the student’s
answer, and the original
question. Please identify
whether the student’s error is
due to misunderstanding the
question or an actual mistake
in reasoning or calculation.

If the student misunderstood
the question, output: “read
error”.
If the student made a mistake
in reasoning or calculation,
output: “reason error”.

Question: {question}
Standard Answer: {gold}
Student’s Final Answer:
{prediction}

688

C Models & Datasets689

We test SIFT on a diverse set of state-of-the-art690

LLMs, including Llama3.2-3B-Instruct (Dubey691

et al., 2024), Llama3.1-8B-Instruct (Dubey et al.,692

2024), Qwen2.5-7B-Instruct (Yang et al., 2024), 693

and DeepSeek-R1 (Guo et al., 2025). These 694

models cover a range of sizes, architectures 695

(Mixture-of-Experts (MoE) vs. dense), and rea- 696

soning capabilities. We select well-established 697

reasoning benchmarks, including GSM8K (Cobbe 698

et al., 2021), MATH-500 (Lightman et al., 699

2023), GPQA-Diamond (Rein et al., 2023), and 700

AIME2024/2025 (of America, 2024). 701

D More Results 702

Model Stage 1 Stage 2 Stage 3
Stage 3

from Stage 1

Llama 77.56 78.62 79.23 74.07
Qwen 92.57 92.95 92.87 90.90

Table 2: Performance comparison of Llama3.2-3B-
Instruct and Qwen2.5-7B-Instruct on GSM8K, with and
without Stage 2. The results show a performance drop
when skipping directly from Stage 1 to Stage 3.

FO Required Before Adding IG. We investigate 703

whether it is possible to skip directly from Stage 704

1 to Stage 3. We select Llama3.2-3B-Instruct and 705

Qwen2.5-7B-Instruct on GSM8K. All settings re- 706

main the same as in Section 4.1, except for skipping 707

directly to Stage 3 after Stage 1. The results are 708

shown in Table 2. As observed, skipping Stage 709

2 leads to a significant performance drop. This 710

indicates that during the initial optimization of 711

Sticker, FO is essential to align Sticker with the 712

query, followed by aligning it with model cogni- 713

tion. This is consistent with our experience, where 714

the effectiveness of Sticker depends primarily on 715

its correctness—ensuring no factual drift—before 716

considering its alignment with the model. 717

Strategy Accuracy

PQ,S if PQ,S=PS else PQ 77.56
PS if PS=PQ else PQ,S 77.02
PQ if PQ=PQ,S else PS 76.04

Table 3: Performance comparison of various CP strate-
gies. Here, PQ, PS , and PQ,S represent the predictions
generated from query, Sticker, and query augmented
with Sticker, respectively. The first row of the table
represents the strategy used in SIFT, which is shown to
be the optimal approach.

Optimal Consensus Prediction Strategy. CP pro- 718

cess, our strategy involves comparing predictions 719

11



from Sticker and query + Sticker. If the predictions720

are consistent, we adopt the prediction from Query721

+ Sticker; otherwise, we use the prediction directly722

from query. We validate this as the optimal strat-723

egy. Several alternative strategies were evaluated724

using Stage 1 results of Llama3.2-3B-Instruct on725

the GSM8K dataset, as shown in Table 3. The re-726

sults demonstrate that our CP strategy is effective,727

aligning with the prior analysis in Section 3.2.728

Strategy Factual Drift Error Rate (↓)

Vanilla CoT 25.93
SIFT (Stage 1) 15.30
SIFT (Stage 2) 15.09
SIFT (Stage 3) 14.73

Table 4: Factual drift error rates on GSM8K using
Qwen2.5-7B-Instruct. The results show a progressive
reduction in factual drift through the three stages of the
SIFT method, compared to the baseline Vanilla CoT.

Factual Drift Mitigation. SIFT employs a two-729

stage optimization process (forward and backward730

passes) to refine Stickers, specifically designed731

to mitigate Factual Drift—a prevalent error type732

where model responses diverge from original facts.733

To quantify this effect, we evaluate Qwen2.5-7B-734

Instruct on GSM8K, measuring the percentage of735

incorrect answers where the first error is caused by736

Factual drift, as shown in Table 4.737

E Prompting for SIFT738

In this section, we present the complete prompt739

formats used in the SIFT process (see Figures 12740

to 15 for details).741

Prediction  Sticker
Given the prediction provided below, reverse-engineer
the abstract that led to it. The abstract should
include both the conditions and the question.

Abstract Format:

`
**Conditions:**
1. [Condition 1]
2. [Condition 2]
...(add more conditions as needed)  

**Question:**
[Clearly state what is being asked.]
`

Requirements:
1. Conditions: 
    - Clearly list all the given information. 
    - Write each condition on a separate line,
numbered sequentially. 
    - EACH CONDITION MUST BE ATOMIC AND INDIVISIBLE
(i.e., it cannot be divided into two sub-conditions). 
    - DO NOT INCLUDE ANY PART OF THE REASONING
PROCESS!!!
2. Question: 
    - Summarize what is being asked in one clear
sentence. 
    - Remove all known conditions.

Example:

Prediction:(...)

Expected Output:(...)

Prediction to Process:

`
{prediction}
`

Please provide your output strictly following the
ABSTRACT FORMAT without other unnecessary words.

Figure 12: Prompt format for generating a Sticker in-
versely from the prediction.

Sticker  Prediction
{Sticker}

Please reason step by step, and put your final answer
within \boxed{}.

Query + Sticker  Prediction

{Query}
{Sticker}

Please reason step by step, and put your final answer
within \boxed{}.

Query  Prediction
{Query}
Please reason step by step, and put your final answer
within \boxed{}.

Figure 13: Prompt format for generating predictions.
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Query  Sticker
Extract fundamental elements from the following query
using atomic decomposition methodology.

Requirements:
1. Conditions: Clearly list all the given information.
Write each condition on a separate line, numbered
sequentially.
2. Question: Summarize what is being asked in one clear
sentence. Remove all known conditions.

Output Format:

`
**Conditions:**
1. [Condition 1]
2. [Condition 2]
...(add more conditions as needed)  

**Question:**
[Clearly state what is being asked.]
`

Example:

Query:(...)

Expected Output:(...)

Query to Process:

`
{question}
`

Please provide your output strictly following the output
format without other unnecessary words.

Figure 14: Prompt format for generating a Sticker from
the query.

Query + Sticker  Sticker
Given a query and a candidate abstract (which includes
conditions and a question), output an optimized
abstract.

Requirements:
1. Definitions of Conditions and Question:
    * Conditions: Clearly list all the given
information. Write each condition on a separate line,
numbered sequentially.
    * Question: Summarize what is being asked in one
clear sentence. Remove all known conditions.
2. Focus of Optimization: Compare the Original Query
with the candidate Abstract. Identify and fix:
    * Missing/incorrect/redundant conditions
    * Imprecise question phrasing
    * Mathematical/logical inconsistencies
    * Output format error

Output Format:

`
**Conditions:**
1. [optimized Condition 1]
2. [optimized Condition 2]
...(add more conditions as needed)

**Question:**
[Optimized question phrasing. Clearly state what is
being asked.]
`

Some Examples:(...)

Input to Process:

`
Original Query:
{question}

Candidate Abstract:
{abstract}
`

Please provide your output strictly following the output
format without other unnecessary words.

Figure 15: Prompt format for forward optimization of
the Sticker.
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