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ABSTRACT

Clustered Federated Learning has emerged as an effective approach for handling
heterogeneous data across clients by partitioning them into clusters with similar or
identical data distributions. However, most existing methods, including the Itera-
tive Federated Clustering Algorithm (IFCA), rely on a central server to coordinate
model updates, which creates a bottleneck and a single point of failure, limiting
their applicability in more realistic decentralized learning settings. In this work,
we introduce DFCA, a fully decentralized clustered FL algorithm that enables
clients to collaboratively train cluster-specific models without central coordina-
tion. DFCA uses a sequential running average to aggregate models from neigh-
bors as updates arrive, providing a communication-efficient alternative to batch
aggregation while maintaining clustering performance. Our experiments on vari-
ous datasets demonstrate that DFCA outperforms other decentralized algorithms
and performs comparably to centralized IFCA, even under sparse connectivity,
highlighting its robustness and practicality for dynamic real-world decentralized
networks.1

1 INTRODUCTION

Federated Learning (FL) has emerged as a new paradigm that allows for clients to train Machine
Learning (ML) models collaboratively without the need to share their raw data. By enabling collab-
orative training across multiple devices, FL has gained significant attention in research and industry,
especially since distributed computing with different devices has become a crucial component of
modern technology. The most known FL implementation strategy, FedAvg (McMahan et al., 2017),
and most other known FL algorithms assume a setting with a central instance that aggregates the lo-
cal updates of all clients to form a global model, which is then broadcast back to the network. While
effective, this orchestration with a central server introduces several limitations, including a single
point of failure, communication delays, and bottlenecks that are often connected to more challenging
learning settings with Internet of Things (IoT) devices and mobile phones (Lalitha et al., 2018).

To address the limitations of centralized Federated Learning (CFL), recent research has explored
decentralized Federated Learning (DFL), where clients communicate with each other without the
need for a central instance (Lalitha et al., 2018). Decentralized strategies often utilize peer-to-peer
(P2P) (Lalitha et al., 2019) or gossip-based (Hu et al., 2019; Hegedűs et al., 2019) exchange methods
to achieve convergence through direct communication between clients. DFL approaches remove
the single point of failure, often reduce communication cost and delays, and improve the overall
robustness (Yuan et al., 2024).

Concurrently, clustered FL has appeared as a proposed solution to data heterogeneity across clients,
another major issue in ML and FL. In most real-world scenarios, the data is not independently
identically distributed (non-IID) over all clients, making global aggregation less efficient and sub-
optimal. Clustered FL methods attempt to cluster clients into groups with similar data distributions,
allowing clusters to capture local patterns and characteristics during training (Sattler et al., 2019).
The most popular among clustered FL techniques is the Iterative Federated Clustering Algorithm
(IFCA) (Ghosh et al., 2021), which is a centralized, training loss-based clustering method, where
clients clusters are evaluated locally after each global training round. As most other clustered FL

1The code is attached to the submission and will be made publicly available upon acceptance.
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Figure 1: Illustration of the DFCA problem for Rotated EMNIST with two different data distribu-
tions

techniques that have been developed over the recent years also presume central instance coordina-
tion, they are not optimized for decentralized learning settings. In this paper, we propose in this
paper the Decentralized Federated Clustering Algorithm (DFCA) to address this issue.

Our contributions:

1. We formulate DFCA, a fully decentralized federated clustering algorithm inspired by IFCA
and designed to operate effectively in low-connectivity networks with heterogeneous client
data distributions.

2. We incorporate a sequential running-average parameter exchange strategy that preserves
clustering performance while enabling communication-efficient updates across the net-
work.

3. Through extensive experiments on various datasets, we demonstrate that DFCA matches
the accuracy of the centralized IFCA baseline and outperforms decentralized alternatives.
Furthermore, sequential aggregation achieves performance comparable to synchronous
batch aggregation, highlighting its practicality for real-world decentralized settings.

After looking at the problem formulation in Section 2, we proceed to introduce our method in Section
3, analyze its convergence in Section 4, and show our simulation results in Section 5. We will
conclude this paper’s findings in Section 7, after briefly introducing related work in Section 6.

2 PRELIMINARIES

Let M be a set of N clients that are connected to each other in a graph. We represent the graph by
N sets Ni ⊂ M , which contain the neighboring clients for each client i (i.e., neighborhood sets).
The clients are partitioned into k disjoint clusters S1, ...,Sk ⊂M . Each cluster is associated with a
distinct data distribution D1, ...,Dk. Our problem setup is illustrated in Figure 1, with the different
data distributions being simulated by handwritten character digits (EMNIST) rotated by 0, 90, 180,
270 degrees.

For each client i, we sample a data set Di distributed according to Dj of the associated cluster j
meaning that each clients has data from one of k data distribution. Additionally, at each client i we
store all k machine learning models (ML-models), which are parameterized by θi,j where j ∈ [k]
and k is the number of clusters. Client i will update the parameters θi,j of the model, which is
associated with its corresponding cluster j, by gradient descent using Di. During aggregation (com-
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munication phase) the local models for all clusters are updated using the models of the neighboring
clients. Note that the corresponding (assigned) cluster of a client might change after an iteration.

For client-local learning, we consider a loss function L(θi,j , d) that calculates the loss for a single
data point d ∈ Di. These losses can be combined on the client-level and also on the cluster-level:

Let’s first consider the loss for an individual client. We assume that client i is assigned to cluster j.
Then we write the client-specific objective as

Fclient(θi,j , Di) =
1

|Di|
∑
d∈Di

L(θi,j , d). (1)

Second, we define the loss for each cluster j as the sum of the losses of the associated clients,

Fcluster(j) =
∑
i∈Sj

Fclient(θi,j , Di). (2)

Finally, we define the global loss, which combines all data points across all clients into a single
number:

Fglobal =

k∑
j=1

Fcluster(j) (3)

Having formulated the loss functions on client- and cluster-level, we next introduce the decentralized
learning algorithm DFCA, which allows clients to collaboratively minimize their respective cluster-
specific losses while communicating with their neighbors in the graph to exchange results.

3 DECENTRALIZED FEDERATED CLUSTERING ALGORITHM

Decentralized Federated Clustering Algorithm (DFCA) starts with initialization of the model param-
eters and then iterates three steps: (1) Cluster Assignment, (2) Local Updates, and (3) Decentralized
Aggregation. Steps (1) and (2) are similar to existing clustered FL algorithms (Ghosh et al. (2021);
Lin et al. (2025); El-Rifai et al. (2025)). Step (3) enables decentralized learning.

Initialization. Before detailing the three iterative steps, we explain how the model parameters θi,j
are initialized. We consider two variants: (i) with the global initialization method (DFCA-GI), all
k models are centrally generated and published via broadcast (or initialized locally using the same
seed) before the first iteration, so that every client holds the same model parameters at the beginning.
(ii) For the local initialization method (DFCA-LI), all clients start on different parameters, i.e., each
client can initialize the models locally.

3.1 CLUSTER ASSIGNMENT

Every client i is assigned to cluster c(i) ∈ [k] through inference on the current parameters θi,j . More
formally, we update c(i) to be the argmin of the local client loss,

c(i)← argmin
j

Fclient(θi,j , Di) (4)

Hereby, the overall loss Fglobal is non-increasing. These cluster assignments are repeated at the start
of each training loop.

3.2 LOCAL UPDATE

The local update at client i runs several epochs at the client-level using (stochastic) gradient descent
on the local data Di with respect to θi,c(i):

θi,c(i) ← θi,c(i) − γ∇Fclient(θi,c(i), Di) (5)

(with learning rate γ), i.e., we only modify the parameters of the assigned cluster c(i). Again, the
gradient descent ensures that the global loss Fglobal is decreasing (at least in expectation).
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Figure 2: After initialization, DFCA iterates three steps: (1) cluster assignment, (2) local training,
and (3) parameter exchange

3.3 DECENTRALIZED AGGREGATION (AKA COMMUNICATION STEP)

The goal of our algorithm is that at the end, all clients hold all k trained models. Thus, limiting
the communication to neighbors within the same cluster would be suboptimal. Instead, all clients
exchange their parameters with all of their neighbors according to the graph and locally average the
models. More formally, client i ∈ M receives parameters from all neighbors in its neighborhood
Ni. To maintain cluster-specific updates in a sparse decentralized network, clients receive models
from their neighbors but only send out the model parameters θi,c(i) that they trained themselves in
the previous step.

To specify the aggregation equations, we split the neighbors of client i according to their cluster
assignments:

Ni,j := {m |m ∈ Ni and c(m) = j} ⊂ Ni (6)

(for i ∈ [N ] and j ∈ [k]). In this phase, the clients update the parameter sets for all clusters, not
only the one of their assigned cluster c(i).

Batch aggregation. Next, we define the batch update (synchronous), which assumes that all neigh-
bors m have reported their current models θm,j :

θi,j ←
1

|Ni,j |+ 1

θi,j +
∑

m∈Ni,j

θm,j

 (7)

(for i ∈ [N ] and j ∈ [k]).

Sequential aggregation. While batch aggregation is the perfect scenario, in practice, neighbors
might report their updates asynchronously, and we can never be sure whether a client has discon-
nected or not. Thus we need sequential averaging that is robust against failing clients and random
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arrival times. The basic idea is to replace the averaging in Eq. 7 with an online version (a.k.a. run-
ning average): we start with the local parameter value θi,j and update it as the messages from the
other clients come in. Assuming r neighbors have already reported their updates for cluster j, we
update θi,j with:

θi,j ←
r

r + 1
θi,j +

1

r + 1
θm,j for r ∈ [|Ni,j |] (8)

(for i ∈ [N ] and j ∈ [k]).

Our sequential aggregation naturally supports asynchronous updates, allowing each client to inte-
grate neighbor models immediately as they arrive, which can improve efficiency and reduce idle
time in fully distributed deployments. This approach is also memory efficient, as it only requires
storing the current estimate per model rather than all neighbor updates. Moreover, using a run-
ning average ensures that each incoming model contributes proportionally to the aggregated model,
providing a stable and principled approximation of the full batch aggregation even in dynamic and
sparse networks.

Algorithm 1 Decentralized Federated Clustering Algorithm (DFCA)

1: Input: number of clusters k, number of iterations T
2: Local: step size γ, number of local epochs τ
3:
4: DFCA-GI: initialize θi,j per cluster and publish models to all clients
5: DFCA-LI: initialize θi,j for all clusters per client (personalized models)
6:
7: for t = 0, 1, ..., T − 1 do
8: Mt ← subset of worker machines (participating devices)
9: for worker machine i ∈Mt do

10:
11: Step 1: AssignCluster
12: c(i)← argmin

j
Fclient(θi,j , Di) ▷ run local inference on all models

13:
14: Step 2: LocalUpdate
15: for q = 0, ..., T − 1 do
16: θi,c(i) ← θi,c(i) − γ∇Fclient(θi,c(i), Di) ▷ stochastic gradient descent
17: end for
18:
19: Step 3: Aggregation
20: for each cluster j = 1, ..., k do
21: r ← 0
22: for each neighbor m ∈ Ni,j do
23: r ← r + 1
24: θi,j ← r

r+1θi,j +
1

r+1θm,j ▷ running average for each cluster
25: end for
26: end for
27: end for
28: end for

4 CONVERGENCE SUMMARY

We briefly summarize the convergence properties of DFCA. Full proofs are deferred to Appendix B.

Setup. Each client stores all k models {θti,j} here with index t for the round. Each round ex-
ecutes three steps: (i) cluster assignment by local inference, (ii) local stochastic gradient descent
on the assigned model, and (iii) decentralized aggregation with neighbors. Aggregation is carried
out via gossip (either synchronous averaging or sequential running averages), which preserves the
network-wide average and contracts disagreement among clients. For cluster j, define the stacked
vector Θt

j = (θt1,j , . . . , θ
t
N,j) and the network average θ̄tj = 1

N

∑N
i=1 θ

t
i,j . We measure per-cluster

5
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disagreement by Disptj =
1
N

∑N
i=1 ∥θti,j − θ̄tj∥2. The three steps of one DFCA update round can be

written as:

1. Assignment: ct(i) = argminj∈[k] Fclient(θ
t
i,j , Di).

2. Local descent (assigned index only):

θ
t+ 1

2

i,ct(i)
= θti,ct(i) − γ gi,ct(i)(θ

t
i,ct(i)

), θ
t+ 1

2
i,j = θti,j (j ̸= ct(i)), (9)

with stochastic gradient gi,j .
3. Decentralized aggregation (all j):

θt+1
i,j =

∑
m∈{i}∪Ni

w
(j)
im,t θ

t+ 1
2

m,j , (10)

where W
(j)
t = (w

(j)
im,t) respects G, is row-stochastic, and is doubly-stochastic in the syn-

chronous (batch) case. In the sequential/async case, W (j)
t is time-varying with standard

joint-connectivity.

We adopt the following standard assumptions.

(A1) Smoothness. For all i, j, Fclient(·, Di) is L-smooth.
(A2) Noise. Unbiased stochastic gradients with bounded variance: E[gi,j(θ) | θ] =

∇Fclient(θ,Di), E∥gi,j(θ)−∇Fclient(θ,Di)∥2 ≤ σ2.

(A3) Graph mixing. In the synchronous case there exists a symmetric, doubly-stochastic W
respecting G with spectral gap 1 − λ > 0 such that ∥XW − 1x̄⊤∥ ≤ λ ∥X − 1x̄⊤∥ for
any row-stacked X . In the async case, {W (j)

t } are row-stochastic, edges are repeatedly
activated with bounded delays, and there exists a window B and λ̃ ∈ (0, 1) such that over
any B consecutive rounds disagreement contracts by λ̃.

(A4) Objective curvature. Either (PL) each Fcluster(j; ·) satisfies the µ-Polyak–Łojasiewicz
(PL) inequality, or (Cvx) each is convex.

(A5) Separability (IFCA-style). There exists δ > 0 such that, in a neighborhood of the cluster
minimizers {θ⋆j }kj=1, the argmin-of-loss assignment selects the true cluster:

Ed∼Dc(i)

[
L(θi,c(i), d)

]
≤ min

j ̸=c(i)
Ed∼Dc(i)

[
L(θi,j , d)

]
− δ. (11)

On a high-level, the analysis combines two ingredients:

1. Cluster assignment: Choosing the best-fitting model index per client never increases the
global loss, and after sufficient descent the assignments stabilize to the ground-truth clus-
ters.

2. Local descent + gossip: Gradient descent decreases the cluster objectives, up to stochas-
tic noise and a disagreement penalty. Gossip averaging preserves the average model and
contracts disagreement at a rate governed by the graph spectral gap.

Together, these steps imply that DFCA behaves like k independent instances of decentralized SGD,
one per cluster, after a finite burn-in.
Theorem 1 (Convergence of DFCA). Assume (A1)–(A5), choose γ ≤ c/L for a small numerical
constant c, and let λ (resp. λ̃) be the consensus factor in the synchronous (resp. async) case. Then:

(i) (Pre-stabilization) F t
global is non-increasing in expectation across assignment and local

steps. The disagreements {Disptj} remain bounded and contract at rate λ (or λ̃ over win-
dows).

(ii) (Stabilization) There exists τ <∞ such that ct(i) = c⋆(i) for all t ≥ τ .

(iii) (Post-stabilization) For t ≥ τ , DFCA is k independent copies of decentralized SGD on
Fcluster(j).
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• Under (PL),

E
[
F τ+T

global − F ⋆
global

]
≤ (1− µγ/2)T C0 + O

(
γσ2

µ

)
+ O

(
γL
1−λ σ2

)
, (12)

with C0 depending on the gap at t = τ ; in async, replace (1 − λ) by the windowed
(1− λ̃).

• Under (Cvx),

1

T

τ+T−1∑
t=τ

k∑
j=1

E∥∇Fcluster(j; θ̄
t
j)∥2 ≤ O

(F τ
global − F ⋆

global

γT

)
+O(γLσ2)+O

(
γL
1−λσ

2
)
,

(13)
and choosing γ = Θ(1/

√
T ) yields the usual O(1/

√
T ) rates (with the consensus

penalty).

Takeaway. DFCA converges at essentially the same rate as decentralized SGD, up to an addi-
tional term reflecting network connectivity. Crucially, all clients obtain all k cluster models despite
decentralized, asynchronous communication. The appendix provides a detailed proof by combining
IFCA’s cluster-assignment arguments with standard decentralized SGD analyses.

5 EXPERIMENTS

Next, we present our experiments with DFCA in practical learning settings. As common in the
clustered FL literature (Ghosh et al., 2021; Lin et al., 2025; Ruan & Joe-Wong, 2022), we conduct
experiments on the MNIST (Krizhevsky & Hinton, 2009), EMNIST (Cohen et al., 2017), CIFAR-10
(LeCun et al., 1998), and FEMNIST (Caldas et al., 2019) datasets, while applying rotations to the
data to create different distributions. Our method is compared to the decentralized soft-clustering
method FedSPD (Lin et al., 2025) and the optimized Decentralized Federated Averaging algorithm
DFedAvgM Sun et al. (2021). IFCA (Ghosh et al., 2021) serves as the centralized baseline. After
providing results for additional experiments with different connection probabilities, we discuss the
communication efficiency and analyze the results of our experiments. Further details on the exact
settings of our experiments can be found in the appendix.

5.1 DFCA EXCELS AMONG DECENTRALIZED APPROACHES

Our experiments demonstrate that DFCA consistently outperform the decentralized baselines Fed-
SPD and DFedAvgM while achieving accuracy comparable to the centralized IFCA algorithm (Ta-
ble 1). Figures 3a and 3b additionally show DFCA-GI converging at a similar rate as IFCA, while
DFCA-LI converges slower but steeper than the other two methods. In more heterogeneous settings
with larger numbers of clients (MNIST, EMNIST, FEMNIST; Table 2), DFCA maintains compet-
itive performance, indicating that the sequential aggregation strategy effectively preserves cluster-
specific models even as heterogeneity increases. IFCA’s unusually high standard deviation for the
EMNIST experiments with k = 4 occurs because IFCA detected only three clusters in one of its five
runs.

Table 1: DFCA outperforms other decentralized methods. Experiments with EMNIST (N = 100
clients) and CIFAR-10 (N = 50 clients) show that both DFCA variants outperform existing DFL
baselines while achieving comparable accuracy to the centralized baseline IFCA.

DFL CFL
Dataset DFCA-GI DFCA-LI FedSPD DFedAvgM IFCA

MNIST (k = 2) 93.7 ± 0.07 92.9 ± 0.06 86.2 ± 1.52 91.4 ± 0.21 93.9 ± 0.06
EMNIST (k = 2) 85.6 ± 0.13 85.3 ± 0.09 79.7 ± 0.92 73.5 ± 1.19 85.7 ± 0.11
CIFAR-10 (k = 2) 81.5 ± 0.40 80.4 ± 0.22 78.9 ± 0.23 76.0 ± 0.96 82.5 ± 0.11

Insights. In DFL, the way clients exchange model updates plays a crucial role in both conver-
gence and efficiency. Beyond simple averaging, enabling clustered FL in decentralized networks

7
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(a) Train Loss of IFCA, DFedAvgM, DFCA-LI
and DFCA-GI (EMNIST, k = 2, N = 100)

(b) Train Loss of IFCA, DFCA-LI and DFCA-GI
(MNIST, k = 4, N = 240)

(c) Test Accuracy of DFCA-LI and DFCA-GI un-
der different connectivity settings (EMNIST, k =
2, N = 100)

(d) Clustering Accuracy of DFCA-LI and DFCA-
GI under connectivity probability of 0.1 (EM-
NIST, k = 2, N = 100)

Figure 3: Graphs for MNIST/EMNIST experiments

Table 2: DFCA is competitive with IFCA. Additional comparisons with IFCA show that DFCA
can perform on par within 1% (mean) of IFCA’s accuracy even in learning settings with higher
heterogeneity (N = 200 for MNIST, N = 100 for EMNIST, and N = 400 for FEMNIST).

DFL CFL
Dataset DFCA-GI DFCA-LI IFCA

MNIST (k = 4) 92.8 ± 0.63 92.4 ± 0.22 93.1 ± 0.73
EMNIST (k = 4) 85.3 ± 0.26 85.1 ± 0.20 84.4 ± 1.83

FEMNIST (k = 4) 87.1 ± 0.30 86.4 ± 0.15 88.2 ± 0.11

is particularly valuable, as it allows clients with heterogeneous data to specialize in distinct model
clusters without relying on a central coordinator. The general advantages of DFL, such as improved
scalability, resilience to single points of failure, and better suitability for bandwidth-limited or peer-
to-peer networks, have already been highlighted in prior works (Lalitha et al., 2018; 2019; Yuan
et al., 2024). The results in Tables 1 and 2 show that DFCA not only outperforms the decentralized
baselines but also does not fall short when compared to centralized IFCA. Despite evidence that
DFL lags behind CFL (Sun et al., 2024), we reduce the accuracy difference to about 1% in CFL’s
favor, including in non-IID and low-connectivity settings.

5.2 DFCA IS ROBUST AGAINST LOW-CONNECTIVITY

Figure 3c shows the test accuracy of DFCA-LI and DFCA-GI under different, fixed connectivity
settings on EMNIST. There, we can observe that a connectivity of 0.15 is sufficient and the test
accuracy does not change significantly when further increasing the connectivity rate. In settings
with connectivity probabilities below 0.1, DFCA-LI attains slightly lower accuracies than DFCA-
GI, which can be attributed to its slower convergence caused by the additional time required for
clustering, as seen in Figure 3d.
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Insights. DFCA leverages a sequential running average to integrate neighbor updates efficiently,
avoiding the need to store all incoming models and allowing updates to proceed asynchronously
as they arrive. As a result, it improves scalability and robustness to network sparsity, while still
achieving accuracy comparable to the centralized IFCA baseline.

6 RELATED WORK

6.1 DECENTRALIZED FEDERATED LEARNING

DFL originated from decentralized SGD optimization (Lian et al., 2018) and was later formulated
by Lalitha et al. as a distinct concept for FL. During the following years, researchers proposed new
frameworks and concepts around DFL, leading to rapid growth of the field. Research aspects of DFL
include network topologies (Wang et al., 2019; Neglia et al., 2019; Malandrino & Chiasserini, 2021;
Marfoq et al., 2020; Chellapandi et al., 2024), communication protocols (Sun et al., 2021; Lalitha
et al., 2019; Hegedűs et al., 2019; Koloskova et al., 2019b; Hu et al., 2019; Bellet et al., 2018)
and iteration orders (Yuan et al., 2024). Explicit DFL paradigms (Chang et al., 2018; Sheller et al.,
2019; 2020; Huang et al., 2022; Yuan et al., 2023; Assran et al., 2019; Roy et al., 2019; Pappas et al.,
2021; Shi et al., 2021; Chen et al., 2022; Wang et al., 2022) then put these concepts and assumptions
in the context of real-world learning settings. However, there still remains a gap in performance
between CFL and DFL (Sun et al., 2024), especially in low-connectivity settings and in the presence
of heterogeneity, which motivated us to have a closer look into decentralized optimization.

6.2 CLUSTERED FL

First being introduced by Sattler et al. in 2019, clustered FL addresses the issue of handling hetero-
geneous data distributions of clients in a network. To optimize performance and adapt to different
learning settings, researchers have introduced different methods to cluster the clients into groups
with similar data distributions El-Rifai et al. (2025). After the initial introduction of client-side
clustered FL algorithms based on client loss minimization Sattler et al. (2019); Ghosh et al. (2021),
recent publications have focused on optimizing this strategy in different learning contexts (Mansour
et al., 2020; Li et al., 2022; Kim et al., 2020). Voting-scheme-based (Gong et al., 2024) or k-means-
based (Long et al., 2022) methods are alternative solutions utilizing client-side clustering. In contrast
to the approaches mentioned above, our algorithm works in decentralized, low-connectivity settings
without the need for a central instance. Lin et al. highlighted the potential of decentralized federated
clustering methods when they introduced their decentralized soft-clustering algorithm for scenar-
ios, in which clients possess multiple data distributions. However, FedSPD addresses a different
scenario where each client may hold data from multiple distributions simultaneously (soft cluster-
ing), while our method assumes one data distribution per client (hard clustering). That motivated
us to develop a decentralized approach capable of matching the performance of centralized IFCA in
low-connectivity settings with clients holding different data distributions, as described in Chapter 2.

7 CONCLUSION

In this work, we introduced DFCA, a fully serverless method inspired by IFCA, that allows cluster-
specific models to emerge and propagate through heterogeneous, sparse peer-to-peer networks. By
employing a sequential running-average aggregation scheme, DFCA leverages stable learning with
high clustering accuracy in heterogeneous environments where centralized methods are impractical.

Our experimental results demonstrate that DFCA achieves performance comparable to centralized
IFCA while operating under decentralized communication constraints, and it consistently outper-
forms decentralized FedAvg with momentum and FedSPD. Furthermore, the sequential aggregation
rule principally allows DFCA to operate asynchronously, making it well-suited for real-world net-
works with irregular connectivity and message delays.

Looking ahead, future work could investigate scaling DFCA to larger, non-IID datasets and analyz-
ing the method with asynchronous model updates.
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USE OF LARGE LANGUAGE MODELS

Portions of this paper were prepared with the assistance of a large language model (LLM). In partic-
ular, we used an LLM to generate a first draft of the convergence proof for our proposed algorithm.
The draft was then carefully checked, corrected, and verified by the authors before inclusion in the
final manuscript. The LLM was also used to suggest stylistic edits and Latex formatting for im-
proved readability. All conceptual contributions, experimental design, and validation of theoretical
results were performed by the authors.
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cluster-based federated learning, 2025. URL https://arxiv.org/abs/2501.17512.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for
clustered federated learning, 2021. URL https://arxiv.org/abs/2006.04088.

Biyao Gong, Tianzhang Xing, Zhidan Liu, Wei Xi, and Xiaojiang Chen. Adaptive client clustering
for efficient federated learning over non-iid and imbalanced data. IEEE Transactions on Big Data,
10(6):1051–1065, 2024. doi: 10.1109/TBDATA.2022.3167994.
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A.1 EXPERIMENTAL SETTING

EMNIST: For the training with EMNIST (Cohen et al., 2017) (balanced split), we use N = 100
clients for k = 2 and N = 200 for k = 4 clusters and simulate two or four different data distributions
by augmenting the datasets, applying 0, 180 or 0, 90, 180, 270 degree rotations to the data. The
Convolutional Neural Network (CNN) used for training contains two convolutional layers, each
followed by a relu activation function, a max-pool layer and a batch normalization layer. The models
are trained for τ = 5 local epochs with a learning rate of γ = 0.1, using Stochastic Gradient Descent
over T = 150 global iterations. For the connection between clients, we use the adjacency matrix
of an Erdős–Rényi graph with a connection probability of 0.15%. All experiments are run on five
random seeds with the metric values being averaged over all runs.

MNIST: The training with MNIST (Krizhevsky & Hinton, 2009) is conducted on N = 240 clients
and k = 4 clusters and data distributions (0, 90, 180, 270 degree rotations). We use a simple
Multilayer Perceptron (MLP) with one hidden layer of size 2048 followed by a relu activation func-
tion. The other training parameters stay consistent with the EMNIST experimental setting, with the
exception of reducing the connection probability to 0.1.

CIFAR-10: The setup for our experiments with the CIFAR-10 (LeCun et al., 1998) dataset is similar
to the EMNIST setup. We train with an identical CNN architecture over N = 50 clients and k = 2
clusters. We change the learning rate to γ = 0.25 and the graph connection probability to 0.2.

FEMNIST: To test the algorithm in settings with even higher heterogeneity, we conducted experi-
ments on the FEMNIST (Caldas et al., 2019) dataset. The training is done on N = 400 clients, who
each get data from one distinct writer, with k = 4 clusters with a graph connection probability of
0.2 and all other parameters equal to the MNIST experiments.

B CONVERGENCE ANALYSIS

We provide a proof template that reuses standard ingredients from clustered FL (e.g., Ghosh et al.
(2021)) for the assignment and from decentralized SGD/gossip (e.g., (Lian et al., 2017; Koloskova
et al., 2019a; Boyd et al., 2006; Nedić & Olshevsky, 2016)) for communication. Throughout, expec-
tations are with respect to the stochasticity of data sampling and any communication randomness.

Notation. Clients are M = {1, . . . , N}, connected by an undirected graph G = (M,E) with
neighborhoods Ni. The k cluster index set is [k] = {1, . . . , k} and the (unknown) partition is
{S1, . . . ,Sk} with data distributions {D1, . . . ,Dk}. Client i stores parameters (θi,1, . . . , θi,k) ∈
(Rd)k. For cluster j, define the stacked vector Θj = (θ1,j , . . . , θN,j) and the network average
θ̄tj =

1
N

∑N
i=1 θ

t
i,j . The client loss is

Fclient(θi,j , Di) =
1

|Di|
∑
d∈Di

L(θi,j , d), Fcluster(j) =
∑
i∈Sj

Fclient(θi,j , Di), Fglobal =

k∑
j=1

Fcluster(j).

(14)
We measure per-cluster disagreement by Disptj =

1
N

∑N
i=1 ∥θti,j − θ̄tj∥2.

Lemma 1 (Assignment is descent for Fglobal). Conditioned on parameters {θti,j}, the assignment
step does not increase Fglobal:

N∑
i=1

min
j

Fclient(θ
t
i,j , Di) ≤

N∑
i=1

Fclient(θ
t
i,ct−1(i)

, Di). (15)

Proof. Pointwise argmin over j per client i can only reduce the sum; cf. Ghosh et al. (2021).

Lemma 2 (Local SGD descent with disagreement penalty). Let γ ≤ 1/L. Then, conditioned on Θt,

E
[
Fcluster(j; θ̄

t+ 1
2

j ) | Θt
]
≤ Fcluster(j; θ̄

t
j)−

γ

2
∥∇Fcluster(j; θ̄

t
j)∥2 + γ2L

(
σ2 + L2 Disptj

)
. (16)

Proof. Apply the smoothness descent lemma to the cluster-sum objective using unbiased gradients,
and decompose the error into stochastic noise σ2 and a consensus term proportional to Disptj . This
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form follows standard decentralized SGD analyses, e.g. Lian et al. (2017); Koloskova et al. (2019a).

Lemma 3 (Gossip preserves averages and contracts disagreement). For each j, θ̄t+1
j = θ̄

t+ 1
2

j .
Moreover, in the synchronous (fixed W ) case,

E
[
Dispt+1

j | Θt+ 1
2

]
≤ λ2 Disp

t+ 1
2

j . (17)

In the async case, for some window B and λ̃ ∈ (0, 1), E[Dispt+B
j ] ≤ λ̃2 Disptj .

Proof. Average preservation follows from row-stochasticity (and doubly-stochasticity in the syn-
chronous case). Disagreement evolution is governed by multiplication with W

(j)
t ; contraction fol-

lows from the spectral gap (synchronous) or joint-connectivity arguments for randomized gossip
(Boyd et al., 2006; Nedić & Olshevsky, 2016).

Lemma 4 (Assignment stabilization). Under (A1)–(A5) with sufficiently small γ, there exists a finite
τ such that ct(i) = c⋆(i) for all i and all t ≥ τ .

Proof sketch. By Lemmas 2–3, the averages {θ̄tj} descend and the disagreements Disptj contract,
so all client copies tracking a fixed j enter and remain in a neighborhood of θ⋆j . Within this neigh-
borhood, separability (A5) enforces a unique, correct argmin, hence stable assignments; cf. Ghosh
et al. (2021).

Theorem 2 (Convergence of DFCA). Assume (A1)–(A5), choose γ ≤ c/L for a small numerical
constant c, and let λ (resp. λ̃) be the consensus factor in the synchronous (resp. async) case. Then:

(i) (Pre-stabilization) F t
global is non-increasing in expectation across assignment and local

steps. The disagreements {Disptj} remain bounded and contract at rate λ (or λ̃ over win-
dows).

(ii) (Stabilization) There exists τ <∞ such that ct(i) = c⋆(i) for all t ≥ τ .

(iii) (Post-stabilization) For t ≥ τ , DFCA is k independent copies of decentralized SGD on
Fcluster(j).

• Under (PL),

E
[
F τ+T

global − F ⋆
global

]
≤ (1− µγ/2)T C0 + O

(
γσ2

µ

)
+ O

(
γL
1−λ σ2

)
, (18)

with C0 depending on the gap at t = τ ; in async, replace (1 − λ) by the windowed
(1− λ̃).

• Under (Cvx),

1

T

τ+T−1∑
t=τ

k∑
j=1

E∥∇Fcluster(j; θ̄
t
j)∥2 ≤ O

(F τ
global − F ⋆

global

γT

)
+O(γLσ2)+O

(
γL
1−λσ

2
)
,

(19)
and choosing γ = Θ(1/

√
T ) yields the usual O(1/

√
T ) rates (with the consensus

penalty).

Proof sketch. Combine Lemma 1 (assignment descent), Lemma 2 (SGD descent with a disagree-
ment term), and Lemma 3 (average preservation and disagreement contraction). Lemma 4 yields
finite-time stabilization, after which each cluster index j follows a standard decentralized SGD re-
cursion; apply known rates under PL or convexity and sum over j.

Remarks. (i) Batch vs. sequential aggregation. The sequential “running average” update θ ←
r

r+1θ +
1

r+1θnew implements a valid stochastic gossip step; the windowed contraction in Lemma 3
covers it. (ii) Initialization. Global initialization (DFCA-GI) sets Disp0j = 0 and typically reduces
τ ; local initialization (DFCA-LI) only changes constants. (iii) Clients not training j. They still mix
θi,j by applying W

(j)
t to their current value; average preservation and contraction remain valid.
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