
Getting More Juice Out of the SFT Data: Reward
Learning from Human Demonstration Improves SFT

for LLM Alignment

Jiaxiang Li
University of Minnesota
Minneapolis, MN, USA
li003755@umn.edu

Siliang Zeng
University of Minnesota
Minneapolis, MN, USA
zeng0176@umn.edu

Hoi-To Wai
Chinese University of Hong Kong

Hong Kong
htwai@se.cuhk.edu.hk

Chenliang Li
Texas A&M University

College Station, TX, USA
chenliangli@tamu.edu

Alfredo Garcia
Texas A&M University

College Station, TX, USA
alfredo.garcia@tamu.edu

Mingyi Hong
University of Minnesota
Minneapolis, MN, USA

mhong@umn.edu

Abstract

Aligning human preference and value is an important requirement for contemporary
foundation models. State-of-the-art techniques such as Reinforcement Learning
from Human Feedback (RLHF) often consist of two stages: 1) supervised fine-
tuning (SFT), where the model is fine-tuned by learning from human demonstration
data; 2) Preference learning, where preference data is used to learn a reward model,
which is in turn used by a reinforcement learning (RL) step to fine-tune the model.
Such reward model serves as a proxy to human preference, and it is critical to
guide the RL step towards improving the model quality. In this work, we argue
that the SFT stage significantly benefits from learning a reward model as well.
Instead of using the human demonstration data directly via supervised learning,
we propose to leverage an Inverse Reinforcement Learning (IRL) technique to
simultaneously build an reward model and a policy model. This approach leads
to new SFT algorithms that are not only efficient to implement, but are robust
to the presence of low-quality supervised learning data. Moreover, we discover
a connection between the proposed IRL based approach, and a recent line of
works called Self-Play Fine-tune (SPIN, Chen et al. [2024]). Theoretically, we
show that the proposed algorithms converge to the stationary solutions of the IRL
problem. Empirically, we align 1B and 7B models using proposed methods and
evaluate them on a reward benchmark model and the HuggingFace Open LLM
Leaderboard. The proposed methods show significant performance improvement
over existing SFT approaches. Our results indicate that it is beneficial to leverage
reward learning throughout the entire alignment process. Our code is available at
https://github.com/JasonJiaxiangLi/Reward_learning_SFT.

1 Introduction

Large Language Models (LLMs) have become the cornerstone of modern artificial intelligence
applications. They are believed to lead the way towards artificial general intelligence [Bubeck et al.,
2023], also have shown great capabilities towards specialized domains such as math problem solving
[Cobbe et al., 2021, Trinh et al., 2024, Wei et al., 2022, Lewkowycz et al., 2022], code generation
[Chen et al., 2021, Austin et al., 2021, Li et al., 2022], text generation [Anil et al., 2023, Touvron
et al., 2023, Thoppilan et al., 2022], etc. Usually, researchers need to align the pre-trained LLMs

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/JasonJiaxiangLi/Reward_learning_SFT

with certain exquisitely prepared human-labeled data to achieve desired performance over certain
tasks, a process which is thus known as alignment or fine-tuning. The alignment datasets can be
categorized into two classes: the demonstration data, with the input prompt and a human response;
and the preference data, with the input prompt and two responses, where human labeler will pick
a chosen one and a rejected one. With the alignment datasets, one could employ methods like
supervised fine-tune (SFT, Ouyang et al. [2022], Tunstall et al. [2023], Chung et al. [2024]) for
aligning demonstration datasets, and reinforcement learning from human feedback (RLHF, Christiano
et al. [2017], Ouyang et al. [2022]) and direct preference optimization (DPO, Rafailov et al. [2024])
for aligning preference datasets. More specifically, RLHF explicitly trains a reward model and uses
reinforcement learning (in particular, policy optimization) methods to obtain a fine-tuned version of
the LLM; on the other hand, DPO and many of its extensions simplifies the RLHF by training the
LLM policy model directly, while implicitly learns the reward model via log of the ratio of likelihood
between the learned model and a reference model. In practice, both types of methods exhibit better
performance over SFT on the demonstration datasets, and they are adopted by state-of-the-art LLMs,
for example ChatGPT benefited from RLHF (see Ouyang et al. [2022]), zephyr benefited from DPO
(see Tunstall et al. [2023]).

It is interesting to observe that, when dealing with preference data, state-of-the-art methods usually
build an (explicit or implicit) reward model to evaluate the quality of responses for a given prompt.
On the contrary, typically no reward modeling is done for demonstration datasets. Why this is the
case? One may argue that, for a given set of prompts, preference datasets contain explicit preference
information which is not found in the demonstration datasets; since this kind of information is
harder to extract, it motivates the use of complicated methods such as reward modeling. However,
since human preferences are also implicit in the demonstration data, one can argue that training a
reward model that encodes human value distilled from these datasets may help to boost the alignment
capability of the LLM. Indeed, in the RL literature, it is known that if the agents are given a set
of demonstration data, then the so-called inverse RL methods (which learns the reward and policy
simultaneously) can outperform the behavior cloning methods (which corresponds to supervised
fine-tune in LLM alignments) by a large margin. In a Markov decision process (MDP), it is likely that
supervised learning methods which naively fit the demonstration data will suffer from the distribution
shift problem – the fine-tuned policy from supervised learning can produce unsatisfactory generations
in certain states which were unseen in the training dataset [Ross et al., 2011]. Through formulating
the learning from demonstration problem in a MDP setting, typical inverse reinforcement learning
methods [Ziebart et al., 2008, Ross et al., 2011, Zeng et al., 2022] can alleviate such distribution
shift issues. Witnessing the success in ChatGPT, where the alignment of LLMs is modelled in
the MDP setting due to the auto-regressive process, one would expect that the LLM alignment
with demonstration datasets can be improved as well through deploying imitation learning / inverse
reinforcement learning methods.

Inspired by the above observation, we pose the following question:

Does building a reward model using the demonstration data benefit the alignment process?

Contribution of this work. This paper answers the above question affirmatively. Specifically,
by developing a framework based on certain IRL technique, we show that building a reward from
demonstration datasets can significantly improve the quality of the resulting model, as compared to
that obtained by standard reward-free SFT (1). Our main contributions are listed as below:

• We develop a new reward-based SFT approach, which takes the form of a bilevel optimization,
where in the lower-level, LLM policy is learned via policy optimization for a given reward, while
in the upper-level, the reward model is optimized so to maximize the likelihood for observing the
demonstration data.

• Based on the above formulation, we propose two alignment algorithms, one learns the reward model
explicitly, and the other implicitly. For the first algorithm, we show that the reward learned from
only demonstration data already possesses strong capabilities in distinguishing between chosen and
rejected responses; see Figure 1 and our experiment for details. For the second algorithm, we made
an interesting observation that implicitly learning a reward is equivalent to improving the model by
comparing the demonstration data with the synthetic data generated by the past models. Somewhat
surprisingly, the resulting algorithm is closely related to the self-play fine-tune (SPIN, Chen et al.
[2024]) algorithm, recently proposed from a completely different viewpoint. It is worth pointing
out that unlike SPIN, our proposed algorithms have finite-time convergence guarantees.

2

• We demonstrate the power of the proposed approach theoretically and numerically. We prove
that our implicit reward learning algorithm converges to some stationary point of our proposed
formulation. We show that the proposed algorithms outperform vanilla SFT in almost all cases we
have tested, for example the model performance on HuggingFace Open LLM Leaderboard increases
from 59.47% to 61.03%. To our knowledge, this is the first work that formally demonstrate the
power of reward learning when dealing with demonstration data for LLM alignment.

Figure 1: Left: Difference between SFT and the two proposed methods: RFT (Algorithm 1) and
IRFT (Algorithm 2); Right: Log probability gap between the chosen/preferred continuation and
the rejected/non-preferred continuations for different methods. All methods only consume the
chosen/preferred data, but RFT and IRFT can effectively distinguish between chosen and rejected
continuations; see Example 2 in Sec. 3 for the detailed settings.

Notations. We use π(y|x) to denote the LLM output probability for continuation y with input
prompt x, and we refer to π as the policy. We use the notation π(y|x;θ) if the model π is directly
parameterized by parameters θ. For the case when π is indirectly determined by parameter θ, we use
notation πθ(y|x). We use D = {(x, y)} to denote the demonstration dataset and P = {(x, yw, yl)}
for the preference dataset, where yw is preferred over yl. Since we assume that the demonstration
continuations y are collected from a human expert distribution, we also denote (x, y) ∼ D as
x ∼ ρ, y ∼ πE(·|x) when taking the expectations, where ρ is the distribution of the input prompts
when collecting the data. We similarly have the notation x ∼ ρ, (yl ≺ yw) ∼ πP (·|x) for the
preference dataset.

2 Preliminaries

Consider a Large Language Model (LLM) parameterized by θ and denote the output probability
by π(y|x;θ) where x = [x1, ..., xn] is the sequence of input prompts and y = [y1, ..., ym] is the
sequence of output continuation. Typical LLM is an auto-regressive model, meaning that it predicts
the output probability of the yj given all tokens in x and y<j := [y1, ..., yj−1] (y<1 is null), i.e.

π(y|x;θ) =
m∏
j=1

π(yj |x, y<j ;θ).

In this paper, we do not focus on the architecture design of LLMs. We will fix the LLM architecture
and always denote it as a probability model π(y|x;θ). The following discussions review two
common procedures for fine-tuning θ: (1) supervised fine tuning (SFT) over demonstration dataset,
(2) reinforcement learning with human feedback (RLHF) over preference dataset that consists of two
steps: LLM alignment/fine-tuning based on a reward model using policy optimization; and reward
learning process to learn the optimal reward for the preference dataset.

SFT. Given a demonstration dataset D := {(x, y)}, the SFT optimizes the following problem:

max
θ

ℓSFT(θ) := E(x,y)∼D [log π (y|x;θ)] . (1)

It is easy to see that the above problem shares the same optimal solutions as
minθ Ex∼ρ[DKL(π

E (·|x) ∥π (·|x;θ))]. The latter shows that SFT aims at imitating the demon-
stration dataset via minimizing the KL divergence. It is worth noting that the SFT stage described

3

here is closely related to the imitation learning approach used in the RL literature for learning from
demonstration [Osa et al., 2018], whose goal is to mimic the policy of an expert.

RLHF. Suppose that we have a reward model r(x, y;ϕ) (parameterized by ϕ and to be defined later)
for any given input and output pair (x, y), the LLM can be fine tuned by the following RL problem:

max
θ

ℓRL(θ) := Ex∼ρ,y∼π(·|x;θ) [r(x, y;ϕ)]− Ex∼ρ[DKL(π (·|x;θ) ∥πref (·|x))], (2)

where πref is a fixed reference model. Note that the KL regularization term in (2) is not computable
given the sheer amount of possible output y (which could be corpus_sizemax_sequence_length in most
language model tasks), therefore (2) is usually solved by standard policy optimization techniques
such as REINFORCE [Ahmadian et al., 2024] or PPO [Schulman et al., 2017].

To find an appropriate reward model r(x, y;ϕ), RLHF (see e.g., Christiano et al. [2017]) leverages a
set of preference dataset P := {(x, yw, yl)}, where each data contains a pair of output yw, yl, and
yw is preferred over yl by human labeler (denoted as yw ≻ yl). The Bradley-Terry model [Bradley
and Terry, 1952] assumes that the probability of choosing yw over yl is

P (yw ≻ yl | x) =
exp(r(yw;x))

exp(r(yw;x)) + exp (r (yl;x))
= σ (r(yw;x)− r (yl;x)) .

One could formulate the following problem to find the reward model:

max
ϕ

ℓRM(ϕ) := Ex∼ρ,(yl≺yw)∼πP (·|x)

[
log
(
σ
(
r(x, yw;ϕ)− r(x, yl;ϕ)

))]
. (3)

It is widely observed in the literature that, models trained via episodically learning the policy (2) and
learning the reward (3) typically outperforms those that are only trained using SFT [Ouyang et al.,
2022]. The reward model guides the performance of the LLM and allows a better generalization
ability via the consistent input of the preference data from human labeler. Follow up works such
as DPO proposes to incorporate reward learning implicitly by utilizing the structure of the optimal
solution of the RL problem (2); for more details about the DPO, see Rafailov et al. [2024].

Discussion. At this point, let us take a step back and think about the above process. The LLM
alignment problem takes human labeled demonstration and preference data to produce an aligned
model. Clearly, both kinds of data encode information about how human would like the LLM output
to be, but the processes of extracting such information is quite different (i.e., supervised learning
vs RL). A series of questions naturally arises: Is supervised learning the best way to extract human
inclination from the demonstration data? Can we also learn a reward model from the demonstration
data to gauge human preference? Will policy model learned via such reward improve the supervised
learning approach? In the next section, we will dive deep to carefully address these questions.

3 Reward Learning and Policy Fine Tuning from Demonstration Data

In this section, we argue that reward learning from the demonstration dataset can benefit the LLM
alignment problem. To do so, we develop a joint reward learning and policy fine tuning formulation
and understand its capabilities in improving the LLM policy. The new formulation inspired us to
develop two reward learning paradigms: i) Explicit reward learning, where a (parameterized) reward
model is learned together with the language model policy, and ii) Implicit reward learning, where
the reward model is learned implicitly through directly optimizing the policy, avoiding learning two
models simultaneously.

3.1 Joint Reward-learning and Policy Fine-tuning by Inverse RL

A challenge with learning only from the demonstration dataset is that the Bradley-Terry model (3)
can no longer be used due to the lack of pairs of preference data. However, all is not lost as we recall
that it is the value of the reward model that should be used in the fine-tuning process (2). Therefore,
with only demonstration data D, a reasonable formulation is to combine the supervised learning
problem (1) with the optimal policy generation problem (2), by requiring that the generated policy
to ‘match’ with the demonstration dataset. With this intuition in mind, we consider the joint reward
and policy learning problem via a maximum likelihood inverse reinforcement learning (ML-IRL)
formulation [Ziebart et al., 2008, 2013, Zeng et al., 2022]:

max
θ

ℓ(θ) := Ex∼ρ,y∼πE(·|x) [log πθ (y | x)]

s.t. πθ := argmax
π

Ex∼ρ,y∼π(·|x)

[
r (x, y;θ)− βDKL

(
π(·|x)∥πref(·|x)

)]
.

(4)

4

The above problem has a bilevel structure which trains a reward model r (x, y;θ). At the upper level,
its objective is similar to that of SFT (1), but is evaluated on the policy πθ induced by the reward
model r (x, y;θ); meanwhile, this policy πθ is found in the lower level using the RL objective (2).

There are several advantages of the bilevel formulation (4) over standard SFT (1). First, we notice
formulating SFT as a RL / IRL problem can alleviate distribution shift and improve the generalization
power [Ross et al., 2011]. In fact, we observe that (4) tends to give a less extreme policy even when
the demonstration dataset is extreme. The latter is observed in the following stylized example.

Example 1. Suppose we have only one state (input prompt) x and three actions (continuations)
y1, y2, y3. Let the reference model πref be a uniform distribution over all continuations, and the
demonstration dataset is D = {y3}. One could easily compute the optimal solution for (1) and (4) by
first-order optimality conditions. From Table 1 we can see that SFT (imitation learning) pushes all
the likelihood toward the demonstration dataset, whereas ML-IRL (4) maintains non-zero weights for
unseen data in the demonstration datasets. This is particular useful when we want to fine-tune from a
pre-trained model, which is presumed to be powerful and have useful information already.

Action y1 y2 y3

πref 0.33 0.33 0.33
D {y3}

πSFT 0.0 0.0 1.0

πIRL
2

2+eR/β
2

2+eR/β
eR/β

2+eR/β

Table 1: A state-less counter-example with three
actions where IRL-based fine-tune (4) shows regu-
larization effect over SFT (1) to maintain weights
over unseen data in the demonstration dataset D.
Here we assume r ∈ [0, R].

Second, since the lower level problem in (4)
encapsulates a generation process, it is antici-
pated that the proposed method can better distin-
guish between the preferred and non-preferred
data than SFT, even if it is only trained on the
demonstration dataset. The following numerical
example highlights this point:

Example 2. We compare the solution of SFT
(1) and IRL (4) numerically, where the latter is
solved using two algorithms RFT and IRFT (to
be introduced shortly). We choose the prefer-
ence based dataset Anthropic-HH and only keep
the preferred continuation to form a demonstra-
tion dataset D̃ = {(x, yw)} to implement SFT
and IRL. We then compute the log probability
gap log(π(yw|x))− log(π(yl|x)) between the preferred yw and non-preferred yl on the test dataset;
see Figure 1 right side. We observe that although all three methods are not exposed to the non-
preferred data yl during the training process, the IRL-based methods effectively distinguish the
preferred continuation over the non-preferred one, while SFT assigns larger probability to the non-
preferred continuation (see Section 5 for the details of the implementation).

Comparing to SFT (1), the bilevel problem (4) appears to be more complicated. In particular, solving
standard bilevel optimization problem typically involves computation of Hessian matrices, which
is too expensive for LLM related applications [Liu et al., 2023]. Fortunately, in our next result, we
show that the bilevel problem can be significantly simplified (proof in Appendix B):
Lemma 3.1. Problem (4) is equivalent to the following minimax optimization problem:

max
θ

min
π

Ex∼ρ,y∼πE(·|x),ỹ∼π(·|x)

[
r(x, y;θ)− r(x, ỹ;θ)

β
+DKL

(
π(·|x)∥πref(·|x)

)]
. (5)

The above reformulation is remarkable. First, minimax problem is much easier to solve as compared
with bilevel problem, e.g., a simple alternating minimization can yield reasonably good solution;
see Algorithm 1 for such an algorithm, and Sec. 3.3 for its theoretical analysis. More importantly,
it shows that even only the demonstration data is available, the reward optimization problem takes
a similar form as what has been used in RLHF (3), where not one but two reward functions are
contrasted. The key difference here is that one reward is evaluated on the continuation y in D, the
other is evaluated on ỹ, which is the continuation generated from the current policy π(·|x). We
believe that such contrast is the key reason that enables the IRL based formulation to distinguish the
preferred continuations over the non-preferred ones; see Example 2 and Figure 1.

Now that we have turned the original bilevel problem (4) into a minimax optimization problem (5),
we can naturally develop a gradient-descent-ascent type algorithm for (5), which alternates between
updating the policy according to the current reward, and updating the reward based on the current
policy — an algorithm that we call Reward-learning Fine-tune (RFT), see Algorithm 1. Note that in

5

Algorithm 1: Reward-learning Fine-Tune (RFT)
Input: Initialize reward parameter θ0(θ−1,K = θ0) and policy model π0, the stepsize of reward
update ηt, and T , K the outer and inner iterations.
for t = 0, 1, . . . , T − 1 do

Take θt,0 = θt−1,K

Data Sample: Sample state xt,k ∼ ρ, an expert response yt,k ∼ πE(·|xt,k) and agent response
ỹt,k ∼ πt(·|xt,k), for k = 0, 1, ...,K − 1
for k = 0, 1, ...,K − 1 do

Estimate Gradient: Calculate the stochastic gradient gt,k w.r.t. θ via
gt,k = 1

β∇θr(xt,k, yt,k;θt,k)− 1
β∇θr(xt,k, ỹt,k;θt,k)

Reward Alignment: θt,k+1 := θt,k + ηtgt,k
end for
Policy Alignment: Update the optimal πt(y|x) ∝ exp(r(x, y;θt,K)) according to (9)

end for

the data sampling step, we sample the response from the current model for the next K iterations. If
we take K = 1 and T = data size

batch size ∗ epoch, the sampling process would be done for every iteration. In
practice however we take a relative small T and large K, because frequent on-line sampling is time
consuming; see Section 4 for the implementation details.

3.2 Implicit Reward-learning Fine-tuning via Self-generation

So far we have seen that (4) (equivalently (5)) can efficiently utilize the demonstration dataset for
better alignment. However, the computation cost for training two models (reward and policy) is
significantly higher than the standard SFT. It turns out that (4) can be simplified into a supervised
learning problem. Observe the following property (see Appendix B for proof):
Lemma 3.2. For the loss function ℓ in (4), we have:

∇θℓ(θ) = Ex∼ρ,y∼πE(·|x),ỹ∼πθ(·|x)

[
∇θ log

πθ(y|x)
πref(y|x)

−∇θ log
πθ(ỹ|x)
πref(ỹ|x)

]
. (6)

The proof of the above lemma uses the identity r(x, y;θ) = β log πθ(y|x)
πref (y|x) + β logZθ(x) for some

constants Zθ(x); see, e.g. Rafailov et al. [2024]. Again it is remarkable that, despite the fact that the
IRL formulation only consumes the demonstration data D = x, y, the gradient of the IRL loss takes
the form as the difference of two gradients, one related to the demonstration data, the other related to
the data generated by the current policy.

Lemma 3.2 leads to a simple scheme for implicit reward-based supervised fine-tune (IRFT) – for each
training batch, it samples the response from the current model, and construct the gradient estimator
(6) directly to update the parameters θ. This results in Algorithm 2, which is an SGD type algorithm
for (4). In Algorithm 2, we use a double loop since generation at each step might again significantly
take more time, similar to Algorithm 1. If K = 1 we get a single loop algorithm where we generate
for every training step on the input batch.

3.3 Convergence Theory

We conclude the section by theoretically inspecting the proposed algorithms. Note that details and
proofs of convergence theorem are moved to Appendix B due to page limits. We observe:

Theorem 3.1. Under Assumption B.1, for Algorithm 1 and 2 with ηt = Θ(1/
√
TK) we have

min
t=1,...,T, k=1,...,K

E[∥∇ℓ(θt,k)∥2] ≤ O
(
1/
√
TK + 1/T

)
.

Theorem 3.1 indicates that the convergence dependency is O(1/
√
KT) (assuming T > K), which

indicates that the algorithm could converge to stationary point if we take both the inner loop and outer
loop reasonably large. This is slightly contrary to the intuition since with larger inner loop number
K, we are having more biased estimators. This theorem shows that this biasedness actually wouldn’t
harm the final convergence, thus validate our practice of having a relative large inner loop number K
in practice (since generating at each training iteration is time-consuming).

6

Algorithm 2: Implicit Reward-learning Fine-Tune (IRFT)
1: Input: Initialize model parameter θ0(θ−1,K = θ0), the stepsize of reward update ηt, and T , K

the outer and inner iterations.
2: Output: θ̂
3: for t = 0, 1, ..., T − 1 do
4: Take θt,0 = θt−1,K

5: Data Sample: Sample state xt,k ∼ ρ, an expert response yt,k ∼ πE(·|xt,k) and agent
response ỹt,k ∼ πθt,0(·|xt,k), for k = 0, 1, ...,K − 1

6: for k = 0, 1, ...,K − 1 do
7: Estimate Gradient: Calculate the stochastic estimator ∇̂ℓ(θt,k) via (6), i.e.

∇̂ℓ(θt,k) = ∇θt,k
log

πθt,k
(yt,k|xt,k)

πref (yt,k|xt,k)
−∇θt,k

log
πθt,k

(ỹt,k|xt,k)

πref (ỹt,k|xt,k)
.

8: Implicit Reward Alignment: Update θt,k+1 = θt,k + ηt∇̂ℓ(θt,k)
9: end for

10: end for

4 Discussions

Implementation details of RFT. As mentioned, training a reward model and a policy at the same
time is costly. In our experiments, we discovered that the reward alignment step can be completely
separated from the policy alignment step. In particular, we take T = 1 and K = data size

batch size ∗ epoch
so that we train the reward over the entire dataset and then switch to the policy alignment. In our
experiments, we indeed observe that only one round of above procedure can readily show superior
performance over SFT and implicit reward-learning methods for pythia-1.4b model.

Implementation details of IRFT. It is worth noticing that in (6), the policy π is not parameterized
by θ directly. In our numerical experiment, we directly parameterize the LLM π by θ, making (6) the
gradient of an supervised optimization problem itself. Meanwhile, it is not straightforward to calculate
the self-generation gradient (6) directly, thus we need to design a loss function for back-propagation
in main-stream packages such as PyTorch and TensorFlow. In practice, at each training iteration we
first sample ỹ ∼ π(·|x;θ) and pass the following loss function

h

(
log

π(y|x;θ)
πref(y|x)

− log
π(ỹ|x;θ)
πref(ỹ|x)

)
(7)

into the standard optimizers (such as SGD or Adam) for back-propagation. Here h is a nonlinear
function. We take h = log σ where σ is the logistic loss function σ(t) := log(1 + exp(−t)) as
in Rafailov et al. [2024], Chen et al. [2024] for its non-negativity, smoothness and exponentially
decaying tail to avoid excessive growth in the absolute value of the log-likelihood.

Discussion on the computational costs. For Algorithm 1, we need to maintain a reward model and
a policy model (which is the LLM), and this is doubling the standard LLM fine-tuning. Thus the
memory consumption and computation time of Algorithm 1 is similar to the standard RLHF process
(RLHF = reward learning + policy optimization); For Algorithm 2, we simply need to maintain
the policy (LLM) model, and the memory consumption would be exactly the same as the standard
SFT, whereas the computation time would involving generating for the entire training sample, which
would be of similar level as the standard policy optimization process (same computational time as
SPIN). Note that standard policy optimization process is equivalent to the time of standard SFT and a
generation process toward all training input prompts.

Method Peak Memory Computation Time

Algorithm 1 Forward+Backward 2SFT+Generation

Algorithm 2 Backward SFT+Generation

Table 2: Table summarizing the computational costs of pro-
posed methods.

We summarize the memory consump-
tion and the computational time of the
proposed methods in Table 2, assum-
ing that the reward and policy mod-
els are of same size. Here “Forward”
means the memory required for stor-
ing a model in inference mode, and
“Backward” is the memory required
for storing a model in training mode,
including weights, activations and gradients; also “SFT” means the computational time as standard

7

SFT, and “Generation” means the time to generate continuations for each of the input training prompts.
Therefore “2SFT+Generation” is roughly the same time as standard RLHF.

Comparison to SPIN. We discuss here the connection between our proposed algorithms with the
self-play fine-tune algorithm (SPIN in Chen et al. [2024]), which also maximizes the gap between
two rewards. First, SPIN is motivated by certain two-player games, while in our case, we show that
the difference of two rewards in (5) naturally comes from a single, reward learning agent; see (4).

Second, IRFT covers SPIN as a special case. In particular, if we take T = 1 and K as the total
number of training iterations, the IRFT algorithm is equivalent to SPIN. In practice, we tested on
different choices of T and show that a reasonable generation frequency can results in a strong model
performance.

Finally, since SPIN does not involve explicit reward learning, its connection to RFT is relatively
remote. It is worth noting that the relation between the proposed Algorithm 1 and Algorithm 2 is
similar to that of RLHF to DPO. There has been intensive discussions regarding whether reward-based
or reward-free algorithm gives better model performances, but this topic is beyond the scope of the
current paper. We refer to Xu et al. [2024] for a comprehensive study.

5 Numerical experiments

In this section we study the proposed Algorithm 1 and 2 numerically. Our experiment mainly show
the advantages of the proposed methods in the following aspects: (1) Reward learning is key to
improve over standard SFT, even if we do not have preference dataset; (2) The double loop design
in both Algorithm 1 and 2 enable us to explore appropriate parameter settings that could break the
performance limits of the state-of-the-art methods, including SFT and SPIN.

5.1 Experiment Setup

Model and Datasets. Since reward-based methods can be costly by training two models at the same
time, we mainly test Algorithm 1 on pythia-1b reward model and pythia-1.4b policy model
[Biderman et al., 2023]. We tested pythia on Anthropic-HH dataset [Bai et al., 2022]. Anthropic-HH
is a preference dataset that provide two continuations based on helpfulness and harmlessness, and we
only pick 10k chosen/preferred continuation data to form the demonstration dataset, which enable us
to check the log likelihood of the non-preferred continuation without feeding the model with such
data. At each iteration, we train our model for 2 epochs (seeing each data for two times).

Algorithm 2 is tested on two models: pythia-1.4b and zephyr-7b-sft-full [Tunstall et al.,
2023]. We tested on Ultrachat200k dataset by HuggingFace, which is a subset of the high quality
demonstration UltraChat dataset[Ding et al., 2023] for text generation and dialogue. For Ultra-
chat200k, we adopt the same strategy as Chen et al. [2024] to pick up 50k data for training. At each
iteration, we again train our model for 2 epochs.

Evaluation. For the Anthropic-HH dataset, we show the reward evaluated by the
PKU-Alignment/beaver-7b-v3.0-reward [Dai et al., 2024, Ji et al., 2023] model which is a
popular 7b model fine-tuned from meta-llama/Llama-2-7b tailored for evaluating human prefer-
ences regarding helpfulness and harmlessness. We also record win rate of the two proposed methods
over base model and SFT model. For the Ultrachat200k dataset, we follow the widely used Hugging-
Face Open LLM Leaderboard [Beeching et al., 2023]. This evaluation package assess an LLM based
on six tasks: LLMs on commonsense reasoning (Arc Clark et al. [2018], HellaSwag Zellers et al.
[2019], Winogrande Sakaguchi et al. [2021]), multi-task language understanding (MMLU Hendrycks
et al. [2020]), human falsehood mimic (TruthfulQA Lin et al. [2021]) and math problem solving
(GSM8K, Cobbe et al. [2021]). See the appendix for more implementation details.

5.2 Results of RFT (Algorithm 1)

We present the result of Algorithm 1 over Anthropic-HH dataset. We first fine-tuned pythia-1.4b
using supervised fine-tune over the entire dataset (160k training data in total) using only the pre-
ferred/chosen data for 10 epochs and pick up the checkpoint with the best testing accuracy as our
base model. We then use PKU-Alignment/beaver-7b-v3.0-reward model as our ground truth
reward model. We use this model to pick 10k data from Anthropic-HH dataset with the highest
reward scores. Next, we fine-tune the base model using SFT and Algorithm 1. Figure 2 shows
the experiment results on averaged reward and win rate, where we record the average score (by

8

PKU-Alignment/beaver-7b-v3.0-reward) of the continuation generated for test datasets, also
the win rate (ratio of samples where the reward of our model’s generation is higher than the model
compared) of the proposed Algorithm 1 over the full SFT base model and the top 10k SFT model.
The figures show that the proposed algorithm improves over the SFT models in terms of effectively
improve the helpfulness and harmlessness of the model continuation.

0 2500 5000 7500 10000 12500 15000 17500
Number of policy learning Steps

1.0

0.5

0.0

0.5

1.0

1.5

Av
er

ag
e

sc
or

e

Average score of RFT over top 10k data
SFT on top 10k demonstration (10 epoches)
SFT on entire dataset (pretrained model)

(a) Average Score

0 2500 5000 7500 10000 12500 15000 17500
Number of policy learning Steps

0.3

0.4

0.5

0.6

0.7

0.8

0.9

W
in

 ra
te

Winrate over full SFT
Winrate over top 10k SFT

(b) Win Rate

Figure 2: Algorithm 1 fine-tuning result of pythia-1.4b over Anthropic-HH (with top 10k data
picked by PKU-Alignment/beaver-7b-v3.0-reward). We record the average score of test dataset
on the left figure and the win rate of Algorithm 1 over the (full SFT) base model and the SFT model.

We remind the readers that the advantage of Algorithm 1 over SFT in Figure 2 can be partially
explained by Figure 1 right side: despite the fact that SFT, Algorithm 1 and 2 are only observing
chosen/preferred data, the latter two still outperforms SFT since they discourage the likelihood of the
synthetic non-preferred data, thus bringing better performance and robustness for the model.

5.3 Results of IRFT (Algorithm 2)

Different from the time consuming Algorithm 1, Algorithm 2 is more capable of handling large data
and models. We first present the result for pythia-1.4b models over Ultrachat200k data. We
remind the reader again that T = 1 in Algorithm 2 is equivalent to SPIN [Chen et al., 2024]1. We
tested on different choices of T and identify that T = 5 to 8 gives the best performance in the Open
LLM Leaderboard evaluations.

The Open LLM Leaderboard result is presented in Table 3. We have the following main observations
based on the results in Table 3:

1. SFT is not efficient in terms of boosting the pre-trained model performance on downstream tasks
comparing to methods which promote the decreasing of the likelihood of synthetic data, namely
SPIN and IRFT;

2. SPIN and IRFT (Algorithm 2) are both capable of further improving the performance of pythia
model over downstream tasks, whereas IRFT shows better results due to more frequent generation
comparing to SPIN. IRFT with T > 1 outperforms both SFT and SPIN on most of the tasks as
well as the average score;

3. More frequent generation might also result in more variances, therefore a reasonable T (around 5)
results in the best evaluation performance. Careful hyperparameter tuning might be needed for
different models and datasets when applying our method, while we recommend using T = 5 as
the default setting.

Apparently 1b model is not strong enough to handle hard tasks, e.g. GSM8k and all model perfor-
mances are not desirable. Now we present the result for zephyr-7b-sft-full. We remind the
reader that this is a fully SFT-ed model and further SFT would only detriment the model performance
(see Chen et al. [2024]). The results are presented in Table 4 where we can see that similar to the
1b case, both SPIN and IRFT could effectively improve the performance of SFT-ed model and the
average performance of IRFT with T = 5 stands out. The success of IRFT and SPIN further suggest
that reward learning is indeed beneficial for aligning with demonstration data.

1IRFT with T = 1 and 2 epochs is equivalent to SPIN iteration 0, and T = 2 with 2 epochs for each T is
equivalent to SPIN iteration 1, etc.

9

Table 3: Test performance of SPIN [Chen et al., 2024] and IRFT (Algorithm 2) based on
pythia-1.4b across HuggingFace Open LLM Leaderboard datasets. We keep training for 2 epochs
after each generation process and K are calculated after this rule.

Tasks T K AI2_Arc TruthfulQA Winogrande GSM8k HellaSwag MMLU Average
Metrics acc_norm acc acc exact_match acc_norm acc

pythia-1.4b 0 0 54.54 31.00 57.46 1.44 53.55 25.63 37.27
SFT 0 # samples

batchsize ∗ 2 54.74 30.93 57.30 2.05 52.98 25.62 37.27
IRFT (SPIN) 1 # samples

batchsize ∗ 2 54.00 31.73 57.70 1.36 53.76 25.54 37.35
IRFT (SPIN iter 2) 2 # samples

batchsize ∗ 2 52.85 32.04 57.38 1.74 53.57 25.49 37.18
IRFT 5 # samples

batchsize ∗ 2
5 53.75 31.67 56.91 1.74 54.79 25.32 37.36

IRFT 10 # samples
batchsize ∗ 2

5 53.75 31.92 57.85 2.43 54.77 25.44 37.69
IRFT 8 # samples

batchsize ∗ 2
8 53.75 31.40 56.91 2.35 54.62 25.52 37.43

IRFT 16 # samples
batchsize ∗ 2

8 56.34 31.54 58.41 1.59 54.54 25.69 37.57

Table 4: Test performance of SPIN [Chen et al., 2024] and IRFT (Algorithm 2) based on
zephyr-7b-sft-full across HuggingFace Open LLM Leaderboard datasets.

Tasks T K AI2_Arc TruthfulQA Winogrande GSM8k HellaSwag MMLU Average
Metrics acc_norm acc acc exact_match acc_norm acc

zephyr-7b-sft-full 0 0 74.83 34.07 76.09 31.92 81.09 58.86 59.48
IRFT (SPIN) 1 # samples

batchsize ∗ 2 75.08 36.57 76.01 33.59 82.81 57.83 60.32
IRFT (SPIN iter 2) 2 # samples

batchsize ∗ 2 76.13 36.56 76.64 35.56 83.39 57.82 61.02
IRFT 5 # samples

batchsize ∗ 2
5 75.82 39.99 77.19 31.24 82.07 57.93 60.71

IRFT 10 # samples
batchsize ∗ 2

5 76.78 36.84 77.43 34.34 83.05 57.72 61.03
IRFT 8 # samples

batchsize ∗ 2
8 75.23 36.67 75.85 31.84 80.89 58.60 59.85

IRFT 16 # samples
batchsize ∗ 2

8 75.79 35.55 76.56 32.52 82.3 58.77 60.25

6 Conclusions and Limitations

In this paper we proposed reward-learning approaches for aligning LLMs with demonstration datasets.
We show both theoretically and numerically the great potential of reward-learning for alignment even
without preference dataset. Our theory only indicate the convergence of the proposed algorithm to
stationary point, and it is not clear what the policy converges to. The additional computation resources
required for tuning two models or generate synthetic data in our algorithms are not negligible. Future
works include exploring reward-learning for larger models and more complicated demonstration
tasks, boosting the algorithm efficiency, and understanding how synthetic negative sample helps the
LLMs to distinguish the preference dataset, etc.

Acknowledgments

M. Hong, S. Zeng and J. Li are supported partially by NSF under the grants EPCN-2311007, ECCS-
2426064 and CCF-2414372, also by Minnesota Supercomputing Institute. A. Garcia and C. Li are
partially supported by ECCS-2240789 and CCF-2414373.

References
Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Ahmet Üstün, and

Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning from human
feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

10

Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen
Rajani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open llm leaderboard. https:
//huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard, 2023.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pages 2397–2430. PMLR, 2023.

Michael Bloem and Nicholas Bambos. Infinite time horizon maximum causal entropy inverse
reinforcement learning. In 53rd IEEE conference on decision and control, pages 4911–4916. IEEE,
2014.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbrenner,
Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong generalization:
Eliciting strong capabilities with weak supervision. arXiv preprint arXiv:2312.09390, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
models. Journal of Machine Learning Research, 25(70):1–53, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and Yaodong
Yang. Safe rlhf: Safe reinforcement learning from human feedback. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
TyFrPOKYXw.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations. arXiv preprint arXiv:2305.14233, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

11

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://openreview.net/forum?id=TyFrPOKYXw
https://openreview.net/forum?id=TyFrPOKYXw
https://zenodo.org/records/10256836

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning lecture
6a overview of mini-batch gradient descent. Cited on, 14(8):2, 2012.

Jiaming Ji, Mickel Liu, Juntao Dai, Xuehai Pan, Chi Zhang, Ce Bian, Boyuan Chen, Ruiyang Sun,
Yizhou Wang, and Yaodong Yang. Beavertails: Towards improved safety alignment of LLM via
a human-preference dataset. In Thirty-seventh Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2023. URL https://openreview.net/forum?id=
g0QovXbFw3.

Sergey Levine, Zoran Popovic, and Vladlen Koltun. Nonlinear inverse reinforcement learning with
gaussian processes. Advances in neural information processing systems, 24, 2011.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Fei Liu et al. Learning to summarize from human feedback. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, 2020.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan Peters, et al.
An algorithmic perspective on imitation learning. Foundations and Trends® in Robotics, 7(1-2):
1–179, 2018.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–16. IEEE, 2020.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Christian
Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural
language processing: Benchmarks, baselines, and building blocks for natural language policy
optimization. arXiv preprint arXiv:2210.01241, 2022.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 627–635. JMLR Workshop and Conference Proceedings,
2011.

12

https://openreview.net/forum?id=g0QovXbFw3
https://openreview.net/forum?id=g0QovXbFw3

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Peter J Liu, James
Harrison, Jaehoon Lee, Kelvin Xu, Aaron Parisi, et al. Beyond human data: Scaling self-training
for problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct
distillation of lm alignment. arXiv preprint arXiv:2310.16944, 2023.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, and Shengyi Huang. Trl: Transformer reinforcement learning. https://github.com/
huggingface/trl, 2020.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu,
and Yi Wu. Is dpo superior to ppo for llm alignment? a comprehensive study. arXiv preprint
arXiv:2404.10719, 2024.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Siliang Zeng, Chenliang Li, Alfredo Garcia, and Mingyi Hong. Maximum-likelihood inverse
reinforcement learning with finite-time guarantees. Advances in Neural Information Processing
Systems, 35:10122–10135, 2022.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

Brian D Ziebart, J Andrew Bagnell, and Anind K Dey. The principle of maximum causal entropy for
estimating interacting processes. IEEE Transactions on Information Theory, 59(4):1966–1980,
2013.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

13

https://github.com/huggingface/trl
https://github.com/huggingface/trl

Appendix

A Related works

Fine-tuning language models is prevailing to improve LLMs performance on various instructional
tasks, and has shown great success in enabling LLMs to generalize to efficiently respond out-of-
sample instructions [Chung et al., 2024]. Despite many successful applications of SFT, people soon
realized the great potential of reward learning and reinforcement learning based fine-tuning over
preference datasets for different tasks, including text-summarizing [Liu et al., 2020, Ziegler et al.,
2019], story-telling [Ziegler et al., 2019], instruction-following [Ouyang et al., 2022, Ramamurthy
et al., 2022], etc. Equipped with the popular Bradley-Terry model [Bradley and Terry, 1952], RLHF
fine-tune a language model using policy optimization methods, such as REINFORCE [Williams,
1992], proximal policy optimization (PPO, Schulman et al. [2017]) and a lot more. On major obstacle
for preference dataset fine-tuning is the costly and time-consuming process of human labeling,
and methods such as self-play fine-tune (SPIN, Chen et al. [2024]), synthetic data with binary
feedback in self-training [Singh et al., 2023], weak-to-strong generalization [Burns et al., 2023]
and self-rewarding fine-tuning [Yuan et al., 2024] seek for improvement over SFT under weaker
data supervisions comparing to preference datasets. In particular, SPIN generates synthetic samples
for input prompts in the demonstration dataset and use them as the rejected data to for a ‘pseudo’
preference data. As we will see, SPIN actually coincides with our implicit reward learning approach
where we motivate the synthetic data in a more natural way.

In the reinforcement learning (RL) literature, inverse reinforcement learning (IRL) proposes to jointly
learn the reward r which best explains an expert policy πE and the policy π which in turn mimics this
expert policy πE from demonstration data. The most popular framework is the maximum entropy
IRL (MaxEnt-IRL) framework Ziebart et al. [2008], Levine et al. [2011], Ziebart et al. [2013], Bloem
and Bambos [2014], Zeng et al. [2022], which seeks for a policy maximizing the entropic-regularized
reward that matches the empirical averages in expert’s demonstrations data. MaxEnt-IRL utilizes
only the demonstration dataset for reward learning and already yields superior performance over the
plain behavior cloning [Pomerleau, 1988, Osa et al., 2018] approach on various RL tasks.

B Proofs for Section 3

We restate and prove Lemma 3.1:
Lemma B.1. Problem (4) is equivalent to the following minimax optimization problem:

max
θ

min
π

Ex∼ρ,y∼πE(·|x),ỹ∼π(·|x)

[
r(x, y;θ)− r(x, ỹ;θ)

β
+DKL

(
π(·|x)∥πref(·|x)

)]
. (8)

Proof. It is straightforward to see that the lower-level problem in (4) enjoys a closed-form solution:

πθ(y|x) =
πref(y|x) exp

(
1
β r(x, y;θ)

)
∑

ỹ∈A πref(ỹ|x) exp
(

1
β r(x, ỹ;θ)

) (9)

where A is the set of all possible responses. Plugging (9) into (4), we obtain:

max
θ

Ex∼ρ,y∼πE(·|x)

[
log

(
πref(y|x) exp

(
1

β
r(x, y;θ)

))
− log

(∑
ỹ∈A

πref(ỹ|x) exp
(
1

β
r(x, ỹ;θ)

))]
(10)

Utilizing the following identity:

log

∑
ỹ∈A

πref(ỹ|x) exp
(
1

β
r(x, ỹ;θ)

) = max
π

Eỹ∼π(·|x)[
1

β
r(x, ỹ;θ)]−DKL

(
π(·|x)∥πref(·|x)

)
we obtain the following max-min problem (omitting some constant terms):

max
θ

min
π

Ex∼ρ,y∼πE(·|x),ỹ∼π(·|x)

[
r(x, y;θ)− r(x, ỹ;θ)

β
+DKL

(
π(·|x)∥πref(·|x)

)]
(11)

14

The proof is completed.

Next, we restate and prove Lemma 3.2:
Lemma B.2. For the loss function ℓ in (4), we have:

∇θℓ(θ) = Ex∼ρ,y∼πE(·|x),ỹ∼πθ(·|x)

[
∇θ log

πθ(y|x)
πref(y|x)

−∇θ log
πθ(ỹ|x)
πref(ỹ|x)

]
(12)

which we refer to as the self-generation gradient, since at each iteration one need to generate one
sample output ỹ from the current policy πθ and calculate the difference of the two rewards.

Proof. Omitting the constant terms not related to θ in (10), we have

max
θ

ℓ(θ) = Ex∼ρ,y∼πE(·|x)

 1

β
r(x, y;θ)− log

∑
ỹ∈A

πref(ỹ|x) exp
(
1

β
r(x, ỹ;θ)

) (13)

Calculating the derivative we get

∇θℓ(θ) =
1

β
Ex∼ρ,y∼πE(·|s)[∇θr(x, y;θ)]− Ex∼ρ

∇θ log

∑
ỹ∈A

πref(ỹ|x) exp
(
1

β
r(x, ỹ;θ)

)
=
1

β
Ex∼ρ,y∼πE(·|x)[∇θr(x, y;θ)]−

1

β
Ex∼ρ

∑
y∈A

πref(y|x) exp
(

1
β r(x, y;θ)

)
∑

ỹ∈A πref(ỹ|x) exp
(

1
β r(x, ỹ;θ)

)∇θr(x, y;θ)

=
1

β
Ex∼ρ,y∼πE(·|x)[∇θr(x, y;θ)]−

1

β
Ex∼ρ,y∼πθ(·|s)[∇θr(x, y;θ)]

=
1

β
Ex∼ρ,y∼πE(·|x),ỹ∼πθ(·|x)[∇θr(x, y;θ)−∇θr(x, ỹ;θ)]

which implies that to minimize ℓ(θ), one should always generate samples based on the current
estimation of the policy ỹ ∼ πθ(·|x) and then update.

Now from (9) we get:

r(x, y;θ) = β log
πθ(y|x)
πref(y|x)

+ β logZθ(x) (14)

where Zθ(x) is the denominator of (9). In the view of (14), we can actually directly estimate:

∇θℓ(θ) = Ex∼ρ,y∼πE(·|x),ỹ∼πθ(·|x)

[
∇θ log

πθ(y|x)
πref(y|x)

−∇θ log
πθ(ỹ|x)
πref(ỹ|x)

]
(15)

The proof is completed.

Now we move to the proof for Section 3.3. We state the assumption needed for proving the final
result:
Assumption B.1. For Algorithm 1 and 2, we assume that

1. The policy distribution πθ is uniformly lower and upper bounded, i.e.

πmin ≤ ∥πθ(·|x)∥∞ ≤ πmax

where 0 < πmin < πmax, for all x;

2. ∇πθ is bounded, i.e. ∥∇πθ(·|x)∥ ≤ L0 for all x;

3. ∇πθ is Lipschitz, i.e. ∥∇πθ1(y|x)−∇πθ2(y|x)∥ ≤ L1∥θ1 − θ2∥, for all x and y;

where πθ is as defined in (9).

The above assumption can readily establish the assumption below, which is needed for our final
convergence result.

15

Assumption B.2. For Algorithm 2, we assume that

1. ℓ is L-Lipschitz smooth w.r.t. θ, i.e.

∥∇ℓ(θ1)−∇ℓ(θ2)∥ ≤ L∥θ1 − θ2∥

2. The stochastic estimator ∇̂ℓ is bounded, i.e.

∥∇̂ℓ(θ)∥ ≤ G

These are all standard assumptions in nonconvex smooth stochastic optimization. We have the
following lemma:

Lemma B.3. If Assumption B.1 holds, Assumption B.2 also holds with the following parameters:

L =
L0(3L0 + L1)

π2
min

, G =
2L0

πmin

Proof. We just show the value for L since G can be similarly computed. Since

∇ℓ(θ) =
1

β
Ex∼ρ,y∼πE(·|x),ỹ∼πθ(·|x)

[
∇θ log

πθ(y|x)
πref(y|x)

−∇θ log
πθ(ỹ|x)
πref(ỹ|x)

]
we have

∥∇ℓ(θ1)−∇ℓ(θ2)∥

=
1

β

∥∥∥∥Ex∼ρ,y∼πE(·|x),ỹ∼πθ1
(·|x)

[
∇θ log

πθ1
(y|x)

πref(y|x)
−∇θ log

πθ1
(ỹ|x)

πref(ỹ|x)

]
− Ex∼ρ,y∼πE(·|x),ỹ∼πθ2

(·|x)

[
∇θ log

πθ2
(y|x)

πref(y|x)
−∇θ log

πθ2
(ỹ|x)

πref(ỹ|x)

]∥∥∥∥
≤ 1

β

∥∥∥∥Ex∼ρ,y∼πE(·|x),ỹ∼πθ1
(·|x)

[
∇θ log

πθ1
(y|x)

πref(y|x)
−∇θ log

πθ1
(ỹ|x)

πref(ỹ|x)

]
− Ex∼ρ,y∼πE(·|x),ỹ∼πθ1

(·|x)

[
∇θ log

πθ2
(y|x)

πref(y|x)
−∇θ log

πθ2
(ỹ|x)

πref(ỹ|x)

]∥∥∥∥
+

1

β

∥∥∥∥Ex∼ρ,y∼πE(·|x),ỹ∼πθ1
(·|x)

[
∇θ log

πθ2(y|x)
πref(y|x)

−∇θ log
πθ2(ỹ|x)
πref(ỹ|x)

]
− Ex∼ρ,y∼πE(·|x),ỹ∼πθ2

(·|x)

[
∇θ log

πθ2
(y|x)

πref(y|x)
−∇θ log

πθ2
(ỹ|x)

πref(ỹ|x)

]∥∥∥∥

(16)

For the first part, since

∇ log πθ(y|x) =
∇πθ(y|x)
πθ(y|x)

we have

1

β

∥∥∥∥Ex∼ρ,y∼πE(·|x),ỹ∼πθ1
(·|x)

[
∇θ log

πθ1(y|x)
πref(y|x)

−∇θ log
πθ1(ỹ|x)
πref(ỹ|x)

−∇θ log
πθ2(y|x)
πref(y|x)

+∇θ log
πθ2(ỹ|x)
πref(ỹ|x)

]∥∥∥∥
≤ 1

β
Ex∼ρ,y∼πE(·|x),ỹ∼πθ1

(·|x)

∥∥∥∥∇πθ1
(y|x)

πθ1
(y|x)

− ∇πθ2
(y|x)

πθ2
(y|x)

− ∇πθ1
(ỹ|x)

πθ1
(ỹ|x)

+
∇πθ2

(ỹ|x)
πθ2

(ỹ|x)

∥∥∥∥
≤ 1

β
Ex∼ρ,y∼πE(·|x),ỹ∼πθ1

(·|x)

∥∥∥∥∇πθ1
(y|x)

πθ1(y|x)
− ∇πθ2

(y|x)
πθ2(y|x)

∥∥∥∥+ 1

β
Ex∼ρ,y∼πE(·|x),ỹ∼πθ1

(·|x)

∥∥∥∥∇πθ1
(ỹ|x)

πθ1(ỹ|x)
− ∇πθ2

(ỹ|x)
πθ2(ỹ|x)

∥∥∥∥
≤ 1

β
Ex∼ρ,y∼πE(·|x),ỹ∼πθ1

(·|x)
∥πθ2

(y|x)∇πθ1
(y|x)− πθ1

(y|x)∇πθ2
(y|x)∥

πθ1
(y|x)πθ2

(y|x)
+ (same term for ỹ)

≤ 2

β

πmaxL1 + L2
0

π2
min

∥θ1 − θ2∥

16

For the second term in the last line of (16), we have

1

β

∥∥∥∥Ex∼ρ,y∼πE(·|x),ỹ∼πθ1
(·|x)

[
∇θ log

πθ2
(y|x)

πref(y|x)
−∇θ log

πθ2(ỹ|x)
πref(ỹ|x)

]
− Ex∼ρ,y∼πE(·|x),ỹ∼πθ2

(·|x)

[
∇θ log

πθ2
(y|x)

πref(y|x)
−∇θ log

πθ2
(ỹ|x)

πref(ỹ|x)

]∥∥∥∥
≤ 1

β
Ex∼ρ,y∼πE(·|x)

∥∥∥∥∥∥
∑
ỹ∈A

[
∇θ log

πθ2(y|x)
πref(y|x)

−∇θ log
πθ2(ỹ|x)
πref(ỹ|x)

]
(πθ1(ỹ|x)− πθ2(ỹ|x))

∥∥∥∥∥∥
≤ 1

β

2L0

πmin
Ex∼ρ,y∼πE(·|x)

∥∥∥∥∥∥
∑
ỹ∈A

(πθ1
(ỹ|x)− πθ2

(ỹ|x))

∥∥∥∥∥∥
=
1

β

2L0

πmin
Ex∼ρ,y∼πE(·|x)

∥∥∥∥∥∥
∑
ỹ∈A

πθ1
(ỹ|x)πθ1(ỹ|x)− πθ2(ỹ|x)

πθ1
(ỹ|x)

∥∥∥∥∥∥ ≤ 1

β

2L2
0

π2
min

∥θ1 − θ2∥

Plugging these back to (16) we get

∥∇ℓ(θ1)−∇ℓ(θ2)∥ ≤ 2

β

(
πmaxL1 + 2L2

0

π2
min

)
∥θ1 − θ2∥

Now since we generate at the beginning of the inner loop, the estimator ∇̂ℓ(θt,k) is not an unbiased
estimator of ∇ℓ(θt,k) for any k > 0, i.e.

∇ℓ(θt,k) =
1

β
E(xt,k,yt,k)∼D,ỹt,k∼πθt,k

(·|xt,k)

[
∇θ log

πθt,k
(yt,k|xt,k)

πref(yt,k|xt,k)
−∇θ log

πθt,k
(ỹt,k|xt,k)

πref(ỹt,k|xt,k)

]
(17)

̸=E∇̂ℓ(θt,k) =
1

β
E(xt,k,yt,k)∼D,ỹt,k∼πθt,0

(·|xt,k)

[
∇θ log

πθt,k
(yt,k|xt,k)

πref(yt,k|xt,k)
−∇θ log

πθt,k
(ỹt,k|xt,k)

πref(ỹt,k|xt,k)

]
(18)

We thus need to carefully analyze this biasedness so that the convergence can be boosted by a large
K, since a large K will result in a very large bias.

Now we are ready to re-state and prove Theorem 3.1:

Theorem B.1. Suppose Assumption B.1 holds, then for Algorithm 1 and 2 with ηt = Θ(1/
√
TK)

we have

min
t=1,...,T, k=1,...,K

E[∥∇ℓ(θt,k)∥2] ≤ O

(
∆0 + LG2

√
TK

+
L̃2G2

T

)
where ∆0 = ℓ∗ − ℓ(θ0) and we omit constant factors in Õ.

Proof. We prove directly for Algorithm 2 since the gradient estimator (12) and the estimator gt,k
Algorithm 1 (we do solve the π subproblem to its optimum) are both for the original bilevel problem
(4).

From the Lipschitz gradient of ℓ we have

ℓ(θt,k+1) ≥ ℓ(θt,k) + ηt⟨∇̂ℓ(θt,k),∇ℓ(θt,k)⟩ −
η2tL

2
∥∇̂ℓ(θt,k)∥2

i.e.

ηt∥∇ℓ(θt,k)∥2 ≤ (ℓ(θt,k+1)− ℓ(θt,k)) + ηt⟨∇ℓ(θt,k)− ∇̂ℓ(θt,k),∇ℓ(θt,k)⟩+
η2tL

2
∥∇̂ℓ(θt,k)∥2

Taking expectation to θt,k and by Assumption B.2, we have

ηtE∥∇ℓ(θt,k)∥2 ≤ (Eℓ(θt,k+1)− ℓ(θt,k)) + ηt⟨∇ℓ(θt,k)− E∇̂ℓ(θt,k),∇ℓ(θt,k)⟩+
η2tLG

2

2

17

where the expectation is taken w.r.t. the sample ỹt,k to generate the estimator of current iteration.

Sum up from k = 0 to k = K we get
K−1∑
k=0

ηtE∥∇ℓ(θt,k)∥2 ≤ (Eℓ(θt,K−1)−ℓ(θt,0))+ηt

K−1∑
k=0

⟨∇ℓ(θt,k)−E∇̂ℓ(θt,k),∇ℓ(θt,k)⟩+
η2tLG

2K

2

(19)

Since the expectation is taken only on the random sample at current iteration, and we know that the
true gradient and the approximated gradient are (17) and (18), we have the following estimate:

∥∇ℓ(θt,k)− E∇̂ℓ(θt,k)∥

=
1

β

∥∥∥∥Ext,k∼ρ,yt,k∼πE(·|xt,k),ỹt,k∼πθt,k
(·|xt,k)

[
∇θ log

πθt,k
(yt,k|xt,k)

πref(yt,k|xt,k)
−∇θ log

πθt,k
(ỹt,k|xt,k)

πref(ỹt,k|xt,k)

]
− Ext,k∼ρ,yt,k∼πE(·|xt,k),ỹt,k∼πθt,k

(·|xt,k)

[
∇θ log

πθt,k
(yt,k|xt,k)

πref(yt,k|xt,k)
−∇θ log

πθt,k
(ỹt,k|xt,k)

πref(ỹt,k|xt,k)

]∥∥∥∥
=
1

β

∥∥∥∥Ext,k,yt,k

∫ [
∇θ log

πθt,k
(yt,k|xt,k)

πref(yt,k|xt,k)
−∇θ log

πθt,k
(ỹ|xt,k)

πref(ỹ|xt,k)

] (
πθt,k

(ỹ|xt,k)− πθt,0
(ỹ|xt,k)

)
dỹ

∥∥∥∥
≤ 1

β

2L2
0

πmin
∥θt,k − θt,0∥

Denote L̃ = 1
β

2L2
0

πmin
, we thus have:

K−1∑
k=0

⟨∇ℓ(θt,k)− E∇̂ℓ(θt,k),∇ℓ(θt,k)⟩ ≤
K−1∑
k=0

∥∇ℓ(θt,k)− E∇̂ℓ(θt,k)∥∥∇ℓ(θt,k)∥

≤ 1

2

K−1∑
k=0

∥∇ℓ(θt,k)− E∇̂ℓ(θt,k)∥2 +
1

2

K−1∑
k=0

∥∇ℓ(θt,k)∥2

≤ L̃2

2

K−1∑
k=0

∥θt,k − θt,0∥2 +
1

2

K−1∑
k=0

∥∇ℓ(θt,k)∥2 =
η2t L̃

2

2

K−1∑
k=0

∥∥∥∥∥
k−1∑
i=0

∇̂ℓ(θt,i)

∥∥∥∥∥
2

+
1

2

K−1∑
k=0

∥∇ℓ(θt,k)∥2

Therefore
K−1∑
k=0

⟨∇ℓ(θt,k)− E∇̂ℓ(θt,k),∇ℓ(θt,k)⟩ ≤
η2t L̃

2G2

2

K(K − 1)

2
+

1

2

K−1∑
k=0

∥∇ℓ(θt,k)∥2

Substituting back into (19) leads to

1

2

K−1∑
k=0

ηtE∥∇ℓ(θt,k)∥2 ≤ (Eℓ(θt,K−1)− ℓ(θt,0)) + η3t L̃
2G2K(K − 1)

2
+

η2tLG
2K

2

Summing up from t = 0 to T − 1 gives

1

2

T−1∑
t=0

K−1∑
k=0

ηtE∥∇ℓ(θt,k)∥2 ≤ Eℓ(θT−1,K−1)−ℓ(θ−1,0)+

T−1∑
t=0

η3t L̃
2G2K(K − 1)

2
+

T−1∑
t=0

η2tLG
2K

2

With a constant step size ηt = η > 0, we have

1

2TK

T−1∑
t=0

K−1∑
k=0

E∥∇ℓ(θt,k)∥2 ≤ Eℓ(θT−1,K−1)− ℓ(θ−1,0)

ηTK
+ η2L̃2G2K − 1

2
+ η

LG2

2

Taking η = Θ(1/
√
TK), we get

1

TK

T−1∑
t=0

K−1∑
k=0

E∥∇ℓ(θt,k)∥2 = O

(
Eℓ(θT−1,K−1)− ℓ(θ−1,0) + LG2

√
TK

+
L̃2G2

T

)
Hence as T → ∞, the rate is O(1/

√
TK).

18

C Implementation details of the numerical experiments

We follow the code as in SPIN [Chen et al., 2024], where we utilize DeepSpeed ZeRO-3 [Rajbhandari
et al., 2020] and FlashAttention-2 [Dao, 2023] to reduce the memory cost. We use RMSProp [Hinton
et al., 2012] optimizer with no weight decay. For 1b models, we use two NVIDIA A100-40G to
do the training with per device batch size of 4 for Algorithm 1 and per device batch size of 8 for
Algorithm 2. For 7b models we use eight NVIDIA A100-40G to do the training with per device batch
size of 2. We train all models with bfloat16 prevision. We set the peak learning rate to be 5e-7 for first
two epochs and 1e-7 for the next two epochs. We fix β = 0.1 and consider the max sequence length
to be 1024 for 1b models and 2048 for 7b models. We use the same prompt template “### Instruction:
prompt\n\n### Response: ” as in Chen et al. [2024]. For the policy optimization step in Algorithm
1, we use the PPO trainer in the TRL package [von Werra et al., 2020]. For the HuggingFace Open
LLM Leaderboard evaluation, we use the Language Model Evaluation Harness library (v0.4.2) [Gao
et al., 2023], and we also use the same number of few-shots as in Chen et al. [2024].

Finally, in Table 5, we further provide the generation examples of our fine-tuned model in Table 4.

D Additional numerical results based on LoRA

During the reviewing and discussion periods, we conducted extra experiments with LoRA to provide
further evidences for this work.

We first provide the result of 7b experiments with LoRA in Table 6. In this setting we see a significant
improvement over the pretrained model (zephyr-7b-sft-full), where we observe 2.3% lift from the
baseline and a 1% lift from SPIN. SFT in contrast can only achieve less than 1% lift from the base
line. The reason here might be due to the limited model size when using LoRA, a contrastive training
better helps the model distinguishing the referred and non-preferred continuations, yielding better
performance over the standard SFT.

As a side note, we do not anticipate to significantly outperform SPIN since algorithmically our
proposed IRFT method includes SPIN as a special case. Rather, one of our main objective is to
provide a theoretical foundation for the contrastive-type training algorithm, such as SPIN, which can
all be studied under the bilevel inverse RL framework. The comparison with SPIN largely indicates
that SPIN is still a RL-based fine-tuning method, suggesting an alternative interpretation that leads to
provable convergence in lieu of the two-player game interpretation in Chen et al. [2024].

Reconciling our result with SPIN [Chen et al., 2024] Readers may realize that the result in Section
5.3 is different from SPIN [Chen et al., 2024]. We believe that this is due to two reasons:

1. First, the baseline in our paper is different from SPIN paper: We believe a different baseline
model is used in SPIN as evidenced in the Github discussions and the SPIN paper was
released before the baseline is fully trained (Jan 2 vs Jan 10)2. In particular, in Table 3 of the
SPIN paper, the base model yields a “26.76” accuracy for GSM8k dataset, but we observe
“31.92” which is significantly higher. We notice that a newer version of both the model
zephyr-7b-sft-full3 and the lm_eval evaluation package4 which both our paper and SPIN use
for evaluation are used in our paper. We run test on different versions of base model and eval
codebase and obtain Table 7, where we indeed see that the new version of the base model
has a significant lift in the performance on GSM8k comparing to the old version. We remark
that SPIN paper observes the most significant increase of SPIN algorithm on GSM8k task
(from 26.76 to 35.10). Since we use the newest model in all our experiments, it leaves
much less space for us to improve from.

2. Second, we should not compare the iter3’s 8.63% increase in Table 3 of SPIN with our
paper’s 2.66% increase directly. When we say we take T = 5 and epoch=2 as in Table 4,
we essential split the data into 5 chunks and generate more frequently than SPIN, but still
consume and generate for all the training data for 2 epochs in total (SPIN iter0 also trained
for 2 epochs). So what we need to compare is the first iteration of SPIN (which is SPIN

2see for example the discussion in this link.
3See their model commit history.
4See their codebase.

19

https://github.com/uclaml/SPIN/issues/12
https://huggingface.co/alignment-handbook/zephyr-7b-sft-full/commits/main
https://github.com/EleutherAI/lm-evaluation-harness

Table 5: Generation example of fine-tuned models in Table 4.

Prompt Craft an intriguing opening paragraph for a fictional short story. The
story should involve a character who wakes up one morning to find
that they can time travel.

zephyr-7b-sft-full It was just another ordinary morning for Emily, until she opened
her eyes and found herself in a different time and place. She was
lying on her bed, surrounded by strange decor and people dressed
in clothes from a bygone era. Emily rubbed her eyes, thinking she
must be dreaming. But as she got up, she realized that she could feel
the weight of the day ahead of her, much like she always did. It was
only then that she realized that she had the power to time travel.

IRFT T = 1 (SPIN iter 0) As soon as her eyes fluttered open, something was different. The
room looked the same, the sun streaming in through the same win-
dow, but something felt off. It wasn’t until she tried to sit up that she
realized what it was - her body felt lighter, as if she were floating on
air. Confused, she looked around, searching for an explanation, and
that’s when she saw it - the clock on her bedside table was ticking
backwards. Panic set in as she tried to sit up, but her body refused to
obey her commands. And just like that, she was hurled through time,
landing with a thud in a completely different era.

IRFT T = 1 (SPIN iter 1) As soon as the alarm clock shrilled, something felt different to James,
but he brushed it aside and reached out to turn it off, just like any
other morning. Yet, as soon as he sat up, he felt a strange pull as
if he was being dragged backwards, and his room began to spin in
a dizzying whirlwind of colors. In the blink of an eye, he found
himself standing in a different place altogether, and he knew that he
had just woken up in a different time.

IRFT T = 5 (2 epochs) I opened my eyes groggily, ready to start another mundane day.
But as I rubbed my eyes and stretched my arms, something strange
happened. I felt a sudden jolt of energy course through my veins,
and before I knew it, the world around me had transformed. The
room that I was in was no longer my own, and I was standing in the
middle of a bustling medieval town square. I blinked in disbelief,
trying to make sense of what had just happened. Had I gone mad, or
was I dreaming? But as I looked around me, I realized with awe that
I had somehow managed to time travel.

IRFT T = 5 (4 epochs) It was just another regular morning for Emily, until as soon as she
opened her eyes the room started to blur and spin. Panicking, she
tried to stand up and grab the nightstand but her hand went right
through it. Confused and terrified, she tried to scream, but as soon
as the sound started to come out of her throat, she was engulfed by
a bright light that covered her body. When Emily opened her eyes
again, she realized that she had traveled back in time, to a moment
when she was 9 years old and standing at the foot of her parents’ bed,
ready to tell them the good news about acing her history test.

iter0 in SPIN’s original paper). Table 4 essentially indicates that, under our fair comparison
setting, every iteration of our proposed algorithm outperforms every iteration of SPIN.

Last, we provide a simple experiment to show how accurate the reward learned by our model
is. This experiment also addresses the generalization ability of the reward. Since we train our
7b model with a high-quality dataset (ultrachat) and we believe that the corresponding implicit
reward r = log(πθ/πref) should already be pretty accurate in terms of distinguish the good over
the rejected continuations. Therefore we did a simple test: we construct the implicit reward by

20

Table 6: Test performance of SPIN [Chen et al., 2024] and IRFT (Algorithm 2) based on
zephyr-7b-sft-full across HuggingFace Open LLM Leaderboard datasets. In this table we
test with LoRA (r = 64).

Tasks T K AI2_Arc TruthfulQA Winogrande GSM8k HellaSwag MMLU Average
Metrics acc_norm acc acc exact_match acc_norm acc

zephyr-7b-sft-full 0 0 74.83 34.07 76.09 31.92 81.09 58.86 59.48
SFT NA NA 75.20 34.18 76.16 34.95 80.96 57.71 59.86

IRFT (SPIN) 1 # samples
batchsize ∗ 2 75.31 35.67 75.85 34.5 81.98 57.46 60.13

IRFT 5 # samples
batchsize ∗ 2

5 74.92 37.96 76.95 35.25 82.48 57.66 60.87

Table 7: Test performance of different versions of the base model zephyr-7b-sft-full.

Version lm_eval version Arc_challenge TruthfulQA_mc2 Winogrande GSM8k HellaSwag MMLU Average

Newest v0.4.0 58.02 40.40 76.16 34.19 80.89 57.46 57.85
Version in SPIN v0.4.0 60.84 43.74 78.69 26.23 82.79 58.97 58.54

equation r = log(πθ/πref) where we compare different πθ (pretrained, SFT, SPIN and IRFT) on
the ultrafeedback dataset (note that we did not do training on this dataset) which is a preference
dataset. We believe that the accurate reward model r = log(πθ/πref) should be able to distinguish the
preferred and rejected continuations, and we compute the ratio of r(preferred) > r(rejected) (which
is called win-rate in some literature) and obtain Table 8, where we can see that IRFT improves the
implicit reward’s distinguishability of chosen over rejected.

Table 8: Win-rate of models trained by different methods. In this table we test with LoRA (r = 64).

Model SFT SPIN (IRFT T = 1) IRFT T = 5
Win-rate 42.6% 42.8% 55.6%

21

https://huggingface.co/alignment-handbook/zephyr-7b-sft-full
https://github.com/EleutherAI/lm-evaluation-harness/tree/v0.4.0
https://huggingface.co/alignment-handbook/zephyr-7b-sft-full/commit/90e0792328bc522e1662a3a7c611b030d563bf5b
https://github.com/EleutherAI/lm-evaluation-harness/tree/v0.4.0

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We show both theoretical and numerical results that support our claims in
Section 3, 3.3 and 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We made it very clear that we focus on demonstration dataset. We also include
a limitation section at the end.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

22

Answer: [Yes]

Justification: Assumptions and proofs can be found in the appendix

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the details of the experiment in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

23

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code is now released since it’s accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See the appendix for the implementation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We include the variance for all the plots in this work.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See the appendix for the implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We don’t think there are direct societal impacts from this work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

25

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper doesn’t contain there high risk models or data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The experiment part acknowledges all models and data we use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

26

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This is a work proposing new training frameworks and not including any new
assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27

	Introduction
	Preliminaries
	Reward Learning and Policy Fine Tuning from Demonstration Data
	Joint Reward-learning and Policy Fine-tuning by Inverse RL
	Implicit Reward-learning Fine-tuning via Self-generation
	Convergence Theory

	Discussions
	Numerical experiments
	Experiment Setup
	Results of RFT (Algorithm 1)
	Results of IRFT (Algorithm 2)

	Conclusions and Limitations
	Related works
	Proofs for Section 3
	Implementation details of the numerical experiments
	Additional numerical results based on LoRA

