
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ON LEARNING LINEAR DYNAMICAL SYSTEMS
IN CONTEXT WITH ATTENTION LAYERS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper studies the expressive power of linear attention layers for in-context
learning (ICL) of linear dynamical systems (LDS). We consider training on se-
quences of inexact observations produced by noise-corrupted LDSs, with all pertur-
bations being Gaussian; importantly, we study the non-i.i.d. setting as it is closer
to real-world scenarios. We provide the optimal weight construction for a single
linear-attention layer and show its equivalence to one step of Gradient Descent
relative to an autoregression objective of window size one. Guided by experiments,
we uncover a relation to the Preconditioned Conjugate Gradient method for larger
window sizes. We back our findings with numerical evidence. These results add to
the existing understanding of transformers’ expressivity as in-context learners, and
offer plausible hypotheses for experimental observations whereby they compete
with Kalman filters — the optimal model-dependent learners for this setting.

1 INTRODUCTION

We contribute towards understanding transformers’ expressive power when learning from non-i.i.d.
data produced by linear dynamical systems (LDSs). The starting point of our work is the well-known
ability of transformers to perform in-context learning (ICL) (Brown et al., 2020).

Specifically, this boils down to accurately answering a query based on a set of examples given as
a textual prefix (“in context”) (Brown et al., 2020). This behaviour is desirable, as it loosens the
requirement for expensive data collection and fine-tuning stages (Liu et al., 2023). Current research
efforts are split between enhancing ICL through specialized training and prompt engineering, and
building a mechanistic understanding of it — see the comprehensive review of Dong et al. (2022).

Currently there exist two perspectives on ICL mechanics: a Bayesian view, whereby transformers
recover latent concepts from prompts, thus performing implicit Bayesian inference (Wang et al.,
2023; Jiang, 2023; Wies et al., 2023; Xie et al., 2021), and a view of transformers as implementers
of implicitly learned algorithms (Von Oswald et al., 2023a; Giannou et al., 2023; Akyürek et al.,
2022; Garg et al., 2022; Ahn et al., 2023; Mahankali et al., 2023; Sander & Peyré, 2024; Von Oswald
et al., 2023b; Sander et al., 2024). Within the latter works, investigations center around whether
transformers can perform linear regression (and variants thereof) in context, and how. They give
weight to this hypothesis by proving that, for certain token formats, data distributions, and architecture,
the transformers’ optimal weights effectively execute an optimization algorithm iteration in the
forward pass, relative to a context-dependent loss (Von Oswald et al., 2023a; Mahankali et al., 2023;
Ahn et al., 2023; Von Oswald et al., 2023b; Sander et al., 2024). Though this algorithmic view
does not account for the “emergent” aspect of “in-the-wild” ICL (Shen et al., 2023), it provides
concrete expressions for transformers’ modelling power and identifies the minimal functional unit
that instantiates it — a single, causally-masked, linear attention layer, without positional encoding.
Despite this rich progress in understanding ICL for i.i.d. data settings, our grasp of the non-i.i.d. case
is missing. A significant hurdle in analyzing this scenario is handling a token’s statistical dependence
on the entire context preceding it. This work takes the first steps towards unraveling this difficulty.

Specifically, we study the ability of a single linear attention layer to learn in context from sequences
of observations {yt}t generated by a time-invariant LDS doubly-corrupted by Gaussian noise{

xt+1 = Axt +wt+1,

yt = c⊤xt + vt,
(1)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

where wt
i.i.d.∼ N (0,Σw) and vt

i.i.d.∼ N (0, σ2
v) with mutually independent wt and vt. Studying this

setting has a threefold motivation. Firstly, the sequence {yt}t is built on a temporal scaffold closer
in nature to that of language-induced tokens, in stark contrast to the i.i.d. setup predominantly
addressed by prior works (with few exceptions discussed in detail later). Secondly, this setting moves
closer to the works taking a Bayesian view on ICL, where the data follows a Hidden Markov Model
(HMM) (Xie et al., 2021) of which LDSs are a subclass (Minka, 1999). Furthermore, dynamical
systems have been directly studied as potentially more flexible models for grammatical sentence
formation, both empirically (Elman, 1995; Tabor et al., 1996) and more formally (Beim Graben
et al., 2004; Belanger & Kakade, 2015), thus making setting (1) particularly relevant. With
HMMs being a mainstay in language modelling, setting (1) is particularly relevant. Finally, prior
empirical observations emphasize the close performance of transformers relative to the Kalman
Filter (KF) (Kalman, 1960), with the former matching the latter in settings where KF is the optimal
predictor (Du et al., 2023). To our knowledge, the underlying mechanism is yet to be understood
formally.

The goal of this paper is to characterize the structure of a single linear self-attention layer trained
to optimality for predicting yT in-context, when presented with sequences {yt}T−1

t=1 . We proceed
in two steps: first, we define an appropriate context-dependent loss for dealing with the time-series
data. To this end, we rely on the improper learning approach of the system identification literature,
whereby sequence generating processes of type (1) are well approximated by autoregressive ones.
Second, we link the structure of optimally trained linear attention layers with algorithmic steps on
the context-dependent loss. In doing so, we rely on a token augmentation scheme akin to prior
works (Von Oswald et al., 2023a; Ahn et al., 2023; Mahankali et al., 2023). Our contributions are the
following.

C1. In Theorem 4.1, we prove that for an order-one autoregressive approximation of (1), the
optimal linear attention layer implements a step of Gradient Descent on the associated
least-squares loss. To our knowledge, this is the first optimality result for LDS data.

C2. In Lemma 4.1, we identify a salient banded pattern of the matrices involved in the stationarity
condition for generic order-s approximations of (1). We further define a class of parameters
that satisfy this structural constraint and empirically observe that minimizers obey it, thus
narrowing down the search for the provably-optimal linear attention layer when s ≥ 2.

C3. In Section 5, we provide numerical experiments verifying our theory for order-one au-
toregressive approximations. Furthermore, we connect the tiling pattern of empirically
determined minimizers of order-s approximations, s ≥ 2, with the Preconditioned Con-
jugate Gradient method iteration, thus further highlighting the view of ICL as on-the-fly
optimization. To our knowledge, this is the first interpretation of the in-context algorithm
for general order-s autoregression.

C4. Conceptually, we make the case for the view of ICL as implicit optimization having a viable
extension to LDS-produced data. We do so by bridging works from the system identification
literature with empirical observations of transformers’ in-context performance rivaling that
of Kalman Filters.

2 RELATED LITERATURE

We review the niche of studies viewing ICL as in-context optimization, together with relevant works
on filtering and system identification. Further comparisons are discussed in Section 4.1.

ICL for linear regression with i.i.d data. This line of work studies whether transformers trained
on a few-shot learning objective can perform linear regression in-context, and how. Garg et al. (2022);
Akyürek et al. (2022); Von Oswald et al. (2023a) provide empirical results in the affirmative, along
with possible architecture constructions implementing Gradient Descent (GD) steps relative to a
context-induced least squares loss. Through this lens, ICL reduces to on-the-fly optimization executed
in the transformer’s forward pass. Mahankali et al. (2023); Zhang et al. (2024); Ahn et al. (2023)
complement these findings by proving that one-layer linear self-attention implementing such a GD
step (possibly preconditioned) is a global minimizer of the pretraining loss when covariates are i.i.d.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and Gaussian drawn. Finally, Zhang et al. (2024) complete the picture by proving that Gradient Flow
converges to these global minimizers. Our results extend this line of work to non-i.i.d. setting.

ICL and system identification. This line of work asks whether transformers can perform autore-
gressive learning in context, and how. Different from the prior section, the following papers use
the autoregressive pretraining loss and, unless stated otherwise, the results concern a single layer
of linear self-attention. Von Oswald et al. (2023b) give a construction implementing a GD step
on L(W) :=

∑t−1
i=1 ∥Wyi − yi+1 ∥2 in parallel for all positions t, under an appropriate token

configuration. Sander et al. (2024), further characterize the global minimizers of the autoregressive
pretraining loss relative to the noiseless data yt+1 = Ayt, with A uniformly sampled from the set of
commuting orthogonal matrices. Notably, they recover Von Oswald et al. (2023b) construction when
using the same token augmentation. Sander et al. (2024) further characterizes minimizers for the
case of substituting token augmentation with positional encoding and a dimension-dependent number
of attention heads — this setting’s analysis, however, requires a diagonal weight structure. Zheng
et al. (2024) complement these results by showing that, with a diagonal weight initialization and a
controlled distribution of y0, pretraining with Gradient Flow (GF) recovers the previously identified
GD-implementing optimum. Finally, Sander & Peyré (2024) extend these results to arbitrary orthogo-
nal As via an infinite-depth attention-only transformer that correctly predicts yT in the limit T → ∞.
This result holds for softmax, exponential, and linear activations.

Moving away from the noiseless settings above, Cole et al. (2025) establish approximation theoretic
results for deep attention-only transformers predicting the sequence yt+1 = Ayt + wt, with
wt ∼ N (0, σ2

wI) and A ∈ Sd++. They prove by construction that there exists a log(T)-depth
transformer attaining a uniform-over-A log(T)

T error for predicting E[xT+1|xt,A], and give a lower
bound for the accuracy with which a single linear attention layer can make predictions. Related to the
problem of capacity, Ziemann et al. (2024) establish a learner predicting the next observation with
a uniform-in-time error bound requires a number of parameters at least quadratic in the algebraic
multiplicities of A’s unstable eigenvalues, and must operate on a context length at least logarithmic
in the length of {yt}Tt=1.

In summary, these works either study transformers’ ICL ability with respect to simplified LDSs or do
not address the question of weight structure optimality. In contrast, we study fully-fledged systems (1)
with the aim of characterizing the pretraining loss minimizers in the few-shot training setting.

Transformers and linear filtering. The classical model-based prediction tool for systems of
type (1) is the Kalman Filter (KF) (Kalman, 1960). Using knowledge of system parameters, the KF
gives the minimum expected squared error estimates x̂i of the hidden states xi as linear combinations
of the past yis. Transformers as potential implementers of KF were studied by Goel & Bartlett (2024),
who prove that a softmax causal attention layer is an arbitrarily good approximator. Akram & Vikalo
(2024) further construct a transformer emulating the KF. Finally, Du et al. (2023) provide empirical
evidence that a GPT-2 architecture (Radford et al., 2019) competes in accuracy with the KF for
predicting the next observation in a previously unseen sequence, though the mechanism remains
unstudied. We partially fill this gap with our present work.

3 PRELIMINARIES, PROBLEM FORMULATION & ASSUMPTIONS

Notation. Vectors and matrices are denoted by bold, lowercase and uppercase letters, respectively,
with regular lowercase letters reserved for scalars. We denote by 111d and 000d the all-ones and all-zeros
vectors of dimension d, and by 111d×m and 000d×m the analogous matrices. Unless stated otherwise, we
use ∥ · ∥ for the Euclidean norm of vectors and the spectral norm of matrices. We denote by Tr (·) the
trace of a matrix, ⟨·, ·⟩ the inner product, by ∥ · ∥F its Frobenius norm, and by ρ(·) its spectral radius.
We use ei for the ith vector of the canonical basis in the appropriate dimension and I to denote the
identity matrix of appropriate dimensions. The notations Sd+ and Sd++ define the cones of symmetric
positive-semidefinite and positive-definite matrices in Rd×d, respectively. We use Sd−1 to denote the
unit sphere in Rd. We use ⊙ to denote the Hadamard product. Finally, we use [n] when referencing
the set of integers {1, 2, . . . n}. We write w.p. as an abbreviation of “with probability”.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The big picture: filtering, system identification, and linear regression. The KF (Kalman, 1960)
computes the optimal estimates x̂i of xi through the system of recursions

Predict: x̂t+1|t := Ax̂t, Pt+1|t = APtA
⊤ +Σw

Gain: kt+1 = Pt+1|tc
(
c⊤Pt+1|tc+ σv

)−1

Update: x̂t+1 = x̂t+1|t + kt+1(yt+1 − c⊤x̂t+1|t), Pt+1 := (Id − kt+1c
⊤)Pt+1|t,

(2)

where x̂0 and error covariance estimate P0 are given as input. Under the Gaussian errors assumption,
the state prediction satisfies x̂t = E[xt | yt, . . . y1] and, consequently, the forward observation
prediction follows ŷt+1 := c⊤Ax̂t = E[yt+1 | yt, . . . y1]. The fast, constant-time KF predictions,
however, require knowing the LDS parameters — a condition generally not satisfied in practice.

Consequently, “proper learning” approaches seek to reconstruct the underlying model, by first
estimating A, c, Σw, σv through costly parameter identification techniques and then producing
forward observation predictions using the KF (Hamilton, 1995). In contrast, “improper learning”
methods eschew structural constraints and solely seek to reliably achieve low error with respect to
the underlying data distribution and the learning objective (Kozdoba et al., 2019, and references
therein). For LDSs, this boils down to expressing the next observation as a linear function of
the recent past. Not only does the latter approach have the computational advantage of foregoing
parameter estimation, but it also benefits from convex formulations, thus being amenable to classical
optimization techniques. Most importantly, for certain LDS classes, improper learning methods can
closely track E[yt+1 | yt, . . . y1], as follows.

Tsiamis & Pappas (2019) highlight the following rephrasing of the data-generating process via the
KF and for some fixed window size s of past observations,

[ys+1, . . . yT−1] = c⊤[(A− kc⊤)s−1k, . . . (A−Kc⊤)k,k] [ȳ1, . . . ȳT−s−1]

+ c⊤(A− kc⊤)s[x̂1, . . . x̂T−s+1] + [εs+1, . . . εT−1], (3)

where ȳt := [yt, yt+1, . . . yt+s−1]
⊤, k is the steady-state gain, and ei ∈ R are i.i.d, zero-mean

Gaussian errors. Under KF convergence conditions, quantity ρ(A − kc⊤) < 1 makes the second
term vanish exponentially in s and thus renders it negligible. We are now in the familiar setting
of noisy linear regression, albeit with non-i.i.d. data. The resulting order-s autoregressive process
(AR(s)) is associated with the optimization objective

min
w∈Rs

LAR(s)(w) :=
1

2(T − s− 1)

T−s−1∑
t=1

(yt+s −w⊤ȳt)
2. (4)

This simplification is the crux of improper learning approaches to system identification (Kozdoba
et al., 2019) and becomes of note in conjunction with the idea that transformers perform on-the-fly
optimization on the context-induced least squares objective. Should this latter view hold up to
scrutiny under the new data distribution, it would imply that transformers could learn LDS-based
time series in context arbitrarily well as a function of the available s. This is our incentive for seeking
characterizations of the few-shot pretraining loss minimizers.

To ensure the above approximation is valid, we introduce the following LDS assumption.
Assumption 3.1 (System assumptions). LDS (1) has strictly positive definite noise covariances Σw

and σv > 0. The system transition matrix A ∈ Rd×d is marginally stable, with ρ(A) ≤ 1, and the
pair (A, c) is observable, meaning that

O =


c⊤

c⊤A
...

c⊤Ad−1

 (5)

has a column rank of d.

Assumption 3.1 is standard in the literature, and ensures KF convergence (Harrison, 1997) along with
the exponential vanishing of the bias term in (3). Furthermore, it ensures the closeness of forward
observation predictions given by the KF with those produced by a linear autoregressive predictor
determined by expression (4) (Kozdoba et al., 2019).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Transformer architecture. Transformers (Vaswani et al., 2017) are neural architectures performing
sequence-to-sequence mapping. For a set of input tokens ST = [s1, . . . sT]

⊤ ∈ RT×p, the trans-
former produces a corresponding ŜT = [ŝ1, . . . ŝT]

⊤ ∈ RT×p by dynamically mixing tokens via its
attention mechanism. An L-layer transformer Tθ : RT×p → RT×p parametrized by θ = [θi]

L
i=1 is a

composition of blocks TL = Tθ1 ◦ . . . TθL . Each Tθi is a sequence-to-sequence function given by

Tθi(S) := (MLPθMLP
i

◦ Aθatt
i

)(S),

where MLPθMLP
i

is a multilayer perceptron and Aθatt
i

is the attention mapping. This paper studies
the simplified block Tθ(S) := Aθ(S), thus setting L = 1 and MLPθMLP

1
to identity.

The causal h-headed attention block with residual connections is given by

Aθ(S) := S +

H∑
h=1

σ

(
M ⊙ 1

τ
SW h

Q(W
h
K)⊤S⊤

)
SW h

V W
h
O,

where the parameters θ = [W h
Q,W

h
K ,W h

V ,W
h
O]

H
h=1 represent the query, key, value, and projection

matrices, respectively; τ > 0 is a scaling constant; σ is the softmax normalizing function applied
row-wise; and M ∈ RT×T , with Mi,j = 1 if i ≥ j and −∞ otherwise is a mask enforcing causality.

Similar to prior works (Von Oswald et al., 2023a; Ahn et al., 2023; Mahankali et al., 2023), we restrict
our study to the analytically tractable setting of single-headed linear attention (Katharopoulos et al.,
2020). Without loss of expressivity, we drop the projection matrix WO and consider the WQW

⊤
K as

a single matrix WQK ∈ Rp×p. Since we’re working in the few-shot scenario, we’re concerned solely
with predicting the final position as

ŝT := Tθ(S)t = sT +
1

T − 1
W⊤

V

T−1∑
i=1

sis
⊤
i W

⊤
QKsT , (6)

where we set τ = T − 1 and omit the last sum element due to a token asymmetry discussed next.

Token construction. We construct the tokens following the same scheme of Von Oswald et al.
(2023a); Ahn et al. (2023); Mahankali et al. (2023). The input matrix Y0 constructed using AR(s)
data (4) is

Y0 =

[
ȳ1 ȳ2 · · · ȳT−s−1 ȳT−s

ys+1 ys+2 · · · yT−1 0

]
=


y1 y2 · · · yT−s−1 · · · yT−s

...
...

...
...

ys ys+1 · · · yT−2 · · · yT−1

ys+1 ys+2 · · · yT−1 · · · 0

 , (7)

where s >= 1 is the window size of the AR process. The last column represents the “test” token,
whose final position is filled in the transformer’s forward pass by yT ’s estimate ŷT . This asymmetry
motivates the last term’s removal in (6).

Lemma 3.1 ensures, by construction, the existence of a linear attention layer producing Y0 from the
raw sequence {yt}t. Its proof is deferred to Appendix C.1 due to space constraints.
Lemma 3.1. For a given s >= 1, there exists an s+ 1-headed linear attention layer with positional
encoding which transforms input sequences [y1, y2, . . . , yT]⊤ into

y1 y2 . . . ys ys+1

...
...

...
...

...
yT−s−1 yT−s . . . yT−2 yT−1

yT−s yT−s+1 . . . yT−1 0

0T−s−1× s

 .

The latter are essentially equivalent to tokens (7).

Data distribution, loss function, and training paradigm. We consider trajectories {yi}Ti=1
sampled from systems of type (1), where each trajectory corresponds to different, fixed parameters A
and c sampled from appropriate distributions, and x0 sampled from N (0d,Σx0

). Our assumptions
on the distributions of A and c are

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Assumption 3.2 (LDS family). The system matrix A ∈ Rd×d is sampled from a centrally symmetric
distribution supported on

{
M ∈ Rd×d

∣∣ ρ(M) ≤ 1
}

, for which it holds that

P ({A | ∃i, j ∈ [d], s.t. λi(A) = λj(A)}) = 0. (8)

In other words, A has a simple spectrum almost surely. The observation vector c ∈ Rd is sampled
independently, from a distribution that is absolutely continuous w.r.t. the Lebesgue measure over Rd.

Except for the central symmetry assumption, the requirements of Assumption 3.2 ensure that As-
sumption 3.1 holds w.p. 1 for every sampled LDS. The proof can be found in Appendix C.2. The
central symmetry of A’s distribution, on the other hand, is a technical requirement for proving our
main result.

Data generation proceeds in two steps: we sample A, c, and x0 independently and observe the
evolution of system (1) for T steps. Note the noises wt and vt in system (1) are jointly independent
of A, c, and x0. We then construct Y0 (7) for a fixed s, and train our model to minimize

L(θ) := EA,c,x0,{wt}t,{vt}t

[
1

2
(Tθ(Y0)s+1,T−s − yT)

2

]
, (9)

where the subscript marks that we solely consider the last position of the last output token.

4 OPTIMAL PARAMETER CONFIGURATIONS

This section presents our theoretical results and discusses their implications relative to prior literature.

Our theoretical contribution is two-fold. First, in Lemma 4.1 we reveal a salient structure within the
first-order optimality condition, which plays an important role in finding optimum configurations for
the in-context loss of AR(s). Second, in Theorem 4.1 we prove that the transformer configuration
implementing one-step GD is a global minimizer for AR(1) using this salient structure.

Unlike the i.i.d. case, each token generated by the LDS depends on the entire history. This results in
high-order data moments populating the in-context loss, which can only be dealt with by unrolling to
the initial state. A general approach to compute and match them is presented in Appendix D.3. We
now describe the structure emerging within the first-order optimality condition.

Following (Ahn et al., 2023), we use basic algebraic manipulations (Appendix D.3) to rewrite loss (9)
as

EA,x0,{wt}t,{vt}t

 (1

T − s− 1

s∑
k=1

⟨Y0Y
⊤
0 , ba⊤

k ⟩yT−s−1+k − yT

)2
 , (10)

where W⊤
V = [0(s+1)×s, b]

⊤ and W⊤
QK = [a1, . . .as,0s+1]. The zero-padding of both matrices

comes from predicting solely the last position of the final token. Consequently, parameters ensuring

EA,x0,{wt}t,{vt}t

[
1

T − s− 1

s∑
k=1

⟨Y0Y
⊤
0 , ba⊤

k ⟩yT−s−1+kyT−s−1+jY0Y
⊤
0

]
= EA,x0,{wt},{vt}

[
yT yT−s−1+jY0Y

⊤
0

]
, ∀ j ∈ [s] (11)

are critical points of the loss.

Notably, the right-hand side of (11) obeys a banded structure, as follows

⋆ 0 ⋆ · · · · · ·

0 ⋆ 0 ⋆
...

⋆ 0 ⋆
.

...
... ⋆

. ⋆
...

. ⋆ 0
· · · · · · ⋆ 0 ⋆


for odd s+ j; or



0 ⋆ 0 · · · · · ·

⋆ 0 ⋆ 0
...

0 ⋆ 0
.

...
... 0

. 0
...

. 0 ⋆
· · · · · · 0 ⋆ 0


for even s+ j;

(12)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where ⋆ is a placeholder for arbitrary reals (the proof is deferred to Appendix D.3). We formalize a
class of parameters ensuring matching structures between the left and right-hand sides of (12) for
arbitrary s in Lemma 4.1.

Lemma 4.1. For an arbitrary s, the following parameters induce a banded structure in the left-hand
side of (11) matching that of the right-hand side.

WQK =


⋆ 0 ⋆ · · ·

0 ⋆
. . .

. . .
...

...
. . .

. . . 0 ⋆
0 · · · 0 ⋆ 0
0 · · · · · · 0 0

 , WV =



0 · · · · · · 0
...

...
... 0

...
... ⋆

...
... 0

0 · · · · · · 0 ⋆


. (13)

Lemma 4.1 can be understood as a narrowing-down based on structure of the parameter class likely
to hold minimizers of (9).

Our second step is to use structure (13) to identify a global minimizer of loss (9) in the AR(1) case,
yielding Theorem 4.1 with proof deferred to Appendix D.4.

Theorem 4.1. Let Y0 encode the input tokens according to construction (7) for s = 1. Then, the
optimal parameters θ⋆ =

(
W ⋆

QK ,W ⋆
V

)
of a single linear self-attention layer with respect to loss

L(θ) are

W ⋆
QK =

[
(T−2)EA,x0,{wt}t,{vt}t [

∑T−2
i=1 yiyi+1yT−1yT]

EA,x0,{wt}t,{vt}t [
∑T−2

i=1 yiyi+1
∑T−2

r=1 yryr+1y2
T−1]

0

0 0

]
, W ⋆

V =

[
0 0
0 1

]
, (14)

up to rescaling with γ ̸= 0.

Broadly, the proof of Theorem 4.1 encounters two difficulties compared to the i.i.d. case: the number
of terms that need to be matched in satisfying the first-order optimality condition, and the full-history
dependence of the data. We address the first obstacle using the result of Lemma 4.1, and we sift
through the second by relying on Isserlis’ theorem (Isserlis, 1918) to handle higher-order moments of
ȳt that would have factored out of expectations in the i.i.d. case. Details can be found in Appendix
D.3.

Notably, a forward pass using the optimal parameters (14) amounts to the prediction given after one
GD step on LAR(1)(w) starting from w0 = 0. We thus recover the ICL-as-optimization view upheld
by works in the i.i.d. setting (Ahn et al., 2023; Mahankali et al., 2023) but for LDS-produced data.

4.1 DISCUSSION

To our knowledge, the only other architecture proposed for handling noisy observations yt of
type (1) is given by Cole et al. (2025). Theirs is part of a proof of existence by construction
and, as such, is not accompanied by confirming experimental evidence. Different from us, they
propose an attention-only transformer that unrolls a modified Richardson iteration meant to esitmate(

1
T

∑T
t=1 xi+1x

⊤
i

)(
1
T

∑T
i=1 xix

⊤
i

)−1

for a simpler LDS with direct state access. Their construction
extends to the setting of objective (4) via the work of Tsiamis & Pappas (2019), who give a high
probability result for the existence of

(∑T−s−1
t=1 ȳtȳ

⊤
t

)−1

under our assumptions. However, their
transformer has a minimum of two layers, of which the first is fixed, therefore providing no guarantee
that training will recover it. Our results take a first step towards filling this gap.

Tangentially, Akram & Vikalo (2024) construct a transformer emulating the KF, contingent on
knowledge of the system parameters and an elaborate token augmentation scheme. While this
architecture is capable of computing the forward KF observation ŷT , it relies on ideal knowledge of
LDS (1) which is rarely encountered in practice.

Theorem 4.1 sets forth a plausible hypothesis for prior experiments (Du et al., 2023, Fig. 2) using a
GPT-2 architecture trained autoregressively with data (1) for stable A ∈ Sd++. Their results highlight

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Training loss for AR(1) tokens. (b) W ⋆
QK for AR(1). (c) Optimal W ⋆

V for AR(1).

(d) Training loss for AR(2) tokens. (e) W ⋆
QK for AR(2). (f) W ⋆

V for AR(2).

(g) Training loss for AR(3) tokens. (h) W ⋆
QK for AR(3). (i) W ⋆

V for AR(3).

Figure 1: Experimental results for AR(1–3) tokens showing the optimally-trained attention parameters.

the transformer’s competitive performance relative to the KF for predicting the next observation of
a previously unseen sequence, in-context. These experiments suggest an implicit form of system
identification might be executed in context, though the mechanism remains unstudied. Through the
ICL-as-optimization lens, we can interpret the high accuracy of GPT-2’s in-context predictions as a
possible consequence of Theorem 2 of (Kozdoba et al., 2019). Importantly, the latter result implies
that for an arbitrary, finite family S of LDSs (1) and an ε > 0, there exists a window-length s(ε) such
that the optimal AR(s(ε)) predictor incurs an average error that is at least as good, up to ε, as that
of the forward observation prediction ŷt+1 of the best KF in S. Our results take the first step in the
exploration of this hypothesis.

5 EXPERIMENTS

We now present numerical evidence supporting our theory. All experiments were implemented in
Python 3.12 and run on a ThinkPad T14p with 32 GB RAM and a 22-core Intel Core™ Ultra 9 185H
processor. The code is provided as part of the supplementary material.

We train architecture (6) on sequences {yt}Tt=1, T = 30, each sampled from a different LDS of
type (1) with a hidden state dimension d = 5. The number of training iterations is 8000 for all cases
with a increase of the batch size for every increase in order starting from 3000 for AR(1). A fresh
batch of LDSs is sampled at every iteration (i.e., online setting). The experiments are done with the
following 4 settings.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) For each sequence, sample A’s diagonal entries uniformly at random in the interval [−1, 1]
and set c = 1d. The noise covariances are set to Σw = 1e-2I and σ2

v = 1e-2. The
results are depicted in Figure 1 for AR(1–3) tokens, with experiments for AR(4) deferred to
Figure 2 in Appendix B.

(b) For each sequence, sample v ∼ Unif([−1, 1]d), independently sample Q ∼ Haar(O(d))
and set A = Q⊤diag(v)Q. We also independently sample c ∼ Unif([−5, 5]d). The noise
covariances are set to Σw = 1e-2I and σ2

v = 1e-2. Experiments for AR(1–4)- tokens
are provided in Figure 4 in Appendix B.4.

(c) For each sequence, sample v ∼ Unif([−1, 1]d), sample P = [pi,j]
d
i,j=1 by sampling pi,j

i.i.d. from U ([−1, 1]), and set A = P−1diag(v)P. Sample c ∼ Unif([−5, 5]d). The noise
covariances are set to Σw = 1e-2I and σ2

v = 1e-2. Experiments for AR(1–4)- tokens
are provided in Figure 6 in Appendix B.6.

(d) For each sequence, sample v ∼ Unif([−1, 1]d), sample Q ∼ Haar(O(d)) and set A =
Q⊤diag(v)Q. Sample c ∼ Unif([−5, 5]d). Fix the process noise covariance to Σw =

Qw
⊤diag(1e-2 · [0.8, 0.85, 0.9, 0.95, 1.0])Qw, where Qw is an orthogonal matrix. Set

σ2
v = 1e-2. Experiments AR(1–4)- tokens are provided in Figure 5 in Appendix B.5.

All the settings above have x0 ∼ N (0, σ2
0I), σ

2
0 = 1e-2. Note that we could have used any other

centrally symmetric distribution with marginals supported on [−1, 1] for the sampling of the diagonal
v, e.g., Unif(Sd−1) — uniform on the unit sphere; Unif({x ∈ Rd : ∥x∥2 ≤ 1}) — uniform inside
the unit ball, etc. We prove these sampling schemes obey Assumption 3.2 in Appendix E.1. We use
window-sizes s ranging from 1 to 4, with results being averaged over 3 random seeds. The weights
are learned using AdamW (Loshchilov & Hutter, 2017) with gradient clipping and a learning rate
schedule consisting of a linear warm-up phase followed by cosine annealing (Loshchilov & Hutter,
2016). A full list of hyperparameters is provided in Tables 1 and 2 of Appendix B.

Figure 1 depicts the experiment results under setting (a), Figure 4 setting (b), Figure 5 setting (c) and
Figure 6 setting (d). Figure 1 (b,c), Figure 4 (b,c), Figure 5 (b,c) and Figure 6 (b,c) show an optimum
conforming to Theorem 4.1 for AR(1) tokens. Moreover, Figure 1 (e,f,h,i), Figure 2 (b,c), Figure 4
(e,f,h,i,k,l) and Figure 6 (e,f,h,i) confirm experimentally the pattern uncovered by Lemma 4.1 for
general s > 0. Furthermore, we provide experiments in setting (a) showing that the weights converge
to the sparsity pattern predicted by Lemma 4.1 in terms of the Jaccard distance between the non-zero
supports — experimental details are given in Appendix B.3 and results are depicted in Figure 3 of the
appendix.

Interpreting of the sparsity pattern for AR(s) s ≥ 2. A quick calculation of the forward pass
reveals that weights trained to optimality with AR(s) tokens (7) for s ≥ 2 do not implement standard
GD in the forward pass, but an iteration resembling that of the Preconditioned Conjugate Gradient
method (PCG) (Shewchuk et al., 1994), as follows.

Since our sampling scheme ensures ρ(A) < 1 w.p. one, the stochastic process {yt}t approaches
stationarity exponentially fast, meaning that autocorrelations become (almost) solely dependent on
lag, i.e., E[ytyt+k] ≈ γ(k), ∀t ∈ N+. In particular, the empirical counterparts become approxi-
mately equal 1

T−s−1

∑T−s−1
i=1 yiyi+k ≈ 1

T−s−1

∑T−s−1
i=1 yi+pyi+p+k ≈ γ̂(k). We can therefore

approximate 1
T−s−1Y0Y

⊤
0 with the symmetric Toeplitz matrix and remark it has a block structure

involving ∇2LAR(s) (a constant matrix) and ∇LAR(s)(0) (the gradient at w = 0)

1

T − s− 1
Y0Y

⊤
0 ≈


γ̂(0) γ̂(1) · · · γ̂(s)
γ̂(1) γ̂(0) · · · γ̂(s− 1)

...
...

. . .
...

γ̂(s) γ̂(s− 1) · · · γ̂(0)

 =

[
∇2LAR(s) ∇LAR(s)(0)

∇LAR(s)(0)
⊤ γ̂(0)

]
. (15)

Using expression (15) and the parameter structure from Lemma 4.1 and the experiments, we rewrite
the transformer’s forward pass in a manner that highlights the resemblance with two steps of the PCG
method. We describe the case for even s, with identical reasoning applying for the odd case. Let

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

s = 2k, k ∈ N and N = (s+1)2+1
2 . Then, the weight matrices belonging to Rs+1×s+1 are

WQK =



c1 0 c2 · · · ck+1

0 ck+2 0 · · · 0

...
...

.
...

0 cN−2k 0 · · · 0

0 0 · · · 0 0


WV =



0 · · · 0 cN−k

0 · · · 0 0

0 · · · 0 cN−k+1

...
...

...
0 · · · 0 0

0 · · · 0 cN


. (16)

Renaming the top left s× s block of WQK as P, the top-right s× 1 block as p, and the top right
s× 1 block of WV as q, the transformer-induced linear predictor 1

T−s−1WQKY0Y0
⊤WV:,s+1 is

P∇2LAR(s)q+ (pq⊤ + cNP)∇LAR(s)(0) + cN γ̂0p

Letting P ′ := Γ∇2LAR(s) with Γ := cN γ̂0pq⊤

q⊤∇2L2
AR(s)

q
and observing that cN γ̂0p = P′∇2LAR(s)q

(see Appendix E.3), the transformer-induced predictor finally rewrites as(
Γ∇2LAR(s) +P

)
∇2LAR(s)q + (pq⊤ + cNP)∇LAR(s)(0). (17)

Expression (17) resembles the predictor obtained after two PCG steps (Shewchuk et al., 1994, p.
51) on loss LAR(s) with preconditioner P−1 starting from w0 = 0 and initial conjugate direction
d0 = q (algorithm deferred to Appendix E.2). Note that P ’s invertibility is assumed. The resulting
predictor is

w2 =
[
τ1∇2L−1

AR(s) − τ2P
]
∇2LAR(s)q + τ3P∇LAR(s)(0)

≈
[
2τ1I − τ1∇2LAR(s) − τ2P

]
∇2LAR(s)q + τ3P∇LAR(s)(0)

where τ1, τ2, τ3 ∈ R are iteration-dependent constants (see Appendix E.2), and we used an order-one
Neumann series approximation of the Hessian inverse. The latter was shown to exist with high
probability for sufficiently large T by Tsiamis & Pappas (2019). Notably, this AR(s) analogy is in
harmony with the plain GD step observed for AR(1), since PCG collapses to GD when covariates
belong to R.

6 CONCLUSION, LIMITATIONS, FUTURE DIRECTIONS

This paper presented the first steps towards characterizing the optimal configuration of a single
self-attention layer trained with LDS-produced data and its ability to learn in context. We sketched
a path forward by leveraging results from the literature on improper learning approaches to system
identification, whereby autoregressive processes can well-approximate Kalman filters given a suffi-
cient window size. Using this starting point, we showed that for a length-one window, the optimal
attention layer implements a step of GD on the context-induced autoregressive loss. Furthermore,
we narrowed down the class of potential minimizers based on a structural property of the optimality
condition, which we confirmed through experiments. We also reveal that for a length-s window, the
trained attention layer approximates a step of PCG on the corresponding autoregressive loss.

Due to the difficulties induced by correlated data, several limitations remain: establishing optimality
for s ≥ 2 by searching for optima within the structured class of parameters of Lemma 4.1; explaining
the non-standard initialization of the conjugate direction in the AR(s), s ≥ 2 PCG approximation;
and finally, extending this analysis to autoregressive pretraining objectives. Our present contributions
provide the necessary building blocks for addressing these directions in future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. Advances in Neural Information Processing
Systems, 36:45614–45650, 2023.

Usman Akram and Haris Vikalo. Can transformers in-context learn behavior of a linear dynamical
system?, 2024. URL https://arxiv.org/abs/2410.16546.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022.

Peter Beim Graben, Bryan Jurish, Douglas Saddy, and Stefan Frisch. Language processing by
dynamical systems. International Journal of Bifurcation and Chaos, 14(02):599–621, 2004.

David Belanger and Sham Kakade. A linear dynamical system model for text. In International
Conference on Machine Learning, pp. 833–842. PMLR, 2015.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Frank Cole, Yulong Lu, Tianhao Zhang, and Yuxuan Zhao. In-context learning of linear dynamical
systems with transformers: Error bounds and depth-separation. arXiv preprint arXiv:2502.08136,
2025.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Tianyu Liu, et al. A survey on in-context learning. arXiv preprint arXiv:2301.00234,
2022.

Zhe Du, Haldun Balim, Samet Oymak, and Necmiye Ozay. Can transformers learn optimal filtering
for unknown systems? IEEE Control Systems Letters, 7:3525–3530, 2023.

Jeffrey L Elman. Language as a dynamical system. 1995.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In International Conference on
Machine Learning, pp. 11398–11442. PMLR, 2023.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Gautam Goel and Peter Bartlett. Can a transformer represent a kalman filter? In 6th Annual Learning
for Dynamics & Control Conference, pp. 1502–1512. PMLR, 2024.

James D Hamilton. Time series analysis, 1995.

P Jeff Harrison. Convergence and the constant dynamic linear model. Journal of Forecasting, 16(5):
287–292, 1997.

Leon Isserlis. On a formula for the product-moment coefficient of any order of a normal frequency
distribution in any number of variables. Biometrika, 12(1/2):134–139, 1918.

Paul Jaccard. Étude comparative de la distribution florale dans une portion des alpes et des jura. Bull
Soc Vaudoise Sci Nat, 37:547–579, 1901.

Hui Jiang. A latent space theory for emergent abilities in large language models. arXiv preprint
arXiv:2304.09960, 2023.

11

https://arxiv.org/abs/2410.16546

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020.

Mark Kozdoba, Jakub Marecek, Tigran Tchrakian, and Shie Mannor. On-line learning of linear dy-
namical systems: Exponential forgetting in kalman filters. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pp. 4098–4105, 2019.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM computing surveys, 55(9):1–35, 2023.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is
provably the optimal in-context learner with one layer of linear self-attention. arXiv preprint
arXiv:2307.03576, 2023.

Thomas P Minka. From hidden markov models to linear dynamical systems. Technical report,
Citeseer, 1999.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

H. L. Royden and P. M. Fitzpatrick. Real Analysis. Prentice Hall, 4th edition, 2010. ISBN 978-
0131437470.

Michael E Sander and Gabriel Peyré. Towards understanding the universality of transformers for
next-token prediction. arXiv preprint arXiv:2410.03011, 2024.

Michael E Sander, Raja Giryes, Taiji Suzuki, Mathieu Blondel, and Gabriel Peyré. How do trans-
formers perform in-context autoregressive learning? arXiv preprint arXiv:2402.05787, 2024.

Lingfeng Shen, Aayush Mishra, and Daniel Khashabi. Do pretrained transformers learn in-context
by gradient descent? arXiv preprint arXiv:2310.08540, 2023.

Jonathan Richard Shewchuk et al. An introduction to the conjugate gradient method without the
agonizing pain. 1994.

Whitney Tabor, Christopher Juliano, and Michael Tenenhaus. A dynamical system for language
processing. In Proceedings of the Annual Meeting of the Cognitive Science Society, volume 18,
1996. URL https://escholarship.org/uc/item/78r6h0cg.

Anastasios Tsiamis and George J Pappas. Finite sample analysis of stochastic system identification.
In 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 3648–3654. IEEE, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023a.

Johannes Von Oswald, Maximilian Schlegel, Alexander Meulemans, Seijin Kobayashi, Eyvind
Niklasson, Nicolas Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Max Vladymyrov, et al.
Uncovering mesa-optimization algorithms in transformers. arXiv preprint arXiv:2309.05858,
2023b.

12

https://escholarship.org/uc/item/78r6h0cg

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large language
models are latent variable models: Explaining and finding good demonstrations for in-context
learning. Advances in Neural Information Processing Systems, 36:15614–15638, 2023.

Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. Advances in
Neural Information Processing Systems, 36:36637–36651, 2023.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
Journal of Machine Learning Research, 25(49):1–55, 2024.

Chenyu Zheng, Wei Huang, Rongzhen Wang, Guoqiang Wu, Jun Zhu, and Chongxuan Li. On
mesa-optimization in autoregressively trained transformers: Emergence and capability. Advances
in Neural Information Processing Systems, 37:49081–49129, 2024.

Ingvar Ziemann, Nikolai Matni, and George J Pappas. State space models, emergence, and ergodicity:
How many parameters are needed for stable predictions? arXiv preprint arXiv:2409.13421, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LLM USAGE DISCLOSURE

LLMs were used in elaborating this paper as follows:

• Finding related work.

• Computing the result of polynomial multiplications.

• Generating LaTeX tables and tikz figures.

• Transferring proofs from pen-and-paper format into LaTeX automatically using the online
tool Manus https://manus.im/.

14

https://manus.im/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B EXPERIMENTS — FURTHER DETAILS

B.1 HYPERPARAMETERS

Below are the full details of the training procedure described in Section 5.

Table 1: Training hyperparameters of settings (a), (b) and (d) in Section 5

Hyperparameter Value

Weight initialization Xavier normal distribution (Glorot & Bengio, 2010) with
gain = 1e-5

Optimizer

AdamW (Loshchilov & Hutter, 2017) with β1 = 0.98 for
AR(1), 0.92 for AR(2), 0.10 for AR(3), 0.76 for AR(4),
β2 = 0.99 for AR(1), 0.96 for AR(2), 0.55 for AR(3),
0.88 for AR(4), ϵ = 1e-9

Weight decay 5e-3 for AR(2), AR(4) and 1e-2 for AR(1), AR(3)

Learning rate (i.e., max. val.) 2e-2 for AR(1), 3e-2 for AR(2), 9e-2 for AR(3),
9e-2 for AR(4)

Min. learning rate 1e-4

Linear warmup 800 iter.

Decay schedule Cosine annealing (Loshchilov & Hutter, 2016)

Max. decay steps 7200 iter.

Max. grad norm (clipping) 300

Random seeds {666013, 1, 0}

Batch size / iter. 3000 for AR(1), 4000 for AR(2), 8000 for AR(3), 16000
for AR(4)

Total iter. 8001

Table 2: Training hyperparameters of setting (c) in Section 5

Hyperparameter Value

Weight initialization Xavier normal distribution (Glorot & Bengio, 2010) with
gain = 1e-5

Optimizer
AdamW (Loshchilov & Hutter, 2017) with β1 = 0.98 for
AR(1), 0.92 for AR(2), 0.92 for AR(3), β2 = 0.99 for
AR(1), 0.96 for AR(2), 0.96 for AR(3), ϵ = 1e-9

Weight decay 5e-3 for AR(2) and 1e-2 for AR(1), AR(3)

Learning rate (i.e., max. val.) 3e-3 for AR(1), 5e-3 for AR(2), 7e-3 for AR(3)

Min. learning rate 1e-5

Linear warmup 800 iter.

Decay schedule Cosine annealing (Loshchilov & Hutter, 2016)

Max. decay steps 7200 iter.

Max. grad norm (clipping) 300

Random seeds {666013, 1, 0}
Batch size / iter. 3000 for AR(1), 4000 for AR(2), 8000 for AR(3)

Total iter. 8001

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.2 EXPERIMENTS FOR LARGER WINDOW SIZES

(a) Training loss for AR(4) tokens. (b) W ⋆
QK for AR(4). (c) W ⋆

V for AR(4).

Figure 2: Experimental results for various token configurations AR(4) showing the optimal attention parameters.

B.3 is NEW ADDED

B.3 EXPERIMENTS SHOWING CONVERGENCE TO THE CHECKERBOARD PATTERN DURING
TRAINING

This set of experiments serves to illustrate that parameters WQK and WV converge to the checker-
board pattern across iterations. Since the non-zero values of these parameters are of different
magnitudes and we do not have their theoretical expressions for window-sizes greater than 1, we
shall only consider their non-zero support, as follows.
Definition B.1. For a matrix M ∈ Rd×m, its support is defined as the collection of positions
corresponding to non-zero values

supp(M) := {(i, j) ∈ [d]× [m] | ai,j ̸= 0}. (18)

Additionally, the support-induced mask is a binary matrix with unit entries on the support

mask(M) :=
[
1(i,j)∈supp(M)

]i=d,j=m

i,j=1
(19)

where 1C = 1 if condition C is true and 0 otherwise, is the indicator function centered at z.

We rely on the Jaccard distance (Jaccard, 1901) adapted to binary matrices A, B

dJac(A,B) := 1−
∑

i,j ai,jbi,j∑
i,j max{ai,j , bi,j}

(20)

to track whether the support-induced masks of our parameters during training converge to the predicted
(for AR(1)) or hypothesized (for AR(s) s ≥ 2) sparsity patterns of Lemma 4.1. Our experiments
employ a tolerance level of 1e-1 when computing the masks of WV and WQK , meaning that any
entry below this value is considered zero. The results are depicted in Figure 3 and its subplots for
varying window sizes, where M true

QK and M true
V represent the masks posited in Lemma 4.1 for a null

tolerance level. The illustrations empirically confirm that our parameters’ supports converge to the
ones identified in Lemma 4.1.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) The Jaccard distance of WQK for AR(1). (b) The Jaccard distance of WV for AR(1).

(c) The Jaccard distance of WQK for AR(2). (d) The Jaccard distance of WV for AR(2).

(e) The Jaccard distance of WQK for AR(3). (f) The Jaccard distance of WV for AR(3).

(g) The Jaccard distance of WQK for AR(4). (h) The Jaccard distance of WV for AR(4).

Figure 3: The experiment results of the Jaccard distance between the M true
QK and WQK and the Jaccard distance

between the M true
V and WV for AR(1–4). Both converge to 0 at the end of the training.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.4 is NEW ADDED

B.4 EXPERIMENTS WITH NON-DIAGONAL, SYMMETRIC A, RANDOM c AND ISOTROPIC Σw

The LDS which generates the training data is as follows. For each sequence, sample d ∼
Unif([−1, 1]d), sample Q ∼ Haar(O(d)) and set A = Q⊤diag(d)Q. Sample c ∼ Unif([−5, 5]d).
The noise covariances are set to Σw = 1e-2I and σ2

v = 1e-2.

(a) Training loss for AR(1) tokens. (b) W ⋆
QK for AR(1). (c) Optimal W ⋆

V for AR(1).

(d) Training loss for AR(2) tokens. (e) W ⋆
QK for AR(2). (f) W ⋆

V for AR(2).

(g) Training loss for AR(3) tokens. (h) W ⋆
QK for AR(3). (i) W ⋆

V for AR(3).

(j) Training loss for AR(4) tokens. (k) W ⋆
QK for AR(4). (l) W ⋆

V for AR(4).

Figure 4: Experimental results for AR(1–4) with non-diagonal, symmetric A, random c and isotropic Σw, which
align with the Lemma 4.1.

B.5 is NEW ADDED

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.5 EXPERIMENTS WITH NON-DIAGONAL, NON-SYMMETRIC A, RANDOM c AND
NON-DIAGONAL Σw

The LDS which generates the training data is as follows. For each sequence, sample d ∼
Unif([−1, 1]d); sample Q ∼ Haar(O(d)) and set A = Q⊤diag(d)Q; sample c ∼ Unif([−5, 5]d).
Set the process noise covariance Σw = Qw

⊤diag(1e-2 · [0.8, 0.85, 0.9, 0.95, 1.0])Qw, where Qw

is an orthogonal matrix. Set σ2
v = 1e-2.

(a) Training loss for AR(1) tokens. (b) W ⋆
QK for AR(1). (c) Optimal W ⋆

V for AR(1).

Figure 5: Experimental results for AR(1) with non-diagonal, non-symmetric A, random c and non-diagonal Σw,
which align with the Lemma 4.1.

B.6 is NEW ADDED

B.6 EXPERIMENTS WITH NON-DIAGONAL, NON-SYMMETRIC A, RANDOM c AND ISOTROPIC
Σw

The LDS which generates the training data is as follows.

For each sequence, sample d ∼ Unif([−1, 1]d), sample P = [pi,j]
d
i,j=1 by sampling pi,j i.i.d. from

U ([−1, 1]), and set A = P−1diag(d)P. Sample c ∼ Unif([−5, 5]d). The noise covariances are set
to Σw = 1e-2I and σ2

v = 1e-2.

In practice, we need to guarantee P is well conditioned. After sampling pi,j i.i.d. from U ([−1, 1]),
we decompose P = QR, where P is an orthogonal matrix and R is an upper-triangle matrix.
We modify the diagonals of R manually to make sure maxiRii

miniRii
= 2 and right multiply Q with the

modified R to have the well conditioned P .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) Training loss for AR(1) tokens. (b) W ⋆
QK for AR(1). (c) Optimal W ⋆

V for AR(1).

(d) Training loss for AR(2) tokens. (e) W ⋆
QK for AR(2). (f) W ⋆

V for AR(2).

(g) Training loss for AR(3) tokens. (h) W ⋆
QK for AR(3). (i) W ⋆

V for AR(3).

Figure 6: Experimental results for AR(1–3) with non-diagonal, non-symmetric A, random c and isotropic Σw,
which align with the Lemma 4.1.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C SECTION 3 PROOFS

C.1 PROOF OF TOKEN CONSTRUCTION LEMMA

Lemma 3.1. For a given s >= 1, there exists an s+ 1-headed linear attention layer with positional
encoding which transforms input sequences [y1, y2, . . . , yT]⊤ into

y1 y2 . . . ys ys+1

...
...

...
...

...
yT−s−1 yT−s . . . yT−2 yT−1

yT−s yT−s+1 . . . yT−1 0

0T−s−1× s

 .

The latter are essentially equivalent to tokens (7).

Proof. We first define a matrix right-shift operator, which shifts each row one position to the right,
padding the first column with zeros. Let ≫: Rm×n → Rm×n be ≫ (M) = MR, where

R =

[
0 0⊤

n−1
0n−1 In−1

]
. (21)

We follow Von Oswald et al. (2023a) in using the one-hot positional encodings, concatenated to the
input sequence to obtain tokens {[yt, et]}Tt=1. We define s+ 1 attention heads given by

Define WQ ∈ RT+1×T , WK ∈ RT+1×T and WV ∈ RT+1×s as follows:

W h
Q =

[
0⊤
T

IT

]
, ∀h ∈ [s+ 1]

(W h
K)⊤ =

[
0T , ≫ (. . . ≫︸ ︷︷ ︸

h−1 times

(IT) . . .)
]

W h
V =

1 . . . h . . . s+ 1
[0T+1 . . . e1 . . . 0T+1]

, ∀h ∈ [s+ 1] (22)

Each head then computes the following


y1 1 0 . . . 0
y2 0 1 . . . 0
...

...
...

...
...

yT 0 0 . . . 1

 W k
Q

︸ ︷︷ ︸
=IT

(W h
K)⊤


y1 y2 y3 . . . yT
1 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 1


︸ ︷︷ ︸
=

[
0T−h+1×h−1 IT−h+1

0h−1×h−1 0h−1×T−h+1

]
WV


y1 1 0 . . . 0
y2 0 1 . . . 0
...

...
...

...
...

yT 0 0 . . . 1


︸ ︷︷ ︸
=

1 . . . h . . . s + 1
0 . . . y1 . . . 0
0 . . . y2 . . . 0
...

...
...

...
0 . . . yT . . . 0



=

1 . . . h . . . s + 1
0 . . . yh . . . 0
0 . . . yh+1 . . . 0
...

...
...

...
0 . . . yT . . . 0

0h×s+1


Summing over the outputs of all heads, we get an equivalent representation to (7).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

NEW ADDED

C.2 PROOF OF THE ALMOST SURE OBSERVABILITY OF THE LDS

We seek to show that Assumption 3.2 ensures LDS (1) observability w.p. 1. Note that the central
symmetry of the distribution is irrelevant for this statement, and only relevant for the proofs in
Section 4. We repeat Assumption 3.2 below for convenience.
Assumption 3.2 (LDS family). The system matrix A ∈ Rd×d is sampled from a centrally symmetric
distribution supported on

{
M ∈ Rd×d

∣∣ ρ(M) ≤ 1
}

, for which it holds that

P ({A | ∃i, j ∈ [d], s.t. λi(A) = λj(A)}) = 0. (8)

In other words, A has a simple spectrum almost surely. The observation vector c ∈ Rd is sampled
independently, from a distribution that is absolutely continuous w.r.t. the Lebesgue measure over Rd.

Lemma C.1. Assumption 3.2 ensures the pair (A, c) is observable w.p. 1.

Proof. Since A has distinct eigenvalues w.p. 1 (the simple spectrum condition), it is (block)
diagonalizable almost surely, and its eigenvectors {v1, . . .vd} are linearly independent. Therefore,
observability is ensured if c⊤vi ̸= 0 almost surely for all i ∈ [d].

Since c is sampled from a distribution that is absolutely continuous w.r.t. the Lebesgue measure in
Rd, we want to prove that the set

U =

d⋃
i=1

{
c ∈ Rd

∣∣ c⊤vi = 0
}

has zero Lebesgue measure in the ambient Rd. Each collection
{
c ∈ Rd

∣∣ c⊤vi = 0
}

forms a proper
subspace of Rd with dimension at most d− 1 (it can be less, for complex vi). Therefore, its Lebesgue
measure is null (see, e.g., (Royden & Fitzpatrick, 2010, pg. 435)).

Since U is a finite union of measure zero sets, it is itself measure zero. Hence, observability holds
w.p. 1.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D SECTION 4 PROOFS

D.1 PRELIMINARIES

Since we’re dealing with data generated from stochastic processes, our proofs will heavily rely on
taking expectations conditioned on randomness up to a certain point in the process. In what follows,
we formalize the natural filtrations with respect to process (1).

We denote the natural filtration associated with (1). as {Ft}t≥0, where

Ft := σ(A, c, x0, w0, . . . ,wt−1, v0, . . . , vt−1) , t ≥ 0. (23)

By convention, when t = 0 the sets of noise variables are empty, and we define

F0 = σ(A, c, x0), (24)

to illustrate that A and c are sampled once at time 0 and then remain fixed.

It follows that

(a) Ft ⊆ Ft+1,∀t ≥ 0

(b) xt is Ft-measurable for all t ≥ 0.

(c) yt is Ft+1-measurable (since yt depends on vt)

(d) The noise at time t is independent on the respective filtration: wt ⊥⊥ Ft, vt ⊥⊥ Ft, for all
t ≥ 0.

D.2 AUXILIARY RESULTS AND TECHNICAL LEMMATA

Theorem D.1 (Isserlis (1918)). Let y = [y1, y2, . . . , yn]
⊤ ∼ Nn(0,Σ) be an n-dimensional, mean-

zero multivariate normal vector. Then, for any even integer n,

E
[
y1y2 · · · yn

]
=

∑
p∈PP(n)

∏
(ℓ,r)∈p

E[yℓyr],

where PP(n) denotes the set of all pairwise partitions of [n] into disjoint pairs. If n is odd, then
E[y1y2 · · · yn] = 0.

Lemma D.1. Given random vectors z,w, q ∈ Rd and assuming that w is independent of z, q and
the relevant integrability conditions hold, then

E
[
z⊤ww⊤q

]
= E

[
z⊤E[ww⊤]q

]
(25)

Proof. We use the towering property of expectations,

E
[
z⊤ww⊤z

]
= E

[
z⊤E

[
ww⊤∣∣z, q] q]

= E
[
z⊤E

[
ww⊤] q] ,

where the last line follows from the quantities’ independence.

Lemma D.2. Let the sequence {yi}i≥0 be generated by an LDS (1) sampled according to Assump-
tion 3.2. For time indices 0 ≤ i ≤ j, it holds that

E [yiyj] = E
[
c⊤AiΣx0(A

⊤)jc
]
+

i−1∑
k=0

E
[
c⊤Ai−1−kΣw(A⊤)j−1−kc

]
+ 1{i=j}σ

2
v , (26)

where 1{i=j} takes the value 1 if i = j and 0 otherwise.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proof. For process (1) it holds that

xj = Aj−ixi +

j−1∑
k=i

Aj−1−kwk

and therefore

yj = c⊤Aj−ixi +

j−1∑
k=i

c⊤Aj−1−kwk + vj .

The product of scalars yiyj therefore takes the form

yiyj = yiy
⊤
j

= (c⊤xi + vi)

(
c⊤Aj−ixi +

j−1∑
k=i

c⊤Aj−1−kwk + vj

)⊤

= c⊤xix
⊤
i (A

⊤)j−ic+

j−1∑
k=i

c⊤xiw
⊤
k (A

⊤)j−1−kc+ c⊤xivj

+ vix
⊤
i (A

⊤)j−ic+

j−1∑
k=i

viw
⊤
k (A

⊤)j−1−kc+ vivj . (27)

Now, observing that E[yiyj] = E [E [yiyj | Fi]] and remembering that xi,A, c are Fi-measurable,
and that for all i and p ≥ i, wp ⊥⊥ Fi and vp ⊥⊥ Fi, and wp ⊥⊥ vq,∀p, q ≥ 0, we have

E
[
c⊤xix

⊤
i (A

⊤)j−ic
∣∣Fi

]
= c⊤xix

⊤
i (A

⊤)j−ic,

E

[
j−1∑
k=i

c⊤xiw
⊤
k (A

⊤)j−1−kc

∣∣∣∣∣Fi

]
=

j−1∑
k=i

c⊤xiE
[
w⊤

k

]
(A⊤)j−1−kc = 0,

E
[
c⊤xivj

∣∣Fi

]
= c⊤xiE[vj] = 0,

E
[
vix

⊤
i (A

⊤)j−ic
∣∣Fi

]
= E[vi]x⊤

i (A
⊤)j−ic = 0,

E

[
j−1∑
k=i

viw
⊤
k (A

⊤)j−1−kc

∣∣∣∣∣Fi

]
=

j−1∑
k=i

E[vi]E[w⊤
k](A

⊤)j−1−kc = 0,

E [vivj | Fi] = E[vivj] = 1{i=j}σ
2
v .

Therefore,

E[yiyj] = E[E[yiyj | Fi]] = E
[
c⊤xix

⊤
i (A

⊤)j−ic
]
+ 1{i=j}σ

2
v . (28)

Noting that xi = Aix0 +
∑i−1

k=0 A
i−1−kwk, we further unroll the first term inside the expectation

in (28) and get

c⊤xix
⊤
i (A

⊤)j−ic =

[
c⊤Aix0 +

i−1∑
k=0

c⊤Ai−1−kwk

][
x⊤
0 (A

⊤)jc+

i−1∑
k=0

w⊤
k (A

⊤)j−1−kc

]

= c⊤Aix0x
⊤
0 (A

⊤)jc+

i−1∑
k=0

c⊤Aix0w
⊤
k (A

⊤)j−1−kc

+

i−1∑
k=0

c⊤Ai−1−kwkx
⊤
0 (A

⊤)jc+

i−1∑
k,l=0

c⊤Ai−1−kwkw
⊤
l (A

⊤)j−1−lc.

(29)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Using wp ⊥⊥ F0 ⊂ Fi, ∀p ≥ 0 and wp ⊥⊥ wq, ∀p ̸= q in conjunction with (29) and Lemma D.1
we get

E
[
c⊤xix

⊤
i (A

⊤)j−ic
∣∣F0

]
= c⊤Aix0x

⊤
0 (A

⊤)jc+

i−1∑
k=0

c⊤Ai−1−kΣw(A⊤)j−1−kc (30)

Furthermore, noting that σ(A, c) ⊂ F0, we have that

E
[
c⊤xix

⊤
i (A

⊤)j−ic
∣∣A, c

]
= c⊤AiΣx0(A

⊤)jc+

i−1∑
k=0

c⊤Ai−1−kΣw(A⊤)j−1−kc. (31)

Taking full expectation in (31), and plugging everything back into (28), we get the stated result

E [yiyj] = E
[
c⊤AiΣx0

(A⊤)jc
]
+

i−1∑
k=0

E
[
c⊤Ai−1−kΣw(A⊤)j−1−kc

]
+ 1{i=j}σ

2
v .

Lemma D.3. Let {yi}i≥0 be a sequence of observations generated by an LDS (1) sampled according
to Assumption 3.2. Then,

(a) if i+ j = 2p+ 1 for some p ∈ N+, E [yiyj] = 0;

(b) if i+ j + k + l = 2p+ 1 for some p ∈ N+, E [yiyjykyl] = 0;

(c) if i+ j + k + l +m+ n = 2p+ 1 for some p ∈ N+, E [yiyjykylymyn] = 0.

Note that there is no condition on the indices being pairwise distinct.

Proof. To prove point (a), we start from the expression derived in Lemma D.2.

E [yiyj] = E
[
c⊤AiΣx0(A

⊤)jc
]
+

i−1∑
k=0

E
[
c⊤Ai−1−kΣw(A⊤)j−1−kc

]
+ 1{i=j}σ

2
v

Clearly, since i+ j is odd, it holds that i ̸= j and hence the third term is zero. Furthermore, since A
has a centrally symmetric distribution, we have that

E
[
c⊤AiΣx0(A

⊤)jc
]
= E

[
c⊤(−A)iΣx0(−A⊤)jc

]
= (−1)i+jE

[
c⊤AiΣx0

(A⊤)jc
]
, (32)

implying that E
[
c⊤AiΣx0(A

⊤)jc
]
= 0. We apply a similar reasoning for the other term and obtain

that
E [yiyj] = 0,

thus proving the first point.

For both points (b) and (c), we will rely on Isserlis’s theorem, which we replicate in The-
orem D.1 for convenience. Note that conditioned, on A and c, the vectors [yiyjykyl|A, c]
and [yiyjykylymyn|A, c] are jointly Gaussian since they are linear transformations of the

jointly Gaussian vectors r1 =
[
x⊤
0 ,w

⊤
0 , . . .w

⊤
max{i,j,k,l}, v0, . . . vmax{i,j,k,l}

]⊤
and r2 =[

x⊤
0 ,w

⊤
0 , . . .w

⊤
max{i,j,k,l,m,n}, v0, . . . vmax{i,j,k,l,m,n}

]⊤
, respectively. We can therefore apply the

towering property along with Isserlis’s result to get

E [yiyjykyl] = E [E [yiyjykyl |A, c]]

= E
[
E [yiyj |A, c]E [ykyl |A, c] + E [yiyk |A, c]E [yjyl |A, c]

+ E [yiyl |A, c]E [yjyk |A, c]
]
, (33)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

since PP({i, j, k, l}) = {{(i, j), (k, l)}, {(i, k), (j, l)}, {(i, l), (j, k)}}. Since i+ j + k + l is odd,
the two pairs inside any q ∈ PP({i, j, k, l}) must have different parities (i.e., one even, one odd).
W.l.o.g, we analyze the first term in (33), assuming 0 ≤ i ≤ j ≤ k ≤ l. From (31), we know that

E [yiyj |A, c]E [ykyl |A, c] =

[
c⊤AiΣx0

(A⊤)jc+

i−1∑
t=0

c⊤Ai−1−tΣw(A⊤)j−1−tc+ 1{i=j}σ
2
v

]
[
c⊤AkΣx0

(A⊤)lc+

k−1∑
t=0

c⊤Ak−1−tΣw(A⊤)l−1−tc+ 1{k=l}σ
2
v

]
(34)

Assume w.l.o.g that i + j is even, and k + l is odd. This implies that 1{k=l} = 0. Taking full
expectation on both sides and developing the product, we get

E [E [yiyj |A, c]E [ykyl |A, c]]

= E
[
c⊤AiΣx0(A

⊤)jcc⊤AkΣx0(A
⊤)lc

]
+

k−1∑
t=0

E
[
c⊤AiΣx0

(A⊤)jcc⊤Ak−1−tΣw(A⊤)l−1−tc
]

+

i−1∑
t=0

E
[
c⊤Ai−1−tΣw(A⊤)j−1−tcc⊤AkΣx0

(A⊤)lc
]

+

i−1∑
t=0

k−1∑
s=0

E
[
c⊤A i−1−tΣw(A⊤)j−1−tc c⊤A k−1−sΣw(A⊤)l−1−sc

]
+ 1{i=j}σ

2
vE
[
c⊤AkΣx0

(A⊤)lc
]

+ 1{i=j}σ
2
v

k−1∑
t=0

E
[
c⊤Ak−1−tΣw(A⊤)l−1−tc

]
(35)

Using the index parity assumptions and the reasoning based on the central symmetry of A′s distribu-
tion from (32), we get that all the terms on the RHS of (35) are zero. We treat the remaining terms
in (33) similarly to get the final result in (b).

Finally, point (c) follows a similar path. We have

PP({i, j, k, l,m, n}) = {{(i, j), (k, l), (m,n)}, {(i, j), (k,m), (l, n)}, {(i, j), (k, n), (l,m)},
{(i, k), (j, l), (m,n)}, {(i, k), (j,m), (l, n)}, {(i, k), (j, n), (l,m)},
{(i, l), (j, k), (m,n)}, {(i, l), (j,m), (k, n)}, {(i, l), (j, n), (k,m)},
{(i,m), (j, k), (l, n)}, {(i,m), (j, l), (k, n)}, {(i,m), (j, n), (k, l)},
{(i, n), (j, k), (l,m)}, {(i, n), (j, l), (k,m)}, {(i, n), (j,m), (k, l)}}.

For the parity hypothesis to be satisfied, not that inside a set q ∈ PP({i, j, k, l,m, n}), at least one
pair must have an odd parity, while the other two must be of the same parity (either even or odd).
W.o.l.g let 0 ≤ i ≤ j ≤ k ≤ l ≤ m ≤ n, pick the first set in PP({i, j, k, l,m, n}) above (the rest
follow the same logic) and assume that m + n is odd. By the same logic as before, we have that
1{m=n} = 0 and

E [E [yiyj |A, c]E [ykyl |A, c]E [ymyn |A, c]]

= E

[[
c⊤AiΣx0

(A⊤)jc+

i−1∑
t=0

c⊤Ai−1−tΣw(A⊤)j−1−tc+ 1{i=j}σ
2
v

]
[
c⊤AkΣx0

(A⊤)lc+

k−1∑
t=0

c⊤Ak−1−tΣw(A⊤)l−1−tc+ 1{k=l}σ
2
v

]
[
c⊤AmΣx0(A

⊤)nc+

k−1∑
t=0

c⊤Am−1−tΣw(A⊤)n−1−tc

]]

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Without computing, one can see that every term in the expanded product will have powers of A
whose sum is odd. Therefore, using the centrally symmetric property of A’s distribution, all the
terms evaluate to zero, and point (c) is proven.

D.3 PROOF OF LEMMA 4.1

Lemma 4.1. For an arbitrary s, the following parameters induce a banded structure in the left-hand
side of (11) matching that of the right-hand side.

WQK =


⋆ 0 ⋆ · · ·

0 ⋆
. . .

. . .
...

...
. . .

. . . 0 ⋆
0 · · · 0 ⋆ 0
0 · · · · · · 0 0

 , WV =



0 · · · · · · 0
...

...
... 0

...
... ⋆

...
... 0

0 · · · · · · 0 ⋆


. (13)

Proof. Recall the in-context loss in (9) with a general AR(s)-constructed input token matrix Y0 =[
ȳ1 ȳ2 · · · ȳT−s−1 ȳT−s

ys+1 ys+2 · · · yT−1 0

]
is defined as

L(θ) := ED̃

[(
Tθ (Y0)s+1,T−s − yT

)2]
. (36)

For equations (37) to (41) below, we use the same reformulations as Ahn et al. (2023). The last
column of the transformer’s output above can be written as

[
ȳT−1

0

]
=

[
ȳT−1

0

]
+

1

T − s− 1
W⊤

V

(
T−s−1∑
i=1

[
ȳiȳ

⊤
i ȳiyi+s

ȳ⊤
i yi+s y2i+s

])
W⊤

QK

[
ȳT−s

0

]
, (37)

where the summation comes from the causal mask. Therefore, the transformer’s prediction of yT ,
Tθ (Y0)s+1,T−s can be written as

1

T − s− 1
b⊤


T−s−1∑
i=1

[
ȳiȳ

⊤
i ȳiyi+s

ȳ⊤
i yi+s y2i+s

]
︸ ︷︷ ︸

:= Ȳ ∈R(s+1)×(s+1)

 [f1f2 · · ·fs] ȳT−s, (38)

where b⊤ ∈ R1×(s+1) is the last row of W⊤
V and fj ∈ R(s+1) is the jth column of W⊤

QK . So the
in-context loss L(WV ,WQK) can be rewritten as a function of b⊤ and F = [fj]

s
j=1

L(b,F) := ED̃

[(
1

T − s− 1
b⊤Ȳ F ȳT−s − yT

)2
]
. (39)

Plugging in the expression of ȳT−s, the in-context loss is

L(b,F) = ED̃


 1

T − s− 1
b⊤Ȳ [f1f2 · · ·fs]


yT−s

yT−s+1

...
yT−1

− yT


2 

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

= ED̃

 (1

T − s− 1

s∑
k=1

b⊤Ȳ fkyT−s−1+k − yT

)2


= ED̃

 (1

T − s− 1

s∑
k=1

Tr(Ȳ fkb
⊤)yT−s−1+k − yT

)2


= ED̃

 (1

T − s− 1

s∑
k=1

⟨Ȳ , bf⊤
k ⟩yT−s−1+k − yT

)2
 . (40)

We reparametrize the in-context loss using Xk := bf⊤
k

L(Xk∈[s]) = ED̃

 (1

T − s− 1

s∑
k=1

⟨Ȳ ,Xk⟩yT−s−1+k − yT

)2
 . (41)

Note that the gradient of the in-context loss with respect to each Xj is

∇Xj
L(Xk∈[s]) = 2ED̃

[(
1

T − s− 1

s∑
k=1

⟨Ȳ ,Xk⟩yT−s−1+k − yT

)
yT−s−1+jȲ

]
. (42)

The gradient ∇XjL(Xk∈[s]) is a sum of two terms, ∇XjL(Xk=1···s) = T
(1)
Xj

+ T
(2)
Xj

, where,
replacing Ȳ we have

T
(1)
Xj

:=
2

T − s− 1
ED̃

[
s∑

k=1

⟨Ȳ ,Xk⟩yT−s−1+kyT−s−1+j

T−s−1∑
i=1

[
ȳiȳ

⊤
i ȳiyi+s

ȳ⊤
i yi+s y2i+s

]]
(43)

T
(2)
Xj

:= −2ED̃

[
yT yT−s−1+j

T−s−1∑
i=1

[
ȳiȳ

⊤
i ȳiyi+s

ȳ⊤
i yi+s y2i+s

]]
. (44)

Each matrix element of T(2)
Xj

has the form

T−s−1∑
i=1

2ED̃ [yT yT−s−1+jyi+myi+n] (45)

with j ∈ [1, s], m ∈ [0, s] and n ∈ [0, s].

The sum of y’s indices in (45) for each term in the above sum is 2T + 2i + (m + n − s − 1 + j).
The parity is determined by that of m+ n− s− 1 + j and is independent of the sum counter i (i.e.,
the same for all terms). According to Lemma D.3, (45) is 0 if (m+ n− s− 1 + j) is odd, and of
arbitrary value if it is even. So a general matrix element of T(2)

Xj
is 0 if (m+ n− s− 1 + j) is odd

and of arbitrary value if (m+ n− s− 1 + j) is even.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

For a given AR(s)-type token (s is fixed) and a specific j, whether a matrix element of T(2)
Xj

is 0 only
depends on m+ n (its position in the matrix). So,

T2
Xj

=





∗ 0 ∗ · · · · · ·

0 ∗ 0 ∗
...

∗ 0 ∗
.

...
... ∗

. ∗
...

. * 0

· · · · · · ∗ 0 ∗


, if |j − s− 1| is even;



0 ∗ 0 · · · · · ·

∗ 0 ∗ 0
...

0 ∗ 0
.

...
... 0

. 0
...

. 0 ∗
· · · · · · 0 ∗ 0


, if |j − s− 1| is odd.

We now turn to T
(1)
Xj

with the end goal of finding a parameter configuration that matches the sparsity

pattern of T
(2)
Xj

. For this section, assume s is odd (the other case follows similarly). First, let

Xk :=
[
x
(k)
i,j

]s+1

i,j=1
and unfold the expression of the matrix inner product

⟨Ȳ ,Xk⟩ =

s∑
r=0

s∑
l=0

T−s−1∑
p=0

x
(k)
l+1,r+1yp+ryp+l, (46)

where r, l are the indices traversing Ȳ .

Furthermore, each matrix element of T(1)
Xj

inside the expectation has the form

2

T − s− 1

T−s−1∑
i=1

s∑
k=1

⟨Ȳ ,Xk⟩ yT−s−1+k yT−s−1+j yi+n yi+m, (47)

where n,m ∈ {0, 1, . . . s} are the indices traversing Ȳ .

Assume that j is fixed and odd (we discuss the even case afterwards). Note that the sparsity of each
position in T

(2)
Xj

dictated by the parity of (m+ n− s− 1 + j) where, when s, j-odd, the respective
element is zero whenever m+ n is even. Notice that except for the contribution of the matrix inner
product, the sum of indices for the y-factors in (47) is 2(T − s − 2 + i) + k + j + n +m so the
parity is determined by that of k + j + n+m. We distinguish two cases:

(a) when k is even, k + j is odd, and we wish that the term zeroes out for even m+ n. This
means that Xk must select in (46) only pairs yp+ryp+l for which r + l is even and zero-out
the others. Such an Xk may look like

Xk =



x
(k)
11 0 x

(k)
13 · · · x

(k)
1,s 0

0 x
(k)
22 0 · · · 0 x

(k)
2,s+1

x
(k)
31 0 x

(k)
33 · · · x

(k)
3,s 0

...
...

...
...

...
...

x
(k)
s,1 0 x

(k)
s,3 · · · x

(k)
s,s 0

0 x
(k)
s+1,2 0 · · · 0 x

(k)
s+1,s+1


, (48)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

with arbitrary (possibly also zero) values for constants x(k)
i,j .

(b) when k is odd, k + j is even, and we wish that the term zeroes out for even m+ n. This
means that Xk must select in (46) only pairs yp+ryp+l for which r + l is odd and zero-out
the others. Such an Xk may look like

Xk =



0 x
(k)
12 0 · · · 0 x

(k)
1,s+1

x
(k)
21 0 x

(k)
23 · · · x

(k)
2,s 0

0 x
(k)
32 0 · · · 0 x

(k)
3,s+1

...
...

...
...

...
...

0 x
(k)
s,2 0 · · · 0 x

(k)
s,s+1

x
(k)
s+1,1 0 x

(k)
s+1,3 · · · x

(k)
s+1,s 0


, (49)

with arbitrary (possibly also zero) values for constants x(k)
i,j .

These patterns need to be coherent with the case of j-even. Note that in T
(2)
Xj

, when s-odd, j-even,
the respective element is zero whenever m+ n is odd. We again distinguish two cases:

(a) when k is even, k + j is even, and we wish that the term zeroes out for odd m+ n. This
means that Xk must select in (46) only pairs yp+ryp+l for which r + l is even and zero-out
the others. Notice that the pattern of Xk in (48) for even k satisfies this requirement and we
have coherence.

(b) when k is odd, k + j is odd, and we wish that the term zeroes out for odd m + n. This
means that Xk must select in (46) only pairs yp+ryp+l for which r + l is odd and zero-out
the others. Notice that the pattern of Xk in (49) for even k satisfies this requirement and we
have coherence.

The same approach goes through for even window size s. Finally, recall that Xk := bf⊤
k . For our

case of odd window sizes, the sparsity pattern of b and f⊤
k yielding the Xk is

b =


0
b2
...
0

bs+1

 f⊤
k =


[
0, f

(k)
2 , . . . , 0, f

(k)
s+1

]
, if k is even[

f
(k)
1 , 0, . . . f

(k)
s , 0

]
, if k is odd

(50)

For even window size s, the patterns are

b =



b1
0
b2
...
0

bs+1

 f⊤
k =


[
0, f

(k)
2 , . . . , 0, f

(k)
s , 0

]
, if k is even[

f
(k)
1 , 0, . . . f

(k)
s−1, 0, f

(k)
s+1

]
, if k is odd

(51)

Arranging these vectors inside WQK and WV gives the stated result.

D.4 PROOF OF THEOREM 4.1

Theorem 4.1. Let Y0 encode the input tokens according to construction (7) for s = 1. Then, the
optimal parameters θ⋆ =

(
W ⋆

QK ,W ⋆
V

)
of a single linear self-attention layer with respect to loss

L(θ) are

W ⋆
QK =

[
(T−2)EA,x0,{wt}t,{vt}t [

∑T−2
i=1 yiyi+1yT−1yT]

EA,x0,{wt}t,{vt}t [
∑T−2

i=1 yiyi+1
∑T−2

r=1 yryr+1y2
T−1]

0

0 0

]
, W ⋆

V =

[
0 0
0 1

]
, (14)

up to rescaling with γ ̸= 0.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Proof. For the transformer parameters in (14), the corresponding b⊤ = [0 1] and the corresponding

F = [c 0], where c :=
(T−2)ED̃[

∑T−2
i=1 yiyi+1yT−1yT]

ED̃[
∑T−2

i=1 yiyi+1
∑T−2

r=1 yryr+1yT−1yT]
.

So X = X1 = bf⊤
1 = bF⊤ =

[
0 0
c 0

]
. The gradient of the in-context loss ∇XL(X) is

T
(1)
Xj

=
2

T − 2
ED̃

[
⟨Ȳ ,X⟩y2T−1Ȳ

]
=

2

T − 2
ED̃

[
⟨
T−2∑
r=1

[
y2r yryr+1

yr+1yr y2r+1

]
,

[
0 0
c 0

]
⟩y2T−1

T−2∑
i=1

[
y2i yiyi+1

yi+1yi y2i+1

]]

=
2

T − 2
ED̃

[
c

T−2∑
r=1

yryr+1y
2
T−1

T−2∑
i=1

[
y2i yiyi+1

yi+1yi y2i+1

]]

=
2

T − 2
ED̃

[
c

T−2∑
r=1

yryr+1y
2
T−1

T−2∑
i=1

[
0 yiyi+1

yi+1yi 0

]]
. (52)

According to Lemma D.3, the two diagonal elements in (52) ED̃

[
c
∑T−2

r=1 yryr+1y
2
T−1

∑T−2
i=1 y2i

]
and ED̃

[
c
∑T−2

r=1 yryr+1y
2
T−1

∑T−2
i=1 y2i+1

]
are 0, since the sums of y indices are both odd.

T
(2)
Xj

= −2ED̃

[
yT yT−1

T−2∑
i=1

Ȳ

]

= −2ED̃

[
yT yT−1

T−2∑
i=1

[
y2i yiyi+1

yi+1yi y2i+1

]]

= −2ED̃

[
yT yT−1

T−2∑
i=1

[
0 yiyi+1

yi+1yi 0

]]
. (53)

According to Lemma D.3, the two diagonal elements in (53) ED̃

[
yT yT−1

∑T−2
i=1 y2i

]
and

ED̃

[
yT yT−1

∑T−2
i=1 y2i+1

]
are 0, since the sums of y indices are both odd.

Plugging in the expression of c, it can be easily found that

∇XL(X) = T1
Xj

+T2
Xj

= 0. (54)

Since the in-context loss is convex in X and the X resulting from the W ⋆
V and W ⋆

QK above makes
∇XL(X) = 0, the W ⋆

V and W ⋆
QK above is a global minimizer for the in-context loss.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

NEW ADDED

E PROOFS FOR SECTION 5

E.1 PROOF THAT OUR EXPERIMENTS’ SAMPLING SCHEMES OBEY ASSUMPTION 3.2

All our experiments use a sampling schemes whose generalization is the following:

(a) A constructed by sampling v ∼ P , where P is centrally symmetric and absolutely con-
tinuous w.r.t. the Lebesgue measure on Rd with marginals supported on [−1, 1], and
independently sampling P, whose every entry is drawn i.i.d. from any absolutely continuous
distribution w.r.t. Lebesgue measure in R. Matrix A is then formed as Pdiag(v)P−1.

(b) c is sampled from an absolutely continuous distribution w.r.t. Lebesgue measure in Rd, or
otherwise fixed with c ̸= 0d.

We need to show that

(a) A’s distribution is centrally symmetric, i.e., that A d
= −A;

(b) A’s spectrum is simple w.p. 1;

(c) observability still holds when c is fixed according to the above condition.

The first point is achieved since, by the central symmetry of v’s distribution,

−A = −P−1diag(v)P = −P−1diag(−v)P
d
= P−1diag(v)P = A. (55)

The second point is ensured by v’s distribution being absolutely continuous w.r.t. the Lebesgue
measure in Rd, and hence the probability of v belonging to (d − 1)-dimensional subspaces (and
lower) such as

{
x ∈ Rd

∣∣∃i, j ∈ [d] s.t. xi = xj

}
is null. In conjunction with the above, when we

sample c from a continuous distribution in Rd, Assumption (3.2) is satisfied.

However, our proofs and experiments go through even if c is fixed, as follows. First, the theoretical
results rest on A’s distributional symmetry and are invariant to the linear transformation induced by
c. Second, observability is ensured since det(O) in expression (5) is not zero w.p. 1, as follows.

We use det(OP) ̸= 0 w.p. 1 ⇐⇒ det(O) ̸= 0 w.p. 1, since det(P) ̸= 0 w.p. 1.

det(OP)
z:=c⊤P

= det([z; diag(v)z; . . . diag(v)d−1z]) (56)

= det(diag(z))det




1 v1 . . . vd−1
1

1 v2 . . . vd−1
2

.
1 vd . . . vd−1

d


 . (57)

Since P ’s entries are drawn i.i.d. from an absolutely continuous distribution w.r.t. Lebesgue measure
in R, it holds that zi ̸= 0 w.p. 1. The remaining matrix is Vandermonde with vi ̸= vj , ∀i, j ∈ [d] w.p.
1. Hence, the determinant is nonzero w.p. 1 and observability holds almost surely.

E.2 RELATION OF TRANSFORMER FORWARD PASS WITH PCG

For convenience, we reproduce below the PCG iteration of Shewchuk et al. (1994) for minimizing an
objective

f(w) =
1

2
w⊤Aw + b⊤w + c

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Algorithm 1 Preconditioned Conjugate Gradient

1: Input: preconditioner H , w0, r0 = b−Aw0, d0 = H−1r0, δnew = r⊤0 d0, δ0 = δnew
2: for i = 0, 1, . . . do
3: zi = Adi

4: αi =
δnew
d⊤
0 z0

5: wi+1 = wi + αidi

6: ri+1 = ri − αizi
7: vi+1 = H−1ri+1

8: δold = δnew, δnew = r⊤i+1vi+1,
9: βi+1 = δnew

δold

10: di+1 = vi+1 + βi+1di

11: end for
12: return θT

We compute the first two steps of the algorithm with respect to the loss (4), which can be rewritten as

LAR(s)(w) :=
1

2(T − s− 1)

T−s−1∑
t=1

(yt+s −w⊤ȳt)
2 (58)

=
1

2(T − s− 1)

T−s−1∑
t=1

w⊤ȳtȳ
⊤
t w − 2yt+sw

⊤ȳt + y2t+s (59)

=
1

2
w⊤∇2LAR(s)w −w⊤∇LAR(s)(0) + y2t+s (60)

Using the initializations proposed in the main text, w0 = 0 and d0 = q, and H = P−1 we get

w1 = α0d0 = α0q

w2 = w1 + α1d1

= α0q + α1 [Pr1 + β1d0]

= α0q + α1 [P (r0 − α0z0) + β1q]

= α0q + α1

[
P (∇LAR(s)(0)− α0∇2LAR(s)q) + β1q

]
= α0q + α1P∇LAR(s)(0)− α0α1P∇2LAR(s)q + α1β1q

=
(
(α0 + α1β1)I − α0α1P∇2LAR(s)

)
q + α1P∇LAR(s)(0)

=
[
(α0 + α1β1)∇2L−1

AR(s) − α0α1P
]
∇2LAR(s)q + α1P∇LAR(s)(0)

E.3 MERGING THE γ̂(0) TERM INTO THE HESSIAN PRECONDITIONER

We want to show that there exists a matrix P′ ∈ Rs×s such that cNpγ̂0 = P′∇2LAR(s)q.

Let v = ∇2LAR(s)q, then P ′ := cN γ̂0pv
⊤

v⊤v
satisfies

P′∇2LAR(s)q =
cN γ̂0pv

⊤

v⊤v
∇2LAR(s)q =

cN γ̂0pv
⊤v

v⊤v
= cN γ̂0p

33

	Introduction
	Related literature
	Preliminaries, problem formulation & assumptions
	Optimal parameter configurations
	Discussion

	Experiments
	Conclusion, limitations, future directions
	LLM usage disclosure
	Experiments — further details
	Hyperparameters
	Experiments for larger window sizes
	Experiments showing convergence to the checkerboard pattern during training
	Experiments with non-diagonal , symmetric A, c = 1 and isotropic Sigmaw
	Experiments with non-diagonal non-symmetric A, random c and non-diagonal Sigmaw
	Experiments with non-diagonal, non-symmetric A, random c and isotropic Sigmaw

	Section 3 proofs
	Proof of token construction Lemma
	Proof of the Almost Sure Observability of the LDS

	Section 4 proofs
	Preliminaries
	Auxiliary results and technical lemmata
	Proof of Lemma 4.1
	Proof of Theorem 4.1

	Proofs for Section 5
	Proof that our experiments' sampling schemes obey Assumption 3.2
	Relation of transformer forward pass with PCG
	Merging the (0) term into the Hessian preconditioner

