
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ON LEARNING LINEAR DYNAMICAL SYSTEMS
IN CONTEXT WITH ATTENTION LAYERS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper studies the expressive power of linear attention layers for in-context
learning (ICL) of linear dynamical systems (LDS). We consider training on se-
quences of inexact observations produced by noise-corrupted LDSs, with all per-
turbations being Gaussian; importantly, we study the non-i.i.d. setting as it is
closer to real-world scenarios. We provide the optimal weight construction for
a single linear-attention layer and show its equivalence to one step of Gradient
Descent relative to an autoregression objective of window size one. Guided by
experiments, we posit an extension to larger window sizes. We back our find-
ings with numerical evidence. These results add to the existing understanding of
transformers’ expressivity as in-context learners, and offer plausible hypotheses
for experimental observations whereby they compete with Kalman filters — the
optimal model-dependent learners for this setting.

1 INTRODUCTION

We contribute towards understanding transformers’ expressive power when learning from non-i.i.d.
data produced by linear dynamical systems (LDSs). The starting point of our work is the well-known
ability of transformers to perform in-context learning (ICL) (Brown et al., 2020).

Specifically, this boils down to accurately answering a query based on a set of examples given as
a textual prefix (“in context”) (Brown et al., 2020). This behaviour is desirable, as it loosens the
requirement for expensive data collection and fine-tuning stages (Liu et al., 2023). Current research
efforts are split between enhancing ICL through specialized training and prompt engineering, and
building a mechanistic understanding of it — see the comprehensive review of Dong et al. (2022).

Currently there exist two perspectives on ICL mechanics: a Bayesian view, whereby transformers
recover latent concepts from prompts, thus performing implicit Bayesian inference (Wang et al.,
2023; Jiang, 2023; Wies et al., 2023; Xie et al., 2021), and a view of transformers as implementers
of implicitly learned algorithms (Von Oswald et al., 2023a; Giannou et al., 2023; Akyürek et al.,
2022; Garg et al., 2022; Ahn et al., 2023; Mahankali et al., 2023; Sander & Peyré, 2024; Von Oswald
et al., 2023b; Sander et al., 2024). Within the latter works, investigations center around whether
transformers can perform linear regression (and variants thereof) in context, and how. They give
weight to this hypothesis by proving that, for certain token formats, data distributions, and architecture,
the transformers’ optimal weights effectively execute an optimization algorithm iteration in the
forward pass, relative to a context-dependent loss (Von Oswald et al., 2023a; Mahankali et al., 2023;
Ahn et al., 2023; Von Oswald et al., 2023b; Sander et al., 2024). Though this algorithmic view
does not account for the “emergent” aspect of “in-the-wild” ICL (Shen et al., 2023), it provides
concrete expressions for transformers’ modelling power and identifies the minimal functional unit
that instantiates it — a single, causally-masked, linear attention layer, without positional encoding.
Despite this rich progress in understanding ICL for i.i.d. data settings, our grasp of the non-i.i.d. case
is missing. A significant hurdle in analyzing this scenario is handling a token’s statistical dependence
on the entire context preceding it. This work takes the first steps towards unraveling this difficulty.

Specifically, we study the ability of a single linear attention layer to learn in context from sequences
of observations {yt}t generated by a time-invariant LDS doubly-corrupted by Gaussian noise{

xt+1 = Axt +wt+1,

yt = c⊤xt + vt,
(1)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

where wt
i.i.d.∼ N (0,Σw) and vt

i.i.d.∼ N (0, σ2
v) with mutually independent wt and vt. Studying this

setting has a threefold motivation. Firstly, the sequence {yt}t is built on a temporal scaffold closer
in nature to that of language-induced tokens, in stark contrast to the i.i.d. setup predominantly
addressed by prior works (with few exceptions discussed in detail later). Secondly, this setting moves
closer to the works taking a Bayesian view on ICL, where the data follows a Hidden Markov Model
(HMM) (Xie et al., 2021) of which LDSs are a subclass (Minka, 1999). With HMMs being a mainstay
in language modelling, setting (1) is particularly relevant. Finally, prior empirical observations
emphasize the close performance of transformers relative to the Kalman Filter (KF) (Kalman, 1960),
with the former matching the latter in settings where KF is the optimal predictor (Du et al., 2023). To
our knowledge, the underlying mechanism is yet to be understood formally.

The goal of this paper is to characterize the structure of a single linear self-attention layer trained
to optimality for predicting yT in-context, when presented with sequences {yt}T−1

t=1 . We proceed
in two steps: first, we define an appropriate context-dependent loss for dealing with the time-series
data. To this end, we rely on the improper learning approach of the system identification literature,
whereby sequence generating processes of type (1) are well approximated by autoregressive ones.
Second, we link the structure of optimally trained linear attention layers with algorithmic steps on
the context-dependent loss. In doing so, we rely on a token augmentation scheme akin to prior
works (Von Oswald et al., 2023a; Ahn et al., 2023; Mahankali et al., 2023). Our contributions are the
following.

C1. In Theorem 4.1, we prove that for an order-one autoregressive approximation of (1), the
optimal linear attention layer implements a step of Gradient Descent on the associated
least-squares loss. To our knowledge, this is the first optimality result for LDS data.

C2. In Lemma 4.1, we identify a salient banded pattern of the matrices involved in the stationarity
condition for generic order-s approximations of (1). We further define a class of parameters
that satisfy this structural constraint and empirically observe that minimizers obey it.

C3. In Section 5, we provide numerical experiments verifying our theory for order-one autore-
gressive approximations, and identify a recursive pattern within the empirically-determined
optimal weights for order-s, s ≥ 2 autoregressive approximations. Together with the point
above, this narrows down the path to finding provably-optimal parameters in the latter case.

C3. Conceptually, we make the case for the view of ICL as implicit optimization having a viable
extension to LDS-produced data. We do so by bridging works from the system identification
literature with empirical observations of transformers’ in-context performance rivaling that
of Kalman Filters.

2 RELATED LITERATURE

We review the niche of studies viewing ICL as in-context optimization, together with relevant works
on filtering and system identification. Further comparisons are discussed in Section 4.1.

ICL for linear regression with i.i.d data. This line of work studies whether transformers trained
on a few-shot learning objective can perform linear regression in-context, and how. Garg et al. (2022);
Akyürek et al. (2022); Von Oswald et al. (2023a) provide empirical results in the affirmative, along
with possible architecture constructions implementing Gradient Descent (GD) steps relative to a
context-induced least squares loss. Through this lens, ICL reduces to on-the-fly optimization executed
in the transformer’s forward pass. Mahankali et al. (2023); Zhang et al. (2024); Ahn et al. (2023)
complement these findings by proving that one-layer linear self-attention implementing such a GD
step (possibly preconditioned) is a global minimizer of the pretraining loss when covariates are i.i.d.
and Gaussian drawn. Finally, Zhang et al. (2024) complete the picture by proving that Gradient Flow
converges to these global minimizers. Our results extend this line of work to non-i.i.d. setting.

ICL and system identification. This line of work asks whether transformers can perform autore-
gressive learning in context, and how. Different from the prior section, the following papers use
the autoregressive pretraining loss and, unless stated otherwise, the results concern a single layer
of linear self-attention. Von Oswald et al. (2023b) give a construction implementing a GD step
on L(W) :=

∑t−1
i=1 ∥Wyi − yi+1 ∥2 in parallel for all positions t, under an appropriate token

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

configuration. Sander et al. (2024), further characterize the global minimizers of the autoregressive
pretraining loss relative to the noiseless data yt+1 = Ayt, with A uniformly sampled from the set of
commuting orthogonal matrices. Notably, they recover Von Oswald et al. (2023b) construction when
using the same token augmentation. Sander et al. (2024) further characterizes minimizers for the
case of substituting token augmentation with positional encoding and a dimension-dependent number
of attention heads — this setting’s analysis, however, requires a diagonal weight structure. Zheng
et al. (2024) complement these results by showing that, with a diagonal weight initialization and a
controlled distribution of y0, pretraining with Gradient Flow (GF) recovers the previously identified
GD-implementing optimum. Finally, Sander & Peyré (2024) extend these results to arbitrary orthogo-
nal As via an infinite-depth attention-only transformer that correctly predicts yT in the limit T → ∞.
This result holds for softmax, exponential, and linear activations.

Moving away from the noiseless settings above, Cole et al. (2025) establish approximation theoretic
results for deep attention-only transformers predicting the sequence yt+1 = Ayt + wt, with
wt ∼ N (0, σ2

wI) and A ∈ Sd++. They prove by construction that there exists a log(T)-depth
transformer attaining a uniform-over-A log(T)

T error for predicting E[xT+1|xt,A], and give a lower
bound for the accuracy with which a single linear attention layer can make predictions. Related to the
problem of capacity, Ziemann et al. (2024) establish a learner predicting the next observation with
a uniform-in-time error bound requires a number of parameters at least quadratic in the algebraic
multiplicities of A’s unstable eigenvalues, and must operate on a context length at least logarithmic
in the length of {yt}Tt=1.

In summary, these works either study transformers’ ICL ability with respect to simplified LDSs or do
not address the question of weight structure optimality. In contrast, we study fully-fledged systems (1)
with the aim of characterizing the pretraining loss minimizers in the few-shot training setting.

Transformers and linear filtering. The classical model-based prediction tool for systems of
type (1) is the Kalman Filter (KF) (Kalman, 1960). Using knowledge of system parameters, the KF
gives the minimum expected squared error estimates x̂i of the hidden states xi as linear combinations
of the past yis. Transformers as potential implementers of KF were studied by Goel & Bartlett (2024),
who prove that a softmax causal attention layer is an arbitrarily good approximator. Akram & Vikalo
(2024) further construct a transformer emulating the KF. Finally, Du et al. (2023) provide empirical
evidence that a GPT-2 architecture (Radford et al., 2019) competes in accuracy with the KF for
predicting the next observation in a previously unseen sequence, though the mechanism remains
unstudied. We partially fill this gap with our present work.

3 PRELIMINARIES, PROBLEM FORMULATION & ASSUMPTIONS

Notation. Vectors and matrices are denoted by bold, lowercase and uppercase letters, respectively,
with regular lowercase letters reserved for scalars. We denote by 111d and 000d the all-ones and all-zeros
vectors of dimension d, and by 111d×m and 000d×m the analogous matrices. Unless stated otherwise, we
use ∥ · ∥ for the Euclidean norm of vectors and the spectral norm of matrices. We denote by Tr (·) the
trace of a matrix, ⟨·, ·⟩ the inner product, by ∥ · ∥F its Frobenius norm, and by ρ(·) its spectral radius.
We use ei for the ith vector of the canonical basis in the appropriate dimension and I to denote the
identity matrix of appropriate dimensions. The notations Sd+ and Sd++ define the cones of symmetric
positive-semidefinite and positive-definite matrices in Rd×d, respectively. We use Sd−1 to denote the
unit sphere in Rd. We use ⊙ to denote the Hadamard product. Finally, we use [n] when referencing
the set of integers {1, 2, . . . n}.

The big picture: filtering, system identification, and linear regression. The KF (Kalman, 1960)
computes the optimal estimates x̂i of xi through the system of recursions

Predict: x̂t+1|t := Ax̂t, Pt+1|t = APtA
⊤ +Σw

Gain: kt+1 = Pt+1|tc
(
c⊤Pt+1|tc+ σv

)−1

Update: x̂t+1 = x̂t+1|t + kt+1(yt+1 − c⊤x̂t+1|t), Pt+1 := (Id − kt+1c
⊤)Pt+1|t,

(2)

where x̂0 and error covariance estimate P0 are given as input. Under the Gaussian errors assumption,
the state prediction satisfies x̂t = E[xt | yt, . . . y1] and, consequently, the forward observation

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

prediction follows ŷt+1 := c⊤Ax̂t = E[yt+1 | yt, . . . y1]. The fast, constant-time KF predictions,
however, require knowing the LDS parameters — a condition generally not satisfied in practice.

Consequently, “proper learning” approaches seek to reconstruct the underlying model, by first
estimating A, c, Σw, σv through costly parameter identification techniques and then producing
forward observation predictions using the KF (Hamilton, 1995). In contrast, “improper learning”
methods eschew structural constraints and solely seek to reliably achieve low error with respect to
the underlying data distribution and the learning objective (Kozdoba et al., 2019, and references
therein). For LDSs, this boils down to expressing the next observation as a linear function of
the recent past. Not only does the latter approach have the computational advantage of foregoing
parameter estimation, but it also benefits from convex formulations, thus being amenable to classical
optimization techniques. Most importantly, for certain LDS classes, improper learning methods can
closely track E[yt+1 | yt, . . . y1], as follows.

Tsiamis & Pappas (2019) highlight the following rephrasing of the data-generating process via the
KF and for some fixed window size s of past observations,

[ys+1, . . . yT−1] = c⊤[(A− kc⊤)s−1k, . . . (A−Kc⊤)k,k] [ȳ1, . . . ȳT−s−1]

+ c⊤(A− kc⊤)s[x̂1, . . . x̂T−s+1] + [εs+1, . . . εT−1], (3)

where ȳt := [yt, yt+1, . . . yt+s−1]
⊤, k is the steady-state gain, and ei ∈ R are i.i.d, zero-mean

Gaussian errors. Under KF convergence conditions, quantity ρ(A − kc⊤) < 1 makes the second
term vanish exponentially in s and thus renders it negligible. We are now in the familiar setting
of noisy linear regression, albeit with non-i.i.d. data. The resulting order-s autoregressive process
(AR(s)) is associated with the optimization objective

min
w∈Rs

LAR(s)(w) :=
1

2(T − s− 1)

T−s−1∑
t=1

(yt+s −w⊤ȳt)
2. (4)

This simplification is the crux of improper learning approaches to system identification (Kozdoba
et al., 2019) and becomes of note in conjunction with the idea that transformers perform on-the-fly
optimization on the context-induced least squares objective. Should this latter view hold up to
scrutiny under the new data distribution, it would imply that transformers could learn LDS-based
time series in context arbitrarily well as a function of the available s. This is our incentive for seeking
characterizations of the few-shot pretraining loss minimizers.

Technical assumptions. We make two technical assumptions that hold throughout the paper.

Assumption 3.1 (System assumptions). LDS (1) has isotropic and strictly positive definite noise
covariances Σw = σwI , with σw > 0, and σv > 0. The system transition matrix A ∈ Rd×d is
marginally stable, with ρ(A) ≤ 1, and the pair (A, c) is observable, meaning that

O =

 c⊤

c⊤A
. . .

c⊤Ad−1

 (5)

has a column rank of d.

Assumption 3.2 (LDS simplicity). We consider a family of LDSs (1) with fixed measurement vector
c = 1d and diagonal matrices A ∈ Rd×d, with distinct, non-zero diagonal elements.

Assumption 3.1 is standard in the literature, and ensures KF convergence (Harrison, 1997) along with
the exponential vanishing of the bias term in (3). Furthermore, it ensures the closeness of forward
observation predictions given by the KF with those produced by a linear autoregressive predictor
determined by expression (4) (Kozdoba et al., 2019). Assumption (3.2) helps with ease of exposition
and ensures that observability holds, since the associated O is a Vandermonde matrix with distinct
column-defining elements. This assumption can be relaxed to symmetry at the expense of added
complexity in the later data sampling step.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Transformer architecture. Transformers (Vaswani et al., 2017) are neural architectures performing
sequence-to-sequence mapping. For a set of input tokens ST = [s1, . . . sT]

⊤ ∈ RT×p, the trans-
former produces a corresponding ŜT = [ŝ1, . . . ŝT]

⊤ ∈ RT×p by dynamically mixing tokens via its
attention mechanism. An L-layer transformer Tθ : RT×p → RT×p parametrized by θ = [θi]

L
i=1 is a

composition of blocks TL = Tθ1 ◦ . . . TθL . Each Tθi is a sequence-to-sequence function given by

Tθi(S) := (MLPθMLP
i

◦ Aθatt
i

)(S),

where MLPθMLP
i

is a multilayer perceptron and Aθatt
i

is the attention mapping. This paper studies
the simplified block Tθ(S) := Aθ(S), thus setting L = 1 and MLPθMLP

1
to identity.

The causal h-headed attention block with residual connections is given by

Aθ(S) := S +

H∑
h=1

σ

(
M ⊙ 1

τ
SW h

Q(W
h
K)⊤S⊤

)
SW h

V W
h
O,

where the parameters θ = [W h
Q,W

h
K ,W h

V ,W
h
O]

H
h=1 represent the query, key, value, and projection

matrices, respectively; τ > 0 is a scaling constant; σ is the softmax normalizing function applied
row-wise; and M ∈ RT×T , with Mi,j = 1 if i ≥ j and −∞ otherwise is a mask enforcing causality.

Similar to prior works (Von Oswald et al., 2023a; Ahn et al., 2023; Mahankali et al., 2023), we restrict
our study to the analytically tractable setting of single-headed linear attention (Katharopoulos et al.,
2020). Without loss of expressivity, we drop the projection matrix WO and consider the WQW

⊤
K as

a single matrix WQK ∈ Rp×p. Since we’re working in the few-shot scenario, we’re concerned solely
with predicting the final position as

ŝT := Tθ(S)t = sT +
1

T − 1
W⊤

V

T−1∑
i=1

sis
⊤
i W

⊤
QKsT , (6)

where we set τ = T − 1 and omit the last sum element due to a token asymmetry discussed next.

Token construction. We construct the tokens following the same scheme of Von Oswald et al.
(2023a); Ahn et al. (2023); Mahankali et al. (2023). The input matrix Y0 constructed using AR(s)
data (4) is

Y0 =

[
ȳ1 ȳ2 · · · ȳT−s−1 ȳT−s

ys+1 ys+2 · · · yT−1 0

]
=


y1 y2 · · · yT−s−1 · · · yT−s

...
...

...
...

ys ys+1 · · · yT−2 · · · yT−1

ys+1 ys+2 · · · yT−1 · · · 0

 , (7)

where s >= 1 is the window size of the AR process. The last column represents the “test” token,
whose final position is filled in the transformer’s forward pass by yT ’s estimate ŷT . This asymmetry
motivates the last term’s removal in (6).

Lemma 3.1 ensures, by construction, the existence of a linear attention layer producing Y0 from the
raw sequence {yt}t. Its proof is deferred to Appendix C due to space constraints.
Lemma 3.1. For a given s >= 1, there exists an s+ 1-headed linear attention layer with positional
encoding which transforms input sequences [y1, y2, . . . , yT]⊤ into

y1 y2 . . . ys ys+1

...
...

...
...

...
yT−s−1 yT−s . . . yT−2 yT−1

yT−s yT−s+1 . . . yT−1 0

0T−s−1× s

 .

The latter are essentially equivalent to tokens (7).

Data generation, loss function, and training paradigm. We consider trajectories {yi}Ti=1 sampled
from systems of type (1), where each trajectory corresponds to different, fixed parameter A and
x0 ∼ N (0d, σ

2
x0
I). We let DA denote a symmetric, continuous distribution over A’s diagonal

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

with marginals supported on [−1, 1]. For example, we can choose DA = Unif(Sd−1) — uniform
on the unit sphere; DA = Unif([−1, 1]d) — uniform inside the symmetric hypercube; or DA =
Unif({x ∈ Rd : ∥x∥2 ≤ 1}) — uniform inside the unit ball. Any of these choices ensures that
Assumptions 3.1 and 3.2 are satisfied with probability one.

Data generation proceeds in two steps: we sample A and x0 independently and observe the evolution
of system (1) for T steps. We then construct Y0 (7) for a fixed s, and train our model to minimize

L(θ) := EA,x0,{wt}t,{vt}t

[
1

2
(Tθ(Y0)s+1,T−s − yT)

2

]
, (8)

where the subscript marks that we solely consider the last position of the last output token.

4 OPTIMAL PARAMETER CONFIGURATIONS

This section presents our theoretical results and discusses their implications relative to prior literature.

Our theoretical contribution is two-fold. First, in Lemma 4.1 we reveal a salient structure within the
first-order optimality condition, which plays an important role in finding optimum configurations for
the in-context loss of AR(s). Second, in Theorem 4.1 we prove that the transformer configuration
implementing one-step GD is a global minimizer for AR(1) using this salient structure.

Unlike the i.i.d. case, each token generated by the LDS depends on the entire history. This results in
high-order data moments populating the in-context loss, which can only be dealt with by unrolling to
the initial state. A general approach to compute and match them is presented in Appendix D. We now
describe the structure emerging within the first-order optimality condition.

Following (Ahn et al., 2023), we use basic algebraic manipulations (Appendix E) to rewrite loss (8)
as

EA,x0,{wt},{vt}

 (1

T − s− 1

s∑
k=1

⟨Y0Y
⊤
0 , ba⊤

k ⟩yT−s−1+k − yT

)2
 , (9)

where W⊤
V = [0(s+1)×s, b]

⊤ and W⊤
QK = [a1, . . .as,0s+1]. The zero-padding of both matrices

comes from predicting solely the last position of the final token. Consequently, parameters ensuring

EA,x0,{wt},{vt}

[
1

T − s− 1

s∑
k=1

⟨Y0Y
⊤
0 , ba⊤

k ⟩yT−s−1+kyT−s−1+jY0Y
⊤
0

]
= EA,x0,{wt},{vt}

[
yT yT−s−1+jY0Y

⊤
0

]
, ∀ j ∈ [s] (10)

are critical points of the loss.

Notably, the right-hand side of (10) obeys a banded structure, as follows

⋆ 0 ⋆ · · · · · ·

0 ⋆ 0 ⋆
...

⋆ 0 ⋆
.

...
... ⋆

. ⋆
...

. ⋆ 0
· · · · · · ⋆ 0 ⋆


for odd s+ j; or



0 ⋆ 0 · · · · · ·

⋆ 0 ⋆ 0
...

0 ⋆ 0
.

...
... 0

. 0
...

. 0 ⋆
· · · · · · 0 ⋆ 0


for even s+ j;

(11)

where ⋆ is a placeholder for arbitrary reals (the proof is deferred to Appendix D). We formalize a
class of parameters ensuring matching structures between the left and right-hand sides of (11) for
arbitrary s in Lemma 4.1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Lemma 4.1. For an arbitrary s, the following parameters induce a banded structure in the left-hand
side of (10) matching that of the right-hand side.

WQK =


⋆ 0 ⋆ · · ·

0 ⋆
. . .

. . .
...

...
. . .

. . . 0 ⋆
0 · · · 0 ⋆ 0
0 · · · · · · 0 0

 , WV =



0 · · · · · · 0
...

...
... 0

...
... ⋆

...
... 0

0 · · · · · · 0 ⋆


. (12)

Lemma 4.1 can be understood as a narrowing-down based on structure of the parameter class likely
to hold minimizers of (8).

Our second step is to use structure (12) to identify a global minimizer of loss (8) in the AR(1) case,
yielding Theorem 4.1 with proof deferred to Appendix F.
Theorem 4.1. Let Y0 encode the input tokens according to construction (7) for s = 1. Then, the
optimal parameters θ⋆ =

(
W ⋆

QK ,W ⋆
V

)
of a single linear self-attention layer with respect to loss

L(θ) are

W ⋆
QK =

[
(T−2)ED̃[

∑T−2
i=1 yiyi+1yT−1yT]

ED̃[
∑T−2

i=1 yiyi+1
∑T−2

r=1 yryr+1yT−1yT]
0

0 0

]
, W ⋆

V =

[
0 0
0 1

]
, (13)

up to rescaling with γ ̸= 0.

Broadly, the proof of Theorem 4.1 encounters two difficulties compared to the i.i.d. case: the number
of terms that need to be matched in satisfying the first-order optimality condition, and the full-history
dependence of the data. We address the first obstacle using the result of Lemma 4.1, and we sift
through the second by relying on Isserlis’ theorem (Isserlis, 1918) to handle higher-order moments of
ȳt that would have factored out of expectations in the i.i.d. case. Details can be found in Appendix D.

Notably, a forward pass using the optimal parameters (13) amounts to the prediction given after one
GD step on LAR(1)(w) starting from w0 = 0. We thus recover the ICL-as-optimization view upheld
by works in the i.i.d. setting (Ahn et al., 2023; Mahankali et al., 2023) but for LDS-produced data.

4.1 DISCUSSION

To our knowledge, the only other architecture proposed for handling noisy observations yt of
type (1) is given by Cole et al. (2025). Theirs is part of a proof of existence by construction
and, as such, is not accompanied by confirming experimental evidence. Different from us, they
propose an attention-only transformer that unrolls a modified Richardson iteration meant to esitmate(

1
T

∑T
t=1 xi+1x

⊤
i

)(
1
T

∑T
i=1 xix

⊤
i

)−1

for a simpler LDS with direct state access. Their construction
extends to the setting of objective (4) via the work of Tsiamis & Pappas (2019), who give a high
probability result for the existence of

(∑T−s−1
t=1 ȳtȳ

⊤
t

)−1

under our assumptions. However, their
transformer has a minimum of two layers, of which the first is fixed, therefore providing no guarantee
that training will recover it. Our results take a first step towards filling this gap.

Tangentially, Akram & Vikalo (2024) construct a transformer emulating the KF, contingent on
knowledge of the system parameters and an elaborate token augmentation scheme. While this
architecture is capable of computing the forward KF observation ŷT , it relies on ideal knowledge of
LDS (1) which is rarely encountered in practice.

Theorem 4.1 sets forth a plausible hypothesis for prior experiments (Du et al., 2023, Fig. 2) using a
GPT-2 architecture trained autoregressively with data (1) for stable A ∈ Sd++. Their results highlight
the transformer’s competitive performance relative to the KF for predicting the next observation of
a previously unseen sequence, in-context. These experiments suggest an implicit form of system
identification might be executed in context, though the mechanism remains unstudied. Through the
ICL-as-optimization lens, we can interpret the high accuracy of GPT-2’s in-context predictions as a
possible consequence of Theorem 2 of (Kozdoba et al., 2019). Importantly, the latter result implies

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Training loss for AR(1) tokens. (b) W ⋆
QK for AR(1). (c) Optimal W ⋆

V for AR(1).

(d) Training loss for AR(2) tokens. (e) W ⋆
QK for AR(2). (f) W ⋆

V for AR(2).

(g) Training loss for AR(3) tokens. (h) W ⋆
QK for AR(3). (i) W ⋆

V for AR(3).

Figure 1: Experimental results for AR(1–3) tokens showing the optimally-trained attention parameters.

that for an arbitrary, finite family S of LDSs (1) and an ε > 0, there exists a window-length s(ε) such
that the optimal AR(s(ε)) predictor incurs an average error that is at least as good, up to ε, as that
of the forward observation prediction ŷt+1 of the best KF in S. Our results take the first step in the
exploration of this hypothesis.

5 EXPERIMENTS

We now present numerical evidence supporting our theory. All experiments were implemented in
Python 3.12 and run on a ThinkPad T14p with 32 GB RAM and a 22-core Intel Core™ Ultra 9 185H
processor. The code is provided as part of the supplementary material.

We train architecture (6) on sequences {yt}Tt=1, T = 30, each sampled from a different LDS of
type (1) with a hidden state dimension d = 5. The number of training iterations is 6500 for all
cases with a doubling of the batchsize for every increase in order starting from 2000 for AR(1). A
fresh batch of LDSs is sampled at every iteration (i.e., online setting). We sample A’s diagonal
entries uniformly at random in the interval [−1, 1] and set c = 1d. The noise magnitudes are set
to σ2

v = σ2
w = 1e-2. We use window-sizes s ranging from 1 to 4, with results being averaged

over 3 random seeds. The weights are learned using AdamW (Loshchilov & Hutter, 2017) with
gradient clipping and a learning rate schedule consisting of a linear warm-up phase followed by cosine
annealing (Loshchilov & Hutter, 2016). A full list of hyperparameters is provided in Tables 1 and 2
of Appendix B.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The results are depicted in Figure 1 for AR(1–3)-style tokens. Further experiments for AR(4) follow
in the same vein, but are deferred to Appendix B due to lack of space. Subfigures (b,c) show an
optimum conforming to Theorem 4.1 for AR(1) tokens. Moreover, subfigures (e,f) and (h,i) confirm
experimentally the pattern uncovered by Lemma 4.1 for general s > 0. However, a quick calculation
of the forward pass reveals that weights trained to optimality with AR(s) tokens (7) for s ≥ 2 do not
implement GD in the forward pass, or at least not in the formulaic manner of prior works. Instead,
we notice a recursive pattern of the optimal weights that builds on top of the GD-inducing parameters
recovered for AR(1). For ease of exposition, we illustrate the recursion for AR(2), but the pattern
generalizes to higher orders according to our experiments.

To begin, we transpose expression (6) for generating the final token of the transformer’s output as

[ȳT−2, ŷT] = [ȳT−2, 0] +
1

T − 2
[ȳT−2, 0] WQK

T−2∑
i=1

sis
⊤
i WV ,

and note that the linear predictor WQK

∑T−2
i=1 sis

⊤
i WV returned by our experiments amounts to

c1 0 c2
0 c3 0
0 0 0

 
∑

t y
2
t

∑
t ytyt+1

∑
t ytyt+2∑

t ytyt+1

∑
t y

2
t+1

∑
t yt+1yt+2∑

t ytyt+2

∑
t yt+1yt+2

∑
t y

2
t+2


 0 0 c4

0 0 0
0 0 c5

 
where {ci}i∈[5] denote non-zero entries. We observe that the lower-right blocks of dimension 2× 2
implement, up to a constant, the predictor corresponding to one GD step starting from w0 = 0 on the
forward-shifted AR(1) loss

LAR(1)(w) :=
1

2(T − 2)

T−2∑
t=1

(yt+2 − w yt+1)
2.

This pattern holds recursively, with the empirically-determined optimal AR(s+ 1) predictor building
upon the structure of the empirically-determined optimal AR(s) one, but relative to a forward-shifted
LAR(s) (4). For example, in Figure 1 we observe the optimal AR(2) parameters embedded in the
bottom right 3× 3 blocks of their AR(3) counterparts. This observation hints at the possibility of
arriving at AR(s)-optimal parameters by induction — an approach we leave for future exploration.

6 CONCLUSION, LIMITATIONS, FUTURE DIRECTIONS

This paper presented the first steps towards characterizing the optimal configuration of a single
self-attention layer trained with LDS-produced data and its ability to learn in context. We sketched
a path forward by leveraging results from the literature on improper learning approaches to system
identification, whereby autoregressive processes can well-approximate Kalman filters given a suffi-
cient window size. Using this starting point for our study of ICL with non-i.i.d. data, we showed that
for a length-one window, the optimal attention layer implements a step of GD on the context-induced
autoregressive loss. Furthermore, we narrowed down the class of potential minimizers based on a
structural property of the optimality condition, which we further confirmed empirically. Finally, our
experiments uncovered a recursive pattern of the optimal weights, hinting at a structured family of
global optima for this class of problems.

Due to the difficulties induced by correlated data, several limitations remain: establishing optimality
for s ≥ 2 by searching for optima within the structured class of parameters identified by Lemma 4.1;
understanding what algorithmic primitive, if any, is implemented by configurations pertaining to
AR(s), s ≥ 2; and finally, extending this analysis to autoregressive pretraining objectives. Our present
contributions provide the necessary building blocks for addressing these directions in future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. Advances in Neural Information Processing
Systems, 36:45614–45650, 2023.

Usman Akram and Haris Vikalo. Can transformers in-context learn behavior of a linear dynamical
system?, 2024. URL https://arxiv.org/abs/2410.16546.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Frank Cole, Yulong Lu, Tianhao Zhang, and Yuxuan Zhao. In-context learning of linear dynamical
systems with transformers: Error bounds and depth-separation. arXiv preprint arXiv:2502.08136,
2025.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Tianyu Liu, et al. A survey on in-context learning. arXiv preprint arXiv:2301.00234,
2022.

Zhe Du, Haldun Balim, Samet Oymak, and Necmiye Ozay. Can transformers learn optimal filtering
for unknown systems? IEEE Control Systems Letters, 7:3525–3530, 2023.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In International Conference on
Machine Learning, pp. 11398–11442. PMLR, 2023.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Gautam Goel and Peter Bartlett. Can a transformer represent a kalman filter? In 6th Annual Learning
for Dynamics & Control Conference, pp. 1502–1512. PMLR, 2024.

James D Hamilton. Time series analysis, 1995.

P Jeff Harrison. Convergence and the constant dynamic linear model. Journal of Forecasting, 16(5):
287–292, 1997.

Leon Isserlis. On a formula for the product-moment coefficient of any order of a normal frequency
distribution in any number of variables. Biometrika, 12(1/2):134–139, 1918.

Hui Jiang. A latent space theory for emergent abilities in large language models. arXiv preprint
arXiv:2304.09960, 2023.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020.

Mark Kozdoba, Jakub Marecek, Tigran Tchrakian, and Shie Mannor. On-line learning of linear dy-
namical systems: Exponential forgetting in kalman filters. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pp. 4098–4105, 2019.

10

https://arxiv.org/abs/2410.16546

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM computing surveys, 55(9):1–35, 2023.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is
provably the optimal in-context learner with one layer of linear self-attention. arXiv preprint
arXiv:2307.03576, 2023.

Thomas P Minka. From hidden markov models to linear dynamical systems. Technical report,
Citeseer, 1999.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Michael E Sander and Gabriel Peyré. Towards understanding the universality of transformers for
next-token prediction. arXiv preprint arXiv:2410.03011, 2024.

Michael E Sander, Raja Giryes, Taiji Suzuki, Mathieu Blondel, and Gabriel Peyré. How do trans-
formers perform in-context autoregressive learning? arXiv preprint arXiv:2402.05787, 2024.

Lingfeng Shen, Aayush Mishra, and Daniel Khashabi. Do pretrained transformers learn in-context
by gradient descent? arXiv preprint arXiv:2310.08540, 2023.

Anastasios Tsiamis and George J Pappas. Finite sample analysis of stochastic system identification.
In 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 3648–3654. IEEE, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023a.

Johannes Von Oswald, Maximilian Schlegel, Alexander Meulemans, Seijin Kobayashi, Eyvind
Niklasson, Nicolas Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Max Vladymyrov, et al.
Uncovering mesa-optimization algorithms in transformers. arXiv preprint arXiv:2309.05858,
2023b.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large language
models are latent variable models: Explaining and finding good demonstrations for in-context
learning. Advances in Neural Information Processing Systems, 36:15614–15638, 2023.

Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. Advances in
Neural Information Processing Systems, 36:36637–36651, 2023.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
Journal of Machine Learning Research, 25(49):1–55, 2024.

Chenyu Zheng, Wei Huang, Rongzhen Wang, Guoqiang Wu, Jun Zhu, and Chongxuan Li. On
mesa-optimization in autoregressively trained transformers: Emergence and capability. Advances
in Neural Information Processing Systems, 37:49081–49129, 2024.

Ingvar Ziemann, Nikolai Matni, and George J Pappas. State space models, emergence, and ergodicity:
How many parameters are needed for stable predictions? arXiv preprint arXiv:2409.13421, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A LLM USAGE DISCLOSURE

LLMs were used in elaborating this paper as follows:

• Finding related work.

• Computing the result of polynomial multiplications.

• Generating LaTeX tables and tikz figures.

• Transferring proofs from pen-and-paper format into LaTeX automatically using the online
tool Manus https://manus.im/.

12

https://manus.im/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B EXPERIMENTS — FURTHER DETAILS

B.1 HYPERPARAMETERS

Below are the full details of the training procedure described in Section 5.

Table 1: LDS hyperparameters

Hyperparameter Value

Hidden state size x ∈ R5

Observation size y ∈ R
State transition A = diag(a), a ∼ U([−1, 1]5)

Observation matrix c = 15

Process noise magnitude σ2
w = 1e-2

Observation noise magnitude σ2
v = 1e-2

Sequence length 30

x0 x0 ∼ N (0, σ2
0I), σ

2
0 = 1e-3

B.2 ADDITIONAL EXPERIMENTS

(a) Training loss for AR(4) tokens. (b) W ⋆
QK for AR(4). (c) W ⋆

V for AR(4).

Figure 2: Experimental results for various token configurations AR(4) showing the optimal attention parameters.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 2: Training hyperparameters

Hyperparameter Value

Weight initialization Xavier normal distribution (Glorot & Bengio, 2010) with
gain = 1e-5

Optimizer AdamW (Loshchilov & Hutter, 2017) with β1 = 0.9,
β2 = 0.98, ϵ = 1e-9

Weight decay 5e-3

Learning rate (i.e., max. val.) 5e-2

Min. learning rate 1e-3

Linear warmup 500 iter.

Decay schedule Cosine annealing (Loshchilov & Hutter, 2016)

Max. decay steps 2000 iter.

Max. grad norm (clipping) 300

Random seeds {666013, 1, 0}

Batch size / iter. 2000 for AR(1), 4000 for AR(2), 8000 for AR(3), 16000
for AR(4)

Total iter. 6501

C PROOF OF TOKEN CONSTRUCTION LEMMA

Lemma 3.1. For a given s >= 1, there exists an s+ 1-headed linear attention layer with positional
encoding which transforms input sequences [y1, y2, . . . , yT]⊤ into

y1 y2 . . . ys ys+1

...
...

...
...

...
yT−s−1 yT−s . . . yT−2 yT−1

yT−s yT−s+1 . . . yT−1 0

0T−s−1× s

 .

The latter are essentially equivalent to tokens (7).

Proof. We first define a matrix right-shift operator, which shifts each row one position to the right,
padding the first column with zeros. Let ≫: Rm×n → Rm×n be ≫ (M) = MR, where

R =

[
0 0⊤

n−1
0n−1 In−1

]
. (14)

We follow Von Oswald et al. (2023a) in using the one-hot positional encodings, concatenated to the
input sequence to obtain tokens {[yt, et]}Tt=1. We define s+ 1 attention heads given by

Define WQ ∈ RT+1×T , WK ∈ RT+1×T and WV ∈ RT+1×s as follows:

W h
Q =

[
0⊤
T

IT

]
, ∀h ∈ [s+ 1]

(W h
K)⊤ =

[
0T , ≫ (. . . ≫︸ ︷︷ ︸

h−1 times

(IT) . . .)
]

W h
V =

1 . . . h . . . s+ 1
[0T+1 . . . e1 . . . 0T+1]

, ∀h ∈ [s+ 1] (15)

Each head then computes the following

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026


y1 1 0 . . . 0
y2 0 1 . . . 0
...

...
...

...
...

yT 0 0 . . . 1

 W k
Q

︸ ︷︷ ︸
=IT

(W h
K)⊤


y1 y2 y3 . . . yT
1 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 1


︸ ︷︷ ︸
=

[
0T−h+1×h−1 IT−h+1

0h−1×h−1 0h−1×T−h+1

]
WV


y1 1 0 . . . 0
y2 0 1 . . . 0
...

...
...

...
...

yT 0 0 . . . 1


︸ ︷︷ ︸
=

1 . . . h . . . s + 1
0 . . . y1 . . . 0
0 . . . y2 . . . 0
...

...
...

...
0 . . . yT . . . 0



=

1 . . . h . . . s + 1
0 . . . yh . . . 0
0 . . . yh+1 . . . 0
...

...
...

...
0 . . . yT . . . 0

0h×s+1


Summing over the outputs of all heads, we get an equivalent representation to (7).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D COMPUTATION OF TOKENS’ HIGH-ORDER MOMENTS

For brevity, in Appendix D, Appendix E and Appendix F use D̃, with D̃ := A,x0, {wt}, {vt}.
Lemma D.1. If yi and yj are generated by (1), ED̃ [yiyj] ={

cED̃

[
Aix0x

⊤
0 (A

j)⊤
]
c⊤ + cED̃

[∑i−1
k=0 A

i−1−kwkw
⊤
k (A

⊤)j−1−k
]
c⊤, if i ̸= j,

cED̃

[
Aix0x

⊤
0 (A

i)⊤
]
c⊤ + cED̃

[∑i−1
k=0 A

i−1−kwkw
⊤
k (A

⊤)i−1−k
]
c⊤ + ED̃

[
v2i
]
, if i = j.

.

(16)

Proof. Assume i ≤ j without loss of generality, unroll yi and yj to xi

ED̃[yiyj] = ED̃

(cxi + vi)

(
cAj−ixi + c

j−1∑
k=i

Aj−1−kwk + vj

)⊤
= ED̃[cxix

⊤
i (A

⊤)j−ic⊤] + ED̃

cxi

(
c

j−1∑
k=i

Aj−1−kwk

)⊤
︸ ︷︷ ︸

=0, since xi is independent of wk for k=i,...,j−1

+ ED̃[cxiv
⊤
j]︸ ︷︷ ︸

=0, since xi is independent of vj

+ ED̃

[
vi(cA

j−ixi)
⊤]︸ ︷︷ ︸

=0, since vi is independent of xi

+ED̃

vi(c j−1∑
k=i

Aj−1−kwk

)⊤
︸ ︷︷ ︸
=0, since vi is independent of wk=i...j−1

+ED̃[viv
⊤
j]︸ ︷︷ ︸

̸=0, if i=j,
0, if i ̸=j

. (17)

Unroll xi to x0, the remaining non-zero term

ED̃

[
cxix

⊤
i (A

j−i)⊤c⊤
]

= cED̃

(Aix0 +

i−1∑
k=0

Ai−1−kwk

)(
Ajx0 +

i−1∑
l=0

Ai−1−lwl

)⊤ c⊤

= cED̃

[
Aix0x

⊤
0 (A

j)⊤
]
+ cED̃

Aix0

(
j−1∑
l=0

Aj−1−lwl

)⊤ c⊤

︸ ︷︷ ︸
=0, since x0 is independent of wl

+ cED̃

[(
i−1∑
k=0

Ai−1−kwk

)
x⊤
0 (A

j)⊤

]
c⊤︸ ︷︷ ︸

=0, since x0 is independent of wk

+ cED̃

(i−1∑
k=0

Ai−1−kwk

)(
j−1∑
l=0

Aj−1−lwl

)⊤ c⊤. (18)

Since wk is zero-mean and temporally independent, E[wkw
⊤
l] = 0, if k ̸= l. The remaining

non-zero part of cED̃

[(∑i−1
k=0 A

i−1−kwk

)(∑j−1
l=0 Aj−1−lwl

)⊤]
c⊤ is

cED̃

[
i−1∑
k=0

Ai−1−kwkw
⊤
k (A

⊤)j−1−k

]
c⊤. (19)

Based on the computation above,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

ED̃ [yiyj] ={
cED̃

[
Aix0x

⊤
0 (A

j)⊤
]
c⊤ + cED̃

[∑i−1
k=0 A

i−1−kwkw
⊤
k (A

⊤)j−1−k
]
c⊤, if i ̸= j,

cED̃

[
Aix0x

⊤
0 (A

i)⊤
]
c⊤ + cED̃

[∑i−1
k=0 A

i−1−kwkw
⊤
k (A

⊤)i−1−k
]
c⊤ + ED̃

[
v2i
]
, if i = j.

(20)

Lemma D.2. If i + j is odd, ED̃ [yiyj] = 0; if i + j is even, ED̃ [yiyj] ≥ 0. This extends to
the 4th and the 6th moments of y, which means if the sum of y indices is odd, ED̃ [yiyjykyl] =
0 and ED̃ [yiyjykylymyn] = 0; if the sum of y indices is even, ED̃ [yiyjykyl] ≥ 0 and
ED̃ [yiyjykylymyn] ≥ 0.

For brevity, only the proof for ED̃ [yiyj] = 0 is given.

Proof. ED̃ is the sum of 2 or 3 terms. Compute each term respectively.

cED̃

[
Aix0x

⊤
0 (A

j)⊤
]
c⊤ = cEA,x0

[
Aix0x

⊤
0 (A

j)⊤
]
c⊤

= cEA[AiEx0
[x0x

⊤
0 |A](Aj)⊤]c⊤

= cEA[AiΣ0(A
j)⊤]c⊤

= cEA[Ai(Aj)⊤]Σ0c
⊤

= cEA[Ai+j]Σ0c
⊤. (21)

cED̃

[
i−1∑
k=0

Ai−1−kwkw
⊤
k (A

⊤)j−1−k

]
c⊤ = cEA,wk

[
i−1∑
k=0

Ai−1−kwkw
⊤
k (A

⊤)j−1−k

]
c⊤

=

i−1∑
k=0

cEA,wk
[Ai−1−kwkw

⊤
k (A

⊤)j−1−k]c⊤

=

i−1∑
k=0

cEA[Ai−1−kEwk
[wkw

⊤
k |A](A⊤)j−1−k]c⊤

=

i−1∑
k=0

cEA[Ai−1−kσ2
wI(A

⊤)j−1−k]c⊤

=

i−1∑
k=0

cEA[Ai−1−kAj−1−k]σ2
wIc

⊤

=

i−1∑
k=0

cEA[Ai+j−2−2k]σ2
wIc

⊤. (22)

Based on the computation above,

ED̃[yiyj] = cED̃

[
Aix0x

⊤
0 (A

j)⊤
]
c⊤ + cED̃

[
i−1∑
k=0

Ai−1−kwkw
⊤
k (A

⊤)j−1−k

]
c⊤(+ED̃[vivj])

= cEA[Ai+j]Σ0c
⊤ +

i−1∑
k=0

cEA[Ai+j−2−2k]σ2
wIc

⊤ + (+ED̃[vivj]). (23)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E PROOFS OF THE IN-CONTEXT LOSS’ GRADIENT LEMMA

Lemma 4.1. For an arbitrary s, the following parameters induce a banded structure in the left-hand
side of (10) matching that of the right-hand side.

WQK =


⋆ 0 ⋆ · · ·

0 ⋆
. . .

. . .
...

...
. . .

. . . 0 ⋆
0 · · · 0 ⋆ 0
0 · · · · · · 0 0

 , WV =



0 · · · · · · 0
...

...
... 0

...
... ⋆

...
... 0

0 · · · · · · 0 ⋆


. (12)

Proof. Recall the in-context loss in (8) with a general AR(s)-constructed input token matrix Y0 =[
ȳ1 ȳ2 · · · ȳT−s−1 ȳT−s

ys+1 ys+2 · · · yT−1 0

]
is defined as

L(θ) := ED̃

[(
Tθ (Y0)s+1,T−s − yT

)2]
. (24)

From (25) to (29), we use the same reformulations in (Ahn et al., 2023). The last column of the
transformer’s output above can be written as

[
ȳT−1

0

]
=

[
ȳT−1

0

]
+

1

T − s− 1
W⊤

V

(
T−s−1∑
i=1

[
ȳiȳ

⊤
i ȳiyi+s

ȳ⊤
i yi+s y2i+s

])
W⊤

QK

[
ȳT−s

0

]
, (25)

where the summation is for i = 1, 2, ..., n due to the causal mask. The transformer’s prediction of yT ,
Tθ (Y0)s+1,T−s can be written as

1

T − s− 1
b⊤


T−s−1∑
i=1

[
ȳiȳ

⊤
i ȳiyi+s

ȳ⊤
i yi+s y2i+s

]
︸ ︷︷ ︸

:= Ȳ ∈R(s+1)×(s+1)

 [a1a2 · · ·as] ȳT−s, (26)

where b⊤ ∈ R1×(s+1) is the last row of W⊤
V and aj ∈ R(s+1) is the jth column of W⊤

QK . So the
in-context loss L(WV ,WQK) can be rewritten as a function of b⊤ and aj

L(b⊤,aj) := ED̃

[(
1

T − s− 1
b⊤Ȳ AȳT−s − yT

)2
]
. (27)

Plugging in the expression of ¯yT−s, the in-context loss is

L(b⊤,aj) = ED̃


 1

T − s− 1
b⊤Ȳ [a1a2 · · ·as]


yT−s

yT−s+1

...
yT−1

− yT


2 

= ED̃

 (1

T − s− 1

s∑
k=1

b⊤Ȳ akyT−s−1+k − yT

)2


18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

= ED̃

 (1

T − s− 1

s∑
k=1

Tr(Ȳ akb
⊤)yT−s−1+k − yT

)2


= ED̃

 (1

T − s− 1

s∑
k=1

⟨Ȳ , ba⊤
k ⟩yT−s−1+k − yT

)2
 . (28)

Write the in-context loss as a function of Xk := ba⊤
k , which represent the transformer parameters

L(Xk=1···s) = ED̃

 (1

T − s− 1

s∑
k=1

⟨Ȳ ,Xk⟩yT−s−1+k − yT

)2
 . (29)

Now we compute the gradient of the in-context loss with respect to each Xk, which will be used for
showing the optimality

∇XjL(Xk=1···s) = 2ED̃

[(
1

T − s− 1

s∑
k=1

⟨Ȳ ,Xk⟩yT−s−1+k − yT

)
yT−s−1+jȲ

]
. (30)

The gradient ∇XjL(Xk=1···s) contains 2 terms. ∇XjL(Xk=1···s) = T1
Xj

+T2
Xj

, with

T1
Xj

:=
2

T − s− 1
ED̃


s∑

k=1

⟨Ȳ ,Xk⟩yT−s−1+kyT−s−1+j︸ ︷︷ ︸
:= C1

Ȳ

 (31)

=
2

T − s− 1
ED̃

[
C1

T−s−1∑
i=1

[
ȳiȳ

⊤
i ȳiyi+s

ȳ⊤
i yi+s y2i+s

]]
, (32)

T2
Xj

:= −2ED̃


s∑

i=1

yT yT−s−1+j︸ ︷︷ ︸
:= C2

Ȳ

 (33)

= −2ED̃

[
C2

T−s−1∑
i=1

[
ȳiȳ

⊤
i ȳiyi+s

ȳ⊤
i yi+s y2i+s

]]
. (34)

Each matrix element of T1
Xj

can be written as

ED̃

[
C1

T−s−1∑
i=1

yi+myi+n

]
(35)

= ED̃

[
s∑

k=1

Cpq
k yT−s−1+k

(
T−s−1∑
r=1

yr+pyr+q

)
yT−s−1+j

T−s−1∑
i=1

yi+myi+n

]
, (36)

with Cpq
k represents the matrix elements of Xk, j ∈ [1, s], p ∈ [0, s], q ∈ [0, s], m ∈ [0, s] and

n ∈ [0, s].

A general term in the sum of T1
Xj

is

Cpq
k ED̃ [yT−s−1+kyr+pyr+qyT−s−1+jyi+myi+n] . (37)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The sum of y’s indices in (37) is 2T + 2i + 2r − 2s − 2 + (m + n + p + q + j + k). The parity
depends only on (m+ n+ p+ q + j + k) and is the same for all the terms in the sum (no matter
which i and which r).

According to D.2, (37) is 0, if (m+n− s− 1+ j) is odd; is non-negative, if (m+n+ p+ q+ j+k)
is even. So a general matrix element of T1

Xj
is 0, if (m+ n+ p+ q+ j + k) is odd; is non-negative,

if (m+ n+ p+ q + j + k) is even.

Each matrix element of T2
Xj

can be written as

ED̃

[
C2

T−s−1∑
i=1

yi+myi+n

]
= ED̃

[
yT yT−s−1+j

T−s−1∑
i=1

yi+myi+n

]
, (38)

with j ∈ [1, s], m ∈ [0, s] and n ∈ [0, s].

A general term in the sum of T2
Xj

is

ED̃ [yT yT−s−1+jyi+myi+n] . (39)

The sum of y’s indices in (39) is 2T + 2i + (m + n − s − 1 + j). The parity depends only on
(m+ n− s− 1 + j) and is the same for all the terms in the sum (no matter which i).

According to D.2, (39) is 0, if (m+ n− s− 1+ j) is odd; is non-negative, if (m+ n− s− 1+ j) is
even. So a general matrix element of T2

Xj
is 0, if (m+ n− s− 1 + j) is odd; is non-negative, if

(m+ n− s− 1 + j) is even.

For a given AR(s)-constructed token (s is fixed) and a specific j, if a matrix element of T2
Xj

is 0
only depends on m+ n (its position in the matrix). So

T2
Xj

=



∗ 0 ∗ · · · · · ·

0 ∗ 0 ∗
...

∗ 0 ∗
.

...
... ∗

. ∗
...

. * 0
· · · · · · ∗ 0 ∗


, if(−s− 1− j) is even;

=



0 ∗ 0 · · · · · ·

∗ 0 ∗ 0
...

0 ∗ 0
.

...
... 0

. 0
...

. 0 ∗
· · · · · · 0 ∗ 0


, if(−s− 1− j) is odd. (40)

To make T1
Xj

have the same 0 and non-zero elements at the same positions as T2
Xj

, (p + q + k)

should have the same parity as (−s− 1− j). It can be easily proved that a specific set of Xk can
achieve this. So ∇XjL(Xi=1···s) = T1

Xj
+T2

Xj
will have the pattern of (40).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F PROOFS OF THE OPTIMALITY THEOREM WITH AR(1)-CONSTRUCTED
INPUT TOKEN

Theorem 4.1. Let Y0 encode the input tokens according to construction (7) for s = 1. Then, the
optimal parameters θ⋆ =

(
W ⋆

QK ,W ⋆
V

)
of a single linear self-attention layer with respect to loss

L(θ) are

W ⋆
QK =

[
(T−2)ED̃[

∑T−2
i=1 yiyi+1yT−1yT]

ED̃[
∑T−2

i=1 yiyi+1
∑T−2

r=1 yryr+1yT−1yT]
0

0 0

]
, W ⋆

V =

[
0 0
0 1

]
, (13)

up to rescaling with γ ̸= 0.

Proof. For the transformer parameters in (13), the corresponding b⊤ = [0 1] and the corresponding

A = [c 0], where c :=
(T−2)ED̃[

∑T−2
i=1 yiyi+1yT−1yT]

ED̃[
∑T−2

i=1 yiyi+1
∑T−2

r=1 yryr+1yT−1yT]
.

So X = X1 = ba⊤
1 = bA⊤ =

[
0 0
c 0

]
. Use the result of X to compute the terms of the gradient of

the in-context loss ∇XL(X)

T1
Xj

=
2

T − 2
ED̃

[
⟨Ȳ ,X⟩y2T−1Ȳ

]
=

2

T − 2
ED̃

[
⟨
T−2∑
r=1

[
yry

⊤
r yryr+1

yr+1yr y2r+1

]
,

[
0 0
c 0

]
⟩y2T−1

T−2∑
i=1

[
y21 yiyi+1

yi+1yi y2i+1

]]

=
2

T − 2
ED̃

[
c

T−2∑
r=1

yryr+1y
2
T−1

T−2∑
i=1

[
y21 yiyi+1

yi+1yi y2i+1

]]

=
2

T − 2
ED̃

[
c

T−2∑
r=1

yryr+1y
2
T−1

T−2∑
i=1

[
0 yiyi+1

yi+1yi 0

]]
. (41)

According to D.2, the 2 diagonal elements in (41) ED̃

[
c
∑T−2

r=1 yryr+1y
2
T−1

∑T−2
i=1 y2i

]
and

ED̃

[
c
∑T−2

r=1 yryr+1y
2
T−1

∑T−2
i=1 y2i+1

]
are 0, since their sum of y indices are both odd.

T2
Xj

= −2ED̃

[
yT yT−1

T−2∑
i=1

Ȳ

]

= −2ED̃

[
yT yT−1

T−2∑
i=1

[
y21 yiyi+1

yi+1yi y2i+1

]]

= −2ED̃

[
yT yT−1

T−2∑
i=1

[
0 yiyi+1

yi+1yi 0

]]
. (42)

According to D.2, the 2 diagonal elements in (42) ED̃

[
yT yT−1

∑T−2
i=1 y2i

]
and

ED̃

[
yT yT−1

∑T−2
i=1 y2i+1

]
are 0, since their sum of y indices are both odd.

Plug in the expression of c, it can be easily found that

∇XL(X) = T1
Xj

+T2
Xj

= 0. (43)

Since the in-context loss is convex in X and the X resulting from the W ⋆
V and W ⋆

QK above makes
∇XL(X) = 0, the W ⋆

V and W ⋆
QK above is a global minimizer for the in-context loss.

21

	Introduction
	Related literature
	Preliminaries, problem formulation & assumptions
	Optimal parameter configurations
	Discussion

	Experiments
	Conclusion, limitations, future directions
	LLM usage disclosure
	Experiments — further details
	Hyperparameters
	Additional experiments

	Proof of token construction Lemma
	Computation of Tokens' High-Order Moments
	Proofs of the In-Context Loss' Gradient Lemma
	Proofs of the Optimality Theorem with AR(1)-Constructed Input Token

