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ABSTRACT

This paper studies the expressive power of linear attention layers for in-context
learning (ICL) of linear dynamical systems (LDS). We consider training on se-
quences of inexact observations produced by noise-corrupted LDSs, with all pertur-
bations being Gaussian; importantly, we study the non-i.i.d. setting as it is closer
to real-world scenarios. We provide the optimal weight construction for a single
linear-attention layer and show its equivalence to one step of Gradient Descent
relative to an autoregression objective of window size one. Guided by experiments,
we uncover a relation to the Preconditioned Conjugate Gradient method for larger
window sizes. We back our findings with numerical evidence. These results add to
the existing understanding of transformers’ expressivity as in-context learners, and
offer plausible hypotheses for experimental observations whereby they compete
with Kalman filters — the optimal model-dependent learners for this setting.

1 INTRODUCTION

We contribute towards understanding transformers’ expressive power when learning from non-i.i.d.
data produced by linear dynamical systems (LDSs). The starting point of our work is the well-known
ability of transformers to perform in-context learning (ICL) (Brown et al., 2020).

Specifically, this boils down to accurately answering a query based on a set of examples given as
a textual prefix (“in context”) (Brown et al., 2020). This behaviour is desirable, as it loosens the
requirement for expensive data collection and fine-tuning stages (Liu et al., 2023). Current research
efforts are split between enhancing ICL through specialized training and prompt engineering, and
building a mechanistic understanding of it — see the comprehensive review of Dong et al. (2022).

Currently there exist two perspectives on ICL mechanics: a Bayesian view, whereby transformers
recover latent concepts from prompts, thus performing implicit Bayesian inference (Wang et al.,
2023; Jiang, 2023; Wies et al., 2023; Xie et al., 2021), and a view of transformers as implementers
of implicitly learned algorithms (Von Oswald et al., 2023a; Giannou et al., 2023; Akyiirek et al.,
2022; Garg et al., 2022; Ahn et al., 2023; Mahankali et al., 2023; Sander & Peyré, 2024; Von Oswald
et al., 2023b; Sander et al., 2024). Within the latter works, investigations center around whether
transformers can perform linear regression (and variants thereof) in context, and how. They give
weight to this hypothesis by proving that, for certain token formats, data distributions, and architecture,
the transformers’ optimal weights effectively execute an optimization algorithm iteration in the
forward pass, relative to a context-dependent loss (Von Oswald et al., 2023a; Mahankali et al., 2023;
Ahn et al., 2023; Von Oswald et al., 2023b; Sander et al., 2024). Though this algorithmic view
does not account for the “emergent” aspect of “in-the-wild” ICL (Shen et al., 2023), it provides
concrete expressions for transformers’ modelling power and identifies the minimal functional unit
that instantiates it — a single, causally-masked, linear attention layer, without positional encoding.
Despite this rich progress in understanding ICL for i.i.d. data settings, our grasp of the non-i.i.d. case
is missing. A significant hurdle in analyzing this scenario is handling a token’s statistical dependence
on the entire context preceding it. This work takes the first steps towards unraveling this difficulty.

Specifically, we study the ability of a single linear attention layer to learn in context from sequences
of observations {y; }+ generated by a time-invariant LDS doubly-corrupted by Gaussian noise

{$t+1 = Az + Wiy, )

T
Yy = C Ty + Uy,
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where w; = N(0, 2,,) and v; "~ N(0, 02) with mutually independent w; and v;. Studying this

setting has a threefold motivation. Firstly, the sequence {y }+ is built on a temporal scaffold closer
in nature to that of language-induced tokens, in stark contrast to the i.i.d. setup predominantly
addressed by prior works (with few exceptions discussed in detail later). Secondly, this setting moves
closer to the works taking a Bayesian view on ICL, where the data follows a Hidden Markov Model
(HMM) (Xie et al., 2021) of which LDSs are a subclass (Minka, 1999). Furthermore, dynamical
systems have been directly studied as potentially more flexible models for grammatical sentence
formation, both empirically (Elman, 1995; Tabor et al., 1996) and more formally (Beim Graben
et al., 2004; Belanger & Kakade, 2015), thus making setting (1) particularly relevant. ~ With
HMMs being a mainstay in language modelling, setting (1) is particularly relevant. Finally, prior
empirical observations emphasize the close performance of transformers relative to the Kalman
Filter (KF) (Kalman, 1960), with the former matching the latter in settings where KF is the optimal
predictor (Du et al., 2023). To our knowledge, the underlying mechanism is yet to be understood
formally.

The goal of this paper is to characterize the structure of a single linear self-attention layer trained
to optimality for predicting yr in-context, when presented with sequences {yt}tT:jl. We proceed
in two steps: first, we define an appropriate context-dependent loss for dealing with the time-series
data. To this end, we rely on the improper learning approach of the system identification literature,
whereby sequence generating processes of type (1) are well approximated by autoregressive ones.
Second, we link the structure of optimally trained linear attention layers with algorithmic steps on
the context-dependent loss. In doing so, we rely on a token augmentation scheme akin to prior
works (Von Oswald et al., 2023a; Ahn et al., 2023; Mahankali et al., 2023). Our contributions are the
following.

C1. In Theorem 4.1, we prove that for an order-one autoregressive approximation of (1), the
optimal linear attention layer implements a step of Gradient Descent on the associated
least-squares loss. To our knowledge, this is the first optimality result for LDS data.

C2. InLemma 4.1, we identify a salient banded pattern of the matrices involved in the stationarity
condition for generic order-s approximations of (1). We further define a class of parameters
that satisfy this structural constraint and empirically observe that minimizers obey it, thus
narrowing down the search for the provably-optimal linear attention layer when s > 2.

C3. In Section 5, we provide numerical experiments verifying our theory for order-one au-
toregressive approximations. Furthermore, we connect the tiling pattern of empirically
determined minimizers of order-s approximations, s > 2, with the Preconditioned Con-
jugate Gradient method iteration, thus further highlighting the view of ICL as on-the-fly
optimization. To our knowledge, this is the first interpretation of the in-context algorithm
for general order-s autoregression.

C4. Conceptually, we make the case for the view of ICL as implicit optimization having a viable
extension to LDS-produced data. We do so by bridging works from the system identification
literature with empirical observations of transformers’ in-context performance rivaling that
of Kalman Filters.

2 RELATED LITERATURE

We review the niche of studies viewing ICL as in-context optimization, together with relevant works
on filtering and system identification. Further comparisons are discussed in Section 4.1.

ICL for linear regression with i.i.d data. This line of work studies whether transformers trained
on a few-shot learning objective can perform linear regression in-context, and how. Garg et al. (2022);
Akytirek et al. (2022); Von Oswald et al. (2023a) provide empirical results in the affirmative, along
with possible architecture constructions implementing Gradient Descent (GD) steps relative to a
context-induced least squares loss. Through this lens, ICL reduces to on-the-fly optimization executed
in the transformer’s forward pass. Mahankali et al. (2023); Zhang et al. (2024); Ahn et al. (2023)
complement these findings by proving that one-layer linear self-attention implementing such a GD
step (possibly preconditioned) is a global minimizer of the pretraining loss when covariates are i.i.d.
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and Gaussian drawn. Finally, Zhang et al. (2024) complete the picture by proving that Gradient Flow
converges to these global minimizers. Our results extend this line of work to non-i.i.d. setting.

ICL and system identification. This line of work asks whether transformers can perform autore-
gressive learning in context, and how. Different from the prior section, the following papers use
the autoregressive pretraining loss and, unless stated otherwise, the results concern a single layer
of linear self-attention. Von Oswald et al. (2023b) give a construction implementing a GD step
on L(W) = Zf;i | Wy, — yit1 ||2 in parallel for all positions ¢, under an appropriate token
configuration. Sander et al. (2024), further characterize the global minimizers of the autoregressive
pretraining loss relative to the noiseless data y; 1 = Ay;, with A uniformly sampled from the set of
commuting orthogonal matrices. Notably, they recover Von Oswald et al. (2023b) construction when
using the same token augmentation. Sander et al. (2024) further characterizes minimizers for the
case of substituting token augmentation with positional encoding and a dimension-dependent number
of attention heads — this setting’s analysis, however, requires a diagonal weight structure. Zheng
et al. (2024) complement these results by showing that, with a diagonal weight initialization and a
controlled distribution of yq, pretraining with Gradient Flow (GF) recovers the previously identified
GD-implementing optimum. Finally, Sander & Peyré (2024) extend these results to arbitrary orthogo-
nal As via an infinite-depth attention-only transformer that correctly predicts yr in the limit 7" — oo.
This result holds for softmax, exponential, and linear activations.

Moving away from the noiseless settings above, Cole et al. (2025) establish approximation theoretic
results for deep attention-only transformers predicting the sequence y;11 = Ay; + w;, with

w; ~ N(0,021) and A € S1 . They prove by construction that there exists a log(7")-depth
transformer attaining a uniform-over- A % error for predicting E[xr1|x:, A, and give a lower
bound for the accuracy with which a single linear attention layer can make predictions. Related to the
problem of capacity, Ziemann et al. (2024) establish a learner predicting the next observation with
a uniform-in-time error bound requires a number of parameters at least quadratic in the algebraic
multiplicities of A’s unstable eigenvalues, and must operate on a context length at least logarithmic

in the length of {y;}1 ;.

In summary, these works either study transformers’ ICL ability with respect to simplified LDSs or do
not address the question of weight structure optimality. In contrast, we study fully-fledged systems (1)
with the aim of characterizing the pretraining loss minimizers in the few-shot training setting.

Transformers and linear filtering. The classical model-based prediction tool for systems of
type (1) is the Kalman Filter (KF) (Kalman, 1960). Using knowledge of system parameters, the KF
gives the minimum expected squared error estimates &; of the hidden states x; as linear combinations
of the past y;s. Transformers as potential implementers of KF were studied by Goel & Bartlett (2024),
who prove that a softmax causal attention layer is an arbitrarily good approximator. Akram & Vikalo
(2024) further construct a transformer emulating the KF. Finally, Du et al. (2023) provide empirical
evidence that a GPT-2 architecture (Radford et al., 2019) competes in accuracy with the KF for
predicting the next observation in a previously unseen sequence, though the mechanism remains
unstudied. We partially fill this gap with our present work.

3 PRELIMINARIES, PROBLEM FORMULATION & ASSUMPTIONS

Notation. Vectors and matrices are denoted by bold, lowercase and uppercase letters, respectively,
with regular lowercase letters reserved for scalars. We denote by 1, and 04 the all-ones and all-zeros
vectors of dimension d, and by 14y, and 04, the analogous matrices. Unless stated otherwise, we
use || - || for the Euclidean norm of vectors and the spectral norm of matrices. We denote by Tr (-) the
trace of a matrix, (-, -) the inner product, by || - || . its Frobenius norm, and by p(-) its spectral radius.
We use e; for the i vector of the canonical basis in the appropriate dimension and I to denote the
identity matrix of appropriate dimensions. The notations Si and S‘i . define the cones of symmetric
positive-semidefinite and positive-definite matrices in R?*¢, respectively. We use S?~! to denote the
unit sphere in R%. We use ® to denote the Hadamard product. Finally, we use [n] when referencing
the set of integers {1,2,...n}. We write w.p. as an abbreviation of “with probability”.
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The big picture: filtering, system identification, and linear regression. The KF (Kalman, 1960)
computes the optimal estimates &; of x; through the system of recursions

Predict: ét#»l\t = Aﬂt’?t, Pt+1\t = 14.Pt14T + Zw
Gain: ki = Poyypc(c” P+ 01;)71 (2)

Update: &;, = :it+1|t +kir1(Yeg1 — CTﬁ?t+1|t)7 Py o= (Id - kt+lcT)Pt+1\t>

where ¢ and error covariance estimate P, are given as input. Under the Gaussian errors assumption,
the state prediction satisfies &; = E[x: |y, ...y:1] and, consequently, the forward observation
prediction follows ;11 = ¢' A&y = E[ys+1| s, - - - y1]. The fast, constant-time KF predictions,
however, require knowing the LDS parameters — a condition generally not satisfied in practice.

Consequently, “proper learning” approaches seek to reconstruct the underlying model, by first
estimating A, ¢, ¥, 0, through costly parameter identification techniques and then producing
forward observation predictions using the KF (Hamilton, 1995). In contrast, “improper learning”
methods eschew structural constraints and solely seek to reliably achieve low error with respect to
the underlying data distribution and the learning objective (Kozdoba et al., 2019, and references
therein). For LDSs, this boils down to expressing the next observation as a linear function of
the recent past. Not only does the latter approach have the computational advantage of foregoing
parameter estimation, but it also benefits from convex formulations, thus being amenable to classical
optimization techniques. Most importantly, for certain LDS classes, improper learning methods can
closely track E[y:11 | yt, - - - y1], as follows.

Tsiamis & Pappas (2019) highlight the following rephrasing of the data-generating process via the
KF and for some fixed window size s of past observations,

[ys+1a---yT—1] = CT[(A—kCT)S_lk,...(A—KCT)k,k] ['glw“gT—s—l]

-+ CT(AkaT)S[iﬁl,...iIAJT_S_i_l] + [€S+1,...€T_1], (3)

where y; = [yt Yrt1,--- yH_S_l]T, k is the steady-state gain, and e; € R are i.i.d, zero-mean
Gaussian errors. Under KF convergence conditions, quantity p(A — ke ) < 1 makes the second
term vanish exponentially in s and thus renders it negligible. We are now in the familiar setting
of noisy linear regression, albeit with non-i.i.d. data. The resulting order-s autoregressive process
(AR(s)) is associated with the optimization objective

. 1 _

min L£4p)(w) = AT—s-1) tz_; (Yers —w' gp)*. “4)

This simplification is the crux of improper learning approaches to system identification (Kozdoba

et al., 2019) and becomes of note in conjunction with the idea that transformers perform on-the-fly

optimization on the context-induced least squares objective. Should this latter view hold up to

scrutiny under the new data distribution, it would imply that transformers could learn LDS-based

time series in context arbitrarily well as a function of the available s. This is our incentive for seeking
characterizations of the few-shot pretraining loss minimizers.

T—s—1

To ensure the above approximation is valid, we introduce the following LDS assumption.

Assumption 3.1 (System assumptions). LDS (1) has strictly positive definite noise covariances Y,
and o, > 0. The system transition matrix A € R%*? is marginally stable, with p(A) < 1, and the
pair (A, ¢) is observable, meaning that

c'A
0= . 4)
e’ Adfl
has a column rank of d.

Assumption 3.1 is standard in the literature, and ensures KF convergence (Harrison, 1997) along with
the exponential vanishing of the bias term in (3). Furthermore, it ensures the closeness of forward
observation predictions given by the KF with those produced by a linear autoregressive predictor
determined by expression (4) (Kozdoba et al., 2019).
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Transformer architecture. Transformers (Vaswani et al., 2017) are neural architectures performing

sequence-to-sequence mapping. For a set of input tokens S7 = [s1,...s7]T € RT*P, the trans-
former produces a corresponding St = [81,...87]" € RT*P by dynamically mixing tokens via its
attention mechanism. An L-layer transformer Ty : RT*P — RT*P parametrized by 6 = [0;]%_; is a

composition of blocks 77, = Tp, o ... Ty, . Each Ty, is a sequence-to-sequence function given by
T6,(S) == (MLPgusr o Agar)(S),

where MLPgurr is a multilayer perceptron and AQ?W is the attention mapping. This paper studies
the simplified block 7y(S) = Ap(S), thus setting L = 1 and MLP g to identity.

The causal h-headed attention block with residual connections is given by

H

1

Ag(8) = S+ 0 <M ® TSW@(WQ)TST) SWEWE,
h=1

where the parameters 0§ = [W}A, WE W WA | represent the query, key, value, and projection
matrices, respectively; 7 > 0 1s a scaling constant; o is the softmax normalizing function applied
row-wise; and M € RT*T  with M; ; = 1ifi > j and —oo otherwise is a mask enforcing causality.

Similar to prior works (Von Oswald et al., 2023a; Ahn et al., 2023; Mahankali et al., 2023), we restrict
our study to the analytically tractable setting of single-headed linear attention (Katharopoulos et al.,
2020). Without loss of expressivity, we drop the projection matrix Wy, and consider the W W, as
a single matrix Wy € RP*P. Since we’re working in the few-shot scenario, we’re concerned solely
with predicting the final position as

T-1
Wy Z sis:WJKsT, (6)
i=1

'§T = %(S)t:ST—‘rTfl

where we set 7 = T' — 1 and omit the last sum element due to a token asymmetry discussed next.

Token construction. We construct the tokens following the same scheme of Von Oswald et al.
(2023a); Ahn et al. (2023); Mahankali et al. (2023). The input matrix Y, constructed using AR(s)
data (4) is

Y1 Y2 o Yr—s—1 0 Yr—s
Y, = Yy Y2 o Yr—s—1 YT-s| _ | : : : )
y8+1 y8+2 e Yyr—1 0 Ys ys+1 e YT —2 e Yr—1
Ys+1 Ys+2 *°° Yr-1 - 0

where s >= 1 is the window size of the AR process. The last column represents the “test” token,
whose final position is filled in the transformer’s forward pass by y7’s estimate gp. This asymmetry
motivates the last term’s removal in (6).

Lemma 3.1 ensures, by construction, the existence of a linear attention layer producing Y, from the
raw sequence {yy }¢+. Its proof is deferred to Appendix C.1 due to space constraints.

Lemma 3.1. For a given s >= 1, there exists an s + 1-headed linear attention layer with positional

encoding which transforms input sequences [y1,va, . . .,yr| ' into
Y1 Y2 s Ys Ys+1
Yr—s—-1  YT-s s Yr-2 Yr-1
Yr—s  YT—s+1 e yr-1 0
OT—s—l X s

The latter are essentially equivalent to tokens (7).

Data distribution, loss function, and training paradigm. We consider trajectories {y;} 2,
sampled from systems of type (1), where each trajectory corresponds to different, fixed parameters A
and ¢ sampled from appropriate distributions, and xo sampled from A (04, 3z, ). Our assumptions
on the distributions of A and c are
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Assumption 3.2 (LDS family). The system matrix A € R**? is sampled from a centrally symmetric
distribution supported on {M € Réxd ’ p(M) < 1},f0r which it holds that

P({A|3i,j € [d, s.t. \Mi(A) = A;(A)}) = 0. (8)

In other words, A has a simple spectrum almost surely. The observation vector ¢ € R? is sampled
independently, from a distribution that is absolutely continuous w.r.t. the Lebesgue measure over R?.

Except for the central symmetry assumption, the requirements of Assumption 3.2 ensure that As-
sumption 3.1 holds w.p. 1 for every sampled LDS. The proof can be found in Appendix C.2. The
central symmetry of A’s distribution, on the other hand, is a technical requirement for proving our
main result.

Data generation proceeds in two steps: we sample A, ¢, and x( independently and observe the
evolution of system (1) for T steps. Note the noises w; and v, in system (1) are jointly independent
of A, ¢, and xy. We then construct Yy (7) for a fixed s, and train our model to minimize

1
[’(9) = EA,c,mo,{wt}“{vt}t 5 ( %(%)s-ﬁ-l,T—s —yr )2 P (9)

where the subscript marks that we solely consider the last position of the last output token.

4  OPTIMAL PARAMETER CONFIGURATIONS

This section presents our theoretical results and discusses their implications relative to prior literature.

Our theoretical contribution is two-fold. First, in Lemma 4.1 we reveal a salient structure within the
first-order optimality condition, which plays an important role in finding optimum configurations for
the in-context loss of AR(s). Second, in Theorem 4.1 we prove that the transformer configuration
implementing one-step GD is a global minimizer for AR(1) using this salient structure.

Unlike the i.i.d. case, each token generated by the LDS depends on the entire history. This results in
high-order data moments populating the in-context loss, which can only be dealt with by unrolling to
the initial state. A general approach to compute and match them is presented in Appendix D.3. We
now describe the structure emerging within the first-order optimality condition.

Following (Ahn et al., 2023), we use basic algebraic manipulations (Appendix D.3) to rewrite loss (9)
as

S

2

1

EA,m()y{wt}ty{vt}t <T —s—1 Z(Ybifo—r7 ba;>nysfl+k - yT) 5 (10)
k=1

where Wy = [0(s41)xs, b]T and Wy = [ay, ... a, 0411]. The zero-padding of both matrices
comes from predicting solely the last position of the final token. Consequently, parameters ensuring

EA,EU,{wt}ty{vt}t

1 S
ﬁ Z<YE)§/0T» ba;>yT,s,1+kyT,s,1+ijY0T ]

= Eaw {w} o} | Yryr—s—1+5Y0Y |, Vi€[s] (A1)
are critical points of the loss.

Notably, the right-hand side of (11) obeys a banded structure, as follows

0 % 0 % : *x 0 x 0
* 0 ke forodd s +j; or O * o for even s + j;
X N 0 . . 0
" o0 %
i * 0 x| L 0 % 0]

12)



Under review as a conference paper at ICLR 2026

where * is a placeholder for arbitrary reals (the proof is deferred to Appendix D.3). We formalize a
class of parameters ensuring matching structures between the left and right-hand sides of (12) for
arbitrary s in Lemma 4.1.

Lemma 4.1. For an arbitrary s, the following parameters induce a banded structure in the left-hand
side of (11) matching that of the right-hand side.

* 0 * 0 0
0 % . P : 0
Work=1- . . Wy = |. . . 13
QK PR | N v : D% (13
0 0 = O : .
_0 O *_

Lemma 4.1 can be understood as a narrowing-down based on structure of the parameter class likely
to hold minimizers of (9).

Our second step is to use structure (13) to identify a global minimizer of loss (9) in the AR(1) case,
yielding Theorem 4.1 with proof deferred to Appendix D.4.

Theorem 4.1. Let Y, encode the input tokens according to construction (7) for s = 1. Then, the
optimal parameters 0* = (Wé K W{;) of a single linear self-attention layer with respect to loss

L(6) are

W&{g ﬂ (14)

(T72)]EA‘:E0){wt}t){'ut}t[Z;‘I‘:_12 yiyi+1yT—1yT} 0
* = —
WQK = EA»ﬂDoy{Wt}t,{vt}t[ZiT:lZ YiYi+1 ZZ:IZ yTyT‘Hy%*l] ’

0
up to rescaling with v # 0.

Broadly, the proof of Theorem 4.1 encounters two difficulties compared to the i.i.d. case: the number
of terms that need to be matched in satisfying the first-order optimality condition, and the full-history
dependence of the data. We address the first obstacle using the result of Lemma 4.1, and we sift
through the second by relying on Isserlis’ theorem (Isserlis, 1918) to handle higher-order moments of
y; that would have factored out of expectations in the i.i.d. case. Details can be found in Appendix
D.3.

Notably, a forward pass using the optimal parameters (14) amounts to the prediction given after one
GD step on L 4 (1) (w) starting from wg = 0. We thus recover the ICL-as-optimization view upheld
by works in the i.i.d. setting (Ahn et al., 2023; Mahankali et al., 2023) but for LDS-produced data.

4.1 DISCUSSION

To our knowledge, the only other architecture proposed for handling noisy observations y; of
type (1) is given by Cole et al. (2025). Theirs is part of a proof of existence by construction
and, as such, is not accompanied by confirming experimental evidence. Different from us, they
propose an attention-only transformer that unrolls a modified Richardson iteration meant to esitmate

-1
(% S mipix] ) (% S wix] ) for a simpler LDS with direct state access. Their construction

extends to the setting of objective (4) via the work of Tsiamis & Pappas (2019), who give a high

-1
probability result for the existence of (ZtT:_ls_l GGy ) under our assumptions. However, their

transformer has a minimum of two layers, of which the first is fixed, therefore providing no guarantee
that training will recover it. Our results take a first step towards filling this gap.

Tangentially, Akram & Vikalo (2024) construct a transformer emulating the KF, contingent on
knowledge of the system parameters and an elaborate token augmentation scheme. While this
architecture is capable of computing the forward KF observation g7, it relies on ideal knowledge of
LDS (1) which is rarely encountered in practice.

Theorem 4.1 sets forth a plausible hypothesis for prior experiments (Du et al., 2023, Fig. 2) using a
GPT-2 architecture trained autoregressively with data (1) for stable A € Si - Their results highlight
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Figure 1: Experimental results for AR(1-3) tokens showing the optimally-trained attention parameters.

the transformer’s competitive performance relative to the KF for predicting the next observation of
a previously unseen sequence, in-context. These experiments suggest an implicit form of system
identification might be executed in context, though the mechanism remains unstudied. Through the
ICL-as-optimization lens, we can interpret the high accuracy of GPT-2’s in-context predictions as a
possible consequence of Theorem 2 of (Kozdoba et al., 2019). Importantly, the latter result implies
that for an arbitrary, finite family .S of LDSs (1) and an & > 0, there exists a window-length s(¢) such
that the optimal AR(s(e)) predictor incurs an average error that is at least as good, up to ¢, as that
of the forward observation prediction ;41 of the best KF in .S. Our results take the first step in the
exploration of this hypothesis.

5 EXPERIMENTS

We now present numerical evidence supporting our theory. All experiments were implemented in
Python 3.12 and run on a ThinkPad T14p with 32 GB RAM and a 22-core Intel Core™ Ultra 9 185H
processor. The code is provided as part of the supplementary material.

We train architecture (6) on sequences {y;}7_,, T = 30, each sampled from a different LDS of
type (1) with a hidden state dimension d = 5. The number of training iterations is 8000 for all cases
with a increase of the batch size for every increase in order starting from 3000 for AR(1). A fresh
batch of LDSs is sampled at every iteration (i.e., online setting). The experiments are done with the
following 4 settings.
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(a) For each sequence, sample A’s diagonal entries uniformly at random in the interval [—1, 1]
and set ¢ = 1,4. The noise covariances are set to >,, = le—21 and 05 = le-2. The
results are depicted in Figure 1 for AR(1-3) tokens, with experiments for AR(4) deferred to
Figure 2 in Appendix B.

(b) For each sequence, sample v ~ Unif([—1,1]%), independently sample Q ~ Haar(O(d))
and set A = Q' diag(v)Q. We also independently sample ¢ ~ Unif([—5,5]9). The noise
covariances are set to ¥, = 1e—21T and 02 = 1e-2. Experiments for AR(1-4)- tokens
are provided in Figure 4 in Appendix B.4.

(c) For each sequence, sample v ~ Unif([—1, 1]¢), sample P = [pi,ﬂijzl by sampling p; ;
iid. from ([-1,1]), and set A = P~'diag(v)P. Sample ¢ ~ Unif([—5, 5]¢). The noise
covariances are set to >,, = 1e—21 and 03 = le-2. Experiments for AR(1-4)- tokens
are provided in Figure 6 in Appendix B.6.

(d) For each sequence, sample v ~ Unif([—1,1]%), sample Q ~ Haar(O(d)) and set A =
Q' diag(v)Q. Sample ¢ ~ Unif([—5,5]¢). Fix the process noise covariance to 3,, =
Q. ' diag(le-2 -[0.8,0.85,0.9,0.95, 1.0])Qu, where Q is an orthogonal matrix. Set
02 = 1e-2. Experiments AR(1-4)- tokens are provided in Figure 5 in Appendix B.5.

All the settings above have xq ~ N(0,021), 02 = 1e-2. Note that we could have used any other
centrally symmetric distribution with marginals supported on [—1, 1] for the sampling of the diagonal
v, e.g., Unif(S%~!) — uniform on the unit sphere; Unif ({x € R? : ||z||2 < 1}) — uniform inside
the unit ball, etc. We prove these sampling schemes obey Assumption 3.2 in Appendix E.1. We use
window-sizes s ranging from 1 to 4, with results being averaged over 3 random seeds. The weights
are learned using AdamW (Loshchilov & Hutter, 2017) with gradient clipping and a learning rate
schedule consisting of a linear warm-up phase followed by cosine annealing (Loshchilov & Hutter,
2016). A full list of hyperparameters is provided in Tables 1 and 2 of Appendix B.

Figure 1 depicts the experiment results under setting (a), Figure 4 setting (b), Figure 5 setting (c) and
Figure 6 setting (d). Figure 1 (b,c), Figure 4 (b,c), Figure 5 (b,c) and Figure 6 (b,c) show an optimum
conforming to Theorem 4.1 for AR(1) tokens. Moreover, Figure 1 (e.f,h,i), Figure 2 (b,c), Figure 4
(e,f,h,i,k,1) and Figure 6 (e,f,h,i) confirm experimentally the pattern uncovered by Lemma 4.1 for
general s > 0. Furthermore, we provide experiments in setting (a) showing that the weights converge
to the sparsity pattern predicted by Lemma 4.1 in terms of the Jaccard distance between the non-zero
supports — experimental details are given in Appendix B.3 and results are depicted in Figure 3 of the
appendix.

Interpreting of the sparsity pattern for AR(s) s > 2. A quick calculation of the forward pass
reveals that weights trained to optimality with AR(s) tokens (7) for s > 2 do not implement standard
GD in the forward pass, but an iteration resembling that of the Preconditioned Conjugate Gradient
method (PCG) (Shewchuk et al., 1994), as follows.

Since our sampling scheme ensures p(A) < 1 w.p. one, the stochastic process {y; }; approaches
stationarity exponentially fast, meaning that autocorrelations become (almost) solely dependent on
lag, i.e., E[yrys1x] = v(k), ¥Vt € N. In particular, the empirical counterparts become approxi-
mately equal =—— Z;TF:_IS_I YilYirk X 7 Z;TF:_ls_l YitpYitp+k ~ Y(k). We can therefore
approximate ﬁYUYOT with the symmetric Toeplitz matrix and remark it has a block structure
involving V2L 4 R(s) (a constant matrix) and VL 4 r(s)(0) (the gradient at w = 0)

’j/(O) ’:7(1 R A(s) ,
foerd : : N VLar(s(0) 4(0)
) As—1) - 40)

Using expression (15) and the parameter structure from Lemma 4.1 and the experiments, we rewrite
the transformer’s forward pass in a manner that highlights the resemblance with two steps of the PCG
method. We describe the case for even s, with identical reasoning applying for the odd case. Let
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s=2k, k€Nand N = % Then, the weight matrices belonging to RST1*5+1 are

e 0 ¢ oo | crpr ] I 8 g CNofk i
0 cry2 o - 0 0 o 0| enoran
Wak = | N Wy =| . : . : (16)
0 env—2r O . O O
70 0 - 0 | |

Renaming the top left s x s block of Wqk as P, the top-right s x 1 block as p, and the top right
s x 1 block of Wy, as q, the transformer-induced linear predictor ﬁWQKYOYOTWVZ’H_ 118

PV2Larsa+ (Pa" + enP)VLAR (0) + enFop

Letting P’ := T'V2L 4p(s) with ' == qf%g‘;;q and observing that cxJop = P'V2Lsg(s)q

(see Appendix E.3), the transformer-induced predictor finally rewrites as
(TV2Lags) + P) V2Larsd + (Pa’ +cnP) VLages)(0). 17)

Expression (17) resembles the predictor obtained after two PCG steps (Shewchuk et al., 1994, p.
51) on loss £ 4g(s) With preconditioner P! starting from w( = 0 and initial conjugate direction
dy = q (algorithm deferred to Appendix E.2). Note that P’s invertibility is assumed. The resulting
predictor is

wz = [MV2L3 k) — 7P| V2Lan( @ + 7PV Lan()(0)
~ 21T — 71V’ Lap(s) — 72P] V2L ag(s)q + T3PV L ag(s)(0)

where 71, 79, T3 € R are iteration-dependent constants (see Appendix E.2), and we used an order-one

Neumann series approximation of the Hessian inverse. The latter was shown to exist with high
probability for sufficiently large 7" by Tsiamis & Pappas (2019). Notably, this AR(s) analogy is in
harmony with the plain GD step observed for AR(1), since PCG collapses to GD when covariates
belong to R.

6 CONCLUSION, LIMITATIONS, FUTURE DIRECTIONS

This paper presented the first steps towards characterizing the optimal configuration of a single
self-attention layer trained with LDS-produced data and its ability to learn in context. We sketched
a path forward by leveraging results from the literature on improper learning approaches to system
identification, whereby autoregressive processes can well-approximate Kalman filters given a suffi-
cient window size. Using this starting point, we showed that for a length-one window, the optimal
attention layer implements a step of GD on the context-induced autoregressive loss. Furthermore,
we narrowed down the class of potential minimizers based on a structural property of the optimality
condition, which we confirmed through experiments. We also reveal that for a length-s window, the
trained attention layer approximates a step of PCG on the corresponding autoregressive loss.

Due to the difficulties induced by correlated data, several limitations remain: establishing optimality
for s > 2 by searching for optima within the structured class of parameters of Lemma 4.1; explaining
the non-standard initialization of the conjugate direction in the AR(s), s > 2 PCG approximation;
and finally, extending this analysis to autoregressive pretraining objectives. Our present contributions
provide the necessary building blocks for addressing these directions in future work.

10
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A LLM USAGE DISCLOSURE
LLMs were used in elaborating this paper as follows:

* Finding related work.
* Computing the result of polynomial multiplications.
* Generating LaTeX tables and tikz figures.

* Transferring proofs from pen-and-paper format into LaTeX automatically using the online
tool Manus https://manus.im/.
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B EXPERIMENTS — FURTHER DETAILS

B.1 HYPERPARAMETERS

Below are the full details of the training procedure described in Section 5.

Table 1: Training hyperparameters of settings (a), (b) and (d) in Section 5

Hyperparameter

Value

Weight initialization

Optimizer

Weight decay
Learning rate (i.e., max. val.)

Min. learning rate

Linear warmup

Decay schedule

Max. decay steps

Max. grad norm (clipping)

Random seeds

Batch size / iter.

Xavier normal distribution (Glorot & Bengio, 2010) with
gain = le-5

AdamW (Loshchilov & Hutter, 2017) with 81 = 0.98 for
AR(1), 0.92 for AR(2), 0.10 for AR(3), 0.76 for AR(4),
B2 = 0.99 for AR(1), 0.96 for AR(2), 0.55 for AR(3),
0.88 for AR(4), e = 1e-9

5e-3 for AR(2), AR(4) and 1e-2 for AR(1), AR(3)
2e-2 for AR(1), 3e—-2 for AR(2), 9e-2 for AR(3),
9e-2 for AR(4)

le—-4

800 iter.

Cosine annealing (Loshchilov & Hutter, 2016)

7200 iter.

300

{666013, 1,0}
3000 for AR(1), 4000 for AR(2), 8000 for AR(3), 16000
for AR(4)

Total iter. 8001
Table 2: Training hyperparameters of setting (c) in Section 5
Hyperparameter Value

Weight initialization
Optimizer

Weight decay

Learning rate (i.e., max. val.)
Min. learning rate

Linear warmup

Decay schedule

Max. decay steps

Max. grad norm (clipping)
Random seeds

Batch size / iter.

Total iter.

Xavier normal distribution (Glorot & Bengio, 2010) with
gain = le-5

AdamW (Loshchilov & Hutter, 2017) with 81 = 0.98 for
AR(1), 0.92 for AR(2), 0.92 for AR(3), 52 = 0.99 for
AR(1), 0.96 for AR(2), 0.96 for AR(3), e = 1e-9

5e-3 for AR(2) and 1e-2 for AR(1), AR(3)

3e-3 for AR(1), 5e-3 for AR(2), 7e-3 for AR(3)
le-5

800 iter.

Cosine annealing (Loshchilov & Hutter, 2016)
7200 iter.

300

{666013, 1,0}

3000 for AR(1), 4000 for AR(2), 8000 for AR(3)
8001

15



Under review as a conference paper at ICLR 2026

B.2 EXPERIMENTS FOR LARGER WINDOW SIZES

171 0.00 0.00 0.00 0.00
-12.24
10 0.00 0.00 0.00 0.0 -0.00 10
2 :

—12.37 0.8 0.8
= 0.6 0.6
o124 3/ 000 000 000 0.00
3 0.4 04
- 1259 0.2 0.2

41 0.00 0.00 0.00 0.00 0.01

~12.64 0.0 0.0

1271 5/ 0.00 000 000 000 0.00 5/ 0.00 000 000 0.00

0 2000 4000 6000 8000 ‘ : : : : : : :
k (iterations) 1 2 3 4 5 1 2 3 4 5
(a) Training loss for AR(4) tokens. (b) W5k for AR(4). (c) Wy for AR(4).

Figure 2: Experimental results for various token configurations AR(4) showing the optimal attention parameters.

B.3 is NEW ADDED

B.3 EXPERIMENTS SHOWING CONVERGENCE TO THE CHECKERBOARD PATTERN DURING
TRAINING

This set of experiments serves to illustrate that parameters Wg i and Wy converge to the checker-
board pattern across iterations. Since the non-zero values of these parameters are of different
magnitudes and we do not have their theoretical expressions for window-sizes greater than 1, we
shall only consider their non-zero support, as follows.

Definition B.1. For a matrix M € R*¥™, its support is defined as the collection of positions
corresponding to non-zero values

supp(M) = {(i,j) € [d] x [m] | ai; # 0}. (18)
Additionally, the support-induced mask is a binary matrix with unit entries on the support

i=d,j=m

mask(M) = [1(1'71')68“91’(]”) ij=1 "

where 1¢ = 1 if condition C' is true and 0 otherwise, is the indicator function centered at .

We rely on the Jaccard distance (Jaccard, 1901) adapted to binary matrices A, B
iy %gbiy
>i; max{a;j, bi;}

to track whether the support-induced masks of our parameters during training converge to the predicted
(for AR(1)) or hypothesized (for AR(s) s > 2) sparsity patterns of Lemma 4.1. Our experiments
employ a tolerance level of 1e—1 when computing the masks of Wy, and W, meaning that any
entry below this value is considered zero. The results are depicted in Figure 3 and its subplots for
varying window sizes, where M 5‘}3 and M* represent the masks posited in Lemma 4.1 for a null
tolerance level. The illustrations empirically confirm that our parameters’ supports converge to the
ones identified in Lemma 4.1.

djac(4,B) =1 (20)
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Figure 3: The experiment results of the Jaccard distance between the Mg'% and Wk and the Jaccard distance
between the M and Wy for AR(1-4). Both converge to 0 at the end of the training.
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B.4 is NEW ADDED

B.4 EXPERIMENTS WITH NON-DIAGONAL, SYMMETRIC A, RANDOM ¢ AND ISOTROPIC 3,

The LDS which generates the training data is as follows.
Unif([—1, 1]¢), sample Q ~ Haar(O(d)) and set A = Q" diag(d)Q. Sample ¢ ~ Unif([-5, 5]%).

For each sequence, sample d ~

The noise covariances are set to ¥, = 1e-21I and 02 = 1e-2.
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Figure 4: Experimental results for AR(1-4) with non-diagonal, symmetric A, random ¢ and isotropic >, which

align with the Lemma 4.1.

B.5 is NEW ADDED
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B.5 EXPERIMENTS WITH NON-DIAGONAL, NON-SYMMETRIC A, RANDOM ¢ AND
NON-DIAGONAL Y,

The LDS which generates the training data is as follows. For each sequence, sample d ~
Unif([—1, 1]¢); sample Q ~ Haar(O(d)) and set A = Q' diag(d)Q; sample ¢ ~ Unif([-5, 5]%).
Set the process noise covariance ¥,, = Q, ' diag(1e-2 - [0.8,0.85,0.9,0.95,1.0]) Q. where Q.
is an orthogonal matrix. Set 02 = 1e-2.

-3.95-
1 0.29 0.00 1.0 1 0.00 0.00 1.0
—4.007 0.8 0.8
= 0.6 0.6
£ -4.051
= 0.4 0.4
g
—4.107 0.2 0.2
—4.154 2 0.00 0.00 0.0 2 0.00 0.28 0.0
_420- T T T T T
0 2000 4000 6000 8000
k (iterations) 1 2 1 2
(a) Training loss for AR(1) tokens. (b) W for AR(L). (c) Optimal W7; for AR(1).

Figure 5: Experimental results for AR(1) with non-diagonal, non-symmetric A, random ¢ and non-diagonal 3.,
which align with the Lemma 4.1.

B.6 is NEW ADDED

B.6 EXPERIMENTS WITH NON-DIAGONAL, NON-SYMMETRIC A, RANDOM ¢ AND ISOTROPIC
Y

The LDS which generates the training data is as follows.

For each sequence, sample d ~ Unif([—1, 1]%), sample P = [p; ;¢ ,_, by sampling p; ; i.i.d. from
U ([-1,1]), and set A = P~diag(d)P. Sample ¢ ~ Unif([—5, 5]%). The noise covariances are set
toY¥, = le-2I and 02 = le-2.

In practice, we need to guarantee P is well conditioned. After sampling p; ; i.i.d. from ¢/ ([—1,1]),
we decompose P = QR, where P is an orthogonal matrix and R is an upper-triangle matrix.
max; R;

We modify the diagonals of R manually to make sure 227t = 2 and right multiply @ with the
modified R to have the well conditioned P.
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0 2000 4000 6000 8000
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(2) Training loss for AR(1) tokens. (b) W5k for AR(1). (c) Optimal W7; for AR(1).
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k (iterations) 1 2 3 1 2 3
(d) Training loss for AR(2) tokens. (e) Wi for AR(2). (f) Wys for AR(2).
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g
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0.0 0.0
~10.90-
4 4 0.00 0.00 0.00
0 2000 4000 6000 8000
k (iterations) 1 2 3 4
(g) Training loss for AR(3) tokens. (h) W5 ¢ for AR(3). (1) W7 for AR(3).

Figure 6: Experimental results for AR(1-3) with non-diagonal, non-symmetric A, random c and isotropic 3,
which align with the Lemma 4.1.
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C SECTION 3 PROOFS

C.1 PROOF OF TOKEN CONSTRUCTION LEMMA

Lemma 3.1. For a given s >= 1, there exists an s + 1-headed linear attention layer with positional

encoding which transforms input sequences [y1,ya, - - .,yr| ' into
Y1 Y2 cee Ys Ys+1
Yr—s—1  Yr-s e Yr—2 Yr-1
Yr—s  YT—s+1 e yr-1 0
OT—S—lXS

The latter are essentially equivalent to tokens (7).

Proof. We first define a matrix right-shift operator, which shifts each row one position to the right,
padding the first column with zeros. Let >: R™*"™ — R™*" be > (M) = M R, where

0 0/
nef, ]

We follow Von Oswald et al. (2023a) in using the one-hot positional encodings, concatenated to the
input sequence to obtain tokens {[y;, €;]}7_;. We define s + 1 attention heads given by

Define Wy € RTHXT Wy € RTHXT and Wy, € RT 1% as follows:

T
W(S:[(}ﬂ,v}ze[s—kl]
Or, >(..>Urp)...
(VV&)T _ [ T ( ( T) )
h—1 times
W= forn e opy e+ (22)

Each head then computes the following

y1 1 0 ... O Y1 Y2 Ys ... Yr yp 1 0 0
v 0 1 ... L1000 v 0 1 0
o W W) W
yr 0 0 ... 1 o 0 0 ... 1 yr 0 0 ... 1
=1z _ |07 —ht1xh-1 Ir_piq I oo b .. sl
On—1xn-1  On—1xT-h+1 0 ... 1 0
- |0 Yo 0
0 yr 0

1 h . s+ 1

0 ... Yh ... 0

0o ... Yh+1 ... 0

0 ... yr ... 0

0hxs+1
Summing over the outputs of all heads, we get an equivalent representation to (7). [
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NEW ADDED

C.2 PROOF OF THE ALMOST SURE OBSERVABILITY OF THE LDS

We seek to show that Assumption 3.2 ensures LDS (1) observability w.p. 1. Note that the central
symmetry of the distribution is irrelevant for this statement, and only relevant for the proofs in
Section 4. We repeat Assumption 3.2 below for convenience.

Assumption 3.2 (LDS family). The system matrix A € R**? is sampled from a centrally symmetric
distribution supported on {M € Rdxd ’ p(M) < 1},for which it holds that

P({A|3i,j€[d], st \(A) =\ (A)}) =0. ®)

In other words, A has a simple spectrum almost surely. The observation vector ¢ € R? is sampled
independently, from a distribution that is absolutely continuous w.r.t. the Lebesgue measure over R,

Lemma C.1. Assumption 3.2 ensures the pair (A, c) is observable w.p. 1.

Proof. Since A has distinct eigenvalues w.p. 1 (the simple spectrum condition), it is (block)
diagonalizable almost surely, and its eigenvectors {v1,...vq} are linearly independent. Therefore,
observability is ensured if ¢ " v; # 0 almost surely for all i € [d].

Since c is sampled from a distribution that is absolutely continuous w.r.t. the Lebesgue measure in
R?, we want to prove that the set

d
U:U{ceRd]chi:O}

=1

has zero Lebesgue measure in the ambient R?. Each collection {c¢ € R?| ¢ v; = 0} forms a proper

subspace of R? with dimension at most d — 1 (it can be less, for complex v;). Therefore, its Lebesgue
measure is null (see, e.g., (Royden & Fitzpatrick, 2010, pg. 435)).

Since U is a finite union of measure zero sets, it is itself measure zero. Hence, observability holds
w.p. L. O
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D SECTION 4 PROOFS

D.1 PRELIMINARIES

Since we’re dealing with data generated from stochastic processes, our proofs will heavily rely on
taking expectations conditioned on randomness up to a certain point in the process. In what follows,
we formalize the natural filtrations with respect to process (1).

We denote the natural filtration associated with (1). as {F; };>0, where

Fi = o(A, ¢, g, wo,...,Wi—1, Voy.-.,V—1), t>0. (23)

By convention, when ¢ = 0 the sets of noise variables are empty, and we define
Fo = O'(A, C, .’Bo), (24)
to illustrate that A and c are sampled once at time 0 and then remain fixed.

It follows that
(@ F: C Fip1,VE >0
(b) x4 is F;-measurable for all ¢ > 0.
(c) y; is Fy+1-measurable (since y; depends on v;)

(d) The noise at time ¢ is independent on the respective filtration: w; L F;, v, L Fy, for all
t>0.

D.2 AUXILIARY RESULTS AND TECHNICAL LEMMATA

Theorem D.1 (Isserlis (1918)). Lety = [y1,ya, - - - ,yn]T ~ N, (0,%) be an n-dimensional, mean-
zero multivariate normal vector. Then, for any even integer n,

Elyia-vn] = >[I Elwewr],
pePP(n) (L,r)€p

where PP(n) denotes the set of all pairwise partitions of [n] into disjoint pairs. If n is odd, then
Ely1y2---yn] = 0.

Lemma D.1. Given random vectors z,w, q € R? and assuming that w is independent of z, q and
the relevant integrability conditions hold, then

E [sz'qu] =E [ZTIE[wa]q] (25)

Proof. We use the towering property of expectations,
E[zTww'z] =E[2'E [ww'|z,4q] q]
=E [zTE ['ww—w q] ,
where the last line follows from the quantities’ independence. O
Lemma D.2. Let the sequence {y;};>o be generated by an LDS (1) sampled according to Assump-

tion 3.2. For time indices 0 < i < j, it holds that

i—1
Elyiy;] =E[c" A'Sg, (AT ] + Y BT AT S, (A7) 7 ] + 13jy00,  (26)
k=0

where 1(;_;y takes the value 1 if t = j and 0 otherwise.
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Proof. For process (1) it holds that

7j—1
x;=A""x; + E ATk,
k=i
and therefore
j—1
y; = cT Al g, + E ¢l AV Ry, ;.
k=i

The product of scalars y;y; therefore takes the form

Yiyi = Yiy;
-1 T
= (cT:ci +v;) (cTAj_ia:i + Z cT AV R, + vj>
k=i
j—1
=c'zz] (AT e+ Z c'ziw] (AT Fe+ el aw;
k=i
j—1
+ v, (AT e+ Z viw, (AT 1P e 4 vw;. (27)
k=i

Now, observing that E[y;y;] = E[E [y;y; | F;]] and remembering that x;, A, ¢ are F;-measurable,
and that for all ¢ and p > ¢, w, 1L F; and v, 1L F;, and w,, 1L vg, Vp,q > 0, we have

E [cTacl-a:;r(AT)j*ic | Fi] =c'zx] (AT) ¢,
j—1 Jj—1

E c xawl (A7) 17k }"Z-] = ZcTaciIE ['w,;r] (AT)I~1=ke =,
k=1 k=1

E [CTCL‘Z’UJ ‘ .7-}] = CT:BZE[’UJ] =0,

E [vz:c:(AT)J_lc ‘ Fi =Ewz, (AT)Yc=0,
j—1 j—1

E Zviw,;r(AT)]_l_kc ]-"Z] =) Ew|Ew,](AT)Y ' "Fe=0,
k=i k=1

E [v;v, | Fi) = E[v;v,] = 1{223}03.

Therefore,
Elyiy;] = E[Elyiy; | F]l =E [¢ @z (AT) "e] + 1102, (28)

Noting that z; = A’z + Z;;lo A’ 1=k, we further unroll the first term inside the expectation
in (28) and get

i—1 i—1
CTwiw;F<AT)j—ic _ cTAia:O + ZCTAi—l—kwk] [w(—)r(AT)jc+ Zw’;r(AT)j_l_kc

k=0 k=0
i1

=c Alzgxd (AT ) e+ g c' Alxgw] (A7) ke
k=0

i1 i1
+ Z cT AT P (AT Y e + Z c" AT R, (AT e
k=0 k,1=0
(29)
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Using w, 1L Fo C F;, Vp > 0 and w, 1L wg, Vp # ¢ in conjunction with (29) and Lemma D.1
we get

i1
E[c'za[ (A7) "c| F] = c" Almor] (A7) e+ > eTAT7FD, (AT "Fe  (30)
k=0
Furthermore, noting that 0(A, ¢) C JFo, we have that
i—1
E [chim;r(AT)j*ic | A c] = cTA'Y, (AT e+ Z cTATIRY (AT Re 31)
k=0

Taking full expectation in (31), and plugging everything back into (28), we get the stated result
i—1
Elyy;] =E [T A'Sa (AT c] + D E[cT AT S, (AT Fe] + 15307, O
k=0

Lemma D.3. Let {y;};>0 be a sequence of observations generated by an LDS (1) sampled according
to Assumption 3.2. Then,

(a) ifi+j=2p+1forsomep e Ny, Elyy,] =0;
(b) ifi+j+k+1=2p+1forsomep e Ny, Ey;y;ypyi] =0;

(c) ifi+j+k+1+m+n=2p+1forsomepec Ny, E[y;y;yryiymyn] = 0.

Note that there is no condition on the indices being pairwise distinct.

Proof. To prove point (a), we start from the expression derived in Lemma D.2.

1—1
Elyiy;] =E [T A'Sqy (AT) ] + Z E[cT AT RS, (AT Fe] + 102
k=0

Clearly, since 7 + j is odd, it holds that 7 # j and hence the third term is zero. Furthermore, since A
has a centrally symmetric distribution, we have that

Elc'A'Se (A7) e] =E[e" (-A4)'%s, (A7) ¢]
= (—1)"E [c" A'S,, (AT) ], (32)

implying that E [¢ " A", (AT)/¢] = 0. We apply a similar reasoning for the other term and obtain
that

E [yiy;] = 0,
thus proving the first point.

For both points (b) and (c), we will rely on Isserlis’s theorem, which we replicate in The-
orem D.1 for convenience. Note that conditioned, on A and c, the vectors [y;y;yryi|A, c]

and [y;y;YryiYm¥Yn|A, c] are jointly Gaussian since they are linear transformations of the
T
jointly Gaussian vectors r; = [wg,wOT,...w;ax{ijkl},vo,...vmax{i’j,k,l} and ry =

T 20T T :
[330 SWQ 5 Wtk Lmon}> V05 vmax{i,j7k717m7n}} , respectively. We can therefore apply the
towering property along with Isserlis’s result to get

E [yiyjyey] = E[E [ysy;uey | A, ]
—E[ Elyiy; | A, | Elyen | A c] + E [yin | A, ] Elysn | A, ]

+E[y | A Elype| Ael |, 33
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since PP ({4, j, k, 1}) = {{(4, ), (k, )}, {(i, k), (5, },{(¢,1), (4, k) } }. Since i + j + k + I is odd,
the two pairs inside any ¢ € PP( {1, j, k,1}) must have different parities (i.e., one even, one odd).
W.lLo.g, we analyze the first term in (33), assuming 0 < ¢ < j < k < [. From (31), we know that

t=0

i—1
E[yiy; | A, c]E[yryi | A, c] = lcTAiZmO (ATYec+ Z cTATITIS (AT T e 4 1{2-_]-}012,]

k—1

[CTAkEZO(AT)lC+ ZCTAkilitzw(AT)lilitC#* 1{k=l}012;
t=0

(34)

Assume w.l.o.g that i + j is even, and k + [ is odd. This implies that 1;,_;; = 0. Taking full
expectation on both sides and developing the product, we get

E [ E [yiyj ‘ A, C] E [ykyl | A, C} }
=E [ cTA'S, (AT) ce" APS, (AT) e]

+ZE TAz AT)]CCTAk 1— tz (AT)l—l—tc]

+ ZE TAiflftEw(AT)jflftccTAkEwo(AT)lc}

i—1 k-1
+ ZE TAi—l—tEw(AT)j—l—tC CTAk:—l—sZw(AT)l—l—sc]
t=0 s=0
+ {i:j}UUE [ CTAkEwU (AT)IC]
k—1
+1gpy00 Y E[cl AT, (A7) e (35)

t=0

Using the index parity assumptions and the reasoning based on the central symmetry of A’s distribu-
tion from (32), we get that all the terms on the RHS of (35) are zero. We treat the remaining terms
in (33) similarly to get the final result in (b).

Finally, point (c) follows a similar path. We have

PP({i,j, k, 1, m,n}) = {{(i,5), (k,1), (m,n)},{ (2, 5), (k,m), (I, n) }, {(&, 7), (k, m), (I, m) },
{(i, k), (5,0, (m,n)}, {2, k), (G, m), (I, n)}, { (i, k), (4, n), (1, m) },
{(,0), (G, k), (m,n)}, {2, 0), (G, m), (k,n)}, {(3,1), (4, n), (k,m)},
{(5,m), (5, k), (I, )}, {(,m), (4, 1), (R, n)}, { (2, m), (4, ), (K, D)},
{(i,n), (4, k), (1l m)}, {(,n), (4, 1), (K, m)}, { (i, m), (4, m), (k, D) }}-

For the parity hypothesis to be satisfied, not that inside a set ¢ € PP ({4, j, k,1, m,n}), at least one
pair must have an odd parity, while the other two must be of the same parity (either even or odd).
Wolglet0 <i<j<k<Il<m< n, pick the first set in PP({i, j, k,l,m,n}) above (the rest
follow the same logic) and assume that m + n is odd. By the same logic as before, we have that
1in—pny =0and

E[Eyy; | A, c|Eyryi | A, ] E [ymyn | A, c] ]

i—1
CTAisz (AT)jC+ ZCTAi—l—tZw(AT>j—1—tc+ 1{7;—j}0-12)‘|
t=0

k—1
[CTAkZmO (AT) e+ eT A 1tE, (AT) e + 1{,6:1}03]
t=0

k—1
lCTA7n2wO(AT)nC+ ZCTAm—l—tZw(AT)n—l—tC] ‘|
t=0
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Without computing, one can see that every term in the expanded product will have powers of A
whose sum is odd. Therefore, using the centrally symmetric property of A’s distribution, all the
terms evaluate to zero, and point (c) is proven. O

D.3 PROOF OF LEMMA 4.1

Lemma 4.1. For an arbitrary s, the following parameters induce a banded structure in the left-hand
side of (11) matching that of the right-hand side.

* 0 % 0 0
0 R : 0
Wok=1- . . Wy =|. . . 13
K N Y v : " (13)
0 0 = O . .
0 .0 0 : 0
_0 e oo 0 *_
Proof. Recall the in-context loss in (9) with a general AR(s)-constructed input token matrix Yy =
Y1 Y2 o Yr—s—1 yT—s:| is defined as
Ys+1 Ys+2 - Yr—1 0
2
E(Q) = ED |: (779 (YVO)S+1’T75 - yT) :| . (36)

For equations (37) to (41) below, we use the same reformulations as Ahn et al. (2023). The last
column of the transformer’s output above can be written as

T—s—1
yr—1| _ |gr—1 1 T Yy Yilirs T |Y7r—s
[ 0 }_[ 0 }—i_T—s—lWV(Z [yijs y7i2+s })WQK{ 0 }’ &7

i=1

where the summation comes from the causal mask. Therefore, the transformer’s prediction of yp,
To (Yo),, 1 p_, can be written as

T—s—1

X i’ G
BT Z |: Yy, yzyﬂrs:l [fl for-- ‘fs] Yr—s, (38)

T—s-—1 i1 gi—l—yiJrs yi2+s

= Y eR(s+1)x(s+1)

where b' € R (5+1) is the last row of W;} and f; € R(*Y is the j** column of W k- So the
in-context loss £(Wy,, W) can be rewritten as a function of b" and F = [f;] i=1

E(b, F) = ED

1 o :
<T—s—1b YFyr s yT) ] . (39)

Plugging in the expression of Y7 _, the in-context loss is

Yr—s
1 _ Yr—s+1
ﬁ(va):ED mbTY[flfQ“'fs] : —Yyr
Yr-1
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r , 2
1 S
=Egz —_— b'Y —s—14k —
>} (T—s—lg Tryr—s—14k yT)
- ) . )
=Ep T _s—1 Z Tr(Yfka)yT—s—l-i-k - yT)
—s5—1 —
- ) . )
= ED <T —s—1 Z<Y7 b.fkT>yT—s—1+k - yT) . (40)
k=1
We reparametrize the in-context loss using X, = bf,
1 - ?
L(Xkes) =Ep (T—s—l > Y, Xi)yr—s14n — yT) : (41)
k=1

Note that the gradient of the in-context loss with respect to each X; is

S

1 _ _
(T—s—l Z<Y’ Xk'>yT—s—1+k - yT) yT—s—1+jY ] . (42)

k=1

VXjﬁ(Xke[S]) = QED

The gradient Vx, £(X}c[s) is a sum of two terms, Vx L(Xj—1...s) = T()g + T(;i, where,

replacing Y we have

S T—s—1
9 _ g N
T(l) — E - Y. X e R YT s _yzy; YiYi+s 43
X, T 1D k:1< s X ) YT —s— 1+ kYT —s— 145 ; G Yirs VR (43)
@ N~ [wEl a
T = 9B, | yryr_sois, [_” “‘ﬂ . (44)
% D | TUTmett ; 9l vies i
Each matrix element of T(;i has the form
T—s—1
> 2By [yryr—s—14YitmYiin ] (45)
i=1

with j € [1,s], m € [0,s] and n € [0, s].

The sum of y’s indices in (45) for each term in the above sum is 27 4+ 2i + (m +n — s — 1 + j).
The parity is determined by that of m + n — s — 1 + j and is independent of the sum counter ¢ (i.e.,
the same for all terms). According to Lemma D.3, (45) is 0 if (m +n — s — 1 + j) is odd, and of

arbitrary value if it is even. So a general matrix element of Tgi isOif (m+n—s—1+j)isodd
and of arbitrary value if (m +n — s — 1+ j) is even.
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For a given AR(s)-type token (s is fixed) and a specific j, whether a matrix element of T(;z is 0 only

depends on m + n (its position in the matrix). So,

x 0 *
0 = 0 *
0 ,if |[j — s — 1] is even;
0
i * 0 * |
T%, = ] )
0 = 0
* 0 * 0
0+ 0 Jif|j — s — 1] is odd.
0 0
. 0 =
L O * -

We now turn to T(;z with the end goal of finding a parameter configuration that matches the sparsity

pattern of T(Q). For this section, assume s is odd (the other case follows similarly). First, let

X, = [m“ﬂ and unfold the expression of the matrix inner product
J 41

s s T—s—1

(Y, X) ZZ Z Il+1 r+1Yp+rYp+is (46)

r=01=0 p=0

where r, [ are the indices traversing Y .

Furthermore, each matrix element of TE,R inside the expectation has the form

T—s—1 s
s 1 Z Z yT s—1+k YT —s—1+j Yi+n Yi+m, 47
=1 =

where n,m € {0,1,...s} are the indices traversing Y.

Assume that j is fixed and odd (we discuss the even case afterwards). Note that the sparsity of each
position in T% dictated by the parity of (m 4+ n — s — 1 + j) where, when s, j-odd, the respective
element is zero whenever m + n is even. Notice that except for the contribution of the matrix inner
product, the sum of indices for the y-factors in (47) is 2(T' — s — 2+ i) + k + j + n + m so the

parity is determined by that of k + 7 + n + m. We distinguish two cases:

(a) when k is even, k + j is odd, and we wish that the term zeroes out for even m + n. This
means that X, must select in (46) only pairs ypyrYyp+; for which r 4 [ is even and zero-out
the others. Such an X may look like

Y0 ey e 2 0]
?k) Ig;) ?’f) N ?k) xgkzﬂ
T 0 T -z 0
X, — 31 33 3,s 7 (48)
k
L (€+)1 2 0 T O xg-21,s+1_
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with arbitrary (possibly also zero) values for constants x

(k)

i

(b) when k is odd, k + j is even, and we wish that the term zeroes out for even m + n. This
means that X, must select in (46) only pairs ¥4, yp+; for which r + [ is odd and zero-out

the others. Such an X may look like

[ 0 xgg)
oy 0
0 T
X = 22
k
_mg+)1,1 0 Tsi1,3

with arbitrary (possibly also zero) values for constants x

These patterns need to be coherent with the case of j-even. Note that in T(;
the respective element is zero whenever m + n is odd. We again distinguish two cases:

(k)

k
ngr)l,s
(k)

VA

k
‘73575)-1-1
0

(k)
L3 541

(k)
xs,s+1

0

)

.9
J

(49)

when s-odd, j-even,

(a) when k is even, k + j is even, and we wish that the term zeroes out for odd m + n. This
means that X must select in (46) only pairs yp¥yp+: for which r 4 [ is even and zero-out
the others. Notice that the pattern of X, in (48) for even k satisfies this requirement and we

have coherence.

(b) when k is odd, k£ + j is odd, and we wish that the term zeroes out for odd m + n. This
means that X, must select in (46) only pairs ¥4, Yp+1 for which  + [ is odd and zero-out
the others. Notice that the pattern of X, in (49) for even k satisfies this requirement and we

have coherence.

The same approach goes through for even window size s. Finally, recall that X = b fkT . For our
case of odd window sizes, the sparsity pattern of b and f, yielding the X is

by [o,fg(‘“), . .,o,sz} Jif k is even
b= : fil =
0 [f’“,o,...ﬁ’“%o},ifk;isodd
bs+1
For even window size s, the patterns are
b1
b02 [o,fg’“l o ,o,fS(’“),o} Jif & is even
= . fi =
0 [ ® o,...f® o, f;@l} Jif k is odd
bs+l

Arranging these vectors inside Wi and Wy, gives the stated result.

D.4 PROOF OF THEOREM 4.1

(50)

61V

Theorem 4.1. Let Y|y encode the input tokens according to construction (7) for s = 1. Then, the
optimal parameters 0* = (Wé‘2 e W{;) of a single linear self-attention layer with respect to loss

L(0) are

(T—2)EA mq, {ws}e. {ve }e [E?;f yiyi+1yT—1yT]

* T—3 T—3
WQK = ]EA.wO,{wt}t,{vt}t[zizl Yilitl 2 opy yryr+1y%,1]

up to rescaling with v # 0.
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Proof. For the transformer parameters in (14), the corresponding b” = [0 1] and the corresponding

. o (T-2)Ep [23:12 YilYit1 yT—lyT}
F=[c 0] wherec = Bl iot YiYit1 Xt Yryrryr -1y’
So X =X, =bf =bF" = [g 8} . The gradient of the in-context loss Vx £(X) is
1
T(Xz = TiE (Y, X)y7 Y]
rT— T2
2 yryrar| [0 0]y o yi o Yl
— E - r rdr+ , % 11+
T-2 D ; |:yr+1yr yr+1 } [C 0]>yT1 ; Yi+1Yi yi2+1
2 S yi vy
=" E- Yy i iYit+1
T-2P ; Yrre1r—1 Z [yi+1yi Yin ”
9 T-2
=" [E-=- YiYi+1
= =—Ep c; Yr¥r 1971 Z [yz+1yl i H : (52)

According to Lemma D.3, the two diagonal elements in (52) E 5 {c S gy vt SO yf}

andEp ¢ 2 yyriiyd | Sy +1} are 0, since the sums of y indices are both odd.
r T-2
—2Ef) Yryr—1 Z Y]

yzyH—l
= —2E% v
D |YTYTr-1 Z |:yz+1yl yl_‘_l :|‘|

T

T2
0 YilYit1
= —2E - _ . 53
b |yryr—1 ;:1 {yiﬂyi 0 (53)

According to Lemma D.3, the two diagonal elements in (53) Ep {yTyT_l ZiT:_f yf} and

Ep [yTny L ZiT:? yi2+1} are 0, since the sums of y indices are both odd.
Plugging in the expression of ¢, it can be easily found that

VxL(X) =Ty, +T%, =0. (54)

Since the in-context loss is convex in X and the X resulting from the W7y, and W(, - above makes
VxL(X) =0, the Wy and W above is a global minimizer for the in-context loss. O
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NEW ADDED

E PROOFS FOR SECTION 5

E.1 PROOF THAT OUR EXPERIMENTS’ SAMPLING SCHEMES OBEY ASSUMPTION 3.2
All our experiments use a sampling schemes whose generalization is the following:

(a) A constructed by sampling v ~ P, where P is centrally symmetric and absolutely con-
tinuous w.r.t. the Lebesgue measure on R? with marginals supported on [—1, 1], and
independently sampling P, whose every entry is drawn i.i.d. from any absolutely continuous
distribution w.r.t. Lebesgue measure in R. Matrix A is then formed as Pdiag(v)P 1.

(b) cis sampled from an absolutely continuous distribution w.r.t. Lebesgue measure in R?, or
otherwise fixed with ¢ # 0.

We need to show that

(a) A’sdistribution is centrally symmetric, i.e., that A L_a;

(b) A’s spectrum is simple w.p. 1;

(c) observability still holds when c is fixed according to the above condition.
The first point is achieved since, by the central symmetry of v’s distribution,

—A = —P ldiag(v)P = — P 'diag(—v)P < P~ ldiag(v)P = A. (55)

The second point is ensured by v’s distribution being absolutely continuous w.r.t. the Lebesgue
measure in R?, and hence the probability of v belonging to (d — 1)-dimensional subspaces (and

lower) such as {x € R?|3i, j € [d] s.t. #; = «; } is null. In conjunction with the above, when we
sample ¢ from a continuous distribution in R¢, Assumption (3.2) is satisfied.

However, our proofs and experiments go through even if ¢ is fixed, as follows. First, the theoretical
results rest on A’s distributional symmetry and are invariant to the linear transformation induced by
c. Second, observability is ensured since det(O) in expression (5) is not zero w.p. 1, as follows.

We use det(OP) # 0w.p. 1 <= det(O) # 0 w.p. 1, since det(P) # 0 w.p. 1.

det(OP) Zec'P det([z; diag(v)z; . . . diag(v)?~12]) (56)
U1 vf_l
. . 1 v ... pd=1

= det(diag(z))det 2 (57)
1 vy vg_l

Since P’s entries are drawn i.i.d. from an absolutely continuous distribution w.r.t. Lebesgue measure
in R, it holds that z; # 0 w.p. 1. The remaining matrix is Vandermonde with v; # v;, Vi, j € [d] w.p.
1. Hence, the determinant is nonzero w.p. 1 and observability holds almost surely.

E.2 RELATION OF TRANSFORMER FORWARD PASS WITH PCG

For convenience, we reproduce below the PCG iteration of Shewchuk et al. (1994) for minimizing an
objective

flw) = %wTAw +b'w+c
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Algorithm 1 Preconditioned Conjugate Gradient

1: Input: preconditioner H, wg, 79 = b — Awg, dg = H ™7y, dpey = TOTdO, 00 = Onew
2: fori =0,1,...do

3: zZ; = 146Clz

4: oy = ﬁ

5 Wiy = w; + od;

6 Tit1 =T — 042

7 vigr =H vy

8 Jold = Onews Onew = 7";:_1 Vi+1,

% =3
10:  diy1 = vip1 + Bit1d;
11: end for

12: return O

We compute the first two steps of the algorithm with respect to the loss (4), which can be rewritten as

EAR(S)(w) = —5— 1) Z (Vs — ngt)Q (58)
T? —
S — Z w' gy w = 2y w g+ y} (59
2T —s—1) & ' e
1
= invzﬁAR(s)w - wTVEAR(s) (0) + y§+s (60)

Using the initializations proposed in the main text, wg = 0 and dg = q, and H = P~! we get
w; = agdy = apq
wy = w1 + a1d;

= aoq + a1 [Pr1 + Bido]

aoq + oy [P(ro — az0) + p14]

aoq + o1 [P(VLAR()(0) — aoV?Lar(sq) + Arq]

aoq + a1 PVL s p(0) — aoalPV2£AR(S)q + a181q

= ((o0 + a1 B1)I — aper PV L ag(s)) @ + a1 PV L sp(s)(0)

= {(Oéo + Oélﬂl)vz‘CZ}%(S) - O‘OOHP} V?Larq + a1PVL g (0)

E.3 MERGING THE %(0) TERM INTO THE HESSIAN PRECONDITIONER

We want to show that there exists a matrix P’ € R**® such that cypdy = P’VQL'AR(S)q.

Let v = V2L yp(s5)q, then P’ = % satisfies
P'v2s _ CN%PUTvgﬁ _ cnYopv'v
AR(s)d = T oo AR(s)d = T ot CNYOP
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