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ABSTRACT

This paper studies the expressive power of linear attention layers for in-context
learning (ICL) of linear dynamical systems (LDS). We consider training on se-
quences of inexact observations produced by noise-corrupted LDSs, with all per-
turbations being Gaussian; importantly, we study the non-i.i.d. setting as it is
closer to real-world scenarios. We provide the optimal weight construction for
a single linear-attention layer and show its equivalence to one step of Gradient
Descent relative to an autoregression objective of window size one. Guided by
experiments, we posit an extension to larger window sizes. We back our find-
ings with numerical evidence. These results add to the existing understanding of
transformers’ expressivity as in-context learners, and offer plausible hypotheses
for experimental observations whereby they compete with Kalman filters — the
optimal model-dependent learners for this setting.

1 INTRODUCTION

We contribute towards understanding transformers’ expressive power when learning from non-i.i.d.
data produced by linear dynamical systems (LDSs). The starting point of our work is the well-known
ability of transformers to perform in-context learning (ICL) (Brown et al., 2020).

Specifically, this boils down to accurately answering a query based on a set of examples given as
a textual prefix (“in context”) (Brown et al., 2020). This behaviour is desirable, as it loosens the
requirement for expensive data collection and fine-tuning stages (Liu et al., 2023). Current research
efforts are split between enhancing ICL through specialized training and prompt engineering, and
building a mechanistic understanding of it — see the comprehensive review of Dong et al. (2022).

Currently there exist two perspectives on ICL mechanics: a Bayesian view, whereby transformers
recover latent concepts from prompts, thus performing implicit Bayesian inference (Wang et al.,
2023; Jiang, 2023; Wies et al., 2023; Xie et al., 2021), and a view of transformers as implementers
of implicitly learned algorithms (Von Oswald et al., 2023a; Giannou et al., 2023; Akyürek et al.,
2022; Garg et al., 2022; Ahn et al., 2023; Mahankali et al., 2023; Sander & Peyré, 2024; Von Oswald
et al., 2023b; Sander et al., 2024). Within the latter works, investigations center around whether
transformers can perform linear regression (and variants thereof) in context, and how. They give
weight to this hypothesis by proving that, for certain token formats, data distributions, and architecture,
the transformers’ optimal weights effectively execute an optimization algorithm iteration in the
forward pass, relative to a context-dependent loss (Von Oswald et al., 2023a; Mahankali et al., 2023;
Ahn et al., 2023; Von Oswald et al., 2023b; Sander et al., 2024). Though this algorithmic view
does not account for the “emergent” aspect of “in-the-wild” ICL (Shen et al., 2023), it provides
concrete expressions for transformers’ modelling power and identifies the minimal functional unit
that instantiates it — a single, causally-masked, linear attention layer, without positional encoding.
Despite this rich progress in understanding ICL for i.i.d. data settings, our grasp of the non-i.i.d. case
is missing. A significant hurdle in analyzing this scenario is handling a token’s statistical dependence
on the entire context preceding it. This work takes the first steps towards unraveling this difficulty.

Specifically, we study the ability of a single linear attention layer to learn in context from sequences
of observations {yt}t generated by a time-invariant LDS doubly-corrupted by Gaussian noise{

xt+1 = Axt +wt+1,

yt = c⊤xt + vt,
(1)
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where wt
i.i.d.∼ N (0,Σw) and vt

i.i.d.∼ N (0, σ2
v) with mutually independent wt and vt. Studying this

setting has a threefold motivation. Firstly, the sequence {yt}t is built on a temporal scaffold closer
in nature to that of language-induced tokens, in stark contrast to the i.i.d. setup predominantly
addressed by prior works (with few exceptions discussed in detail later). Secondly, this setting moves
closer to the works taking a Bayesian view on ICL, where the data follows a Hidden Markov Model
(HMM) (Xie et al., 2021) of which LDSs are a subclass (Minka, 1999). With HMMs being a mainstay
in language modelling, setting (1) is particularly relevant. Finally, prior empirical observations
emphasize the close performance of transformers relative to the Kalman Filter (KF) (Kalman, 1960),
with the former matching the latter in settings where KF is the optimal predictor (Du et al., 2023). To
our knowledge, the underlying mechanism is yet to be understood formally.

The goal of this paper is to characterize the structure of a single linear self-attention layer trained
to optimality for predicting yT in-context, when presented with sequences {yt}T−1

t=1 . We proceed
in two steps: first, we define an appropriate context-dependent loss for dealing with the time-series
data. To this end, we rely on the improper learning approach of the system identification literature,
whereby sequence generating processes of type (1) are well approximated by autoregressive ones.
Second, we link the structure of optimally trained linear attention layers with algorithmic steps on
the context-dependent loss. In doing so, we rely on a token augmentation scheme akin to prior
works (Von Oswald et al., 2023a; Ahn et al., 2023; Mahankali et al., 2023). Our contributions are the
following.

C1. In Theorem 4.1, we prove that for an order-one autoregressive approximation of (1), the
optimal linear attention layer implements a step of Gradient Descent on the associated
least-squares loss. To our knowledge, this is the first optimality result for LDS data.

C2. In Lemma 4.1, we identify a salient banded pattern of the matrices involved in the stationarity
condition for generic order-s approximations of (1). We further define a class of parameters
that satisfy this structural constraint and empirically observe that minimizers obey it.

C3. In Section 5, we provide numerical experiments verifying our theory for order-one autore-
gressive approximations, and identify a recursive pattern within the empirically-determined
optimal weights for order-s, s ≥ 2 autoregressive approximations. Together with the point
above, this narrows down the path to finding provably-optimal parameters in the latter case.

C3. Conceptually, we make the case for the view of ICL as implicit optimization having a viable
extension to LDS-produced data. We do so by bridging works from the system identification
literature with empirical observations of transformers’ in-context performance rivaling that
of Kalman Filters.

2 RELATED LITERATURE

We review the niche of studies viewing ICL as in-context optimization, together with relevant works
on filtering and system identification. Further comparisons are discussed in Section 4.1.

ICL for linear regression with i.i.d data. This line of work studies whether transformers trained
on a few-shot learning objective can perform linear regression in-context, and how. Garg et al. (2022);
Akyürek et al. (2022); Von Oswald et al. (2023a) provide empirical results in the affirmative, along
with possible architecture constructions implementing Gradient Descent (GD) steps relative to a
context-induced least squares loss. Through this lens, ICL reduces to on-the-fly optimization executed
in the transformer’s forward pass. Mahankali et al. (2023); Zhang et al. (2024); Ahn et al. (2023)
complement these findings by proving that one-layer linear self-attention implementing such a GD
step (possibly preconditioned) is a global minimizer of the pretraining loss when covariates are i.i.d.
and Gaussian drawn. Finally, Zhang et al. (2024) complete the picture by proving that Gradient Flow
converges to these global minimizers. Our results extend this line of work to non-i.i.d. setting.

ICL and system identification. This line of work asks whether transformers can perform autore-
gressive learning in context, and how. Different from the prior section, the following papers use
the autoregressive pretraining loss and, unless stated otherwise, the results concern a single layer
of linear self-attention. Von Oswald et al. (2023b) give a construction implementing a GD step
on L(W ) :=

∑t−1
i=1 ∥Wyi − yi+1 ∥2 in parallel for all positions t, under an appropriate token
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configuration. Sander et al. (2024), further characterize the global minimizers of the autoregressive
pretraining loss relative to the noiseless data yt+1 = Ayt, with A uniformly sampled from the set of
commuting orthogonal matrices. Notably, they recover Von Oswald et al. (2023b) construction when
using the same token augmentation. Sander et al. (2024) further characterizes minimizers for the
case of substituting token augmentation with positional encoding and a dimension-dependent number
of attention heads — this setting’s analysis, however, requires a diagonal weight structure. Zheng
et al. (2024) complement these results by showing that, with a diagonal weight initialization and a
controlled distribution of y0, pretraining with Gradient Flow (GF) recovers the previously identified
GD-implementing optimum. Finally, Sander & Peyré (2024) extend these results to arbitrary orthogo-
nal As via an infinite-depth attention-only transformer that correctly predicts yT in the limit T → ∞.
This result holds for softmax, exponential, and linear activations.

Moving away from the noiseless settings above, Cole et al. (2025) establish approximation theoretic
results for deep attention-only transformers predicting the sequence yt+1 = Ayt + wt, with
wt ∼ N (0, σ2

wI) and A ∈ Sd++. They prove by construction that there exists a log(T )-depth
transformer attaining a uniform-over-A log(T )

T error for predicting E[xT+1|xt,A], and give a lower
bound for the accuracy with which a single linear attention layer can make predictions. Related to the
problem of capacity, Ziemann et al. (2024) establish a learner predicting the next observation with
a uniform-in-time error bound requires a number of parameters at least quadratic in the algebraic
multiplicities of A’s unstable eigenvalues, and must operate on a context length at least logarithmic
in the length of {yt}Tt=1.

In summary, these works either study transformers’ ICL ability with respect to simplified LDSs or do
not address the question of weight structure optimality. In contrast, we study fully-fledged systems (1)
with the aim of characterizing the pretraining loss minimizers in the few-shot training setting.

Transformers and linear filtering. The classical model-based prediction tool for systems of
type (1) is the Kalman Filter (KF) (Kalman, 1960). Using knowledge of system parameters, the KF
gives the minimum expected squared error estimates x̂i of the hidden states xi as linear combinations
of the past yis. Transformers as potential implementers of KF were studied by Goel & Bartlett (2024),
who prove that a softmax causal attention layer is an arbitrarily good approximator. Akram & Vikalo
(2024) further construct a transformer emulating the KF. Finally, Du et al. (2023) provide empirical
evidence that a GPT-2 architecture (Radford et al., 2019) competes in accuracy with the KF for
predicting the next observation in a previously unseen sequence, though the mechanism remains
unstudied. We partially fill this gap with our present work.

3 PRELIMINARIES, PROBLEM FORMULATION & ASSUMPTIONS

Notation. Vectors and matrices are denoted by bold, lowercase and uppercase letters, respectively,
with regular lowercase letters reserved for scalars. We denote by 111d and 000d the all-ones and all-zeros
vectors of dimension d, and by 111d×m and 000d×m the analogous matrices. Unless stated otherwise, we
use ∥ · ∥ for the Euclidean norm of vectors and the spectral norm of matrices. We denote by Tr (·) the
trace of a matrix, ⟨·, ·⟩ the inner product, by ∥ · ∥F its Frobenius norm, and by ρ(·) its spectral radius.
We use ei for the ith vector of the canonical basis in the appropriate dimension and I to denote the
identity matrix of appropriate dimensions. The notations Sd+ and Sd++ define the cones of symmetric
positive-semidefinite and positive-definite matrices in Rd×d, respectively. We use Sd−1 to denote the
unit sphere in Rd. We use ⊙ to denote the Hadamard product. Finally, we use [n] when referencing
the set of integers {1, 2, . . . n}.

The big picture: filtering, system identification, and linear regression. The KF (Kalman, 1960)
computes the optimal estimates x̂i of xi through the system of recursions

Predict: x̂t+1|t := Ax̂t, Pt+1|t = APtA
⊤ +Σw

Gain: kt+1 = Pt+1|tc
(
c⊤Pt+1|tc+ σv

)−1

Update: x̂t+1 = x̂t+1|t + kt+1(yt+1 − c⊤x̂t+1|t), Pt+1 := (Id − kt+1c
⊤)Pt+1|t,

(2)

where x̂0 and error covariance estimate P0 are given as input. Under the Gaussian errors assumption,
the state prediction satisfies x̂t = E[xt | yt, . . . y1] and, consequently, the forward observation
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prediction follows ŷt+1 := c⊤Ax̂t = E[yt+1 | yt, . . . y1]. The fast, constant-time KF predictions,
however, require knowing the LDS parameters — a condition generally not satisfied in practice.

Consequently, “proper learning” approaches seek to reconstruct the underlying model, by first
estimating A, c, Σw, σv through costly parameter identification techniques and then producing
forward observation predictions using the KF (Hamilton, 1995). In contrast, “improper learning”
methods eschew structural constraints and solely seek to reliably achieve low error with respect to
the underlying data distribution and the learning objective (Kozdoba et al., 2019, and references
therein). For LDSs, this boils down to expressing the next observation as a linear function of
the recent past. Not only does the latter approach have the computational advantage of foregoing
parameter estimation, but it also benefits from convex formulations, thus being amenable to classical
optimization techniques. Most importantly, for certain LDS classes, improper learning methods can
closely track E[yt+1 | yt, . . . y1], as follows.

Tsiamis & Pappas (2019) highlight the following rephrasing of the data-generating process via the
KF and for some fixed window size s of past observations,

[ys+1, . . . yT−1] = c⊤[(A− kc⊤)s−1k, . . . (A−Kc⊤)k,k] [ȳ1, . . . ȳT−s−1]

+ c⊤(A− kc⊤)s[x̂1, . . . x̂T−s+1] + [εs+1, . . . εT−1], (3)

where ȳt := [yt, yt+1, . . . yt+s−1]
⊤, k is the steady-state gain, and ei ∈ R are i.i.d, zero-mean

Gaussian errors. Under KF convergence conditions, quantity ρ(A − kc⊤) < 1 makes the second
term vanish exponentially in s and thus renders it negligible. We are now in the familiar setting
of noisy linear regression, albeit with non-i.i.d. data. The resulting order-s autoregressive process
(AR(s)) is associated with the optimization objective

min
w∈Rs

LAR(s)(w) :=
1

2(T − s− 1)

T−s−1∑
t=1

(yt+s −w⊤ȳt)
2. (4)

This simplification is the crux of improper learning approaches to system identification (Kozdoba
et al., 2019) and becomes of note in conjunction with the idea that transformers perform on-the-fly
optimization on the context-induced least squares objective. Should this latter view hold up to
scrutiny under the new data distribution, it would imply that transformers could learn LDS-based
time series in context arbitrarily well as a function of the available s. This is our incentive for seeking
characterizations of the few-shot pretraining loss minimizers.

Technical assumptions. We make two technical assumptions that hold throughout the paper.

Assumption 3.1 (System assumptions). LDS (1) has isotropic and strictly positive definite noise
covariances Σw = σwI , with σw > 0, and σv > 0. The system transition matrix A ∈ Rd×d is
marginally stable, with ρ(A) ≤ 1, and the pair (A, c) is observable, meaning that

O =

 c⊤

c⊤A
. . .

c⊤Ad−1

 (5)

has a column rank of d.

Assumption 3.2 (LDS simplicity). We consider a family of LDSs (1) with fixed measurement vector
c = 1d and diagonal matrices A ∈ Rd×d, with distinct, non-zero diagonal elements.

Assumption 3.1 is standard in the literature, and ensures KF convergence (Harrison, 1997) along with
the exponential vanishing of the bias term in (3). Furthermore, it ensures the closeness of forward
observation predictions given by the KF with those produced by a linear autoregressive predictor
determined by expression (4) (Kozdoba et al., 2019). Assumption (3.2) helps with ease of exposition
and ensures that observability holds, since the associated O is a Vandermonde matrix with distinct
column-defining elements. This assumption can be relaxed to symmetry at the expense of added
complexity in the later data sampling step.
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Transformer architecture. Transformers (Vaswani et al., 2017) are neural architectures performing
sequence-to-sequence mapping. For a set of input tokens ST = [s1, . . . sT ]

⊤ ∈ RT×p, the trans-
former produces a corresponding ŜT = [ŝ1, . . . ŝT ]

⊤ ∈ RT×p by dynamically mixing tokens via its
attention mechanism. An L-layer transformer Tθ : RT×p → RT×p parametrized by θ = [θi]

L
i=1 is a

composition of blocks TL = Tθ1 ◦ . . . TθL . Each Tθi is a sequence-to-sequence function given by

Tθi(S) := (MLPθMLP
i

◦ Aθatt
i

)(S),

where MLPθMLP
i

is a multilayer perceptron and Aθatt
i

is the attention mapping. This paper studies
the simplified block Tθ(S) := Aθ(S), thus setting L = 1 and MLPθMLP

1
to identity.

The causal h-headed attention block with residual connections is given by

Aθ(S) := S +

H∑
h=1

σ

(
M ⊙ 1

τ
SW h

Q(W
h
K)⊤S⊤

)
SW h

V W
h
O,

where the parameters θ = [W h
Q,W

h
K ,W h

V ,W
h
O]

H
h=1 represent the query, key, value, and projection

matrices, respectively; τ > 0 is a scaling constant; σ is the softmax normalizing function applied
row-wise; and M ∈ RT×T , with Mi,j = 1 if i ≥ j and −∞ otherwise is a mask enforcing causality.

Similar to prior works (Von Oswald et al., 2023a; Ahn et al., 2023; Mahankali et al., 2023), we restrict
our study to the analytically tractable setting of single-headed linear attention (Katharopoulos et al.,
2020). Without loss of expressivity, we drop the projection matrix WO and consider the WQW

⊤
K as

a single matrix WQK ∈ Rp×p. Since we’re working in the few-shot scenario, we’re concerned solely
with predicting the final position as

ŝT := Tθ(S)t = sT +
1

T − 1
W⊤

V

T−1∑
i=1

sis
⊤
i W

⊤
QKsT , (6)

where we set τ = T − 1 and omit the last sum element due to a token asymmetry discussed next.

Token construction. We construct the tokens following the same scheme of Von Oswald et al.
(2023a); Ahn et al. (2023); Mahankali et al. (2023). The input matrix Y0 constructed using AR(s)
data (4) is

Y0 =

[
ȳ1 ȳ2 · · · ȳT−s−1 ȳT−s

ys+1 ys+2 · · · yT−1 0

]
=


y1 y2 · · · yT−s−1 · · · yT−s

...
...

...
...

ys ys+1 · · · yT−2 · · · yT−1

ys+1 ys+2 · · · yT−1 · · · 0

 , (7)

where s >= 1 is the window size of the AR process. The last column represents the “test” token,
whose final position is filled in the transformer’s forward pass by yT ’s estimate ŷT . This asymmetry
motivates the last term’s removal in (6).

Lemma 3.1 ensures, by construction, the existence of a linear attention layer producing Y0 from the
raw sequence {yt}t. Its proof is deferred to Appendix C due to space constraints.
Lemma 3.1. For a given s >= 1, there exists an s+ 1-headed linear attention layer with positional
encoding which transforms input sequences [y1, y2, . . . , yT ]⊤ into

y1 y2 . . . ys ys+1

...
...

...
...

...
yT−s−1 yT−s . . . yT−2 yT−1

yT−s yT−s+1 . . . yT−1 0

0T−s−1× s

 .

The latter are essentially equivalent to tokens (7).

Data generation, loss function, and training paradigm. We consider trajectories {yi}Ti=1 sampled
from systems of type (1), where each trajectory corresponds to different, fixed parameter A and
x0 ∼ N (0d, σ

2
x0
I). We let DA denote a symmetric, continuous distribution over A’s diagonal

5
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with marginals supported on [−1, 1]. For example, we can choose DA = Unif(Sd−1) — uniform
on the unit sphere; DA = Unif([−1, 1]d) — uniform inside the symmetric hypercube; or DA =
Unif({x ∈ Rd : ∥x∥2 ≤ 1}) — uniform inside the unit ball. Any of these choices ensures that
Assumptions 3.1 and 3.2 are satisfied with probability one.

Data generation proceeds in two steps: we sample A and x0 independently and observe the evolution
of system (1) for T steps. We then construct Y0 (7) for a fixed s, and train our model to minimize

L(θ) := EA,x0,{wt}t,{vt}t

[
1

2
( Tθ(Y0)s+1,T−s − yT )

2

]
, (8)

where the subscript marks that we solely consider the last position of the last output token.

4 OPTIMAL PARAMETER CONFIGURATIONS

This section presents our theoretical results and discusses their implications relative to prior literature.

Our theoretical contribution is two-fold. First, in Lemma 4.1 we reveal a salient structure within the
first-order optimality condition, which plays an important role in finding optimum configurations for
the in-context loss of AR(s). Second, in Theorem 4.1 we prove that the transformer configuration
implementing one-step GD is a global minimizer for AR(1) using this salient structure.

Unlike the i.i.d. case, each token generated by the LDS depends on the entire history. This results in
high-order data moments populating the in-context loss, which can only be dealt with by unrolling to
the initial state. A general approach to compute and match them is presented in Appendix D. We now
describe the structure emerging within the first-order optimality condition.

Following (Ahn et al., 2023), we use basic algebraic manipulations (Appendix E) to rewrite loss (8)
as

EA,x0,{wt},{vt}

 ( 1

T − s− 1

s∑
k=1

⟨Y0Y
⊤
0 , ba⊤

k ⟩yT−s−1+k − yT

)2
 , (9)

where W⊤
V = [0(s+1)×s, b]

⊤ and W⊤
QK = [a1, . . .as,0s+1]. The zero-padding of both matrices

comes from predicting solely the last position of the final token. Consequently, parameters ensuring

EA,x0,{wt},{vt}

[
1

T − s− 1

s∑
k=1

⟨Y0Y
⊤
0 , ba⊤

k ⟩yT−s−1+kyT−s−1+jY0Y
⊤
0

]
= EA,x0,{wt},{vt}

[
yT yT−s−1+jY0Y

⊤
0

]
, ∀ j ∈ [s] (10)

are critical points of the loss.

Notably, the right-hand side of (10) obeys a banded structure, as follows

⋆ 0 ⋆ · · · · · ·

0 ⋆ 0 ⋆
...

⋆ 0 ⋆
. . . . . .

...
... ⋆

. . . . . . . . . ⋆
...

. . . . . . ⋆ 0
· · · · · · ⋆ 0 ⋆


for odd s+ j; or



0 ⋆ 0 · · · · · ·

⋆ 0 ⋆ 0
...

0 ⋆ 0
. . . . . .

...
... 0

. . . . . . . . . 0
...

. . . . . . 0 ⋆
· · · · · · 0 ⋆ 0


for even s+ j;

(11)

where ⋆ is a placeholder for arbitrary reals (the proof is deferred to Appendix D). We formalize a
class of parameters ensuring matching structures between the left and right-hand sides of (11) for
arbitrary s in Lemma 4.1.
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Lemma 4.1. For an arbitrary s, the following parameters induce a banded structure in the left-hand
side of (10) matching that of the right-hand side.

WQK =


⋆ 0 ⋆ · · ·

0 ⋆
. . .

. . .
...

...
. . .

. . . 0 ⋆
0 · · · 0 ⋆ 0
0 · · · · · · 0 0

 , WV =



0 · · · · · · 0
...

...
... 0

...
... ⋆

...
... 0

0 · · · · · · 0 ⋆


. (12)

Lemma 4.1 can be understood as a narrowing-down based on structure of the parameter class likely
to hold minimizers of (8).

Our second step is to use structure (12) to identify a global minimizer of loss (8) in the AR(1) case,
yielding Theorem 4.1 with proof deferred to Appendix F.
Theorem 4.1. Let Y0 encode the input tokens according to construction (7) for s = 1. Then, the
optimal parameters θ⋆ =

(
W ⋆

QK ,W ⋆
V

)
of a single linear self-attention layer with respect to loss

L(θ) are

W ⋆
QK =

[
(T−2)ED̃[

∑T−2
i=1 yiyi+1yT−1yT ]

ED̃[
∑T−2

i=1 yiyi+1
∑T−2

r=1 yryr+1yT−1yT ]
0

0 0

]
, W ⋆

V =

[
0 0
0 1

]
, (13)

up to rescaling with γ ̸= 0.

Broadly, the proof of Theorem 4.1 encounters two difficulties compared to the i.i.d. case: the number
of terms that need to be matched in satisfying the first-order optimality condition, and the full-history
dependence of the data. We address the first obstacle using the result of Lemma 4.1, and we sift
through the second by relying on Isserlis’ theorem (Isserlis, 1918) to handle higher-order moments of
ȳt that would have factored out of expectations in the i.i.d. case. Details can be found in Appendix D.

Notably, a forward pass using the optimal parameters (13) amounts to the prediction given after one
GD step on LAR(1)(w) starting from w0 = 0. We thus recover the ICL-as-optimization view upheld
by works in the i.i.d. setting (Ahn et al., 2023; Mahankali et al., 2023) but for LDS-produced data.

4.1 DISCUSSION

To our knowledge, the only other architecture proposed for handling noisy observations yt of
type (1) is given by Cole et al. (2025). Theirs is part of a proof of existence by construction
and, as such, is not accompanied by confirming experimental evidence. Different from us, they
propose an attention-only transformer that unrolls a modified Richardson iteration meant to esitmate(

1
T

∑T
t=1 xi+1x

⊤
i

)(
1
T

∑T
i=1 xix

⊤
i

)−1

for a simpler LDS with direct state access. Their construction
extends to the setting of objective (4) via the work of Tsiamis & Pappas (2019), who give a high
probability result for the existence of

(∑T−s−1
t=1 ȳtȳ

⊤
t

)−1

under our assumptions. However, their
transformer has a minimum of two layers, of which the first is fixed, therefore providing no guarantee
that training will recover it. Our results take a first step towards filling this gap.

Tangentially, Akram & Vikalo (2024) construct a transformer emulating the KF, contingent on
knowledge of the system parameters and an elaborate token augmentation scheme. While this
architecture is capable of computing the forward KF observation ŷT , it relies on ideal knowledge of
LDS (1) which is rarely encountered in practice.

Theorem 4.1 sets forth a plausible hypothesis for prior experiments (Du et al., 2023, Fig. 2) using a
GPT-2 architecture trained autoregressively with data (1) for stable A ∈ Sd++. Their results highlight
the transformer’s competitive performance relative to the KF for predicting the next observation of
a previously unseen sequence, in-context. These experiments suggest an implicit form of system
identification might be executed in context, though the mechanism remains unstudied. Through the
ICL-as-optimization lens, we can interpret the high accuracy of GPT-2’s in-context predictions as a
possible consequence of Theorem 2 of (Kozdoba et al., 2019). Importantly, the latter result implies
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(a) Training loss for AR(1) tokens. (b) W ⋆
QK for AR(1). (c) Optimal W ⋆

V for AR(1).

(d) Training loss for AR(2) tokens. (e) W ⋆
QK for AR(2). (f) W ⋆

V for AR(2).

(g) Training loss for AR(3) tokens. (h) W ⋆
QK for AR(3). (i) W ⋆

V for AR(3).

Figure 1: Experimental results for AR(1–3) tokens showing the optimally-trained attention parameters.

that for an arbitrary, finite family S of LDSs (1) and an ε > 0, there exists a window-length s(ε) such
that the optimal AR(s(ε)) predictor incurs an average error that is at least as good, up to ε, as that
of the forward observation prediction ŷt+1 of the best KF in S. Our results take the first step in the
exploration of this hypothesis.

5 EXPERIMENTS

We now present numerical evidence supporting our theory. All experiments were implemented in
Python 3.12 and run on a ThinkPad T14p with 32 GB RAM and a 22-core Intel Core™ Ultra 9 185H
processor. The code is provided as part of the supplementary material.

We train architecture (6) on sequences {yt}Tt=1, T = 30, each sampled from a different LDS of
type (1) with a hidden state dimension d = 5. The number of training iterations is 6500 for all
cases with a doubling of the batchsize for every increase in order starting from 2000 for AR(1). A
fresh batch of LDSs is sampled at every iteration (i.e., online setting). We sample A’s diagonal
entries uniformly at random in the interval [−1, 1] and set c = 1d. The noise magnitudes are set
to σ2

v = σ2
w = 1e-2. We use window-sizes s ranging from 1 to 4, with results being averaged

over 3 random seeds. The weights are learned using AdamW (Loshchilov & Hutter, 2017) with
gradient clipping and a learning rate schedule consisting of a linear warm-up phase followed by cosine
annealing (Loshchilov & Hutter, 2016). A full list of hyperparameters is provided in Tables 1 and 2
of Appendix B.
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The results are depicted in Figure 1 for AR(1–3)-style tokens. Further experiments for AR(4) follow
in the same vein, but are deferred to Appendix B due to lack of space. Subfigures (b,c) show an
optimum conforming to Theorem 4.1 for AR(1) tokens. Moreover, subfigures (e,f) and (h,i) confirm
experimentally the pattern uncovered by Lemma 4.1 for general s > 0. However, a quick calculation
of the forward pass reveals that weights trained to optimality with AR(s) tokens (7) for s ≥ 2 do not
implement GD in the forward pass, or at least not in the formulaic manner of prior works. Instead,
we notice a recursive pattern of the optimal weights that builds on top of the GD-inducing parameters
recovered for AR(1). For ease of exposition, we illustrate the recursion for AR(2), but the pattern
generalizes to higher orders according to our experiments.

To begin, we transpose expression (6) for generating the final token of the transformer’s output as

[ȳT−2, ŷT ] = [ȳT−2, 0] +
1

T − 2
[ȳT−2, 0] WQK

T−2∑
i=1

sis
⊤
i WV ,

and note that the linear predictor WQK

∑T−2
i=1 sis

⊤
i WV returned by our experiments amounts to

c1 0 c2
0 c3 0
0 0 0

 
∑

t y
2
t

∑
t ytyt+1

∑
t ytyt+2∑

t ytyt+1

∑
t y

2
t+1

∑
t yt+1yt+2∑

t ytyt+2

∑
t yt+1yt+2

∑
t y

2
t+2


 0 0 c4

0 0 0
0 0 c5

 
where {ci}i∈[5] denote non-zero entries. We observe that the lower-right blocks of dimension 2× 2
implement, up to a constant, the predictor corresponding to one GD step starting from w0 = 0 on the
forward-shifted AR(1) loss

LAR(1)(w) :=
1

2(T − 2)

T−2∑
t=1

(yt+2 − w yt+1)
2.

This pattern holds recursively, with the empirically-determined optimal AR(s+ 1) predictor building
upon the structure of the empirically-determined optimal AR(s) one, but relative to a forward-shifted
LAR(s) (4). For example, in Figure 1 we observe the optimal AR(2) parameters embedded in the
bottom right 3× 3 blocks of their AR(3) counterparts. This observation hints at the possibility of
arriving at AR(s)-optimal parameters by induction — an approach we leave for future exploration.

6 CONCLUSION, LIMITATIONS, FUTURE DIRECTIONS

This paper presented the first steps towards characterizing the optimal configuration of a single
self-attention layer trained with LDS-produced data and its ability to learn in context. We sketched
a path forward by leveraging results from the literature on improper learning approaches to system
identification, whereby autoregressive processes can well-approximate Kalman filters given a suffi-
cient window size. Using this starting point for our study of ICL with non-i.i.d. data, we showed that
for a length-one window, the optimal attention layer implements a step of GD on the context-induced
autoregressive loss. Furthermore, we narrowed down the class of potential minimizers based on a
structural property of the optimality condition, which we further confirmed empirically. Finally, our
experiments uncovered a recursive pattern of the optimal weights, hinting at a structured family of
global optima for this class of problems.

Due to the difficulties induced by correlated data, several limitations remain: establishing optimality
for s ≥ 2 by searching for optima within the structured class of parameters identified by Lemma 4.1;
understanding what algorithmic primitive, if any, is implemented by configurations pertaining to
AR(s), s ≥ 2; and finally, extending this analysis to autoregressive pretraining objectives. Our present
contributions provide the necessary building blocks for addressing these directions in future work.
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A LLM USAGE DISCLOSURE

LLMs were used in elaborating this paper as follows:

• Finding related work.

• Computing the result of polynomial multiplications.

• Generating LaTeX tables and tikz figures.

• Transferring proofs from pen-and-paper format into LaTeX automatically using the online
tool Manus https://manus.im/.
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B EXPERIMENTS — FURTHER DETAILS

B.1 HYPERPARAMETERS

Below are the full details of the training procedure described in Section 5.

Table 1: LDS hyperparameters

Hyperparameter Value

Hidden state size x ∈ R5

Observation size y ∈ R
State transition A = diag(a), a ∼ U([−1, 1]5)

Observation matrix c = 15

Process noise magnitude σ2
w = 1e-2

Observation noise magnitude σ2
v = 1e-2

Sequence length 30

x0 x0 ∼ N (0, σ2
0I), σ

2
0 = 1e-3

B.2 ADDITIONAL EXPERIMENTS

(a) Training loss for AR(4) tokens. (b) W ⋆
QK for AR(4). (c) W ⋆

V for AR(4).

Figure 2: Experimental results for various token configurations AR(4) showing the optimal attention parameters.
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Table 2: Training hyperparameters

Hyperparameter Value

Weight initialization Xavier normal distribution (Glorot & Bengio, 2010) with
gain = 1e-5

Optimizer AdamW (Loshchilov & Hutter, 2017) with β1 = 0.9,
β2 = 0.98, ϵ = 1e-9

Weight decay 5e-3

Learning rate (i.e., max. val.) 5e-2

Min. learning rate 1e-3

Linear warmup 500 iter.

Decay schedule Cosine annealing (Loshchilov & Hutter, 2016)

Max. decay steps 2000 iter.

Max. grad norm (clipping) 300

Random seeds {666013, 1, 0}

Batch size / iter. 2000 for AR(1), 4000 for AR(2), 8000 for AR(3), 16000
for AR(4)

Total iter. 6501

C PROOF OF TOKEN CONSTRUCTION LEMMA

Lemma 3.1. For a given s >= 1, there exists an s+ 1-headed linear attention layer with positional
encoding which transforms input sequences [y1, y2, . . . , yT ]⊤ into

y1 y2 . . . ys ys+1

...
...

...
...

...
yT−s−1 yT−s . . . yT−2 yT−1

yT−s yT−s+1 . . . yT−1 0

0T−s−1× s

 .

The latter are essentially equivalent to tokens (7).

Proof. We first define a matrix right-shift operator, which shifts each row one position to the right,
padding the first column with zeros. Let ≫: Rm×n → Rm×n be ≫ (M) = MR, where

R =

[
0 0⊤

n−1
0n−1 In−1

]
. (14)

We follow Von Oswald et al. (2023a) in using the one-hot positional encodings, concatenated to the
input sequence to obtain tokens {[yt, et]}Tt=1. We define s+ 1 attention heads given by

Define WQ ∈ RT+1×T , WK ∈ RT+1×T and WV ∈ RT+1×s as follows:

W h
Q =

[
0⊤
T

IT

]
, ∀h ∈ [s+ 1]

(W h
K)⊤ =

[
0T , ≫ (. . . ≫︸ ︷︷ ︸

h−1 times

(IT ) . . .)
]

W h
V =

1 . . . h . . . s+ 1
[0T+1 . . . e1 . . . 0T+1]

, ∀h ∈ [s+ 1] (15)

Each head then computes the following
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
y1 1 0 . . . 0
y2 0 1 . . . 0
...

...
...

...
...

yT 0 0 . . . 1

 W k
Q

︸ ︷︷ ︸
=IT

(W h
K)⊤


y1 y2 y3 . . . yT
1 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 1


︸ ︷︷ ︸
=

[
0T−h+1×h−1 IT−h+1

0h−1×h−1 0h−1×T−h+1

]
WV


y1 1 0 . . . 0
y2 0 1 . . . 0
...

...
...

...
...

yT 0 0 . . . 1


︸ ︷︷ ︸
=

1 . . . h . . . s + 1
0 . . . y1 . . . 0
0 . . . y2 . . . 0
...

...
...

...
0 . . . yT . . . 0



=

1 . . . h . . . s + 1
0 . . . yh . . . 0
0 . . . yh+1 . . . 0
...

...
...

...
0 . . . yT . . . 0

0h×s+1


Summing over the outputs of all heads, we get an equivalent representation to (7).
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D COMPUTATION OF TOKENS’ HIGH-ORDER MOMENTS

For brevity, in Appendix D, Appendix E and Appendix F use D̃, with D̃ := A,x0, {wt}, {vt}.
Lemma D.1. If yi and yj are generated by (1), ED̃ [yiyj ] ={

cED̃

[
Aix0x

⊤
0 (A

j)⊤
]
c⊤ + cED̃

[∑i−1
k=0 A

i−1−kwkw
⊤
k (A

⊤)j−1−k
]
c⊤, if i ̸= j,

cED̃

[
Aix0x

⊤
0 (A

i)⊤
]
c⊤ + cED̃

[∑i−1
k=0 A

i−1−kwkw
⊤
k (A

⊤)i−1−k
]
c⊤ + ED̃

[
v2i
]
, if i = j.

.

(16)

Proof. Assume i ≤ j without loss of generality, unroll yi and yj to xi

ED̃[yiyj ] = ED̃

(cxi + vi)

(
cAj−ixi + c

j−1∑
k=i

Aj−1−kwk + vj

)⊤
= ED̃[cxix

⊤
i (A

⊤)j−ic⊤] + ED̃

cxi

(
c

j−1∑
k=i

Aj−1−kwk

)⊤
︸ ︷︷ ︸

=0, since xi is independent of wk for k=i,...,j−1

+ ED̃[cxiv
⊤
j ]︸ ︷︷ ︸

=0, since xi is independent of vj

+ ED̃

[
vi(cA

j−ixi)
⊤]︸ ︷︷ ︸

=0, since vi is independent of xi

+ED̃

vi(c j−1∑
k=i

Aj−1−kwk

)⊤
︸ ︷︷ ︸
=0, since vi is independent of wk=i...j−1

+ED̃[viv
⊤
j ]︸ ︷︷ ︸

̸=0, if i=j,
0, if i ̸=j

. (17)

Unroll xi to x0, the remaining non-zero term

ED̃

[
cxix

⊤
i (A

j−i)⊤c⊤
]

= cED̃

(Aix0 +

i−1∑
k=0

Ai−1−kwk

)(
Ajx0 +

i−1∑
l=0

Ai−1−lwl

)⊤ c⊤

= cED̃

[
Aix0x

⊤
0 (A

j)⊤
]
+ cED̃

Aix0

(
j−1∑
l=0

Aj−1−lwl

)⊤ c⊤

︸ ︷︷ ︸
=0, since x0 is independent of wl

+ cED̃

[(
i−1∑
k=0

Ai−1−kwk

)
x⊤
0 (A

j)⊤

]
c⊤︸ ︷︷ ︸

=0, since x0 is independent of wk

+ cED̃

(i−1∑
k=0

Ai−1−kwk

)(
j−1∑
l=0

Aj−1−lwl

)⊤ c⊤. (18)

Since wk is zero-mean and temporally independent, E[wkw
⊤
l ] = 0, if k ̸= l. The remaining

non-zero part of cED̃

[(∑i−1
k=0 A

i−1−kwk

)(∑j−1
l=0 Aj−1−lwl

)⊤]
c⊤ is

cED̃

[
i−1∑
k=0

Ai−1−kwkw
⊤
k (A

⊤)j−1−k

]
c⊤. (19)

Based on the computation above,
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ED̃ [ yiyj ] ={
cED̃

[
Aix0x

⊤
0 (A

j)⊤
]
c⊤ + cED̃

[∑i−1
k=0 A

i−1−kwkw
⊤
k (A

⊤)j−1−k
]
c⊤, if i ̸= j,

cED̃

[
Aix0x

⊤
0 (A

i)⊤
]
c⊤ + cED̃

[∑i−1
k=0 A

i−1−kwkw
⊤
k (A

⊤)i−1−k
]
c⊤ + ED̃

[
v2i
]
, if i = j.

(20)

Lemma D.2. If i + j is odd, ED̃ [yiyj ] = 0; if i + j is even, ED̃ [yiyj ] ≥ 0. This extends to
the 4th and the 6th moments of y, which means if the sum of y indices is odd, ED̃ [yiyjykyl] =
0 and ED̃ [yiyjykylymyn] = 0; if the sum of y indices is even, ED̃ [yiyjykyl] ≥ 0 and
ED̃ [yiyjykylymyn] ≥ 0.

For brevity, only the proof for ED̃ [yiyj ] = 0 is given.

Proof. ED̃ is the sum of 2 or 3 terms. Compute each term respectively.

cED̃

[
Aix0x

⊤
0 (A

j)⊤
]
c⊤ = cEA,x0

[
Aix0x

⊤
0 (A

j)⊤
]
c⊤

= cEA[AiEx0
[x0x

⊤
0 |A](Aj)⊤]c⊤

= cEA[AiΣ0(A
j)⊤]c⊤

= cEA[Ai(Aj)⊤]Σ0c
⊤

= cEA[Ai+j ]Σ0c
⊤. (21)

cED̃

[
i−1∑
k=0

Ai−1−kwkw
⊤
k (A

⊤)j−1−k

]
c⊤ = cEA,wk

[
i−1∑
k=0

Ai−1−kwkw
⊤
k (A

⊤)j−1−k

]
c⊤

=

i−1∑
k=0

cEA,wk
[Ai−1−kwkw

⊤
k (A

⊤)j−1−k]c⊤

=

i−1∑
k=0

cEA[Ai−1−kEwk
[wkw

⊤
k |A](A⊤)j−1−k]c⊤

=

i−1∑
k=0

cEA[Ai−1−kσ2
wI(A

⊤)j−1−k]c⊤

=

i−1∑
k=0

cEA[Ai−1−kAj−1−k]σ2
wIc

⊤

=

i−1∑
k=0

cEA[Ai+j−2−2k]σ2
wIc

⊤. (22)

Based on the computation above,

ED̃[yiyj ] = cED̃

[
Aix0x

⊤
0 (A

j)⊤
]
c⊤ + cED̃

[
i−1∑
k=0

Ai−1−kwkw
⊤
k (A

⊤)j−1−k

]
c⊤(+ED̃[vivj ])

= cEA[Ai+j ]Σ0c
⊤ +

i−1∑
k=0

cEA[Ai+j−2−2k]σ2
wIc

⊤ + (+ED̃[vivj ]). (23)
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E PROOFS OF THE IN-CONTEXT LOSS’ GRADIENT LEMMA

Lemma 4.1. For an arbitrary s, the following parameters induce a banded structure in the left-hand
side of (10) matching that of the right-hand side.

WQK =


⋆ 0 ⋆ · · ·

0 ⋆
. . .

. . .
...

...
. . .

. . . 0 ⋆
0 · · · 0 ⋆ 0
0 · · · · · · 0 0

 , WV =



0 · · · · · · 0
...

...
... 0

...
... ⋆

...
... 0

0 · · · · · · 0 ⋆


. (12)

Proof. Recall the in-context loss in (8) with a general AR(s)-constructed input token matrix Y0 =[
ȳ1 ȳ2 · · · ȳT−s−1 ȳT−s

ys+1 ys+2 · · · yT−1 0

]
is defined as

L(θ) := ED̃

[ (
Tθ (Y0)s+1,T−s − yT

)2 ]
. (24)

From (25) to (29), we use the same reformulations in (Ahn et al., 2023). The last column of the
transformer’s output above can be written as

[
ȳT−1

0

]
=

[
ȳT−1

0

]
+

1

T − s− 1
W⊤

V

(
T−s−1∑
i=1

[
ȳiȳ

⊤
i ȳiyi+s

ȳ⊤
i yi+s y2i+s

])
W⊤

QK

[
ȳT−s

0

]
, (25)

where the summation is for i = 1, 2, ..., n due to the causal mask. The transformer’s prediction of yT ,
Tθ (Y0)s+1,T−s can be written as

1

T − s− 1
b⊤


T−s−1∑
i=1

[
ȳiȳ

⊤
i ȳiyi+s

ȳ⊤
i yi+s y2i+s

]
︸ ︷︷ ︸

:= Ȳ ∈R(s+1)×(s+1)

 [a1a2 · · ·as] ȳT−s, (26)

where b⊤ ∈ R1×(s+1) is the last row of W⊤
V and aj ∈ R(s+1) is the jth column of W⊤

QK . So the
in-context loss L(WV ,WQK) can be rewritten as a function of b⊤ and aj

L(b⊤,aj) := ED̃

[ (
1

T − s− 1
b⊤Ȳ AȳT−s − yT

)2
]
. (27)

Plugging in the expression of ¯yT−s, the in-context loss is

L(b⊤,aj) = ED̃


 1

T − s− 1
b⊤Ȳ [a1a2 · · ·as]


yT−s

yT−s+1

...
yT−1

− yT


2 

= ED̃

 ( 1

T − s− 1

s∑
k=1

b⊤Ȳ akyT−s−1+k − yT

)2


18
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= ED̃

 ( 1

T − s− 1

s∑
k=1

Tr(Ȳ akb
⊤)yT−s−1+k − yT

)2


= ED̃

 ( 1

T − s− 1

s∑
k=1

⟨Ȳ , ba⊤
k ⟩yT−s−1+k − yT

)2
 . (28)

Write the in-context loss as a function of Xk := ba⊤
k , which represent the transformer parameters

L(Xk=1···s) = ED̃

 ( 1

T − s− 1

s∑
k=1

⟨Ȳ ,Xk⟩yT−s−1+k − yT

)2
 . (29)

Now we compute the gradient of the in-context loss with respect to each Xk, which will be used for
showing the optimality

∇XjL(Xk=1···s) = 2ED̃

[ (
1

T − s− 1

s∑
k=1

⟨Ȳ ,Xk⟩yT−s−1+k − yT

)
yT−s−1+jȲ

]
. (30)

The gradient ∇XjL(Xk=1···s) contains 2 terms. ∇XjL(Xk=1···s) = T1
Xj

+T2
Xj

, with

T1
Xj

:=
2

T − s− 1
ED̃


s∑

k=1

⟨Ȳ ,Xk⟩yT−s−1+kyT−s−1+j︸ ︷︷ ︸
:= C1

Ȳ

 (31)

=
2

T − s− 1
ED̃

[
C1

T−s−1∑
i=1

[
ȳiȳ

⊤
i ȳiyi+s

ȳ⊤
i yi+s y2i+s

] ]
, (32)

T2
Xj

:= −2ED̃


s∑

i=1

yT yT−s−1+j︸ ︷︷ ︸
:= C2

Ȳ

 (33)

= −2ED̃

[
C2

T−s−1∑
i=1

[
ȳiȳ

⊤
i ȳiyi+s

ȳ⊤
i yi+s y2i+s

] ]
. (34)

Each matrix element of T1
Xj

can be written as

ED̃

[
C1

T−s−1∑
i=1

yi+myi+n

]
(35)

= ED̃

[
s∑

k=1

Cpq
k yT−s−1+k

(
T−s−1∑
r=1

yr+pyr+q

)
yT−s−1+j

T−s−1∑
i=1

yi+myi+n

]
, (36)

with Cpq
k represents the matrix elements of Xk, j ∈ [1, s], p ∈ [0, s], q ∈ [0, s], m ∈ [0, s] and

n ∈ [0, s].

A general term in the sum of T1
Xj

is

Cpq
k ED̃ [ yT−s−1+kyr+pyr+qyT−s−1+jyi+myi+n ] . (37)
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The sum of y’s indices in (37) is 2T + 2i + 2r − 2s − 2 + (m + n + p + q + j + k). The parity
depends only on (m+ n+ p+ q + j + k) and is the same for all the terms in the sum (no matter
which i and which r).

According to D.2, (37) is 0, if (m+n− s− 1+ j) is odd; is non-negative, if (m+n+ p+ q+ j+k)
is even. So a general matrix element of T1

Xj
is 0, if (m+ n+ p+ q+ j + k) is odd; is non-negative,

if (m+ n+ p+ q + j + k) is even.

Each matrix element of T2
Xj

can be written as

ED̃

[
C2

T−s−1∑
i=1

yi+myi+n

]
= ED̃

[
yT yT−s−1+j

T−s−1∑
i=1

yi+myi+n

]
, (38)

with j ∈ [1, s], m ∈ [0, s] and n ∈ [0, s].

A general term in the sum of T2
Xj

is

ED̃ [ yT yT−s−1+jyi+myi+n ] . (39)

The sum of y’s indices in (39) is 2T + 2i + (m + n − s − 1 + j). The parity depends only on
(m+ n− s− 1 + j) and is the same for all the terms in the sum (no matter which i).

According to D.2, (39) is 0, if (m+ n− s− 1+ j) is odd; is non-negative, if (m+ n− s− 1+ j) is
even. So a general matrix element of T2

Xj
is 0, if (m+ n− s− 1 + j) is odd; is non-negative, if

(m+ n− s− 1 + j) is even.

For a given AR(s)-constructed token (s is fixed) and a specific j, if a matrix element of T2
Xj

is 0
only depends on m+ n (its position in the matrix). So

T2
Xj

=



∗ 0 ∗ · · · · · ·

0 ∗ 0 ∗
...

∗ 0 ∗
. . . . . .

...
... ∗

. . . . . . . . . ∗
...

. . . . . . * 0
· · · · · · ∗ 0 ∗


, if(−s− 1− j) is even;

=



0 ∗ 0 · · · · · ·

∗ 0 ∗ 0
...

0 ∗ 0
. . . . . .

...
... 0

. . . . . . . . . 0
...

. . . . . . 0 ∗
· · · · · · 0 ∗ 0


, if(−s− 1− j) is odd. (40)

To make T1
Xj

have the same 0 and non-zero elements at the same positions as T2
Xj

, (p + q + k)

should have the same parity as (−s− 1− j). It can be easily proved that a specific set of Xk can
achieve this. So ∇XjL(Xi=1···s) = T1

Xj
+T2

Xj
will have the pattern of (40).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F PROOFS OF THE OPTIMALITY THEOREM WITH AR(1)-CONSTRUCTED
INPUT TOKEN

Theorem 4.1. Let Y0 encode the input tokens according to construction (7) for s = 1. Then, the
optimal parameters θ⋆ =

(
W ⋆

QK ,W ⋆
V

)
of a single linear self-attention layer with respect to loss

L(θ) are

W ⋆
QK =

[
(T−2)ED̃[

∑T−2
i=1 yiyi+1yT−1yT ]

ED̃[
∑T−2

i=1 yiyi+1
∑T−2

r=1 yryr+1yT−1yT ]
0

0 0

]
, W ⋆

V =

[
0 0
0 1

]
, (13)

up to rescaling with γ ̸= 0.

Proof. For the transformer parameters in (13), the corresponding b⊤ = [0 1] and the corresponding

A = [c 0], where c :=
(T−2)ED̃[

∑T−2
i=1 yiyi+1yT−1yT ]

ED̃[
∑T−2

i=1 yiyi+1
∑T−2

r=1 yryr+1yT−1yT ]
.

So X = X1 = ba⊤
1 = bA⊤ =

[
0 0
c 0

]
. Use the result of X to compute the terms of the gradient of

the in-context loss ∇XL(X)

T1
Xj

=
2

T − 2
ED̃

[
⟨Ȳ ,X⟩y2T−1Ȳ

]
=

2

T − 2
ED̃

[
⟨
T−2∑
r=1

[
yry

⊤
r yryr+1

yr+1yr y2r+1

]
,

[
0 0
c 0

]
⟩y2T−1

T−2∑
i=1

[
y21 yiyi+1

yi+1yi y2i+1

]]

=
2

T − 2
ED̃

[
c

T−2∑
r=1

yryr+1y
2
T−1

T−2∑
i=1

[
y21 yiyi+1

yi+1yi y2i+1

]]

=
2

T − 2
ED̃

[
c

T−2∑
r=1

yryr+1y
2
T−1

T−2∑
i=1

[
0 yiyi+1

yi+1yi 0

]]
. (41)

According to D.2, the 2 diagonal elements in (41) ED̃

[
c
∑T−2

r=1 yryr+1y
2
T−1

∑T−2
i=1 y2i

]
and

ED̃

[
c
∑T−2

r=1 yryr+1y
2
T−1

∑T−2
i=1 y2i+1

]
are 0, since their sum of y indices are both odd.

T2
Xj

= −2ED̃

[
yT yT−1

T−2∑
i=1

Ȳ

]

= −2ED̃

[
yT yT−1

T−2∑
i=1

[
y21 yiyi+1

yi+1yi y2i+1

]]

= −2ED̃

[
yT yT−1

T−2∑
i=1

[
0 yiyi+1

yi+1yi 0

]]
. (42)

According to D.2, the 2 diagonal elements in (42) ED̃

[
yT yT−1

∑T−2
i=1 y2i

]
and

ED̃

[
yT yT−1

∑T−2
i=1 y2i+1

]
are 0, since their sum of y indices are both odd.

Plug in the expression of c, it can be easily found that

∇XL(X) = T1
Xj

+T2
Xj

= 0. (43)

Since the in-context loss is convex in X and the X resulting from the W ⋆
V and W ⋆

QK above makes
∇XL(X) = 0, the W ⋆

V and W ⋆
QK above is a global minimizer for the in-context loss.
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