

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ON LEARNING LINEAR DYNAMICAL SYSTEMS IN CONTEXT WITH ATTENTION LAYERS

Anonymous authors

Paper under double-blind review

ABSTRACT

This paper studies the expressive power of linear attention layers for in-context learning (ICL) of linear dynamical systems (LDS). We consider training on sequences of inexact observations produced by noise-corrupted LDSs, with all perturbations being Gaussian; importantly, we study the non-i.i.d. setting as it is closer to real-world scenarios. We provide the optimal weight construction for a single linear-attention layer and show its equivalence to one step of Gradient Descent relative to an autoregression objective of window size one. [Guided by experiments, we uncover a relation to the Preconditioned Conjugate Gradient method for larger window sizes.](#) We back our findings with numerical evidence. These results add to the existing understanding of transformers' expressivity as in-context learners, and offer plausible hypotheses for experimental observations whereby they compete with Kalman filters — the optimal model-dependent learners for this setting.

1 INTRODUCTION

We contribute towards understanding transformers' expressive power when learning from *non-i.i.d.* data produced by linear dynamical systems (LDSs). The starting point of our work is the well-known ability of transformers to perform in-context learning (ICL) (Brown et al., 2020).

Specifically, this boils down to accurately answering a query based on a set of examples given as a textual prefix (“in context”) (Brown et al., 2020). This behaviour is desirable, as it loosens the requirement for expensive data collection and fine-tuning stages (Liu et al., 2023). Current research efforts are split between enhancing ICL through specialized training and prompt engineering, and building a mechanistic understanding of it — see the comprehensive review of Dong et al. (2022).

Currently there exist two perspectives on ICL mechanics: a Bayesian view, whereby transformers recover latent concepts from prompts, thus performing implicit Bayesian inference (Wang et al., 2023; Jiang, 2023; Wies et al., 2023; Xie et al., 2021), and a view of transformers as implementers of implicitly learned algorithms (Von Oswald et al., 2023a; Giannou et al., 2023; Akyürek et al., 2022; Garg et al., 2022; Ahn et al., 2023; Mahankali et al., 2023; Sander & Peyré, 2024; Von Oswald et al., 2023b; Sander et al., 2024). Within the latter works, investigations center around whether transformers can perform linear regression (and variants thereof) in context, and how. They give weight to this hypothesis by proving that, for certain token formats, data distributions, and architecture, the transformers' optimal weights effectively execute an optimization algorithm iteration in the forward pass, relative to a context-dependent loss (Von Oswald et al., 2023a; Mahankali et al., 2023; Ahn et al., 2023; Von Oswald et al., 2023b; Sander et al., 2024). Though this algorithmic view does not account for the “emergent” aspect of “in-the-wild” ICL (Shen et al., 2023), it provides concrete expressions for transformers' modelling power and identifies the minimal functional unit that instantiates it — a single, causally-masked, linear attention layer, without positional encoding. Despite this rich progress in understanding ICL for i.i.d. data settings, our grasp of the non-i.i.d. case is missing. A significant hurdle in analyzing this scenario is handling a token's statistical dependence on the entire context preceding it. This work takes the first steps towards unraveling this difficulty.

Specifically, we study the ability of a single linear attention layer to learn in context from sequences of observations $\{y_t\}_t$ generated by a time-invariant LDS doubly-corrupted by Gaussian noise

$$\begin{cases} \mathbf{x}_{t+1} = \mathbf{A}\mathbf{x}_t + \mathbf{w}_{t+1}, \\ y_t = \mathbf{c}^\top \mathbf{x}_t + v_t, \end{cases} \quad (1)$$

054 where $w_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \Sigma_w)$ and $v_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \sigma_v^2)$ with mutually independent w_t and v_t . Studying this
 055 setting has a threefold motivation. Firstly, the sequence $\{y_t\}_t$ is built on a temporal scaffold closer
 056 in nature to that of language-induced tokens, in stark contrast to the i.i.d. setup predominantly
 057 addressed by prior works (with few exceptions discussed in detail later). Secondly, this setting moves
 058 closer to the works taking a Bayesian view on ICL, where the data follows a Hidden Markov Model
 059 (HMM) (Xie et al., 2021) of which LDSs are a subclass (Minka, 1999). **Furthermore, dynamical**
 060 **systems have been directly studied as potentially more flexible models for grammatical sentence**
 061 **formation, both empirically (Elman, 1995; Tabor et al., 1996) and more formally (Beim Graben**
 062 **et al., 2004; Belanger & Kakade, 2015), thus making setting (1) particularly relevant.** With
 063 HMMs being a mainstay in language modelling, setting (1) is particularly relevant. Finally, prior
 064 empirical observations emphasize the close performance of transformers relative to the Kalman
 065 Filter (KF) (Kalman, 1960), with the former matching the latter in settings where KF is the optimal
 066 predictor (Du et al., 2023). To our knowledge, the underlying mechanism is yet to be understood
 067 formally.

068 The goal of this paper is to characterize the structure of a single linear self-attention layer trained
 069 to optimality for predicting y_T in-context, when presented with sequences $\{y_t\}_{t=1}^{T-1}$. We proceed
 070 in two steps: first, we define an appropriate context-dependent loss for dealing with the time-series
 071 data. To this end, we rely on the improper learning approach of the system identification literature,
 072 whereby sequence generating processes of type (1) are well approximated by autoregressive ones.
 073 Second, we link the structure of optimally trained linear attention layers with algorithmic steps on
 074 the context-dependent loss. In doing so, we rely on a token augmentation scheme akin to prior
 075 works (Von Oswald et al., 2023a; Ahn et al., 2023; Mahankali et al., 2023). Our contributions are the
 076 following.

- 077 **C1.** In Theorem 4.1, we prove that for an order-one autoregressive approximation of (1), the
 078 optimal linear attention layer implements a step of Gradient Descent on the associated
 079 least-squares loss. To our knowledge, this is the first optimality result for LDS data.
- 080 **C2.** In Lemma 4.1, we identify a salient banded pattern of the matrices involved in the stationarity
 081 condition for generic order- s approximations of (1). We further define a class of parameters
 082 that satisfy this structural constraint and empirically observe that minimizers obey it, **thus**
 083 **narrowing down the search for the provably-optimal linear attention layer when $s \geq 2$.**
- 084 **C3.** In Section 5, we provide numerical experiments verifying our theory for order-one au-
 085 toregressive approximations. **Furthermore, we connect the tiling pattern of empirically**
 086 **determined minimizers of order- s approximations, $s \geq 2$, with the Preconditioned Con-
 087 **jugate Gradient method iteration, thus further highlighting the view of ICL as on-the-fly**
 088 **optimization. To our knowledge, this is the first interpretation of the in-context algorithm**
 089 **for general order- s autoregression.****
- 090 **C4.** Conceptually, we make the case for the view of ICL as implicit optimization having a viable
 091 extension to LDS-produced data. We do so by bridging works from the system identification
 092 literature with empirical observations of transformers’ in-context performance rivaling that
 093 of Kalman Filters.

095 2 RELATED LITERATURE

098 We review the niche of studies viewing ICL as in-context optimization, together with relevant works
 099 on filtering and system identification. Further comparisons are discussed in Section 4.1.

101 **ICL for linear regression with i.i.d data.** This line of work studies whether transformers trained
 102 on a few-shot learning objective can perform linear regression in-context, and how. Garg et al. (2022);
 103 Akyürek et al. (2022); Von Oswald et al. (2023a) provide empirical results in the affirmative, along
 104 with possible architecture constructions implementing Gradient Descent (GD) steps relative to a
 105 context-induced least squares loss. Through this lens, ICL reduces to on-the-fly optimization executed
 106 in the transformer’s forward pass. Mahankali et al. (2023); Zhang et al. (2024); Ahn et al. (2023)
 107 complement these findings by proving that one-layer linear self-attention implementing such a GD
 step (possibly preconditioned) is a global minimizer of the pretraining loss when covariates are i.i.d.

108 and Gaussian drawn. Finally, Zhang et al. (2024) complete the picture by proving that Gradient Flow
 109 converges to these global minimizers. Our results extend this line of work to non-i.i.d. setting.
 110

111 **ICL and system identification.** This line of work asks whether transformers can perform autore-
 112 gressive learning in context, and how. Different from the prior section, the following papers use
 113 the autoregressive pretraining loss and, unless stated otherwise, the results concern a single layer
 114 of linear self-attention. Von Oswald et al. (2023b) give a construction implementing a GD step
 115 on $\mathcal{L}(\mathbf{W}) := \sum_{i=1}^{t-1} \|\mathbf{W}\mathbf{y}_i - \mathbf{y}_{i+1}\|^2$ in parallel for all positions t , under an appropriate token
 116 configuration. Sander et al. (2024), further characterize the global minimizers of the autoregressive
 117 pretraining loss relative to the noiseless data $\mathbf{y}_{t+1} = \mathbf{A}\mathbf{y}_t$, with \mathbf{A} uniformly sampled from the set of
 118 commuting orthogonal matrices. Notably, they recover Von Oswald et al. (2023b) construction when
 119 using the same token augmentation. Sander et al. (2024) further characterizes minimizers for the
 120 case of substituting token augmentation with positional encoding and a dimension-dependent number
 121 of attention heads — this setting’s analysis, however, requires a diagonal weight structure. Zheng
 122 et al. (2024) complement these results by showing that, with a diagonal weight initialization and a
 123 controlled distribution of \mathbf{y}_0 , pretraining with Gradient Flow (GF) recovers the previously identified
 124 GD-implementing optimum. Finally, Sander & Peyré (2024) extend these results to arbitrary orthogonal
 125 \mathbf{A} s via an infinite-depth attention-only transformer that correctly predicts \mathbf{y}_T in the limit $T \rightarrow \infty$.
 126 This result holds for softmax, exponential, and linear activations.

127 Moving away from the noiseless settings above, Cole et al. (2025) establish approximation theoretic
 128 results for deep attention-only transformers predicting the sequence $\mathbf{y}_{t+1} = \mathbf{A}\mathbf{y}_t + \mathbf{w}_t$, with
 129 $\mathbf{w}_t \sim \mathcal{N}(\mathbf{0}, \sigma_w^2 \mathbf{I})$ and $\mathbf{A} \in \mathbb{S}_{++}^d$. They prove by construction that there exists a $\log(T)$ -depth
 130 transformer attaining a uniform-over- \mathbf{A} $\frac{\log(T)}{T}$ error for predicting $\mathbb{E}[\mathbf{x}_{T+1} | \mathbf{x}_t, \mathbf{A}]$, and give a lower
 131 bound for the accuracy with which a single linear attention layer can make predictions. Related to the
 132 problem of capacity, Ziemann et al. (2024) establish a learner predicting the next observation with
 133 a uniform-in-time error bound requires a number of parameters at least quadratic in the algebraic
 134 multiplicities of \mathbf{A} ’s unstable eigenvalues, and must operate on a context length at least logarithmic
 135 in the length of $\{\mathbf{y}_t\}_{t=1}^T$.

136 In summary, these works either study transformers’ ICL ability with respect to simplified LDSs or do
 137 not address the question of weight structure optimality. In contrast, we study fully-fledged systems (1)
 138 with the aim of characterizing the pretraining loss minimizers in the few-shot training setting.

140 **Transformers and linear filtering.** The classical model-based prediction tool for systems of
 141 type (1) is the Kalman Filter (KF) (Kalman, 1960). Using knowledge of system parameters, the KF
 142 gives the minimum expected squared error estimates $\hat{\mathbf{x}}_i$ of the hidden states \mathbf{x}_i as linear combinations
 143 of the past y_i s. Transformers as potential implementers of KF were studied by Goel & Bartlett (2024),
 144 who prove that a softmax causal attention layer is an arbitrarily good approximator. Akram & Vikalo
 145 (2024) further construct a transformer emulating the KF. Finally, Du et al. (2023) provide empirical
 146 evidence that a GPT-2 architecture (Radford et al., 2019) competes in accuracy with the KF for
 147 predicting the next observation in a previously unseen sequence, though the mechanism remains
 148 unstudied. We partially fill this gap with our present work.

3 PRELIMINARIES, PROBLEM FORMULATION & ASSUMPTIONS

153 **Notation.** Vectors and matrices are denoted by bold, lowercase and uppercase letters, respectively,
 154 with regular lowercase letters reserved for scalars. We denote by $\mathbf{1}_d$ and $\mathbf{0}_d$ the all-ones and all-zeros
 155 vectors of dimension d , and by $\mathbf{1}_{d \times m}$ and $\mathbf{0}_{d \times m}$ the analogous matrices. Unless stated otherwise, we
 156 use $\|\cdot\|$ for the Euclidean norm of vectors and the spectral norm of matrices. We denote by $\text{Tr}(\cdot)$ the
 157 trace of a matrix, $\langle \cdot, \cdot \rangle$ the inner product, by $\|\cdot\|_F$ its Frobenius norm, and by $\rho(\cdot)$ its spectral radius.
 158 We use \mathbf{e}_i for the i^{th} vector of the canonical basis in the appropriate dimension and \mathbf{I} to denote the
 159 identity matrix of appropriate dimensions. The notations \mathbb{S}_+^d and \mathbb{S}_{++}^d define the cones of symmetric
 160 positive-semidefinite and positive-definite matrices in $\mathbb{R}^{d \times d}$, respectively. We use \mathbb{S}^{d-1} to denote the
 161 unit sphere in \mathbb{R}^d . We use \odot to denote the Hadamard product. Finally, we use $[n]$ when referencing
 the set of integers $\{1, 2, \dots, n\}$. We write w.p. as an abbreviation of “with probability”.

162 **The big picture: filtering, system identification, and linear regression.** The KF (Kalman, 1960)
 163 computes the optimal estimates \hat{x}_i of x_i through the system of recursions
 164

$$\begin{cases} \text{Predict: } \hat{x}_{t+1|t} := \mathbf{A}\hat{x}_t, \quad \mathbf{P}_{t+1|t} = \mathbf{A}\mathbf{P}_t\mathbf{A}^\top + \Sigma_w \\ \text{Gain: } \mathbf{k}_{t+1} = \mathbf{P}_{t+1|t}\mathbf{c}(\mathbf{c}^\top\mathbf{P}_{t+1|t}\mathbf{c} + \sigma_v)^{-1} \\ \text{Update: } \hat{x}_{t+1} = \hat{x}_{t+1|t} + \mathbf{k}_{t+1}(\mathbf{y}_{t+1} - \mathbf{c}^\top\hat{x}_{t+1|t}), \quad \mathbf{P}_{t+1} := (\mathbf{I}_d - \mathbf{k}_{t+1}\mathbf{c}^\top)\mathbf{P}_{t+1|t}, \end{cases} \quad (2)$$

165 where \hat{x}_0 and error covariance estimate \mathbf{P}_0 are given as input. Under the Gaussian errors assumption,
 166 the state prediction satisfies $\hat{x}_t = \mathbb{E}[x_t | y_t, \dots, y_1]$ and, consequently, the forward observation
 167 prediction follows $\hat{y}_{t+1} := \mathbf{c}^\top\mathbf{A}\hat{x}_t = \mathbb{E}[y_{t+1} | y_t, \dots, y_1]$. The fast, constant-time KF predictions,
 168 however, require knowing the LDS parameters — a condition generally not satisfied in practice.
 169

170 Consequently, “proper learning” approaches seek to reconstruct the underlying model, by first
 171 estimating \mathbf{A} , \mathbf{c} , Σ_w , σ_v through costly parameter identification techniques and then producing
 172 forward observation predictions using the KF (Hamilton, 1995). In contrast, “improper learning”
 173 methods eschew structural constraints and solely seek to reliably achieve low error with respect to
 174 the underlying data distribution and the learning objective (Kozdoba et al., 2019, and references
 175 therein). For LDSs, this boils down to expressing the next observation as a linear function of
 176 the recent past. Not only does the latter approach have the computational advantage of foregoing
 177 parameter estimation, but it also benefits from convex formulations, thus being amenable to classical
 178 optimization techniques. Most importantly, for certain LDS classes, improper learning methods can
 179 closely track $\mathbb{E}[y_{t+1} | y_t, \dots, y_1]$, as follows.
 180

181 Tsiamis & Pappas (2019) highlight the following rephrasing of the data-generating process via the
 182 KF and for some fixed window size s of past observations,
 183

$$\begin{aligned} [y_{s+1}, \dots, y_{T-1}] &= \mathbf{c}^\top[(\mathbf{A} - \mathbf{k}\mathbf{c}^\top)^{s-1}\mathbf{k}, \dots, (\mathbf{A} - \mathbf{K}\mathbf{c}^\top)\mathbf{k}, \mathbf{k}] [\bar{y}_1, \dots, \bar{y}_{T-s-1}] \\ &\quad + \mathbf{c}^\top(\mathbf{A} - \mathbf{k}\mathbf{c}^\top)^s[\hat{x}_1, \dots, \hat{x}_{T-s+1}] + [\varepsilon_{s+1}, \dots, \varepsilon_{T-1}], \end{aligned} \quad (3)$$

184 where $\bar{y}_t := [y_t, y_{t+1}, \dots, y_{t+s-1}]^\top$, \mathbf{k} is the steady-state gain, and $e_i \in \mathbb{R}$ are i.i.d. zero-mean
 185 Gaussian errors. Under KF convergence conditions, quantity $\rho(\mathbf{A} - \mathbf{k}\mathbf{c}^\top) < 1$ makes the second
 186 term vanish exponentially in s and thus renders it negligible. We are now in the familiar setting
 187 of noisy linear regression, albeit with non-i.i.d. data. The resulting order- s autoregressive process
 188 (AR(s)) is associated with the optimization objective
 189

$$\min_{\mathbf{w} \in \mathbb{R}^s} \mathcal{L}_{AR(s)}(\mathbf{w}) := \frac{1}{2(T-s-1)} \sum_{t=1}^{T-s-1} (y_{t+s} - \mathbf{w}^\top \bar{y}_t)^2. \quad (4)$$

190 This simplification is the crux of improper learning approaches to system identification (Kozdoba
 191 et al., 2019) and becomes of note in conjunction with the idea that transformers perform on-the-fly
 192 optimization on the context-induced least squares objective. Should this latter view hold up to
 193 scrutiny under the new data distribution, it would imply that transformers could learn LDS-based
 194 time series in context arbitrarily well as a function of the available s . This is our incentive for seeking
 195 characterizations of the few-shot pretraining loss minimizers.
 196

197 **To ensure the above approximation is valid, we introduce the following LDS assumption.**
 198

199 **Assumption 3.1** (System assumptions). *LDS (1) has strictly positive definite noise covariances Σ_w
 200 and $\sigma_v > 0$. The system transition matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ is marginally stable, with $\rho(\mathbf{A}) \leq 1$, and the
 201 pair (\mathbf{A}, \mathbf{c}) is observable, meaning that*

$$\mathbf{O} = \begin{bmatrix} \mathbf{c}^\top \\ \mathbf{c}^\top \mathbf{A} \\ \vdots \\ \mathbf{c}^\top \mathbf{A}^{d-1} \end{bmatrix} \quad (5)$$

202 has a column rank of d .
 203

204 Assumption 3.1 is standard in the literature, and ensures KF convergence (Harrison, 1997) along with
 205 the exponential vanishing of the bias term in (3). Furthermore, it ensures the closeness of forward
 206 observation predictions given by the KF with those produced by a linear autoregressive predictor
 207 determined by expression (4) (Kozdoba et al., 2019).
 208

216 **Transformer architecture.** Transformers (Vaswani et al., 2017) are neural architectures performing
 217 sequence-to-sequence mapping. For a set of input tokens $\mathbf{S}_T = [\mathbf{s}_1, \dots, \mathbf{s}_T]^\top \in \mathbb{R}^{T \times p}$, the trans-
 218 former produces a corresponding $\hat{\mathbf{S}}_T = [\hat{\mathbf{s}}_1, \dots, \hat{\mathbf{s}}_T]^\top \in \mathbb{R}^{T \times p}$ by dynamically mixing tokens via its
 219 attention mechanism. An L -layer transformer $\mathcal{T}_\theta : \mathbb{R}^{T \times p} \rightarrow \mathbb{R}^{T \times p}$ parametrized by $\theta = [\theta_i]_{i=1}^L$ is a
 220 composition of blocks $\mathcal{T}_L = \mathcal{T}_{\theta_1} \circ \dots \circ \mathcal{T}_{\theta_L}$. Each \mathcal{T}_{θ_i} is a sequence-to-sequence function given by
 221

$$\mathcal{T}_{\theta_i}(\mathbf{S}) := (\text{MLP}_{\theta_i^{\text{MLP}}} \circ \mathcal{A}_{\theta_i^{\text{att}}})(\mathbf{S}),$$

223 where $\text{MLP}_{\theta_i^{\text{MLP}}}$ is a multilayer perceptron and $\mathcal{A}_{\theta_i^{\text{att}}}$ is the attention mapping. This paper studies
 224 the simplified block $\mathcal{T}_\theta(\mathbf{S}) := \mathcal{A}_\theta(\mathbf{S})$, thus setting $L = 1$ and $\text{MLP}_{\theta_1^{\text{MLP}}}$ to identity.
 225

226 The causal h -headed attention block with residual connections is given by
 227

$$\mathcal{A}_\theta(\mathbf{S}) := \mathbf{S} + \sum_{h=1}^H \sigma \left(\mathbf{M} \odot \frac{1}{\tau} \mathbf{S} \mathbf{W}_Q^h (\mathbf{W}_K^h)^\top \mathbf{S}^\top \right) \mathbf{S} \mathbf{W}_V^h \mathbf{W}_O^h,$$

230 where the parameters $\theta = [\mathbf{W}_Q^h, \mathbf{W}_K^h, \mathbf{W}_V^h, \mathbf{W}_O^h]_{h=1}^H$ represent the query, key, value, and projection
 231 matrices, respectively; $\tau > 0$ is a scaling constant; σ is the softmax normalizing function applied
 232 row-wise; and $\mathbf{M} \in \mathbb{R}^{T \times T}$, with $\mathbf{M}_{i,j} = 1$ if $i \geq j$ and $-\infty$ otherwise is a mask enforcing causality.
 233

234 Similar to prior works (Von Oswald et al., 2023a; Ahn et al., 2023; Mahankali et al., 2023), we restrict
 235 our study to the analytically tractable setting of single-headed linear attention (Katharopoulos et al.,
 236 2020). Without loss of expressivity, we drop the projection matrix \mathbf{W}_O and consider the $\mathbf{W}_Q \mathbf{W}_K^\top$ as
 237 a single matrix $\mathbf{W}_{QK} \in \mathbb{R}^{p \times p}$. Since we’re working in the few-shot scenario, we’re concerned solely
 238 with predicting the final position as

$$\hat{\mathbf{s}}_T := \mathcal{T}_\theta(\mathbf{S})_t = \mathbf{s}_T + \frac{1}{T-1} \mathbf{W}_V^\top \sum_{i=1}^{T-1} \mathbf{s}_i \mathbf{s}_i^\top \mathbf{W}_{QK}^\top \mathbf{s}_T, \quad (6)$$

241 where we set $\tau = T - 1$ and omit the last sum element due to a token asymmetry discussed next.
 242

243 **Token construction.** We construct the tokens following the same scheme of Von Oswald et al.
 244 (2023a); Ahn et al. (2023); Mahankali et al. (2023). The input matrix \mathbf{Y}_0 constructed using $\text{AR}(s)$
 245 data (4) is

$$\mathbf{Y}_0 = \begin{bmatrix} \bar{\mathbf{y}}_1 & \bar{\mathbf{y}}_2 & \dots & \bar{\mathbf{y}}_{T-s-1} & \bar{\mathbf{y}}_{T-s} \\ y_{s+1} & y_{s+2} & \dots & y_{T-1} & 0 \end{bmatrix} = \begin{bmatrix} y_1 & y_2 & \dots & y_{T-s-1} & \dots & y_{T-s} \\ \vdots & \vdots & & \vdots & & \vdots \\ y_s & y_{s+1} & \dots & y_{T-2} & \dots & y_{T-1} \\ y_{s+1} & y_{s+2} & \dots & y_{T-1} & \dots & 0 \end{bmatrix}, \quad (7)$$

251 where $s \geq 1$ is the window size of the AR process. The last column represents the “test” token,
 252 whose final position is filled in the transformer’s forward pass by y_T ’s estimate \hat{y}_T . This asymmetry
 253 motivates the last term’s removal in (6).

254 Lemma 3.1 ensures, by construction, the existence of a linear attention layer producing \mathbf{Y}_0 from the
 255 raw sequence $\{y_t\}_t$. Its proof is deferred to Appendix C.1 due to space constraints.
 256

257 **Lemma 3.1.** *For a given $s \geq 1$, there exists an $s + 1$ -headed linear attention layer with positional
 258 encoding which transforms input sequences $[y_1, y_2, \dots, y_T]^\top$ into*

$$\begin{bmatrix} y_1 & y_2 & \dots & y_s & y_{s+1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ y_{T-s-1} & y_{T-s} & \dots & y_{T-2} & y_{T-1} \\ y_{T-s} & y_{T-s+1} & \dots & y_{T-1} & 0 \\ \hline & & & & \mathbf{0}_{T-s-1 \times s} \end{bmatrix}.$$

265 The latter are essentially equivalent to tokens (7).
 266

267 **Data distribution, loss function, and training paradigm.** We consider trajectories $\{y_i\}_{i=1}^T$
 268 sampled from systems of type (1), where each trajectory corresponds to different, fixed parameters \mathbf{A}
 269 and \mathbf{c} sampled from appropriate distributions, and \mathbf{x}_0 sampled from $\mathcal{N}(\mathbf{0}_d, \Sigma_{\mathbf{x}_0})$. Our assumptions
 on the distributions of \mathbf{A} and \mathbf{c} are

270 **Assumption 3.2** (LDS family). *The system matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ is sampled from a centrally symmetric*
 271 *distribution supported on $\{\mathbf{M} \in \mathbb{R}^{d \times d} \mid \rho(\mathbf{M}) \leq 1\}$, for which it holds that*

$$273 \quad \mathbb{P}(\{\mathbf{A} \mid \exists i, j \in [d], \text{ s.t. } \lambda_i(\mathbf{A}) = \lambda_j(\mathbf{A})\}) = 0. \quad (8)$$

274 *In other words, \mathbf{A} has a simple spectrum almost surely. The observation vector $\mathbf{c} \in \mathbb{R}^d$ is sampled*
 275 *independently, from a distribution that is absolutely continuous w.r.t. the Lebesgue measure over \mathbb{R}^d .*

277 Except for the central symmetry assumption, the requirements of Assumption 3.2 ensure that Assumption 3.1 holds w.p. 1 for every sampled LDS. The proof can be found in Appendix C.2. The central symmetry of \mathbf{A} 's distribution, on the other hand, is a technical requirement for proving our main result.

281 Data generation proceeds in two steps: we sample \mathbf{A} , \mathbf{c} , and \mathbf{x}_0 independently and observe the
 282 evolution of system (1) for T steps. Note the noises \mathbf{w}_t and \mathbf{v}_t in system (1) are jointly independent
 283 of \mathbf{A} , \mathbf{c} , and \mathbf{x}_0 . We then construct \mathbf{Y}_0 (7) for a fixed s , and train our model to minimize

$$284 \quad \mathcal{L}(\theta) := \mathbb{E}_{\mathbf{A}, \mathbf{c}, \mathbf{x}_0, \{\mathbf{w}_t\}_t, \{\mathbf{v}_t\}_t} \left[\frac{1}{2} (\mathcal{T}_\theta(\mathbf{Y}_0)_{s+1, T-s} - y_T)^2 \right], \quad (9)$$

286 where the subscript marks that we solely consider the last position of the last output token.

289 4 OPTIMAL PARAMETER CONFIGURATIONS

291 This section presents our theoretical results and discusses their implications relative to prior literature.

292 Our theoretical contribution is two-fold. First, in Lemma 4.1 we reveal a salient structure within the
 293 first-order optimality condition, which plays an important role in finding optimum configurations for
 294 the in-context loss of AR(s). Second, in Theorem 4.1 we prove that the transformer configuration
 295 implementing one-step GD is a global minimizer for AR(1) using this salient structure.

296 Unlike the i.i.d. case, each token generated by the LDS depends on the entire history. This results in
 297 high-order data moments populating the in-context loss, which can only be dealt with by unrolling to
 298 the initial state. A general approach to compute and match them is presented in Appendix D.3. We
 299 now describe the structure emerging within the first-order optimality condition.

300 Following (Ahn et al., 2023), we use basic algebraic manipulations (Appendix D.3) to rewrite loss (9)
 301 as

$$303 \quad \mathbb{E}_{\mathbf{A}, \mathbf{x}_0, \{\mathbf{w}_t\}_t, \{\mathbf{v}_t\}_t} \left[\left(\frac{1}{T-s-1} \sum_{k=1}^s \langle \mathbf{Y}_0 \mathbf{Y}_0^\top, \mathbf{b} \mathbf{a}_k^\top \rangle y_{T-s-1+k} - y_T \right)^2 \right], \quad (10)$$

306 where $\mathbf{W}_V^\top = [\mathbf{0}_{(s+1) \times s}, \mathbf{b}]^\top$ and $\mathbf{W}_{QK}^\top = [\mathbf{a}_1, \dots, \mathbf{a}_s, \mathbf{0}_{s+1}]$. The zero-padding of both matrices
 307 comes from predicting solely the last position of the final token. Consequently, parameters ensuring

$$309 \quad \mathbb{E}_{\mathbf{A}, \mathbf{x}_0, \{\mathbf{w}_t\}_t, \{\mathbf{v}_t\}_t} \left[\frac{1}{T-s-1} \sum_{k=1}^s \langle \mathbf{Y}_0 \mathbf{Y}_0^\top, \mathbf{b} \mathbf{a}_k^\top \rangle y_{T-s-1+k} y_{T-s-1+j} \mathbf{Y}_0 \mathbf{Y}_0^\top \right] \\ 310 \quad = \mathbb{E}_{\mathbf{A}, \mathbf{x}_0, \{\mathbf{w}_t\}_t, \{\mathbf{v}_t\}_t} [y_T y_{T-s-1+j} \mathbf{Y}_0 \mathbf{Y}_0^\top], \quad \forall j \in [s] \quad (11)$$

313 are critical points of the loss.

314 Notably, the right-hand side of (11) obeys a banded structure, as follows

$$316 \quad \begin{bmatrix} \star & 0 & \star & \cdots & \cdots & \end{bmatrix} \quad \text{for odd } s+j; \quad \text{or} \quad \begin{bmatrix} 0 & \star & 0 & \cdots & \cdots & \end{bmatrix} \quad \text{for even } s+j; \\ 317 \quad \begin{bmatrix} 0 & \star & 0 & \star & & \vdots \\ \vdots & \star & \ddots & \ddots & \ddots & \vdots \\ \star & 0 & \star & \ddots & \ddots & \vdots \\ \vdots & \star & \ddots & \ddots & \ddots & \star \\ \vdots & \ddots & \ddots & \ddots & \star & 0 \\ \cdots & \cdots & \star & 0 & \star & \end{bmatrix} \\ 318 \quad \begin{bmatrix} \star & 0 & \star & \ddots & \ddots & \vdots \\ 0 & \star & 0 & \star & & \vdots \\ \vdots & \star & \ddots & \ddots & \ddots & \vdots \\ \star & 0 & \star & \ddots & \ddots & \vdots \\ \vdots & \star & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \star & 0 \\ \cdots & \cdots & \star & 0 & \star & \end{bmatrix} \\ 319 \quad \begin{bmatrix} 0 & \star & 0 & \cdots & \cdots & \vdots \\ \star & 0 & \star & 0 & & \vdots \\ 0 & \star & 0 & \ddots & \ddots & \vdots \\ \vdots & 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 & \star \\ \cdots & \cdots & \cdots & 0 & \star & 0 \end{bmatrix} \\ 320 \quad \begin{bmatrix} 0 & \star & 0 & \cdots & \cdots & \vdots \\ \star & 0 & \star & 0 & & \vdots \\ 0 & \star & 0 & \ddots & \ddots & \vdots \\ \vdots & 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 & \star \\ \cdots & \cdots & \cdots & 0 & \star & 0 \end{bmatrix} \\ 321 \quad \begin{bmatrix} 0 & \star & 0 & \cdots & \cdots & \vdots \\ \star & 0 & \star & 0 & & \vdots \\ 0 & \star & 0 & \ddots & \ddots & \vdots \\ \vdots & 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 & \star \\ \cdots & \cdots & \cdots & 0 & \star & 0 \end{bmatrix} \\ 322 \quad \begin{bmatrix} 0 & \star & 0 & \cdots & \cdots & \vdots \\ \star & 0 & \star & 0 & & \vdots \\ 0 & \star & 0 & \ddots & \ddots & \vdots \\ \vdots & 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 & \star \\ \cdots & \cdots & \cdots & 0 & \star & 0 \end{bmatrix} \\ 323 \quad \begin{bmatrix} 0 & \star & 0 & \cdots & \cdots & \vdots \\ \star & 0 & \star & 0 & & \vdots \\ 0 & \star & 0 & \ddots & \ddots & \vdots \\ \vdots & 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 & \star \\ \cdots & \cdots & \cdots & 0 & \star & 0 \end{bmatrix} \quad (12)$$

324 where \star is a placeholder for arbitrary reals (the proof is deferred to Appendix D.3). We formalize a
 325 class of parameters ensuring matching structures between the left and right-hand sides of (12) for
 326 arbitrary s in Lemma 4.1.

327 **Lemma 4.1.** *For an arbitrary s , the following parameters induce a banded structure in the left-hand
 328 side of (11) matching that of the right-hand side.*

$$330 \quad \mathbf{W}_{QK} = \begin{bmatrix} \star & 0 & \star & \cdots & \\ 0 & \star & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 & \star \\ 0 & \cdots & 0 & \star & 0 \\ 0 & \cdots & \cdots & 0 & 0 \end{bmatrix}, \quad \mathbf{W}_V = \begin{bmatrix} 0 & \cdots & \cdots & 0 & \vdots \\ \vdots & & & \vdots & 0 \\ \vdots & & & \vdots & \star \\ \vdots & & & \vdots & 0 \\ 0 & \cdots & \cdots & 0 & \star \end{bmatrix}. \quad (13)$$

337 Lemma 4.1 can be understood as a narrowing-down based on structure of the parameter class likely
 338 to hold minimizers of (9).

340 Our second step is to use structure (13) to identify a global minimizer of loss (9) in the AR(1) case,
 341 yielding Theorem 4.1 with proof deferred to Appendix D.4.

342 **Theorem 4.1.** *Let \mathbf{Y}_0 encode the input tokens according to construction (7) for $s = 1$. Then, the
 343 optimal parameters $\theta^* = (\mathbf{W}_{QK}^*, \mathbf{W}_V^*)$ of a single linear self-attention layer with respect to loss
 344 $\mathcal{L}(\theta)$ are*

$$346 \quad \mathbf{W}_{QK}^* = \begin{bmatrix} \frac{(T-2)\mathbb{E}_{\mathbf{A}, \mathbf{x}_0, \{\mathbf{w}_t\}_t, \{\mathbf{v}_t\}_t} [\sum_{i=1}^{T-2} y_i y_{i+1} y_{T-1} y_T]}{\mathbb{E}_{\mathbf{A}, \mathbf{x}_0, \{\mathbf{w}_t\}_t, \{\mathbf{v}_t\}_t} [\sum_{i=1}^{T-2} y_i y_{i+1} \sum_{r=1}^{T-2} y_r y_{r+1} y_{T-1}^2]} & 0 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{W}_V^* = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad (14)$$

349 up to rescaling with $\gamma \neq 0$.

351 Broadly, the proof of Theorem 4.1 encounters two difficulties compared to the i.i.d. case: the number
 352 of terms that need to be matched in satisfying the first-order optimality condition, and the full-history
 353 dependence of the data. We address the first obstacle using the result of Lemma 4.1, and we sift
 354 through the second by relying on Isserlis' theorem (Isserlis, 1918) to handle higher-order moments of
 355 \bar{y}_t that would have factored out of expectations in the i.i.d. case. Details can be found in Appendix
 356 D.3.

357 Notably, a forward pass using the optimal parameters (14) amounts to the prediction given after one
 358 GD step on $\mathcal{L}_{AR(1)}(w)$ starting from $w_0 = 0$. We thus recover the ICL-as-optimization view upheld
 359 by works in the i.i.d. setting (Ahn et al., 2023; Mahankali et al., 2023) but for LDS-produced data.

361 4.1 DISCUSSION

363 To our knowledge, the only other architecture proposed for handling noisy observations y_t of
 364 type (1) is given by Cole et al. (2025). Theirs is part of a proof of existence by construction
 365 and, as such, is not accompanied by confirming experimental evidence. Different from us, they
 366 propose an attention-only transformer that unrolls a *modified Richardson iteration* meant to estimate
 367 $\left(\frac{1}{T} \sum_{t=1}^T \mathbf{x}_{t+1} \mathbf{x}_t^\top\right) \left(\frac{1}{T} \sum_{i=1}^T \mathbf{x}_i \mathbf{x}_i^\top\right)^{-1}$ for a simpler LDS with direct state access. Their construction
 368 extends to the setting of objective (4) via the work of Tsiamis & Pappas (2019), who give a high
 369 probability result for the existence of $\left(\sum_{t=1}^{T-s-1} \bar{y}_t \bar{y}_t^\top\right)^{-1}$ under our assumptions. However, their
 370 transformer has a minimum of two layers, of which the first is fixed, therefore providing no guarantee
 371 that training will recover it. Our results take a first step towards filling this gap.

372 Tangentially, Akram & Vikalo (2024) construct a transformer emulating the KF, contingent on
 373 knowledge of the system parameters and an elaborate token augmentation scheme. While this
 374 architecture is capable of computing the forward KF observation \hat{y}_T , it relies on ideal knowledge of
 375 LDS (1) which is rarely encountered in practice.

377 Theorem 4.1 sets forth a plausible hypothesis for prior experiments (Du et al., 2023, Fig. 2) using a
 378 GPT-2 architecture trained autoregressively with data (1) for stable $\mathbf{A} \in \mathbb{S}_{++}^d$. Their results highlight

Figure 1: Experimental results for AR(1-3) tokens showing the optimally-trained attention parameters.

the transformer’s competitive performance relative to the KF for predicting the next observation of a previously unseen sequence, in-context. These experiments suggest an implicit form of system identification might be executed in context, though the mechanism remains unstudied. Through the ICL-as-optimization lens, we can interpret the high accuracy of GPT-2’s in-context predictions as a possible consequence of Theorem 2 of (Kozdoba et al., 2019). Importantly, the latter result implies that for an arbitrary, finite family S of LDSs (1) and an $\varepsilon > 0$, there exists a window-length $s(\varepsilon)$ such that the optimal $\text{AR}(s(\varepsilon))$ predictor incurs an average error that is at least as good, up to ε , as that of the forward observation prediction \hat{y}_{t+1} of the best KF in S . Our results take the first step in the exploration of this hypothesis.

5 EXPERIMENTS

We now present numerical evidence supporting our theory. All experiments were implemented in Python 3.12 and run on a ThinkPad T14p with 32 GB RAM and a 22-core Intel Core™ Ultra 9 185H processor. The code is provided as part of the supplementary material.

We train architecture (6) on sequences $\{y_t\}_{t=1}^T$, $T = 30$, each sampled from a different LDS of type (1) with a hidden state dimension $d = 5$. The number of training iterations is 8000 for all cases with a increase of the batch size for every increase in order starting from 3000 for AR(1). A fresh batch of LDSs is sampled at every iteration (i.e., online setting). **The experiments are done with the following 4 settings.**

432 (a) For each sequence, sample A 's diagonal entries uniformly at random in the interval $[-1, 1]$
 433 and set $c = \mathbf{1}_d$. The noise covariances are set to $\Sigma_w = 1e-2 \mathbf{I}$ and $\sigma_v^2 = 1e-2$. The
 434 results are depicted in Figure 1 for AR(1–3) tokens, with experiments for AR(4) deferred to
 435 Figure 2 in Appendix B.

436 (b) For each sequence, sample $v \sim \text{Unif}([-1, 1]^d)$, independently sample $Q \sim \text{Haar}(O(d))$
 437 and set $A = Q^\top \text{diag}(v)Q$. We also independently sample $c \sim \text{Unif}([-5, 5]^d)$. The noise
 438 covariances are set to $\Sigma_w = 1e-2 \mathbf{I}$ and $\sigma_v^2 = 1e-2$. Experiments for AR(1–4)- tokens
 439 are provided in Figure 4 in Appendix B.4.

440 (c) For each sequence, sample $v \sim \text{Unif}([-1, 1]^d)$, sample $P = [p_{i,j}]_{i,j=1}^d$ by sampling $p_{i,j}$
 441 i.i.d. from $\mathcal{U}([-1, 1])$, and set $A = P^{-1} \text{diag}(v)P$. Sample $c \sim \text{Unif}([-5, 5]^d)$. The noise
 442 covariances are set to $\Sigma_w = 1e-2 \mathbf{I}$ and $\sigma_v^2 = 1e-2$. Experiments for AR(1–4)- tokens
 443 are provided in Figure 6 in Appendix B.6.

444 (d) For each sequence, sample $v \sim \text{Unif}([-1, 1]^d)$, sample $Q \sim \text{Haar}(O(d))$ and set $A =$
 445 $Q^\top \text{diag}(v)Q$. Sample $c \sim \text{Unif}([-5, 5]^d)$. Fix the process noise covariance to $\Sigma_w =$
 446 $Q_w^\top \text{diag}(1e-2 \cdot [0.8, 0.85, 0.9, 0.95, 1.0])Q_w$, where Q_w is an orthogonal matrix. Set
 447 $\sigma_v^2 = 1e-2$. Experiments AR(1–4)- tokens are provided in Figure 5 in Appendix B.5.

451 All the settings above have $x_0 \sim \mathcal{N}(0, \sigma_0^2 \mathbf{I})$, $\sigma_0^2 = 1e-2$. Note that we could have used any other
 452 centrally symmetric distribution with marginals supported on $[-1, 1]$ for the sampling of the diagonal
 453 v , e.g., $\text{Unif}(\mathbb{S}^{d-1})$ — uniform on the unit sphere; $\text{Unif}(\{x \in \mathbb{R}^d : \|x\|_2 \leq 1\})$ — uniform inside
 454 the unit ball, etc. We prove these sampling schemes obey Assumption 3.2 in Appendix E.1. We use
 455 window-sizes s ranging from 1 to 4, with results being averaged over 3 random seeds. The weights
 456 are learned using AdamW (Loshchilov & Hutter, 2017) with gradient clipping and a learning rate
 457 schedule consisting of a linear warm-up phase followed by cosine annealing (Loshchilov & Hutter,
 458 2016). A full list of hyperparameters is provided in Tables 1 and 2 of Appendix B.

459 Figure 1 depicts the experiment results under setting (a), Figure 4 setting (b), Figure 5 setting (c) and
 460 Figure 6 setting (d). Figure 1 (b,c), Figure 4 (b,c), Figure 5 (b,c) and Figure 6 (b,c) show an optimum
 461 conforming to Theorem 4.1 for AR(1) tokens. Moreover, Figure 1 (e,f,h,i), Figure 2 (b,c), Figure 4
 462 (e,f,h,i,k,l) and Figure 6 (e,f,h,i) confirm experimentally the pattern uncovered by Lemma 4.1 for
 463 general $s > 0$. Furthermore, we provide experiments in setting (a) showing that the weights converge
 464 to the sparsity pattern predicted by Lemma 4.1 in terms of the Jaccard distance between the non-zero
 465 supports — experimental details are given in Appendix B.3 and results are depicted in Figure 3 of the
 466 appendix.

467 **Interpreting of the sparsity pattern for AR(s) $s \geq 2$.** A quick calculation of the forward pass
 468 reveals that weights trained to optimality with AR(s) tokens (7) for $s \geq 2$ do not implement standard
 469 GD in the forward pass, but an iteration resembling that of the Preconditioned Conjugate Gradient
 470 method (PCG) (Shewchuk et al., 1994), as follows.

471 Since our sampling scheme ensures $\rho(A) < 1$ w.p. one, the stochastic process $\{y_t\}_t$ approaches
 472 stationarity exponentially fast, meaning that autocorrelations become (almost) solely dependent on
 473 lag, i.e., $\mathbb{E}[y_t y_{t+k}] \approx \gamma(k)$, $\forall t \in \mathbb{N}_+$. In particular, the empirical counterparts become approxi-
 474 mately equal $\frac{1}{T-s-1} \sum_{i=1}^{T-s-1} y_i y_{i+k} \approx \frac{1}{T-s-1} \sum_{i=1}^{T-s-1} y_{i+p} y_{i+p+k} \approx \hat{\gamma}(k)$. We can therefore
 475 approximate $\frac{1}{T-s-1} \mathbf{Y}_0 \mathbf{Y}_0^\top$ with the symmetric Toeplitz matrix and remark it has a block structure
 476 involving $\nabla^2 \mathcal{L}_{AR(s)}$ (a constant matrix) and $\nabla \mathcal{L}_{AR(s)}(\mathbf{0})$ (the gradient at $w = \mathbf{0}$)

$$477 \frac{1}{T-s-1} \mathbf{Y}_0 \mathbf{Y}_0^\top \approx \begin{bmatrix} \hat{\gamma}(0) & \hat{\gamma}(1) & \cdots & \hat{\gamma}(s) \\ \hat{\gamma}(1) & \hat{\gamma}(0) & \cdots & \hat{\gamma}(s-1) \\ \vdots & \vdots & \ddots & \vdots \\ \hat{\gamma}(s) & \hat{\gamma}(s-1) & \cdots & \hat{\gamma}(0) \end{bmatrix} = \begin{bmatrix} \nabla^2 \mathcal{L}_{AR(s)} & \nabla \mathcal{L}_{AR(s)}(\mathbf{0}) \\ \nabla \mathcal{L}_{AR(s)}(\mathbf{0})^\top & \hat{\gamma}(0) \end{bmatrix}. \quad (15)$$

478 Using expression (15) and the parameter structure from Lemma 4.1 and the experiments, we rewrite
 479 the transformer's forward pass in a manner that highlights the resemblance with two steps of the PCG
 480 method. We describe the case for even s , with identical reasoning applying for the odd case. Let

486 $s = 2k$, $k \in \mathbb{N}$ and $N = \frac{(s+1)^2+1}{2}$. Then, the weight matrices belonging to $\mathbb{R}^{s+1 \times s+1}$ are
 487

$$488 \quad \mathbf{W}_{\mathbf{QK}} = \left[\begin{array}{cc|cc|c} c_1 & 0 & c_2 & \cdots & c_{k+1} \\ 0 & c_{k+2} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & c_{N-2k} & 0 & \cdots & 0 \\ \hline 0 & 0 & \cdots & 0 & 0 \end{array} \right] \quad \mathbf{W}_{\mathbf{V}} = \left[\begin{array}{cc|c} 0 & \cdots & 0 & c_{N-k} \\ 0 & \cdots & 0 & 0 \\ 0 & \cdots & 0 & c_{N-k+1} \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & 0 \\ \hline 0 & \cdots & 0 & c_N \end{array} \right]. \quad (16)$$

496 Renaming the top left $s \times s$ block of $\mathbf{W}_{\mathbf{QK}}$ as \mathbf{P} , the top-right $s \times 1$ block as \mathbf{p} , and the top right
 497 $s \times 1$ block of $\mathbf{W}_{\mathbf{V}}$ as \mathbf{q} , the transformer-induced linear predictor $\frac{1}{T-s-1} \mathbf{W}_{\mathbf{QK}} \mathbf{Y}_0 \mathbf{Y}_0^\top \mathbf{W}_{\mathbf{V},:s+1}$ is
 498

$$499 \quad \mathbf{P} \nabla^2 \mathcal{L}_{AR(s)} \mathbf{q} + (\mathbf{p} \mathbf{q}^\top + c_N \mathbf{P}) \nabla \mathcal{L}_{AR(s)}(0) + c_N \hat{\gamma}_0 \mathbf{p}$$

500 Letting $\mathbf{P}' := \Gamma \nabla^2 \mathcal{L}_{AR(s)}$ with $\Gamma := \frac{c_N \hat{\gamma}_0 \mathbf{p} \mathbf{q}^\top}{\mathbf{q}^\top \nabla^2 \mathcal{L}_{AR(s)} \mathbf{q}}$ and observing that $c_N \hat{\gamma}_0 \mathbf{p} = \mathbf{P}' \nabla^2 \mathcal{L}_{AR(s)} \mathbf{q}$
 501 (see Appendix E.3), the transformer-induced predictor finally rewrites as
 502

$$503 \quad (\Gamma \nabla^2 \mathcal{L}_{AR(s)} + \mathbf{P}) \nabla^2 \mathcal{L}_{AR(s)} \mathbf{q} + (\mathbf{p} \mathbf{q}^\top + c_N \mathbf{P}) \nabla \mathcal{L}_{AR(s)}(0). \quad (17)$$

504 Expression (17) resembles the predictor obtained after two PCG steps (Shewchuk et al., 1994, p.
 505 51) on loss $\mathcal{L}_{AR(s)}$ with preconditioner \mathbf{P}^{-1} starting from $\mathbf{w}_0 = \mathbf{0}$ and initial conjugate direction
 506 $\mathbf{d}_0 = \mathbf{q}$ (algorithm deferred to Appendix E.2). Note that \mathbf{P}' 's invertibility is assumed. The resulting
 507 predictor is
 508

$$509 \quad \mathbf{w}_2 = \left[\tau_1 \nabla^2 \mathcal{L}_{AR(s)}^{-1} - \tau_2 \mathbf{P} \right] \nabla^2 \mathcal{L}_{AR(s)} \mathbf{q} + \tau_3 \mathbf{P} \nabla \mathcal{L}_{AR(s)}(0) \\ 510 \quad \approx [2\tau_1 \mathbf{I} - \tau_1 \nabla^2 \mathcal{L}_{AR(s)} - \tau_2 \mathbf{P}] \nabla^2 \mathcal{L}_{AR(s)} \mathbf{q} + \tau_3 \mathbf{P} \nabla \mathcal{L}_{AR(s)}(0)$$

511 where $\tau_1, \tau_2, \tau_3 \in \mathbb{R}$ are iteration-dependent constants (see Appendix E.2), and we used an order-one
 512 Neumann series approximation of the Hessian inverse. The latter was shown to exist with high
 513 probability for sufficiently large T by Tsiamis & Pappas (2019). Notably, this AR(s) analogy is in
 514 harmony with the plain GD step observed for AR(1), since PCG collapses to GD when covariates
 515 belong to \mathbb{R} .
 516

517 6 CONCLUSION, LIMITATIONS, FUTURE DIRECTIONS

518 This paper presented the first steps towards characterizing the optimal configuration of a single
 519 self-attention layer trained with LDS-produced data and its ability to learn in context. We sketched
 520 a path forward by leveraging results from the literature on improper learning approaches to system
 521 identification, whereby autoregressive processes can well-approximate Kalman filters given a suffi-
 522 cient window size. Using this starting point, we showed that for a length-one window, the optimal
 523 attention layer implements a step of GD on the context-induced autoregressive loss. Furthermore,
 524 we narrowed down the class of potential minimizers based on a structural property of the optimality
 525 condition, which we confirmed through experiments. We also reveal that for a length- s window, the
 526 trained attention layer approximates a step of PCG on the corresponding autoregressive loss.
 527

528 Due to the difficulties induced by correlated data, several limitations remain: establishing optimality
 529 for $s \geq 2$ by searching for optima within the structured class of parameters of Lemma 4.1; explaining
 530 the non-standard initialization of the conjugate direction in the AR(s), $s \geq 2$ PCG approximation;
 531 and finally, extending this analysis to autoregressive pretraining objectives. Our present contributions
 532 provide the necessary building blocks for addressing these directions in future work.
 533

540 REFERENCES
541

542 Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
543 preconditioned gradient descent for in-context learning. *Advances in Neural Information Processing
544 Systems*, 36:45614–45650, 2023.

545 Usman Akram and Haris Vikalo. Can transformers in-context learn behavior of a linear dynamical
546 system?, 2024. URL <https://arxiv.org/abs/2410.16546>.

547 Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
548 rithm is in-context learning? investigations with linear models. *arXiv preprint arXiv:2211.15661*,
549 2022.

550 Peter Beim Graben, Bryan Jurish, Douglas Saddy, and Stefan Frisch. Language processing by
551 dynamical systems. *International Journal of Bifurcation and Chaos*, 14(02):599–621, 2004.

552 David Belanger and Sham Kakade. A linear dynamical system model for text. In *International
553 Conference on Machine Learning*, pp. 833–842. PMLR, 2015.

554 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
555 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
556 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

557 Frank Cole, Yulong Lu, Tianhao Zhang, and Yuxuan Zhao. In-context learning of linear dynamical
558 systems with transformers: Error bounds and depth-separation. *arXiv preprint arXiv:2502.08136*,
559 2025.

560 Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
561 Zhiyong Wu, Tianyu Liu, et al. A survey on in-context learning. *arXiv preprint arXiv:2301.00234*,
562 2022.

563 Zhe Du, Haldun Balim, Samet Oymak, and Necmiye Ozay. Can transformers learn optimal filtering
564 for unknown systems? *IEEE Control Systems Letters*, 7:3525–3530, 2023.

565 Jeffrey L Elman. Language as a dynamical system. 1995.

566 Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
567 in-context? a case study of simple function classes. *Advances in Neural Information Processing
568 Systems*, 35:30583–30598, 2022.

569 Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
570 Papailiopoulos. Looped transformers as programmable computers. In *International Conference on
571 Machine Learning*, pp. 11398–11442. PMLR, 2023.

572 Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
573 networks. In *Proceedings of the thirteenth international conference on artificial intelligence and
574 statistics*, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

575 Gautam Goel and Peter Bartlett. Can a transformer represent a kalman filter? In *6th Annual Learning
576 for Dynamics & Control Conference*, pp. 1502–1512. PMLR, 2024.

577 James D Hamilton. Time series analysis, 1995.

578 P Jeff Harrison. Convergence and the constant dynamic linear model. *Journal of Forecasting*, 16(5):
579 287–292, 1997.

580 Leon Isserlis. On a formula for the product-moment coefficient of any order of a normal frequency
581 distribution in any number of variables. *Biometrika*, 12(1/2):134–139, 1918.

582 Paul Jaccard. Étude comparative de la distribution florale dans une portion des alpes et des jura. *Bull
583 Soc Vaudoise Sci Nat*, 37:547–579, 1901.

584 Hui Jiang. A latent space theory for emergent abilities in large language models. *arXiv preprint
585 arXiv:2304.09960*, 2023.

594 Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.
 595

596 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
 597 Fast autoregressive transformers with linear attention. In *International conference on machine
 598 learning*, pp. 5156–5165. PMLR, 2020.

599 Mark Kozdoba, Jakub Marecek, Tigran Tchrakian, and Shie Mannor. On-line learning of linear dy-
 600 namical systems: Exponential forgetting in kalman filters. In *Proceedings of the AAAI Conference
 601 on Artificial Intelligence*, volume 33, pp. 4098–4105, 2019.

602

603 Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
 604 Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
 605 processing. *ACM computing surveys*, 55(9):1–35, 2023.

606

607 Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. *arXiv
 608 preprint arXiv:1608.03983*, 2016.

609

610 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
 611 arXiv:1711.05101*, 2017.

612

613 Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is
 614 provably the optimal in-context learner with one layer of linear self-attention. *arXiv preprint
 615 arXiv:2307.03576*, 2023.

616

617 Thomas P Minka. From hidden markov models to linear dynamical systems. Technical report,
 618 Citeseer, 1999.

619

620 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 621 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

622

623 H. L. Royden and P. M. Fitzpatrick. *Real Analysis*. Prentice Hall, 4th edition, 2010. ISBN 978-
 624 0131437470.

625

626 Michael E Sander and Gabriel Peyré. Towards understanding the universality of transformers for
 627 next-token prediction. *arXiv preprint arXiv:2410.03011*, 2024.

628

629 Michael E Sander, Raja Giryes, Taiji Suzuki, Mathieu Blondel, and Gabriel Peyré. How do trans-
 630 formers perform in-context autoregressive learning? *arXiv preprint arXiv:2402.05787*, 2024.

631

632 Lingfeng Shen, Aayush Mishra, and Daniel Khashabi. Do pretrained transformers learn in-context
 633 by gradient descent? *arXiv preprint arXiv:2310.08540*, 2023.

634

635 Jonathan Richard Shewchuk et al. An introduction to the conjugate gradient method without the
 636 agonizing pain. 1994.

637

638 Whitney Tabor, Christopher Juliano, and Michael Tenenhaus. A dynamical system for language
 639 processing. In *Proceedings of the Annual Meeting of the Cognitive Science Society*, volume 18,
 640 1996. URL <https://escholarship.org/uc/item/78r6h0cg>.

641

642 Anastasios Tsiamis and George J Pappas. Finite sample analysis of stochastic system identification.
 643 In *2019 IEEE 58th Conference on Decision and Control (CDC)*, pp. 3648–3654. IEEE, 2019.

644

645 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 646 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
 647 systems*, 30, 2017.

648

649 Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
 650 Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
 651 *International Conference on Machine Learning*, pp. 35151–35174. PMLR, 2023a.

652

653 Johannes Von Oswald, Maximilian Schlegel, Alexander Meulemans, Seijin Kobayashi, Eyvind
 654 Niklasson, Nicolas Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Max Vladymyrov, et al.
 655 Uncovering mesa-optimization algorithms in transformers. *arXiv preprint arXiv:2309.05858*,
 656 2023b.

648 Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large language
649 models are latent variable models: Explaining and finding good demonstrations for in-context
650 learning. *Advances in Neural Information Processing Systems*, 36:15614–15638, 2023.
651

652 Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. *Advances in
653 Neural Information Processing Systems*, 36:36637–36651, 2023.
654

655 Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
656 learning as implicit bayesian inference. *arXiv preprint arXiv:2111.02080*, 2021.
657

658 Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
659 *Journal of Machine Learning Research*, 25(49):1–55, 2024.
660

661 Chenyu Zheng, Wei Huang, Rongzhen Wang, Guoqiang Wu, Jun Zhu, and Chongxuan Li. On
662 mesa-optimization in autoregressively trained transformers: Emergence and capability. *Advances
663 in Neural Information Processing Systems*, 37:49081–49129, 2024.
664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A LLM USAGE DISCLOSURE**
703704 LLMs were used in elaborating this paper as follows:
705706

- 707 • Finding related work.
708 • Computing the result of polynomial multiplications.
709 • Generating LaTeX tables and tikz figures.
710 • Transferring proofs from pen-and-paper format into LaTeX automatically using the online
711 tool Manus <https://manus.im/>.

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **B EXPERIMENTS — FURTHER DETAILS**
757758 **B.1 HYPERPARAMETERS**
759760 Below are the full details of the training procedure described in Section 5.
761762 Table 1: Training hyperparameters of settings (a), (b) and (d) in Section 5
763

764 Hyperparameter	765 Value
766 Weight initialization	Xavier normal distribution (Glorot & Bengio, 2010) with 767 gain = $1e-5$
768 Optimizer	AdamW (Loshchilov & Hutter, 2017) with $\beta_1 = 0.98$ for 769 AR(1), 0.92 for AR(2), 0.10 for AR(3), 0.76 for AR(4), 770 $\beta_2 = 0.99$ for AR(1), 0.96 for AR(2), 0.55 for AR(3), 0.88 for AR(4), $\epsilon = 1e-9$
771 Weight decay	5e-3 for AR(2), AR(4) and 1e-2 for AR(1), AR(3)
772 Learning rate (i.e., max. val.)	2e-2 for AR(1), 3e-2 for AR(2), 9e-2 for AR(3), 9e-2 for AR(4)
773 Min. learning rate	1e-4
774 Linear warmup	800 iter.
775 Decay schedule	Cosine annealing (Loshchilov & Hutter, 2016)
776 Max. decay steps	7200 iter.
777 Max. grad norm (clipping)	300
778 Random seeds	{666013, 1, 0}
779 Batch size / iter.	3000 for AR(1), 4000 for AR(2), 8000 for AR(3), 16000 for AR(4)
780 Total iter.	8001

785 Table 2: Training hyperparameters of setting (c) in Section 5
786

787 Hyperparameter	788 Value
789 Weight initialization	Xavier normal distribution (Glorot & Bengio, 2010) with 790 gain = $1e-5$
791 Optimizer	AdamW (Loshchilov & Hutter, 2017) with $\beta_1 = 0.98$ for 792 AR(1), 0.92 for AR(2), 0.92 for AR(3), $\beta_2 = 0.99$ for 793 AR(1), 0.96 for AR(2), 0.96 for AR(3), $\epsilon = 1e-9$
794 Weight decay	5e-3 for AR(2) and 1e-2 for AR(1), AR(3)
795 Learning rate (i.e., max. val.)	3e-3 for AR(1), 5e-3 for AR(2), 7e-3 for AR(3)
796 Min. learning rate	1e-5
797 Linear warmup	800 iter.
798 Decay schedule	Cosine annealing (Loshchilov & Hutter, 2016)
799 Max. decay steps	7200 iter.
800 Max. grad norm (clipping)	300
801 Random seeds	{666013, 1, 0}
802 Batch size / iter.	3000 for AR(1), 4000 for AR(2), 8000 for AR(3)
803 Total iter.	8001

810 B.2 EXPERIMENTS FOR LARGER WINDOW SIZES
811822 Figure 2: Experimental results for various token configurations AR(4) showing the optimal attention parameters.
823824 B.3 is NEW ADDED
825826 B.3 EXPERIMENTS SHOWING CONVERGENCE TO THE CHECKERBOARD PATTERN DURING
827 TRAINING

830 This set of experiments serves to illustrate that parameters W_{QK} and W_V converge to the checker-
831 board pattern across iterations. Since the non-zero values of these parameters are of different
832 magnitudes and we do not have their theoretical expressions for window-sizes greater than 1, we
833 shall only consider their non-zero support, as follows.

834 **Definition B.1.** For a matrix $M \in \mathbb{R}^{d \times m}$, its support is defined as the collection of positions
835 corresponding to non-zero values

$$836 \text{supp}(M) := \{(i, j) \in [d] \times [m] \mid a_{i,j} \neq 0\}. \quad (18)$$

838 Additionally, the support-induced mask is a binary matrix with unit entries on the support

$$839 \text{mask}(M) := \left[\mathbf{1}_{(i,j) \in \text{supp}(M)} \right]_{i,j=1}^{i=d, j=m} \quad (19)$$

842 where $\mathbf{1}_C = 1$ if condition C is true and 0 otherwise, is the indicator function centered at z .

844 We rely on the Jaccard distance (Jaccard, 1901) adapted to binary matrices A, B

$$845 \text{d}_{\text{Jac}}(A, B) := 1 - \frac{\sum_{i,j} a_{i,j} b_{i,j}}{\sum_{i,j} \max\{a_{i,j}, b_{i,j}\}} \quad (20)$$

848 to track whether the support-induced masks of our parameters during training converge to the predicted
849 (for AR(1)) or hypothesized (for AR(s) $s \geq 2$) sparsity patterns of Lemma 4.1. Our experiments
850 employ a tolerance level of $1e-1$ when computing the masks of W_V and W_{QK} , meaning that any
851 entry below this value is considered zero. The results are depicted in Figure 3 and its subplots for
852 varying window sizes, where M_{QK}^{true} and M_V^{true} represent the masks posited in Lemma 4.1 for a null
853 tolerance level. The illustrations empirically confirm that our parameters' supports converge to the
854 ones identified in Lemma 4.1.

855
856
857
858
859
860
861
862
863

Figure 3: The experiment results of the Jaccard distance between the \mathbf{M}_{QK}^{true} and \mathbf{W}_{QK} and the Jaccard distance between the \mathbf{M}_V^{true} and \mathbf{W}_V for AR(1–4). Both converge to 0 at the end of the training.

918 B.4 is NEW ADDED
919920 B.4 EXPERIMENTS WITH NON-DIAGONAL, SYMMETRIC \mathbf{A} , RANDOM \mathbf{c} AND ISOTROPIC Σ_w
921922 The LDS which generates the training data is as follows. For each sequence, sample $\mathbf{d} \sim$
923 $\text{Unif}([-1, 1]^d)$, sample $\mathbf{Q} \sim \text{Haar}(O(d))$ and set $\mathbf{A} = \mathbf{Q}^\top \text{diag}(\mathbf{d}) \mathbf{Q}$. Sample $\mathbf{c} \sim \text{Unif}([-5, 5]^d)$.
924 The noise covariances are set to $\Sigma_w = 1e-2 \mathbf{I}$ and $\sigma_v^2 = 1e-2$.
925967 Figure 4: Experimental results for AR(1–4) with non-diagonal, symmetric \mathbf{A} , random \mathbf{c} and isotropic Σ_w , which
968 align with the Lemma 4.1.
969

970

971 B.5 is NEW ADDED

B.5 EXPERIMENTS WITH NON-DIAGONAL, NON-SYMMETRIC A , RANDOM c AND NON-DIAGONAL Σ_w

The LDS which generates the training data is as follows. For each sequence, sample $\mathbf{d} \sim \text{Unif}([-1, 1]^d)$; sample $\mathbf{Q} \sim \text{Haar}(O(d))$ and set $\mathbf{A} = \mathbf{Q}^\top \text{diag}(\mathbf{d}) \mathbf{Q}$; sample $\mathbf{c} \sim \text{Unif}([-5, 5]^d)$. Set the process noise covariance $\Sigma_w = \mathbf{Q}_w^\top \text{diag}(1e-2 \cdot [0.8, 0.85, 0.9, 0.95, 1.0]) \mathbf{Q}_w$, where \mathbf{Q}_w is an orthogonal matrix. Set $\sigma_v^2 = 1e-2$.

Figure 5: Experimental results for AR(1) with non-diagonal, non-symmetric \mathbf{A} , random \mathbf{c} and non-diagonal Σ_w , which align with the Lemma 4.1.

B.6 is NEW ADDED

B.6 EXPERIMENTS WITH NON-DIAGONAL, NON-SYMMETRIC A , RANDOM c AND ISOTROPIC Σ_w

The LDS which generates the training data is as follows.

For each sequence, sample $\mathbf{d} \sim \text{Unif}([-1, 1]^d)$, sample $\mathbf{P} = [p_{i,j}]_{i,j=1}^d$ by sampling $p_{i,j}$ i.i.d. from $\mathcal{U}([-1, 1])$, and set $\mathbf{A} = \mathbf{P}^{-1} \text{diag}(\mathbf{d}) \mathbf{P}$. Sample $\mathbf{c} \sim \text{Unif}([-5, 5]^d)$. The noise covariances are set to $\Sigma_w = 1e-2 \mathbf{I}$ and $\sigma_v^2 = 1e-2$.

In practice, we need to guarantee \mathbf{P} is well conditioned. After sampling $p_{i,j}$ i.i.d. from $\mathcal{U}([-1, 1])$, we decompose $\mathbf{P} = \mathbf{Q}\mathbf{R}$, where \mathbf{P} is an orthogonal matrix and \mathbf{R} is an upper-triangle matrix. We modify the diagonals of \mathbf{R} manually to make sure $\frac{\max_i R_{ii}}{\min_i R_{ii}} = 2$ and right multiply \mathbf{Q} with the modified \mathbf{R} to have the well conditioned \mathbf{P} .

Figure 6: Experimental results for AR(1-3) with non-diagonal, non-symmetric \mathbf{A} , random \mathbf{c} and isotropic Σ_w , which align with the Lemma 4.1.

1080 **C SECTION 3 PROOFS**
 1081

1082 **C.1 PROOF OF TOKEN CONSTRUCTION LEMMA**
 1083

1084 **Lemma 3.1.** *For a given $s \geq 1$, there exists an $s + 1$ -headed linear attention layer with positional
 1085 encoding which transforms input sequences $[y_1, y_2, \dots, y_T]^\top$ into*

$$\begin{bmatrix} y_1 & y_2 & \dots & y_s & y_{s+1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ y_{T-s-1} & y_{T-s} & \dots & y_{T-2} & y_{T-1} \\ y_{T-s} & y_{T-s+1} & \dots & y_{T-1} & 0 \\ \hline & & & & \mathbf{0}_{T-s-1 \times s} \end{bmatrix}.$$

1092 The latter are essentially equivalent to tokens (7).
 1093

1094 **Proof.** We first define a matrix right-shift operator, which shifts each row one position to the right,
 1095 padding the first column with zeros. Let $\gg: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{m \times n}$ be $\gg(\mathbf{M}) = \mathbf{M}\mathbf{R}$, where

$$\mathbf{R} = \begin{bmatrix} 0 & \mathbf{0}_{n-1}^\top \\ \mathbf{0}_{n-1} & \mathbf{I}_{n-1} \end{bmatrix}. \quad (21)$$

1099 We follow Von Oswald et al. (2023a) in using the one-hot positional encodings, concatenated to the
 1100 input sequence to obtain tokens $\{[y_t, \mathbf{e}_t]\}_{t=1}^T$. We define $s + 1$ attention heads given by

1101 Define $\mathbf{W}_Q \in \mathbb{R}^{T+1 \times T}$, $\mathbf{W}_K \in \mathbb{R}^{T+1 \times T}$ and $\mathbf{W}_V \in \mathbb{R}^{T+1 \times s}$ as follows:

$$\mathbf{W}_Q^h = \begin{bmatrix} \mathbf{0}_T^\top \\ \mathbf{I}_T \end{bmatrix}, \quad \forall h \in [s+1]$$

$$(\mathbf{W}_K^h)^\top = \begin{bmatrix} \mathbf{0}_T, & \underbrace{\gg(\dots \gg(\mathbf{I}_T) \dots)}_{h-1 \text{ times}} \end{bmatrix}$$

$$\mathbf{W}_V^h = \begin{bmatrix} 1 & \dots & h & \dots & s+1 \\ \mathbf{0}_{T+1} & \dots & \mathbf{e}_1 & \dots & \mathbf{0}_{T+1} \end{bmatrix}, \quad \forall h \in [s+1] \quad (22)$$

1112 Each head then computes the following

$$\begin{aligned} & \underbrace{\begin{bmatrix} y_1 & 1 & 0 & \dots & 0 \\ y_2 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ y_T & 0 & 0 & \dots & 1 \end{bmatrix}}_{=I_T} \mathbf{W}_Q^h (\mathbf{W}_K^h)^\top \underbrace{\begin{bmatrix} y_1 & y_2 & y_3 & \dots & y_T \\ 1 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}}_{= \begin{bmatrix} \mathbf{0}_{T-h+1 \times h-1} & \mathbf{I}_{T-h+1} \\ \mathbf{0}_{h-1 \times h-1} & \mathbf{0}_{h-1 \times T-h+1} \end{bmatrix}} \mathbf{W}_V \underbrace{\begin{bmatrix} y_1 & 1 & 0 & \dots & 0 \\ y_2 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ y_T & 0 & 0 & \dots & 1 \end{bmatrix}}_{= \begin{bmatrix} 1 & \dots & h & \dots & s+1 \\ 0 & \dots & y_1 & \dots & 0 \\ 0 & \dots & y_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & y_T & \dots & 0 \end{bmatrix}} \\ & = \begin{bmatrix} 0 & \dots & y_h & \dots & 0 \\ 0 & \dots & y_{h+1} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & y_T & \dots & 0 \\ \hline & & & & \mathbf{0}_{h \times s+1} \end{bmatrix} \end{aligned}$$

1133 Summing over the outputs of all heads, we get an equivalent representation to (7). \square

1134 NEW ADDED
11351136 C.2 PROOF OF THE ALMOST SURE OBSERVABILITY OF THE LDS
11371138 We seek to show that Assumption 3.2 ensures LDS (1) observability w.p. 1. Note that the central
1139 symmetry of the distribution is irrelevant for this statement, and only relevant for the proofs in
1140 Section 4. We repeat Assumption 3.2 below for convenience.1141 **Assumption 3.2** (LDS family). *The system matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ is sampled from a centrally symmetric
1142 distribution supported on $\{\mathbf{M} \in \mathbb{R}^{d \times d} \mid \rho(\mathbf{M}) \leq 1\}$, for which it holds that*
1143

1144
$$\mathbb{P}(\{\mathbf{A} \mid \exists i, j \in [d], \text{ s.t. } \lambda_i(\mathbf{A}) = \lambda_j(\mathbf{A})\}) = 0. \quad (8)$$

1145 In other words, \mathbf{A} has a simple spectrum almost surely. The observation vector $\mathbf{c} \in \mathbb{R}^d$ is sampled
1146 independently, from a distribution that is absolutely continuous w.r.t. the Lebesgue measure over \mathbb{R}^d .
11471148 **Lemma C.1.** Assumption 3.2 ensures the pair (\mathbf{A}, \mathbf{c}) is observable w.p. 1.
11491150 **Proof.** Since \mathbf{A} has distinct eigenvalues w.p. 1 (the simple spectrum condition), it is (block)
1151 diagonalizable almost surely, and its eigenvectors $\{\mathbf{v}_1, \dots, \mathbf{v}_d\}$ are linearly independent. Therefore,
1152 observability is ensured if $\mathbf{c}^\top \mathbf{v}_i \neq 0$ almost surely for all $i \in [d]$.1153 Since \mathbf{c} is sampled from a distribution that is absolutely continuous w.r.t. the Lebesgue measure in
1154 \mathbb{R}^d , we want to prove that the set

1155
$$\mathcal{U} = \bigcup_{i=1}^d \{\mathbf{c} \in \mathbb{R}^d \mid \mathbf{c}^\top \mathbf{v}_i = 0\}$$

1156
1157

1158 has zero Lebesgue measure in the ambient \mathbb{R}^d . Each collection $\{\mathbf{c} \in \mathbb{R}^d \mid \mathbf{c}^\top \mathbf{v}_i = 0\}$ forms a proper
1159 subspace of \mathbb{R}^d with dimension at most $d - 1$ (it can be less, for complex \mathbf{v}_i). Therefore, its Lebesgue
1160 measure is null (see, e.g., (Royden & Fitzpatrick, 2010, pg. 435)).
11611162 Since \mathcal{U} is a finite union of measure zero sets, it is itself measure zero. Hence, observability holds
1163 w.p. 1. \square
11641165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 **D SECTION 4 PROOFS**1189 **D.1 PRELIMINARIES**

1190 Since we're dealing with data generated from stochastic processes, our proofs will heavily rely on
 1191 taking expectations conditioned on randomness up to a certain point in the process. In what follows,
 1192 we formalize the natural filtrations with respect to process (1).

1193 We denote the natural filtration associated with (1). as $\{\mathcal{F}_t\}_{t \geq 0}$, where
 1194

$$1195 \mathcal{F}_t := \sigma(\mathbf{A}, \mathbf{c}, \mathbf{x}_0, \mathbf{w}_0, \dots, \mathbf{w}_{t-1}, v_0, \dots, v_{t-1}), \quad t \geq 0. \quad (23)$$

1196 By convention, when $t = 0$ the sets of noise variables are empty, and we define
 1197

$$1198 \mathcal{F}_0 = \sigma(\mathbf{A}, \mathbf{c}, \mathbf{x}_0), \quad (24)$$

1199 to illustrate that \mathbf{A} and \mathbf{c} are sampled once at time 0 and then remain fixed.
 1200

1201 It follows that
 1202

- 1203 (a) $\mathcal{F}_t \subseteq \mathcal{F}_{t+1}, \forall t \geq 0$
- 1204 (b) \mathbf{x}_t is \mathcal{F}_t -measurable for all $t \geq 0$.
- 1205 (c) y_t is \mathcal{F}_{t+1} -measurable (since y_t depends on v_t)
- 1206 (d) The noise at time t is independent on the respective filtration: $\mathbf{w}_t \perp\!\!\!\perp \mathcal{F}_t$, $v_t \perp\!\!\!\perp \mathcal{F}_t$, for all
 1207 $t \geq 0$.

1208 **D.2 AUXILIARY RESULTS AND TECHNICAL LEMMATA**

1209 **Theorem D.1** (Isserlis (1918)). *Let $\mathbf{y} = [y_1, y_2, \dots, y_n]^\top \sim \mathcal{N}_n(0, \Sigma)$ be an n -dimensional, mean-
 1210 zero multivariate normal vector. Then, for any even integer n ,*

$$1211 \mathbb{E}[y_1 y_2 \cdots y_n] = \sum_{p \in \text{PP}(n)} \prod_{(\ell, r) \in p} \mathbb{E}[y_\ell y_r],$$

1212 where $\text{PP}(n)$ denotes the set of all pairwise partitions of $[n]$ into disjoint pairs. If n is odd, then
 1213 $\mathbb{E}[y_1 y_2 \cdots y_n] = 0$.

1214 **Lemma D.1.** *Given random vectors $\mathbf{z}, \mathbf{w}, \mathbf{q} \in \mathbb{R}^d$ and assuming that \mathbf{w} is independent of \mathbf{z}, \mathbf{q} and
 1215 the relevant integrability conditions hold, then*

$$1216 \mathbb{E}[\mathbf{z}^\top \mathbf{w} \mathbf{w}^\top \mathbf{q}] = \mathbb{E}[\mathbf{z}^\top \mathbb{E}[\mathbf{w} \mathbf{w}^\top] \mathbf{q}] \quad (25)$$

1217 **Proof.** We use the tower property of expectations,
 1218

$$1219 \mathbb{E}[\mathbf{z}^\top \mathbf{w} \mathbf{w}^\top \mathbf{z}] = \mathbb{E}[\mathbf{z}^\top \mathbb{E}[\mathbf{w} \mathbf{w}^\top | \mathbf{z}, \mathbf{q}] \mathbf{q}] \\ 1220 = \mathbb{E}[\mathbf{z}^\top \mathbb{E}[\mathbf{w} \mathbf{w}^\top] \mathbf{q}],$$

1221 where the last line follows from the quantities' independence. \square

1222 **Lemma D.2.** *Let the sequence $\{y_i\}_{i \geq 0}$ be generated by an LDS (1) sampled according to Assump-
 1223 tion 3.2. For time indices $0 \leq i \leq j$, it holds that*

$$1224 \mathbb{E}[y_i y_j] = \mathbb{E}[\mathbf{c}^\top \mathbf{A}^i \Sigma_{\mathbf{x}_0} (\mathbf{A}^\top)^j \mathbf{c}] + \sum_{k=0}^{i-1} \mathbb{E}[\mathbf{c}^\top \mathbf{A}^{i-1-k} \Sigma_{\mathbf{w}} (\mathbf{A}^\top)^{j-1-k} \mathbf{c}] + \mathbf{1}_{\{i=j\}} \sigma_v^2, \quad (26)$$

1225 where $\mathbf{1}_{\{i=j\}}$ takes the value 1 if $i = j$ and 0 otherwise.

1242 **Proof.** For process (1) it holds that
 1243

$$1244 \quad \mathbf{x}_j = \mathbf{A}^{j-i} \mathbf{x}_i + \sum_{k=i}^{j-1} \mathbf{A}^{j-1-k} \mathbf{w}_k$$

$$1245$$

$$1246$$

1247 and therefore

$$1248 \quad y_j = \mathbf{c}^\top \mathbf{A}^{j-i} \mathbf{x}_i + \sum_{k=i}^{j-1} \mathbf{c}^\top \mathbf{A}^{j-1-k} \mathbf{w}_k + v_j.$$

$$1249$$

$$1250$$

1251 The product of scalars $y_i y_j$ therefore takes the form
 1252

$$1253 \quad y_i y_j = y_i y_j^\top$$

$$1254 \quad = (\mathbf{c}^\top \mathbf{x}_i + v_i) \left(\mathbf{c}^\top \mathbf{A}^{j-i} \mathbf{x}_i + \sum_{k=i}^{j-1} \mathbf{c}^\top \mathbf{A}^{j-1-k} \mathbf{w}_k + v_j \right)^\top$$

$$1255$$

$$1256$$

$$1257 \quad = \mathbf{c}^\top \mathbf{x}_i \mathbf{x}_i^\top (\mathbf{A}^\top)^{j-i} \mathbf{c} + \sum_{k=i}^{j-1} \mathbf{c}^\top \mathbf{x}_i \mathbf{w}_k^\top (\mathbf{A}^\top)^{j-1-k} \mathbf{c} + \mathbf{c}^\top \mathbf{x}_i v_j$$

$$1258$$

$$1259$$

$$1260 \quad + v_i \mathbf{x}_i^\top (\mathbf{A}^\top)^{j-i} \mathbf{c} + \sum_{k=i}^{j-1} v_i \mathbf{w}_k^\top (\mathbf{A}^\top)^{j-1-k} \mathbf{c} + v_i v_j. \quad (27)$$

$$1261$$

$$1262$$

1263 Now, observing that $\mathbb{E}[y_i y_j] = \mathbb{E}[\mathbb{E}[y_i y_j | \mathcal{F}_i]]$ and remembering that $\mathbf{x}_i, \mathbf{A}, \mathbf{c}$ are \mathcal{F}_i -measurable,
 1264 and that for all i and $p \geq i$, $\mathbf{w}_p \perp\!\!\!\perp \mathcal{F}_i$ and $v_p \perp\!\!\!\perp \mathcal{F}_i$, and $\mathbf{w}_p \perp\!\!\!\perp v_q, \forall p, q \geq 0$, we have
 1265

1266

$$1267 \quad \mathbb{E}[\mathbf{c}^\top \mathbf{x}_i \mathbf{x}_i^\top (\mathbf{A}^\top)^{j-i} \mathbf{c} | \mathcal{F}_i] = \mathbf{c}^\top \mathbf{x}_i \mathbf{x}_i^\top (\mathbf{A}^\top)^{j-i} \mathbf{c},$$

$$1268$$

$$1269 \quad \mathbb{E}\left[\sum_{k=i}^{j-1} \mathbf{c}^\top \mathbf{x}_i \mathbf{w}_k^\top (\mathbf{A}^\top)^{j-1-k} \mathbf{c} \middle| \mathcal{F}_i\right] = \sum_{k=i}^{j-1} \mathbf{c}^\top \mathbf{x}_i \mathbb{E}[\mathbf{w}_k^\top] (\mathbf{A}^\top)^{j-1-k} \mathbf{c} = 0,$$

$$1270$$

$$1271$$

$$1272 \quad \mathbb{E}[\mathbf{c}^\top \mathbf{x}_i v_j | \mathcal{F}_i] = \mathbf{c}^\top \mathbf{x}_i \mathbb{E}[v_j] = 0,$$

$$1273$$

$$1274 \quad \mathbb{E}[v_i \mathbf{x}_i^\top (\mathbf{A}^\top)^{j-i} \mathbf{c} | \mathcal{F}_i] = \mathbb{E}[v_i] \mathbf{x}_i^\top (\mathbf{A}^\top)^{j-i} \mathbf{c} = 0,$$

$$1275$$

$$1276 \quad \mathbb{E}\left[\sum_{k=i}^{j-1} v_i \mathbf{w}_k^\top (\mathbf{A}^\top)^{j-1-k} \mathbf{c} \middle| \mathcal{F}_i\right] = \sum_{k=i}^{j-1} \mathbb{E}[v_i] \mathbb{E}[\mathbf{w}_k^\top] (\mathbf{A}^\top)^{j-1-k} \mathbf{c} = 0,$$

$$1277$$

$$1278$$

$$1279 \quad \mathbb{E}[v_i v_j | \mathcal{F}_i] = \mathbb{E}[v_i v_j] = \mathbf{1}_{\{i=j\}} \sigma_v^2.$$

$$1280$$

1281 Therefore,

$$1282 \quad \mathbb{E}[y_i y_j] = \mathbb{E}[\mathbb{E}[y_i y_j | \mathcal{F}_i]] = \mathbb{E}[\mathbf{c}^\top \mathbf{x}_i \mathbf{x}_i^\top (\mathbf{A}^\top)^{j-i} \mathbf{c}] + \mathbf{1}_{\{i=j\}} \sigma_v^2. \quad (28)$$

$$1283$$

$$1284$$

1285 Noting that $\mathbf{x}_i = \mathbf{A}^i \mathbf{x}_0 + \sum_{k=0}^{i-1} \mathbf{A}^{i-1-k} \mathbf{w}_k$, we further unroll the first term inside the expectation
 1286 in (28) and get

$$1287 \quad \mathbf{c}^\top \mathbf{x}_i \mathbf{x}_i^\top (\mathbf{A}^\top)^{j-i} \mathbf{c} = \left[\mathbf{c}^\top \mathbf{A}^i \mathbf{x}_0 + \sum_{k=0}^{i-1} \mathbf{c}^\top \mathbf{A}^{i-1-k} \mathbf{w}_k \right] \left[\mathbf{x}_0^\top (\mathbf{A}^\top)^j \mathbf{c} + \sum_{k=0}^{i-1} \mathbf{w}_k^\top (\mathbf{A}^\top)^{j-1-k} \mathbf{c} \right]$$

$$1288$$

$$1289$$

$$1290 \quad = \mathbf{c}^\top \mathbf{A}^i \mathbf{x}_0 \mathbf{x}_0^\top (\mathbf{A}^\top)^j \mathbf{c} + \sum_{k=0}^{i-1} \mathbf{c}^\top \mathbf{A}^i \mathbf{x}_0 \mathbf{w}_k^\top (\mathbf{A}^\top)^{j-1-k} \mathbf{c}$$

$$1291$$

$$1292$$

$$1293 \quad + \sum_{k=0}^{i-1} \mathbf{c}^\top \mathbf{A}^{i-1-k} \mathbf{w}_k \mathbf{x}_0^\top (\mathbf{A}^\top)^j \mathbf{c} + \sum_{k,l=0}^{i-1} \mathbf{c}^\top \mathbf{A}^{i-1-k} \mathbf{w}_k \mathbf{w}_l^\top (\mathbf{A}^\top)^{j-1-l} \mathbf{c}.$$

$$1294$$

$$1295$$

$$(29)$$

1296 Using $\mathbf{w}_p \perp\!\!\!\perp \mathcal{F}_0 \subset \mathcal{F}_i, \forall p \geq 0$ and $\mathbf{w}_p \perp\!\!\!\perp \mathbf{w}_q, \forall p \neq q$ in conjunction with (29) and Lemma D.1
 1297 we get
 1298

$$1299 \mathbb{E} [\mathbf{c}^\top \mathbf{x}_i \mathbf{x}_i^\top (\mathbf{A}^\top)^{j-i} \mathbf{c} | \mathcal{F}_0] = \mathbf{c}^\top \mathbf{A}^i \mathbf{x}_0 \mathbf{x}_0^\top (\mathbf{A}^\top)^j \mathbf{c} + \sum_{k=0}^{i-1} \mathbf{c}^\top \mathbf{A}^{i-1-k} \Sigma_{\mathbf{w}} (\mathbf{A}^\top)^{j-1-k} \mathbf{c} \quad (30)$$

1302 Furthermore, noting that $\sigma(\mathbf{A}, \mathbf{c}) \subset \mathcal{F}_0$, we have that
 1303

$$1304 \mathbb{E} [\mathbf{c}^\top \mathbf{x}_i \mathbf{x}_i^\top (\mathbf{A}^\top)^{j-i} \mathbf{c} | \mathbf{A}, \mathbf{c}] = \mathbf{c}^\top \mathbf{A}^i \Sigma_{\mathbf{x}_0} (\mathbf{A}^\top)^j \mathbf{c} + \sum_{k=0}^{i-1} \mathbf{c}^\top \mathbf{A}^{i-1-k} \Sigma_{\mathbf{w}} (\mathbf{A}^\top)^{j-1-k} \mathbf{c}. \quad (31)$$

1306 Taking full expectation in (31), and plugging everything back into (28), we get the stated result
 1307

$$1309 \mathbb{E} [y_i y_j] = \mathbb{E} [\mathbf{c}^\top \mathbf{A}^i \Sigma_{\mathbf{x}_0} (\mathbf{A}^\top)^j \mathbf{c}] + \sum_{k=0}^{i-1} \mathbb{E} [\mathbf{c}^\top \mathbf{A}^{i-1-k} \Sigma_{\mathbf{w}} (\mathbf{A}^\top)^{j-1-k} \mathbf{c}] + \mathbf{1}_{\{i=j\}} \sigma_v^2. \quad \square$$

1312 **Lemma D.3.** Let $\{y_i\}_{i \geq 0}$ be a sequence of observations generated by an LDS (1) sampled according
 1313 to Assumption 3.2. Then,

1315 (a) if $i + j = 2p + 1$ for some $p \in \mathbb{N}_+$, $\mathbb{E} [y_i y_j] = 0$;

1317 (b) if $i + j + k + l = 2p + 1$ for some $p \in \mathbb{N}_+$, $\mathbb{E} [y_i y_j y_k y_l] = 0$;

1319 (c) if $i + j + k + l + m + n = 2p + 1$ for some $p \in \mathbb{N}_+$, $\mathbb{E} [y_i y_j y_k y_l y_m y_n] = 0$.

1321 Note that there is no condition on the indices being pairwise distinct.

1323 **Proof.** To prove point (a), we start from the expression derived in Lemma D.2.

$$1325 \mathbb{E} [y_i y_j] = \mathbb{E} [\mathbf{c}^\top \mathbf{A}^i \Sigma_{\mathbf{x}_0} (\mathbf{A}^\top)^j \mathbf{c}] + \sum_{k=0}^{i-1} \mathbb{E} [\mathbf{c}^\top \mathbf{A}^{i-1-k} \Sigma_{\mathbf{w}} (\mathbf{A}^\top)^{j-1-k} \mathbf{c}] + \mathbf{1}_{\{i=j\}} \sigma_v^2$$

1327 Clearly, since $i + j$ is odd, it holds that $i \neq j$ and hence the third term is zero. Furthermore, since \mathbf{A}
 1328 has a centrally symmetric distribution, we have that
 1329

$$1330 \mathbb{E} [\mathbf{c}^\top \mathbf{A}^i \Sigma_{\mathbf{x}_0} (\mathbf{A}^\top)^j \mathbf{c}] = \mathbb{E} [\mathbf{c}^\top (-\mathbf{A})^i \Sigma_{\mathbf{x}_0} (-\mathbf{A}^\top)^j \mathbf{c}] \\ 1331 = (-1)^{i+j} \mathbb{E} [\mathbf{c}^\top \mathbf{A}^i \Sigma_{\mathbf{x}_0} (\mathbf{A}^\top)^j \mathbf{c}], \quad (32)$$

1333 implying that $\mathbb{E} [\mathbf{c}^\top \mathbf{A}^i \Sigma_{\mathbf{x}_0} (\mathbf{A}^\top)^j \mathbf{c}] = 0$. We apply a similar reasoning for the other term and obtain
 1334 that
 1335

$$\mathbb{E} [y_i y_j] = 0,$$

1336 thus proving the first point.
 1337

1338 For both points (b) and (c), we will rely on Isserlis's theorem, which we replicate in The-
 1339 orems D.1 for convenience. Note that conditioned, on \mathbf{A} and \mathbf{c} , the vectors $[y_i y_j y_k y_l | \mathbf{A}, \mathbf{c}]$
 1340 and $[y_i y_j y_k y_l y_m y_n | \mathbf{A}, \mathbf{c}]$ are jointly Gaussian since they are linear transformations of the
 1341 jointly Gaussian vectors $\mathbf{r}_1 = [\mathbf{x}_0^\top, \mathbf{w}_0^\top, \dots, \mathbf{w}_{\max\{i,j,k,l\}}^\top, v_0, \dots, v_{\max\{i,j,k,l\}}]^\top$ and $\mathbf{r}_2 =$
 1342 $[\mathbf{x}_0^\top, \mathbf{w}_0^\top, \dots, \mathbf{w}_{\max\{i,j,k,l,m,n\}}^\top, v_0, \dots, v_{\max\{i,j,k,l,m,n\}}]^\top$, respectively. We can therefore apply the
 1343 towering property along with Isserlis's result to get
 1344

$$1346 \mathbb{E} [y_i y_j y_k y_l] = \mathbb{E} [\mathbb{E} [y_i y_j y_k y_l | \mathbf{A}, \mathbf{c}]] \\ 1347 = \mathbb{E} \left[\mathbb{E} [y_i y_j | \mathbf{A}, \mathbf{c}] \mathbb{E} [y_k y_l | \mathbf{A}, \mathbf{c}] + \mathbb{E} [y_i y_k | \mathbf{A}, \mathbf{c}] \mathbb{E} [y_j y_l | \mathbf{A}, \mathbf{c}] \right. \\ 1348 \left. + \mathbb{E} [y_i y_l | \mathbf{A}, \mathbf{c}] \mathbb{E} [y_j y_k | \mathbf{A}, \mathbf{c}] \right], \quad (33)$$

1350 since $\text{PP}(\{i, j, k, l\}) = \{\{(i, j), (k, l)\}, \{(i, k), (j, l)\}, \{(i, l), (j, k)\}\}$. Since $i + j + k + l$ is odd,
 1351 the two pairs inside any $q \in \text{PP}(\{i, j, k, l\})$ must have different parities (i.e., one even, one odd).
 1352 W.l.o.g, we analyze the first term in (33), assuming $0 \leq i \leq j \leq k \leq l$. From (31), we know that
 1353

$$\begin{aligned} 1354 \mathbb{E}[y_i y_j | \mathbf{A}, \mathbf{c}] \mathbb{E}[y_k y_l | \mathbf{A}, \mathbf{c}] &= \left[\mathbf{c}^\top \mathbf{A}^i \Sigma_{\mathbf{x}_0} (\mathbf{A}^\top)^j \mathbf{c} + \sum_{t=0}^{i-1} \mathbf{c}^\top \mathbf{A}^{i-1-t} \Sigma_{\mathbf{w}} (\mathbf{A}^\top)^{j-1-t} \mathbf{c} + \mathbf{1}_{\{i=j\}} \sigma_v^2 \right] \\ 1355 &\quad \left[\mathbf{c}^\top \mathbf{A}^k \Sigma_{\mathbf{x}_0} (\mathbf{A}^\top)^l \mathbf{c} + \sum_{t=0}^{k-1} \mathbf{c}^\top \mathbf{A}^{k-1-t} \Sigma_{\mathbf{w}} (\mathbf{A}^\top)^{l-1-t} \mathbf{c} + \mathbf{1}_{\{k=l\}} \sigma_v^2 \right] \\ 1356 \\ 1357 \\ 1358 \\ 1359 \\ 1360 \end{aligned} \tag{34}$$

1360 Assume w.l.o.g that $i + j$ is even, and $k + l$ is odd. This implies that $\mathbf{1}_{\{k=l\}} = 0$. Taking full
 1361 expectation on both sides and developing the product, we get
 1362

$$\begin{aligned} 1363 \mathbb{E}[\mathbb{E}[y_i y_j | \mathbf{A}, \mathbf{c}] \mathbb{E}[y_k y_l | \mathbf{A}, \mathbf{c}]] \\ 1364 &= \mathbb{E}[\mathbf{c}^\top \mathbf{A}^i \Sigma_{\mathbf{x}_0} (\mathbf{A}^\top)^j \mathbf{c} \mathbf{c}^\top \mathbf{A}^k \Sigma_{\mathbf{x}_0} (\mathbf{A}^\top)^l \mathbf{c}] \\ 1365 \\ 1366 &\quad + \sum_{t=0}^{k-1} \mathbb{E}[\mathbf{c}^\top \mathbf{A}^i \Sigma_{\mathbf{x}_0} (\mathbf{A}^\top)^j \mathbf{c} \mathbf{c}^\top \mathbf{A}^{k-1-t} \Sigma_{\mathbf{w}} (\mathbf{A}^\top)^{l-1-t} \mathbf{c}] \\ 1367 \\ 1368 &\quad + \sum_{t=0}^{i-1} \mathbb{E}[\mathbf{c}^\top \mathbf{A}^{i-1-t} \Sigma_{\mathbf{w}} (\mathbf{A}^\top)^{j-1-t} \mathbf{c} \mathbf{c}^\top \mathbf{A}^k \Sigma_{\mathbf{x}_0} (\mathbf{A}^\top)^l \mathbf{c}] \\ 1369 \\ 1370 &\quad + \sum_{t=0}^{i-1} \sum_{s=0}^{k-1} \mathbb{E}[\mathbf{c}^\top \mathbf{A}^{i-1-t} \Sigma_{\mathbf{w}} (\mathbf{A}^\top)^{j-1-t} \mathbf{c} \mathbf{c}^\top \mathbf{A}^{k-1-s} \Sigma_{\mathbf{w}} (\mathbf{A}^\top)^{l-1-s} \mathbf{c}] \\ 1371 \\ 1372 &\quad + \mathbf{1}_{\{i=j\}} \sigma_v^2 \mathbb{E}[\mathbf{c}^\top \mathbf{A}^k \Sigma_{\mathbf{x}_0} (\mathbf{A}^\top)^l \mathbf{c}] \\ 1373 \\ 1374 &\quad + \mathbf{1}_{\{i=j\}} \sigma_v^2 \sum_{t=0}^{k-1} \mathbb{E}[\mathbf{c}^\top \mathbf{A}^{k-1-t} \Sigma_{\mathbf{w}} (\mathbf{A}^\top)^{l-1-t} \mathbf{c}] \\ 1375 \\ 1376 \\ 1377 \\ 1378 \end{aligned} \tag{35}$$

1379 Using the index parity assumptions and the reasoning based on the central symmetry of \mathbf{A} 's distribution
 1380 from (32), we get that all the terms on the RHS of (35) are zero. We treat the remaining terms
 1381 in (33) similarly to get the final result in (b).

1382 Finally, point (c) follows a similar path. We have

$$\begin{aligned} 1383 \text{PP}(\{i, j, k, l, m, n\}) &= \{\{(i, j), (k, l), (m, n)\}, \{(i, j), (k, m), (l, n)\}, \{(i, j), (k, n), (l, m)\}, \\ 1384 &\quad \{(i, k), (j, l), (m, n)\}, \{(i, k), (j, m), (l, n)\}, \{(i, k), (j, n), (l, m)\}, \\ 1385 &\quad \{(i, l), (j, k), (m, n)\}, \{(i, l), (j, m), (k, n)\}, \{(i, l), (j, n), (k, m)\}, \\ 1386 &\quad \{(i, m), (j, k), (l, n)\}, \{(i, m), (j, l), (k, n)\}, \{(i, m), (j, n), (k, l)\}, \\ 1387 &\quad \{(i, n), (j, k), (l, m)\}, \{(i, n), (j, l), (k, m)\}, \{(i, n), (j, m), (k, l)\}\}. \\ 1388 \\ 1389 \end{aligned}$$

1390 For the parity hypothesis to be satisfied, note that inside a set $q \in \text{PP}(\{i, j, k, l, m, n\})$, at least one
 1391 pair must have an odd parity, while the other two must be of the same parity (either even or odd).
 1392 W.o.l.g let $0 \leq i \leq j \leq k \leq l \leq m \leq n$, pick the first set in $\text{PP}(\{i, j, k, l, m, n\})$ above (the rest
 1393 follow the same logic) and assume that $m + n$ is odd. By the same logic as before, we have that
 1394 $\mathbf{1}_{\{m=n\}} = 0$ and

$$\begin{aligned} 1395 \mathbb{E}[\mathbb{E}[y_i y_j | \mathbf{A}, \mathbf{c}] \mathbb{E}[y_k y_l | \mathbf{A}, \mathbf{c}] \mathbb{E}[y_m y_n | \mathbf{A}, \mathbf{c}]] \\ 1396 &= \mathbb{E}\left[\left[\mathbf{c}^\top \mathbf{A}^i \Sigma_{\mathbf{x}_0} (\mathbf{A}^\top)^j \mathbf{c} + \sum_{t=0}^{i-1} \mathbf{c}^\top \mathbf{A}^{i-1-t} \Sigma_{\mathbf{w}} (\mathbf{A}^\top)^{j-1-t} \mathbf{c} + \mathbf{1}_{\{i=j\}} \sigma_v^2 \right] \right. \\ 1397 &\quad \left[\mathbf{c}^\top \mathbf{A}^k \Sigma_{\mathbf{x}_0} (\mathbf{A}^\top)^l \mathbf{c} + \sum_{t=0}^{k-1} \mathbf{c}^\top \mathbf{A}^{k-1-t} \Sigma_{\mathbf{w}} (\mathbf{A}^\top)^{l-1-t} \mathbf{c} + \mathbf{1}_{\{k=l\}} \sigma_v^2 \right] \\ 1398 \\ 1399 &\quad \left. \left[\mathbf{c}^\top \mathbf{A}^m \Sigma_{\mathbf{x}_0} (\mathbf{A}^\top)^n \mathbf{c} + \sum_{t=0}^{k-1} \mathbf{c}^\top \mathbf{A}^{m-1-t} \Sigma_{\mathbf{w}} (\mathbf{A}^\top)^{n-1-t} \mathbf{c} \right] \right] \\ 1400 \\ 1401 \\ 1402 \\ 1403 \end{aligned}$$

Without computing, one can see that every term in the expanded product will have powers of A whose sum is odd. Therefore, using the centrally symmetric property of A 's distribution, all the terms evaluate to zero, and point (c) is proven. \square

D.3 PROOF OF LEMMA 4.1

Lemma 4.1. *For an arbitrary s , the following parameters induce a banded structure in the left-hand side of (11) matching that of the right-hand side.*

$$W_{QK} = \begin{bmatrix} \star & 0 & \star & \cdots & \\ 0 & \star & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 & \star \\ 0 & \cdots & 0 & \star & 0 \\ 0 & \cdots & \cdots & 0 & 0 \end{bmatrix}, \quad W_V = \begin{bmatrix} 0 & \cdots & \cdots & 0 & \vdots \\ \vdots & & & \vdots & 0 \\ \vdots & & & \vdots & \star \\ \vdots & & & \vdots & 0 \\ 0 & \cdots & \cdots & 0 & \star \end{bmatrix}. \quad (13)$$

Proof. Recall the in-context loss in (9) with a general AR(s)-constructed input token matrix $\mathbf{Y}_0 = \begin{bmatrix} \bar{y}_1 & \bar{y}_2 & \cdots & \bar{y}_{T-s-1} & \bar{y}_{T-s} \\ y_{s+1} & y_{s+2} & \cdots & y_{T-1} & 0 \end{bmatrix}$ is defined as

$$\mathcal{L}(\theta) := \mathbb{E}_{\tilde{D}} \left[\left(\mathcal{T}_\theta (\mathbf{Y}_0)_{s+1, T-s} - y_T \right)^2 \right]. \quad (36)$$

For equations (37) to (41) below, we use the same reformulations as Ahn et al. (2023). The last column of the transformer's output above can be written as

$$\begin{bmatrix} \bar{y}_{T-1} \\ 0 \end{bmatrix} = \begin{bmatrix} \bar{y}_{T-1} \\ 0 \end{bmatrix} + \frac{1}{T-s-1} \mathbf{W}_V^\top \left(\sum_{i=1}^{T-s-1} \begin{bmatrix} \bar{y}_i \bar{y}_i^\top & \bar{y}_i y_{i+s} \\ \bar{y}_i^\top y_{i+s} & y_{i+s}^2 \end{bmatrix} \right) \mathbf{W}_{QK}^\top \begin{bmatrix} \bar{y}_{T-s} \\ 0 \end{bmatrix}, \quad (37)$$

where the summation comes from the causal mask. Therefore, the transformer's prediction of y_T , $\mathcal{T}_\theta (\mathbf{Y}_0)_{s+1, T-s}$ can be written as

$$\frac{1}{T-s-1} \mathbf{b}^\top \underbrace{\left(\sum_{i=1}^{T-s-1} \begin{bmatrix} \bar{y}_i \bar{y}_i^\top & \bar{y}_i y_{i+s} \\ \bar{y}_i^\top y_{i+s} & y_{i+s}^2 \end{bmatrix} \right)}_{:= \bar{Y} \in \mathbb{R}^{(s+1) \times (s+1)}} [\mathbf{f}_1 \mathbf{f}_2 \cdots \mathbf{f}_s] \bar{y}_{T-s}, \quad (38)$$

where $\mathbf{b}^\top \in \mathbb{R}^{1 \times (s+1)}$ is the last row of \mathbf{W}_V^\top and $\mathbf{f}_j \in \mathbb{R}^{(s+1)}$ is the j^{th} column of \mathbf{W}_{QK}^\top . So the in-context loss $\mathcal{L}(\mathbf{W}_V, \mathbf{W}_{QK})$ can be rewritten as a function of \mathbf{b}^\top and $\mathbf{F} = [\mathbf{f}_j]_{j=1}^s$

$$\mathcal{L}(\mathbf{b}, \mathbf{F}) := \mathbb{E}_{\tilde{D}} \left[\left(\frac{1}{T-s-1} \mathbf{b}^\top \bar{Y} \mathbf{F} \bar{y}_{T-s} - y_T \right)^2 \right]. \quad (39)$$

Plugging in the expression of \bar{y}_{T-s} , the in-context loss is

$$\mathcal{L}(\mathbf{b}, \mathbf{F}) = \mathbb{E}_{\tilde{D}} \left[\left(\frac{1}{T-s-1} \mathbf{b}^\top \bar{Y} [\mathbf{f}_1 \mathbf{f}_2 \cdots \mathbf{f}_s] \begin{bmatrix} y_{T-s} \\ y_{T-s+1} \\ \vdots \\ y_{T-1} \end{bmatrix} - y_T \right)^2 \right]$$

$$\begin{aligned}
&= \mathbb{E}_{\tilde{\mathcal{D}}} \left[\left(\frac{1}{T-s-1} \sum_{k=1}^s \mathbf{b}^\top \bar{\mathbf{Y}} \mathbf{f}_k y_{T-s-1+k} - y_T \right)^2 \right] \\
&= \mathbb{E}_{\tilde{\mathcal{D}}} \left[\left(\frac{1}{T-s-1} \sum_{k=1}^s \text{Tr}(\bar{\mathbf{Y}} \mathbf{f}_k \mathbf{b}^\top) y_{T-s-1+k} - y_T \right)^2 \right] \\
&= \mathbb{E}_{\tilde{\mathcal{D}}} \left[\left(\frac{1}{T-s-1} \sum_{k=1}^s \langle \bar{\mathbf{Y}}, \mathbf{b} \mathbf{f}_k^\top \rangle y_{T-s-1+k} - y_T \right)^2 \right]. \tag{40}
\end{aligned}$$

We reparametrize the in-context loss using $\mathbf{X}_k := \mathbf{b} \mathbf{f}_k^\top$

$$\mathcal{L}(\mathbf{X}_{k \in [s]}) = \mathbb{E}_{\tilde{\mathcal{D}}} \left[\left(\frac{1}{T-s-1} \sum_{k=1}^s \langle \bar{\mathbf{Y}}, \mathbf{X}_k \rangle y_{T-s-1+k} - y_T \right)^2 \right]. \tag{41}$$

Note that the gradient of the in-context loss with respect to each \mathbf{X}_j is

$$\nabla_{\mathbf{X}_j} \mathcal{L}(\mathbf{X}_{k \in [s]}) = 2 \mathbb{E}_{\tilde{\mathcal{D}}} \left[\left(\frac{1}{T-s-1} \sum_{k=1}^s \langle \bar{\mathbf{Y}}, \mathbf{X}_k \rangle y_{T-s-1+k} - y_T \right) y_{T-s-1+j} \bar{\mathbf{Y}} \right]. \tag{42}$$

The gradient $\nabla_{\mathbf{X}_j} \mathcal{L}(\mathbf{X}_{k \in [s]})$ is a sum of two terms, $\nabla_{\mathbf{X}_j} \mathcal{L}(\mathbf{X}_{k=1 \dots s}) = \mathbf{T}_{\mathbf{X}_j}^{(1)} + \mathbf{T}_{\mathbf{X}_j}^{(2)}$, where, replacing $\bar{\mathbf{Y}}$ we have

$$\mathbf{T}_{\mathbf{X}_j}^{(1)} := \frac{2}{T-s-1} \mathbb{E}_{\tilde{\mathcal{D}}} \left[\sum_{k=1}^s \langle \bar{\mathbf{Y}}, \mathbf{X}_k \rangle y_{T-s-1+k} y_{T-s-1+j} \sum_{i=1}^{T-s-1} \begin{bmatrix} \bar{\mathbf{y}}_i \bar{\mathbf{y}}_i^\top & \bar{\mathbf{y}}_i y_{i+s} \\ \bar{\mathbf{y}}_i^\top y_{i+s} & y_{i+s}^2 \end{bmatrix} \right] \tag{43}$$

$$\mathbf{T}_{\mathbf{X}_j}^{(2)} := -2 \mathbb{E}_{\tilde{\mathcal{D}}} \left[y_T y_{T-s-1+j} \sum_{i=1}^{T-s-1} \begin{bmatrix} \bar{\mathbf{y}}_i \bar{\mathbf{y}}_i^\top & \bar{\mathbf{y}}_i y_{i+s} \\ \bar{\mathbf{y}}_i^\top y_{i+s} & y_{i+s}^2 \end{bmatrix} \right]. \tag{44}$$

Each matrix element of $\mathbf{T}_{\mathbf{X}_j}^{(2)}$ has the form

$$\sum_{i=1}^{T-s-1} 2 \mathbb{E}_{\tilde{\mathcal{D}}} [y_T y_{T-s-1+j} y_{i+m} y_{i+n}] \tag{45}$$

with $j \in [1, s]$, $m \in [0, s]$ and $n \in [0, s]$.

The sum of y 's indices in (45) for each term in the above sum is $2T + 2i + (m + n - s - 1 + j)$. The parity is determined by that of $m + n - s - 1 + j$ and is independent of the sum counter i (i.e., the same for all terms). According to Lemma D.3, (45) is 0 if $(m + n - s - 1 + j)$ is odd, and of arbitrary value if it is even. So a general matrix element of $\mathbf{T}_{\mathbf{X}_j}^{(2)}$ is 0 if $(m + n - s - 1 + j)$ is odd and of arbitrary value if $(m + n - s - 1 + j)$ is even.

1512 For a given AR(s)-type token (s is fixed) and a specific j , whether a matrix element of $\mathbf{T}_{\mathbf{X}_j}^{(2)}$ is 0 only
 1513 depends on $m + n$ (its position in the matrix). So,
 1514

$$\mathbf{T}_{\mathbf{X}_j}^2 = \begin{cases} \begin{bmatrix} * & 0 & * & \cdots & \cdots & \\ 0 & * & 0 & * & & \vdots \\ * & 0 & * & \ddots & \ddots & \vdots \\ \vdots & * & \ddots & \ddots & \ddots & * \\ \vdots & & \ddots & \ddots & * & 0 \\ \cdots & \cdots & * & 0 & * & \end{bmatrix}, & \text{if } |j - s - 1| \text{ is even;} \\ \begin{bmatrix} 0 & * & 0 & \cdots & \cdots & \\ * & 0 & * & 0 & & \vdots \\ 0 & * & 0 & \ddots & \ddots & \vdots \\ \vdots & 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 0 & * \\ \cdots & \cdots & 0 & * & 0 & \end{bmatrix}, & \text{if } |j - s - 1| \text{ is odd.} \end{cases}$$

1534 We now turn to $\mathbf{T}_{\mathbf{X}_j}^{(1)}$ with the end goal of finding a parameter configuration that matches the sparsity
 1535 pattern of $\mathbf{T}_{\mathbf{X}_j}^{(2)}$. For this section, assume s is odd (the other case follows similarly). First, let
 1536
 1537 $\mathbf{X}_k := [x_{i,j}^{(k)}]_{i,j=1}^{s+1}$ and unfold the expression of the matrix inner product
 1538

$$\langle \bar{\mathbf{Y}}, \mathbf{X}_k \rangle = \sum_{r=0}^s \sum_{l=0}^s \sum_{p=0}^{T-s-1} x_{l+1,r+1}^{(k)} y_{p+r} y_{p+l}, \quad (46)$$

1542 where r, l are the indices traversing $\bar{\mathbf{Y}}$.
 1543

1544 Furthermore, each matrix element of $\mathbf{T}_{\mathbf{X}_j}^{(1)}$ inside the expectation has the form
 1545

$$\frac{2}{T-s-1} \sum_{i=1}^{T-s-1} \sum_{k=1}^s \langle \bar{\mathbf{Y}}, \mathbf{X}_k \rangle y_{T-s-1+k} y_{T-s-1+j} y_{i+n} y_{i+m}, \quad (47)$$

1548 where $n, m \in \{0, 1, \dots, s\}$ are the indices traversing $\bar{\mathbf{Y}}$.
 1549

1550 Assume that j is fixed and odd (we discuss the even case afterwards). Note that the sparsity of each
 1551 position in $\mathbf{T}_{\mathbf{X}_j}^{(2)}$ dictated by the parity of $(m + n - s - 1 + j)$ where, when s, j -odd, the respective
 1552 element is zero whenever $m + n$ is even. Notice that except for the contribution of the matrix inner
 1553 product, the sum of indices for the y -factors in (47) is $2(T - s - 2 + i) + k + j + n + m$ so the
 1554 parity is determined by that of $k + j + n + m$. We distinguish two cases:
 1555

1556 (a) when k is even, $k + j$ is odd, and we wish that the term zeroes out for even $m + n$. This
 1557 means that \mathbf{X}_k must select in (46) only pairs $y_{p+r} y_{p+l}$ for which $r + l$ is even and zero-out
 1558 the others. Such an \mathbf{X}_k may look like

$$\mathbf{X}_k = \begin{bmatrix} x_{11}^{(k)} & 0 & x_{13}^{(k)} & \cdots & x_{1,s}^{(k)} & 0 \\ 0 & x_{22}^{(k)} & 0 & \cdots & 0 & x_{2,s+1}^{(k)} \\ x_{31}^{(k)} & 0 & x_{33}^{(k)} & \cdots & x_{3,s}^{(k)} & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{s,1}^{(k)} & 0 & x_{s,3}^{(k)} & \cdots & x_{s,s}^{(k)} & 0 \\ 0 & x_{s+1,2}^{(k)} & 0 & \cdots & 0 & x_{s+1,s+1}^{(k)} \end{bmatrix}, \quad (48)$$

1566 with arbitrary (possibly also zero) values for constants $x_{i,j}^{(k)}$.
 1567

1568 (b) when k is odd, $k + j$ is even, and we wish that the term zeroes out for even $m + n$. This
 1569 means that \mathbf{X}_k must select in (46) only pairs $y_{p+r}y_{p+l}$ for which $r + l$ is odd and zero-out
 1570 the others. Such an \mathbf{X}_k may look like
 1571

$$\mathbf{X}_k = \begin{bmatrix} 0 & x_{12}^{(k)} & 0 & \cdots & 0 & x_{1,s+1}^{(k)} \\ x_{21}^{(k)} & 0 & x_{23}^{(k)} & \cdots & x_{2,s}^{(k)} & 0 \\ 0 & x_{32}^{(k)} & 0 & \cdots & 0 & x_{3,s+1}^{(k)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & x_{s,2}^{(k)} & 0 & \cdots & 0 & x_{s,s+1}^{(k)} \\ x_{s+1,1}^{(k)} & 0 & x_{s+1,3}^{(k)} & \cdots & x_{s+1,s}^{(k)} & 0 \end{bmatrix}, \quad (49)$$

1572 with arbitrary (possibly also zero) values for constants $x_{i,j}^{(k)}$.
 1573

1574 These patterns need to be coherent with the case of j -even. Note that in $\mathbf{T}_{\mathbf{X}_j}^{(2)}$, when s -odd, j -even,
 1575 the respective element is zero whenever $m + n$ is odd. We again distinguish two cases:
 1576

1577 (a) when k is even, $k + j$ is even, and we wish that the term zeroes out for odd $m + n$. This
 1578 means that \mathbf{X}_k must select in (46) only pairs $y_{p+r}y_{p+l}$ for which $r + l$ is even and zero-out
 1579 the others. Notice that the pattern of \mathbf{X}_k in (48) for even k satisfies this requirement and we
 1580 have coherence.
 1581

1582 (b) when k is odd, $k + j$ is odd, and we wish that the term zeroes out for odd $m + n$. This
 1583 means that \mathbf{X}_k must select in (46) only pairs $y_{p+r}y_{p+l}$ for which $r + l$ is odd and zero-out
 1584 the others. Notice that the pattern of \mathbf{X}_k in (49) for even k satisfies this requirement and we
 1585 have coherence.
 1586

1587 The same approach goes through for even window size s . Finally, recall that $\mathbf{X}_k := \mathbf{b}\mathbf{f}_k^\top$. For our
 1588 case of odd window sizes, the sparsity pattern of \mathbf{b} and \mathbf{f}_k^\top yielding the \mathbf{X}_k is
 1589

$$\mathbf{b} = \begin{bmatrix} 0 \\ b_2 \\ \vdots \\ 0 \\ b_{s+1} \end{bmatrix} \quad \mathbf{f}_k^\top = \begin{cases} \begin{bmatrix} 0, f_2^{(k)}, \dots, 0, f_{s+1}^{(k)} \end{bmatrix}, & \text{if } k \text{ is even} \\ \begin{bmatrix} f_1^{(k)}, 0, \dots, f_s^{(k)}, 0 \end{bmatrix}, & \text{if } k \text{ is odd} \end{cases} \quad (50)$$

1590 For even window size s , the patterns are
 1591

$$\mathbf{b} = \begin{bmatrix} b_1 \\ 0 \\ b_2 \\ \vdots \\ 0 \\ b_{s+1} \end{bmatrix} \quad \mathbf{f}_k^\top = \begin{cases} \begin{bmatrix} 0, f_2^{(k)}, \dots, 0, f_s^{(k)}, 0 \end{bmatrix}, & \text{if } k \text{ is even} \\ \begin{bmatrix} f_1^{(k)}, 0, \dots, f_{s-1}^{(k)}, 0, f_{s+1}^{(k)} \end{bmatrix}, & \text{if } k \text{ is odd} \end{cases} \quad (51)$$

1592 Arranging these vectors inside \mathbf{W}_{QK} and \mathbf{W}_V gives the stated result. \square
 1593

1594 D.4 PROOF OF THEOREM 4.1

1595 **Theorem 4.1.** *Let \mathbf{Y}_0 encode the input tokens according to construction (7) for $s = 1$. Then, the
 1596 optimal parameters $\theta^* = (\mathbf{W}_{QK}^*, \mathbf{W}_V^*)$ of a single linear self-attention layer with respect to loss
 1597 $\mathcal{L}(\theta)$ are*

$$\mathbf{W}_{QK}^* = \begin{bmatrix} \frac{(T-2)\mathbb{E}_{\mathbf{A}, \mathbf{x}_0, \{\mathbf{w}_t\}_t, \{\mathbf{v}_t\}_t} [\sum_{i=1}^{T-2} y_i y_{i+1} y_{T-1} y_T]}{\mathbb{E}_{\mathbf{A}, \mathbf{x}_0, \{\mathbf{w}_t\}_t, \{\mathbf{v}_t\}_t} [\sum_{i=1}^{T-2} y_i y_{i+1} + \sum_{r=1}^{T-2} y_r y_{r+1} y_{T-1}^2]} & 0 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{W}_V^* = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad (14)$$

1598 up to rescaling with $\gamma \neq 0$.
 1599

1620 **Proof.** For the transformer parameters in (14), the corresponding $\mathbf{b}^\top = [0 \ 1]$ and the corresponding
 1621 $\mathbf{F} = [c \ 0]$, where $c := \frac{(T-2)\mathbb{E}_{\tilde{\mathbf{D}}}\left[\sum_{i=1}^{T-2} y_i y_{i+1} y_{T-1} y_T\right]}{\mathbb{E}_{\tilde{\mathbf{D}}}\left[\sum_{i=1}^{T-2} y_i y_{i+1} \sum_{r=1}^{T-2} y_r y_{r+1} y_{T-1} y_T\right]}$.
 1622

1623 So $\mathbf{X} = \mathbf{X}_1 = \mathbf{b} \mathbf{f}_1^\top = \mathbf{b} \mathbf{F}^\top = \begin{bmatrix} 0 & 0 \\ c & 0 \end{bmatrix}$. The gradient of the in-context loss $\nabla_{\mathbf{X}} \mathcal{L}(\mathbf{X})$ is
 1624
 1625

$$\begin{aligned}
 \mathbf{T}_{\mathbf{X}_j}^{(1)} &= \frac{2}{T-2} \mathbb{E}_{\tilde{\mathbf{D}}} [\langle \bar{\mathbf{Y}}, \mathbf{X} \rangle y_{T-1}^2 \bar{\mathbf{Y}}] \\
 &= \frac{2}{T-2} \mathbb{E}_{\tilde{\mathbf{D}}} \left[\left\langle \sum_{r=1}^{T-2} \begin{bmatrix} y_r^2 & y_r y_{r+1} \\ y_{r+1} y_r & y_{r+1}^2 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ c & 0 \end{bmatrix} \right\rangle y_{T-1}^2 \sum_{i=1}^{T-2} \begin{bmatrix} y_i^2 & y_i y_{i+1} \\ y_{i+1} y_i & y_{i+1}^2 \end{bmatrix} \right] \\
 &= \frac{2}{T-2} \mathbb{E}_{\tilde{\mathbf{D}}} \left[c \sum_{r=1}^{T-2} y_r y_{r+1} y_{T-1}^2 \sum_{i=1}^{T-2} \begin{bmatrix} y_i^2 & y_i y_{i+1} \\ y_{i+1} y_i & y_{i+1}^2 \end{bmatrix} \right] \\
 &= \frac{2}{T-2} \mathbb{E}_{\tilde{\mathbf{D}}} \left[c \sum_{r=1}^{T-2} y_r y_{r+1} y_{T-1}^2 \sum_{i=1}^{T-2} \begin{bmatrix} 0 & y_i y_{i+1} \\ y_{i+1} y_i & 0 \end{bmatrix} \right]. \tag{52}
 \end{aligned}$$

1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638 According to Lemma D.3, the two diagonal elements in (52) $\mathbb{E}_{\tilde{\mathbf{D}}} \left[c \sum_{r=1}^{T-2} y_r y_{r+1} y_{T-1}^2 \sum_{i=1}^{T-2} y_i^2 \right]$
 1639 and $\mathbb{E}_{\tilde{\mathbf{D}}} \left[c \sum_{r=1}^{T-2} y_r y_{r+1} y_{T-1}^2 \sum_{i=1}^{T-2} y_{i+1}^2 \right]$ are 0, since the sums of y indices are both odd.
 1640
 1641

$$\begin{aligned}
 \mathbf{T}_{\mathbf{X}_j}^{(2)} &= -2 \mathbb{E}_{\tilde{\mathbf{D}}} \left[y_T y_{T-1} \sum_{i=1}^{T-2} \bar{\mathbf{Y}} \right] \\
 &= -2 \mathbb{E}_{\tilde{\mathbf{D}}} \left[y_T y_{T-1} \sum_{i=1}^{T-2} \begin{bmatrix} y_i^2 & y_i y_{i+1} \\ y_{i+1} y_i & y_{i+1}^2 \end{bmatrix} \right] \\
 &= -2 \mathbb{E}_{\tilde{\mathbf{D}}} \left[y_T y_{T-1} \sum_{i=1}^{T-2} \begin{bmatrix} 0 & y_i y_{i+1} \\ y_{i+1} y_i & 0 \end{bmatrix} \right]. \tag{53}
 \end{aligned}$$

1642 According to Lemma D.3, the two diagonal elements in (53) $\mathbb{E}_{\tilde{\mathbf{D}}} \left[y_T y_{T-1} \sum_{i=1}^{T-2} y_i^2 \right]$ and
 1643 $\mathbb{E}_{\tilde{\mathbf{D}}} \left[y_T y_{T-1} \sum_{i=1}^{T-2} y_{i+1}^2 \right]$ are 0, since the sums of y indices are both odd.
 1644
 1645
 1646
 1647
 1648
 1649
 1650

1651 Plugging in the expression of c , it can be easily found that
 1652
 1653
 1654
 1655

$$\nabla_{\mathbf{X}} \mathcal{L}(\mathbf{X}) = \mathbf{T}_{\mathbf{X}_j}^1 + \mathbf{T}_{\mathbf{X}_j}^2 = 0. \tag{54}$$

1656 Since the in-context loss is convex in \mathbf{X} and the \mathbf{X} resulting from the \mathbf{W}_V^* and \mathbf{W}_{QK}^* above makes
 1657 $\nabla_{\mathbf{X}} \mathcal{L}(\mathbf{X}) = 0$, the \mathbf{W}_V^* and \mathbf{W}_{QK}^* above is a global minimizer for the in-context loss. \square
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

1674 NEW ADDED

1675

1676

1677 E PROOFS FOR SECTION 5

1678

1679 E.1 PROOF THAT OUR EXPERIMENTS' SAMPLING SCHEMES OBEY ASSUMPTION 3.2

1680

1681 All our experiments use a sampling schemes whose generalization is the following:

1682

- 1683 (a) \mathbf{A} constructed by sampling $\mathbf{v} \sim \mathcal{P}$, where \mathcal{P} is centrally symmetric and absolutely continuous w.r.t. the Lebesgue measure on \mathbb{R}^d with marginals supported on $[-1, 1]$, and independently sampling \mathbf{P} , whose every entry is drawn i.i.d. from any absolutely continuous distribution w.r.t. Lebesgue measure in \mathbb{R} . Matrix \mathbf{A} is then formed as $\mathbf{P}\text{diag}(\mathbf{v})\mathbf{P}^{-1}$.
- 1687 (b) \mathbf{c} is sampled from an absolutely continuous distribution w.r.t. Lebesgue measure in \mathbb{R}^d , or
1688 otherwise fixed with $\mathbf{c} \neq \mathbf{0}_d$.

1690

1691 We need to show that

1692

- 1693 (a) \mathbf{A} 's distribution is centrally symmetric, i.e., that $\mathbf{A} \stackrel{d}{=} -\mathbf{A}$;
- 1694 (b) \mathbf{A} 's spectrum is simple w.p. 1;
- 1695 (c) observability still holds when \mathbf{c} is fixed according to the above condition.

1698

1699 The first point is achieved since, by the central symmetry of \mathbf{v} 's distribution,

1700

1701

$$-\mathbf{A} = -\mathbf{P}^{-1}\text{diag}(\mathbf{v})\mathbf{P} = -\mathbf{P}^{-1}\text{diag}(-\mathbf{v})\mathbf{P} \stackrel{d}{=} \mathbf{P}^{-1}\text{diag}(\mathbf{v})\mathbf{P} = \mathbf{A}. \quad (55)$$

1702

1703

1704

1705

The second point is ensured by \mathbf{v} 's distribution being absolutely continuous w.r.t. the Lebesgue measure in \mathbb{R}^d , and hence the probability of \mathbf{v} belonging to $(d-1)$ -dimensional subspaces (and lower) such as $\{\mathbf{x} \in \mathbb{R}^d \mid \exists i, j \in [d] \text{ s.t. } x_i = x_j\}$ is null. In conjunction with the above, when we sample \mathbf{c} from a continuous distribution in \mathbb{R}^d , Assumption (3.2) is satisfied.

1706

1707

1708

1709

However, our proofs and experiments go through even if \mathbf{c} is fixed, as follows. First, the theoretical results rest on \mathbf{A} 's distributional symmetry and are invariant to the linear transformation induced by \mathbf{c} . Second, observability is ensured since $\det(\mathbf{O})$ in expression (5) is not zero w.p. 1, as follows.

1710

We use $\det(\mathbf{OP}) \neq 0$ w.p. 1 $\iff \det(\mathbf{O}) \neq 0$ w.p. 1, since $\det(\mathbf{P}) \neq 0$ w.p. 1.

1711

1712

1713

1714

1715

1716

1717

$$\det(\mathbf{OP}) \stackrel{z:=\mathbf{c}^\top \mathbf{P}}{=} \det([\mathbf{z}; \text{diag}(\mathbf{v})\mathbf{z}; \dots \text{diag}(\mathbf{v})^{d-1}\mathbf{z}]) \quad (56)$$

$$= \det(\text{diag}(\mathbf{z})) \det \left(\begin{bmatrix} 1 & v_1 & \dots & v_1^{d-1} \\ 1 & v_2 & \dots & v_2^{d-1} \\ \dots & \dots & \dots & \dots \\ 1 & v_d & \dots & v_d^{d-1} \end{bmatrix} \right). \quad (57)$$

1718

1719

1720

1721

Since \mathbf{P} 's entries are drawn i.i.d. from an absolutely continuous distribution w.r.t. Lebesgue measure in \mathbb{R} , it holds that $z_i \neq 0$ w.p. 1. The remaining matrix is Vandermonde with $v_i \neq v_j$, $\forall i, j \in [d]$ w.p. 1. Hence, the determinant is nonzero w.p. 1 and observability holds almost surely.

1722

1723

E.2 RELATION OF TRANSFORMER FORWARD PASS WITH PCG

1724

1725

1726

For convenience, we reproduce below the PCG iteration of Shewchuk et al. (1994) for minimizing an objective

1727

$$f(\mathbf{w}) = \frac{1}{2} \mathbf{w}^\top \mathbf{A} \mathbf{w} + \mathbf{b}^\top \mathbf{w} + c$$

1728 **Algorithm 1** Preconditioned Conjugate Gradient

1729
1730 1: **Input:** preconditioner \mathbf{H} , \mathbf{w}_0 , $\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{w}_0$, $\mathbf{d}_0 = \mathbf{H}^{-1}\mathbf{r}_0$, $\delta_{\text{new}} = \mathbf{r}_0^\top \mathbf{d}_0$, $\delta_0 = \delta_{\text{new}}$
1731 2: **for** $i = 0, 1, \dots$ **do**
1732 3: $\mathbf{z}_i = \mathbf{A}\mathbf{d}_i$
1733 4: $\alpha_i = \frac{\delta_{\text{new}}}{\mathbf{d}_0^\top \mathbf{z}_0}$
1734 5: $\mathbf{w}_{i+1} = \mathbf{w}_i + \alpha_i \mathbf{d}_i$
1735 6: $\mathbf{r}_{i+1} = \mathbf{r}_i - \alpha_i \mathbf{z}_i$
1736 7: $\mathbf{v}_{i+1} = \mathbf{H}^{-1}\mathbf{r}_{i+1}$
1737 8: $\delta_{\text{old}} = \delta_{\text{new}}$, $\delta_{\text{new}} = \mathbf{r}_{i+1}^\top \mathbf{v}_{i+1}$,
1738 9: $\beta_{i+1} = \frac{\delta_{\text{new}}}{\delta_{\text{old}}}$
1739 10: $\mathbf{d}_{i+1} = \mathbf{v}_{i+1} + \beta_{i+1} \mathbf{d}_i$
1740 11: **end for**
1741 12: **return** θ_T

1742
1743 We compute the first two steps of the algorithm with respect to the loss (4), which can be rewritten as
1744

1745 $\mathcal{L}_{AR(s)}(\mathbf{w}) := \frac{1}{2(T-s-1)} \sum_{t=1}^{T-s-1} (y_{t+s} - \mathbf{w}^\top \bar{\mathbf{y}}_t)^2$ (58)

1746
1747

1748 $= \frac{1}{2(T-s-1)} \sum_{t=1}^{T-s-1} \mathbf{w}^\top \bar{\mathbf{y}}_t \bar{\mathbf{y}}_t^\top \mathbf{w} - 2y_{t+s} \mathbf{w}^\top \bar{\mathbf{y}}_t + y_{t+s}^2$ (59)

1749
1750

1751 $= \frac{1}{2} \mathbf{w}^\top \nabla^2 \mathcal{L}_{AR(s)} \mathbf{w} - \mathbf{w}^\top \nabla \mathcal{L}_{AR(s)}(0) + y_{t+s}^2$ (60)

1752

1753 Using the initializations proposed in the main text, $\mathbf{w}_0 = \mathbf{0}$ and $\mathbf{d}_0 = \mathbf{q}$, and $\mathbf{H} = \mathbf{P}^{-1}$ we get

1754

1755 $\mathbf{w}_1 = \alpha_0 \mathbf{d}_0 = \alpha_0 \mathbf{q}$
1756 $\mathbf{w}_2 = \mathbf{w}_1 + \alpha_1 \mathbf{d}_1$
1757 $= \alpha_0 \mathbf{q} + \alpha_1 [\mathbf{P} \mathbf{r}_1 + \beta_1 \mathbf{d}_0]$
1758 $= \alpha_0 \mathbf{q} + \alpha_1 [\mathbf{P}(\mathbf{r}_0 - \alpha_0 \mathbf{z}_0) + \beta_1 \mathbf{q}]$
1759 $= \alpha_0 \mathbf{q} + \alpha_1 [\mathbf{P}(\nabla \mathcal{L}_{AR(s)}(0) - \alpha_0 \nabla^2 \mathcal{L}_{AR(s)} \mathbf{q}) + \beta_1 \mathbf{q}]$
1760 $= \alpha_0 \mathbf{q} + \alpha_1 \mathbf{P} \nabla \mathcal{L}_{AR(s)}(0) - \alpha_0 \alpha_1 \mathbf{P} \nabla^2 \mathcal{L}_{AR(s)} \mathbf{q} + \alpha_1 \beta_1 \mathbf{q}$
1761 $= ((\alpha_0 + \alpha_1 \beta_1) \mathbf{I} - \alpha_0 \alpha_1 \mathbf{P} \nabla^2 \mathcal{L}_{AR(s)}) \mathbf{q} + \alpha_1 \mathbf{P} \nabla \mathcal{L}_{AR(s)}(0)$
1762 $= \left[(\alpha_0 + \alpha_1 \beta_1) \nabla^2 \mathcal{L}_{AR(s)}^{-1} - \alpha_0 \alpha_1 \mathbf{P} \right] \nabla^2 \mathcal{L}_{AR(s)} \mathbf{q} + \alpha_1 \mathbf{P} \nabla \mathcal{L}_{AR(s)}(0)$
1763
1764

1765
1766 E.3 MERGING THE $\hat{\gamma}(0)$ TERM INTO THE HESSIAN PRECONDITIONER

1767
1768 We want to show that there exists a matrix $\mathbf{P}' \in \mathbb{R}^{s \times s}$ such that $c_N \mathbf{p} \hat{\gamma}_0 = \mathbf{P}' \nabla^2 \mathcal{L}_{AR(s)} \mathbf{q}$.

1769
1770 Let $\mathbf{v} = \nabla^2 \mathcal{L}_{AR(s)} \mathbf{q}$, then $\mathbf{P}' := \frac{c_N \hat{\gamma}_0 \mathbf{p} \mathbf{v}^\top}{\mathbf{v}^\top \mathbf{v}}$ satisfies

1771

1772 $\mathbf{P}' \nabla^2 \mathcal{L}_{AR(s)} \mathbf{q} = \frac{c_N \hat{\gamma}_0 \mathbf{p} \mathbf{v}^\top}{\mathbf{v}^\top \mathbf{v}} \nabla^2 \mathcal{L}_{AR(s)} \mathbf{q} = \frac{c_N \hat{\gamma}_0 \mathbf{p} \mathbf{v}^\top \mathbf{v}}{\mathbf{v}^\top \mathbf{v}} = c_N \hat{\gamma}_0 \mathbf{p}$

1773
1774

1775
1776
1777
1778
1779
1780
1781