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ABSTRACT

Many deep neural networks are vulnerable to backdoor poisoning attacks, in which
an adversary strategically injects a backdoor trigger into a small fraction of the
training data. The trigger can later be applied during inference to manipulate
prediction labels. While the data label could be changed to arbitrary values by an
adversary, the extent of corruption injected into the feature values is strictly limited
to keep the backdoor attack in disguise, which leads to a resemblance between the
backdoor attack and a milder attack that involves only noisy labels. This paper
investigates an intriguing question: Can we leverage algorithms that defend against
noisy label corruptions to defend against general backdoor attacks? We first
discuss the limitations of directly using current noisy-label defense algorithms to
defend against backdoor attacks. We then propose a meta-algorithm for both super-
vised and semi-supervised settings that transforms an existing noisy label defense
algorithm into one that protects against backdoor attacks. Extensive experiments
on different settings show that, by introducing a lightweight alteration for minimax
optimization to the existing noisy-label defense algorithms, the robustness against
backdoor attacks can be substantially improved, while the initial form of those
algorithms would fail in the presence of a backdoor attack.

1 INTRODUCTION

Deep neural networks (DNN) have achieved significant success in a variety of applications such as
image classification (Krizhevsky et al., 2012), autonomous driving (Major et al., 2019), and natural
language processing (Devlin et al., 2018), due to their powerful generalization ability. However, DNN
can be highly susceptible to even small perturbations of training data, which has raised considerable
concerns about their trustworthiness (Liu et al., 2020). One representative perturbation approach
is backdoor attack, which undermines the DNN performance by modifying a small fraction of the
training samples with specific triggers injected into their input features, whose ground-truth labels
are altered accordingly to be the attacker-specified ones. It is unlikely such backdoor attacks will
be detected by monitoring the model training performance since the trained model can still perform
well on the benign validation samples. Consequently, during testing phase, if the data is augmented
with the trigger, it would be mistakenly classified as the attacker-specified label. Subtle yet effective,
backdoor attacks can pose serious threats to the practical application of DNNs.

Another typical type of data poisoning attack is noisy label attacks (Han et al., 2018; Patrini et al.,
2017; Yi & Wu, 2019; Jiang et al., 2017), in which the labels of a small fraction of data are altered
deliberately to compromise the model learning, while the input features of the training data remain
untouched. Backdoor attacks share a close connection to noisy label attacks, in that during a backdoor
attack, the feature can only be altered insignificantly to put the trigger in disguise, which makes the
corrupted feature (e.g. images with the trigger) highly similar to the uncorrupted ones. Prior efforts
have been made to effectively address noisy label attacks. For instance, there are algorithms that can
tolerate a large fraction of label corruption, with up to 45% noisy labels (Han et al., 2018; Jiang
et al., 2018). However, to the best of our knowledge, most algorithms defending against backdoor
attacks cannot deal with a high corruption ratio even if the features of corrupted data are only slightly
perturbed. Observing the limitation of prior state-of-the-art, we aim to answer one key question: Can
one train a deep neural network that is robust against a large number of backdoor attacks? Moreover,
given the resemblance between noisy label attacks and backdoor attacks, we also investigate another
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intriguing question: Can one leverage algorithms initially designed for handling noisy label attacks
to defend against backdoor attacks more effectively?

The contributions of this paper are multi-fold. First, we provide a novel and principled perspective
to decouple the challenges of defending backdoor attacks into two components: one induced by
the corrupted input features, and the other induced by the corrupted labels, based on which we can
draw a theoretical connection between the noisy-label attacks and backdoor data attacks. Second, we
propose a meta-algorithm to address both challenges by a novel minimax optimization. Specifically,
the proposed approach takes a noisy-label defense algorithm as its input and outputs a reinforced
version of the algorithm that is robust against backdoor poisoning attacks, even if the initial form of
the algorithm fails to provide such protection. Moreover, we also propose a robust meta-algorithm
in semi-supervised setting based on our theorem, leveraging more data information to boost the
robustness of the algorithm. Extensive experiments show that the proposed meta-algorithm improves
the robustness of DNN models against various backdoor attacks on a variety of benchmark datasets
with up to 45% corruption ratio, while most previous study on backdoor attack only provide robustness
against small corruption ratio. Furthermore, we propose a systematic, meta-framework to solve
backdoor attacks, which can effectively join existing knowledge in noisy label attack defenses and
provides more insights to future development of defense algorithms.

2 RELATED WORK

Robust Deep Learning Against Adversarial Attack. Although DNNs have shown high general-
ization performance on various tasks, it has been observed that a trained DNN model would yield
different results even by perturbing the image in an invisible manner (Goodfellow et al., 2014; Yuan
et al., 2019). Prior efforts have been made to tackle this issue, among which one natural defense
strategy is to change the empirical loss minimization into a minimax objective. By solving the
minimax problem, the model is guaranteed a better worst-case generalization performance (Duchi &
Namkoong, 2021). Since exactly solving the inner maximization problem can be computationally
prohibitive, different strategies have been proposed to approximate the inner maximization opti-
mization, including heuristic alternative optimization, linear programming Wong & Kolter (2018),
semi-definite programming Raghunathan et al. (2018), etc. Besides minimax optimization, another
approach to improve model robustness is imposing a Lipschitz constraint on the network. Work along
this line includes randomized smoothing Cohen et al. (2019); Salman et al. (2019), spectral normal-
ization Miyato et al. (2018a), and adversarial Lipschitz regularization Terjék (2019). Although there
are algorithms that are robust against adversarial samples, they are not designed to confront backdoor
attacks, in which clean training data is usually inaccessible. There are also studies that investigated
the connection between adversarial robustness and robustness against backdoor attack (Weber et al.,
2020). However, to our best knowledge, there is no literature studying the relationship between label
flipping attack and backdoor attack.

Robust Deep Learning Against Noisy Labels. Many recent studies have investigated the robustness
of classification tasks with noisy labels. For example, Kumar et al. (2010) proposed the Self-Paced
Learning (SPL) approach, which assigns higher weights to examples with a smaller loss. A similar
idea was used in Curriculum Learning (Bengio et al., 2009), in which a model is trained on easier
examples before moving to the harder ones. Other methods inspired by SPL include learning the
data weights (Jiang et al., 2018) and collaborative learning (Han et al., 2018; Yu et al., 2019). An
alternative approach to defending noisy label attacks is label correction (Patrini et al., 2017; Li et al.,
2017; Yi & Wu, 2019), which attempts to revise the original labels of the data to recover clean
labels from corrupted ones. However, since we do not have the knowledge of which data points
have been corrupted, it is nontrivial to obtain provable guarantees for label corrections, unless strong
assumptions have been made on the corruption type.

Data Poisoning Backdoor Attack and its Defense. Robust learning against backdoor attacks has
been widely studied recently. Gu et al. (2017) showed that even a small patch of perturbation can
compromise the generalization performance when data is augmented with a backdoor trigger. Other
types of attacks include the blend attacks (Chen et al., 2017), clean label attacks (Turner et al., 2018;
Shafahi et al., 2018), latent backdoor attacks (Yao et al., 2019), etc. While there are various types
of backdoor attacks, some attack requires that the adversary not only has access to the data but also
has limited control on the training and inference process. Those attacks include trojan attacks and
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blind backdoor attacks (Pang et al., 2020). We refer readers to Pang et al. (2020) for a comprehensive
survey on different types of backdoor attacks. Various defense mechanisms have been proposed to
defend against backdoor attacks. One approach is to remove the corrupted data by using anomaly
detection (Tran et al., 2018; Chen et al., 2018). Alternatively, model inspection (Wang et al., 2019)
aims to inspect and modify the compromised model to make it robust against the trigger. In addition,
there are other methods to tackle the backdoor attacks, such as randomized smoothing (Cohen et al.,
2019; Weber et al., 2020), and the median of means (Levine & Feizi, 2020). However, they are either
inefficient or cannot defend against backdoor attacks with a large ratio of corrupted data. Some of
the above methods also hinge on having a clean set of validation data, which is impractical since it
is unlikely we can guarantee the existence of clean validation data given that the validation data is
usually a subset of the training data. To the best of our knowledge, there is no existing backdoor
defense algorithm that is motivated from the label corruption perspective.

3 PRELIMINARIES

Learning with Noisy Labels There are two representative approaches for defending against noisy-
labels: 1) Filtering-based approach is one of the most effective strategies for defending against noisy
labels, which works by selecting or weighting the training samples based on indicators such as sample
losses (Jiang et al., 2017; Han et al., 2018; Jiang et al., 2020) or gradient norms of the loss-layer (Liu
et al., 2021). For instance, Jiang et al. (2017) proposed to assign higher probabilities to samples with
lower losses to be selected for model training. 2) Consistency-based approach modifies data labels
during model training. Specifically, the Bootstrap approach (Reed et al., 2014) encourages model
predictions to be consistent between iterations, by modifying the labels as a linear combination of the
observed labels and previous predictions.

Although the initial forms of these approaches can be vulnerable to backdoor attacks, we propose a
meta-algorithm that empowers them to effectively counter against backdoor attacks. In this paper,
we examine two filtering-based noisy label algorithms, namely, Self-Paced Learning (SPL) Jiang
et al. (2017); Kumar et al. (2010) and Provable Robust Learning (PRL) Liu et al. (2021), and one
consistency-based algorithm, the Bootstrap Reed et al. (2014), to investigate the efficacy of the
proposed meta algorithm. We briefly summarize the main idea of the above algorithms in Table 4 in
Appendix section. The empirical results in Section 5 strongly suggest that our meta framework can
readily benefit the existing robust noisy-label algorithms.

Problem Setting of Backdoor Attacks We follow the standard setting for backdoor attacks and
assume that there is an adversary that tries to perform the backdoor attack. Firstly, the adversary can
choose up to ϵ fraction of clean labels Y ∈ Rn×q and modify them to arbitrary valid numbers to
form the corrupted labels Yb ∈ R⌊nϵ⌋×q . Let Yr represent the remaining untouched labels. The final
training labels can be denoted as Yϵ = [Yb,Yr]. Accordingly, the corresponding original feature
are denoted as X = [Xo ∈ R⌊nϵ⌋×d,Xr ∈ R(n−⌊nϵ⌋)×d]. The adversary can design a trigger t ∈ Rd

to form the corrupted feature set Xb ∈ R⌊nϵ⌋×d such that for any bi in Xb, oi in Xo, it satisfies
bi = oi + t. Finally, the training features are denoted as Xϵ = [Xb ∈ R⌊nϵ⌋×d,Xr ∈ R(n−⌊nϵ⌋)×d].
Assuming T = [t, t, ..., t] ∈ R⌊nϵ⌋×d, therefore Xo +T = Xb

1. Before analyzing the algorithm,
we make following assumptions about the adversary attack:

Assumption 1 (Bounded Corruption Ratio). The overall corruption ratio and the corruption ratio in
each class is bounded. Specifically,

E(x,y,yb)∈(X,Y,Yb)

[
I(yb = c|y ̸= c)

I(y = c)

]
≤ ϵ = 0.5 ∀c ∈ △Y.

Assumption 2 (Small Trigger). The backdoor trigger satisfies ∥t∥p ≤ τ , which subtly alters the data
within a small radius-τ ball without changing its ground-truth label.

We also assume that there exists at least one black-box robust algorithm A which can defend noisy
label attacks so long as the noisy-label ratio is bounded by ϵ. Note that the assumption of noisy label
algorithm is mild, since a variety of existing algorithm can handle noisy labels attacks with a large
corruption rate (e.g. 45%) (Jiang et al., 2017; Han et al., 2018; Reed et al., 2014; Liu et al., 2021).

1Some backdoor attack algorithms design instance-specific trigger. In this paper, we only focus on the static
trigger case and leave the instance-specific trigger case for our future study.
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4 METHODOLOGY

Given an ϵ-backdoor attacked dataset (Xϵ,Yϵ), a clean distribution p∗ := (X,Y), and a loss
function L, our goal is to learn a network function f that minimizes the generalization er-
ror under the corrupted distribution, i.e. E(x,y)∼p∗ [L(f(x+ t), y)] and clean distribution, i.e.
E(x,y)∼p∗ [L(f(x), y)]. Next, we elaborate our meta-approach for defending against backdoor at-
tacks in order to achieve our goal.

4.1 A BLACK-BOX ROBUST ALGORITHM AGAINST NOISY LABELS

The ultimate goal for defending against backdoor attacks is to learn a network function f to minimize
its risk given some corrupted input features:

minf J(f) := E(x,y)∼p∗ [L(f(x+ t), y)] . (1)

However, Equation 1 is not directly optimizable for two reasons: 1) we only have access to the
corrupted inputs and the corrupted labels Yϵ, and 2) the trigger t is unknown. As such, we consider
an surrogate objective that optimizes the worst-case of Equation 1:

minf max∥c∥p≤τ
1

n

∑
x∈X,y∈Y

[L(f(x+ c),y)] . (2)

Since the trigger satisfies ∥t∥p ≤ τ , it is easy to see that Equation 2 minimizes
an upper-bound of the ground-truth loss, in that: 1

n

∑
x∈X,y∈Y L(f(x + t),y) ≤

max∥c∥p≤τ
1
n

∑
x∈X,y∈Y [L(f(x+ c),y)] . To this end, directly optimizing the surrogate objec-

tive in Equation 2 is still intractable, since we do not have access to clean X and Y, which prevent
us from using adversarial training to solve the minimax objective. To tackle this challenge, we will
first assume that the clean label Y is available, and then relax this assumption by using learning
algorithms that are robust against noisy labels. Specifically, by assuming that ϕw = L ◦ f has a
Lipschitz constant L w.r.t. x, we further obtain a new upper bound (see Appendix for derivation):

1

n

∑
x∈X,y∈Y

[L(f(x+ c),y)] ≤ 1

n

∑
x∈Xϵ,y∈Y

ϕw(xi + c,y) + ϵτL, (3)

which draws a principled connection between the risks from corrupted data and clean data:

min
f

max
∥c∥p≤τ

1

n

∑
x∈X,y∈Y

[L(f(x+ c),y)] ≈

{
min
f

max
∥c∥p≤τ

1

n

∑
x∈Xϵ,y∈Y

[L(f(x+ c),y)] + ϵτL

}
, (4)

where the first term on the RHS of Equation 4 involves optimization on the corrupted features Xϵ

and clean labels Y, while the second term on the RHS requires minimizing the Lipschitz constant L
w.r.t. x. Recall that minimizing the maximum gradient norm is equivalent to minimizing the Lipschitz
constant (Terjék, 2019). Therefore, optimizing the first term naturally regulates the maximum change
of the loss function within a small ball, which hence constrains the magnitude of the gradient and has
negligible effects on the Lipschitz regularization. The relationship between Lipschitz regularization
and adversarial training has been well discussed in the literature (Terjék, 2019; Miyato et al., 2018b).
We defer this discussion to the Appendix section.

Equation 4 indicates that if the target labels are not corrupted and the learned function has a small
Lipschitz constant, learning with corrupted features is feasible to achieve a low risk. Up to now,
the remaining challenge of optimizing the surrogate objective in Equation 4 is the inaccessible
clean label set Y. Fortunately, a variety of algorithms are at hand for handling noisy labels dur-
ing learning (Jiang et al., 2017; Liu et al., 2021; Kumar et al., 2010), which we can directly ap-
ply to our minimax optimization scheme. Specifically, for the outer minimization, one can have:

minf
1

n

∑
x∈Xϵ,y∈Yϵ [L(f(x+ c),y)] , and we can perform the noisy-label update for the above

optimization objective. For instance, given the mini-batch Mx, My with batch size m, if we use
SPL to perform the update, we can get the top (1 − ϵ)m data with a small risk L(f(x + c),y) to
perform one-step gradient descent. If we use the PRL to perform the update, assuming L is the
cross-entropy loss, the top (1− ϵ)m data with small loss-layer gradient norm ∥f(x+ c)− y∥ can be
used to perform one-step gradient descent. If we apply the bootstrap method, we can add a bootstrap
regularization to update the above objective.
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Meanwhile, it is non-trivial to directly solve the inner maximization, since adversarial learning
c in Equation 4 still faces the threat of noisy labels. To tackle this issue, we can leverage the
same robust noisy label algorithm. Specifically, we first approximate the inner optimization

using the first-order Tyler expansion: c∗ = argmax∥c∥p≤τ

1

n

∑
x∈X,y∈Y L(f(x + c),y) ≈

argmax∥c∥p≤τ c
T∇x

1

n

∑
x∈X,y∈Y L(f(x),y). The preceding optimization is a linear program-

ming problem. With the l∞ norm ball constraint on the perturbation, the optimization problem can
be efficiently solved by the fast gradient sign method (FGSM). Given a minibatch Mx,My with
batchsize m, we have the following closed-form solution:

c̃ = Clipc

{
τ

m
·
∑

x∈Mx,y∈My

sign (∇xL (f(x),y))

}
. (5)

To relax the prerequisite of having a clean label set y in Equation 5, we will use a noisy-label
algorithm to perform the update. For instance, if we use a loss-filtering based algorithm (e.g. SPL),
then for each mini-batch, only the top (1− ϵ)m data with small L (f(x),y) would be included in the
update. If we adopt a gradient-based filtering algorithm (e.g. PRL), given that L is the cross-entropy
loss, then only the top (1− ϵ)m data with small ∥f(x)− y∥ will be included. The outside clipping
ensures that the feature value of the corrupted image is in the valid range. Based on the above
discussion, we now introduce our meta-algorithm in Algorithm 1 that is robust against backdoor
attacks, given an arbitrary noisy-label robust algorithm A as its input. We also provided an illustration
in Figure 1 of the Appendix.

Algorithm 1: Meta Algorithm for Robust Learning Against Backdoor Attacks
input: Corrupted training data Xϵ, Yϵ, perturbation limit: τ , learning with noisy label algorithm A (e.g.

PRL, SPL, Bootstrap).
return trained neural network ;
while epoch ≤ max_epoch do

for sampled minibatch Mx,My in Xϵ,Yϵ do
#Inner maximization step
initialize c as 0 vector.
optimize max∥c∥≤τ L(f(Mx + c),My) w.r.t. to c by using robust algorithm A for one step
optimize minf L(f(Mx + c),My) w.r.t. f by using robust algorithm A for one step

end
end

4.2 THEORETICAL JUSTIFICATION

Our ultimate goal is to learn w that achieves a low expected risk Ex,y∼p∗ϕw(x+ t,y). To study the
generalization performance on the ground-truth distribution p∗, we first define the following risks:
Remp

t = 1
n

∑
x∈X,y∈Y ϕw(x+t,y), Rt = Ex,y∼p∗ϕw(x+t,y), Remp

c = 1
n

∑
x∈Xϵ,y∈Y ϕw(x+

c,y), Next, we focus on the gap between Rt and Remp
c .

Theorem 1. Let Remp
c ,Rt, ϵ, τ defined as above. Assume that the prior distribution of the net-

work parameter w is N (0, σ), and the posterior distribution of parameter is N (w, σ) which is
learned from the training data. Let k be the number of parameters, n be the sample size, and

Γ =

√
1
4k log

(
1+

∥w∥22
kσ2

)
+ 1

4+log n
δ +2 log(6n+3k)

n−1 . If the objective function ϕw = L ◦ f is Lϕ-Lipschitz
smooth, then with probability at least 1-δ, one can have:

Rt ≤ Remp
c + Lϕ(2τ + ϵτ) + Γ. (6)

We hereby present the skeleton of the proof and defer more details to the Appendix. First, we
decompose the error into two terms: 1) the generalization gap on the triggered data, and 2) the
difference of performance loss between the trigger t and worst case perturbation c: Rt −Remp

c =
(Rt −Remp

t ) + (Remp
t −Remp

c ). The first component can be bounded by Γ, which is derived by
following the uniform convergence PAC-Bayes framework (Foret et al., 2020). For the second term,
the gap is introduced by two sources. The first source is the difference between c and t, and the second
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is from the difference between X and Xϵ. Since the objective is Lϕ Lipschitz, and ∥t − c∥ ≤ 2τ
according to our constraint to the adversary, it is easy to upper bound the error as 2τLϕ. Meanwhile,
there is ϵ-fraction of difference between X and Xϵ, which is bounded by ∥t∥ < τ and leads to the
other difference term Lϕϵτ .

Theorem 1 presents an upper-bound of the gap Rt − Remp
c . The first term in Equation 6 can be

minimized by using a noisy label algorithm. The second term, which is the error induced by the
adversarial trigger, is jointly constrained by the Lipschitz constant Lϕ, perturbation limit τ , and the
corruption ratio ϵ. We can regularize the Lϕ whereas the τ and ϵ are controlled by the unknown
adversary. Note that existing literature has also shown that adversarial training plays a similar role as
Lipschitz regularization. The last term, the normal generalization error on the clean data, is difficult
to minimize directly. The bound in Theorem 1 emphasizes the importance of involving both the noisy
label algorithm and the adversarial training. The noisy label algorithm can reduce the Remp

c while
the adversarial training regularize the Lipschitz constant Lϕ.

4.3 A SEMI-SUPERVISED ALGORITHM

In backdoor attacks, most attacking algorithms require modifying the label to successfully deploy the
attacks. If we could leverage the knowledge from unlabeled data (i.e. via semi-supervised learning),
the model performance will likely improve. In this section, we extend Theorem 1 to a semi-supervised
learning setting and show that utilizing more data can benefit the model robustness. Our motivation
is from the following property of Lipschitz functions. If h is a composition of two functions, f
and g (h = f ◦ g), then ∥h∥lip ≤ ∥f∥lip∥g∥lip. Recall in Eq. 6, the Lipschitz constant Lϕ depends
on the loss function ϕ, which can be decomposed into the representation function h : X → Z, a
linear prediction layer q : Z → Ỹ , and a cross entropy layer CE : Y × Ỹ → R. We then have the
following proposition:

Proposition 1. With the assumptions in Theorem 1, let the network be a composition of representation
extraction h and linear classifier q. Let σmax be the maximum singular value of the last layer linear
prediction weight matrix (i.e. fine-tuning layer). If the representation extraction is Lh Lipschitz, then
with probability at least 1-δ, we have:

Rt ≤ Remp
c + Lhσmax

√
2(2τ + ϵτ) + Γ.

The proof is provided in the Appendix. The advantage of decomposing the Lipschitz constant of the
objective function into the Lipschitz constants of the representation and prediction functions is that
controlling Lh does not require access to the labels. This suggests that we can leverage the unlabeled
data to control Lh and let the supervised learning part to control σmax. Let the representation of
the last layer be Z = h(X), we have Lh defined as ∥h(X1)− h(X2)∥ ≤ Lh∥X1 −X2∥,∀X1,X2.
Then, our goal is to leverage more data to improve Lh, and fine-tune the last linear layer to control
the σmax with labeled data.

In this work, we use the SimCLR to learn the representation function h. SimCLR first defines a
random transformation set T (i.e. cropping, color jittering, flipping, rotation, i.e.), and then samples
two random transformations, T1 and T2, to generate two views T1(X) and T2(X) for each image.
Then, the model is trained to maximize their cosine similarity. Note that the transformations of
SimCLR is usually make images after transformation T (X) to be semantically close to X. Therefore
we assume that there exists some distance metric d (i.e. Wasserstein distance) so that the distance
between the original image and the transformed one is small (i.e. d(X, Ti(X)) ≤ τ

2
,∀Ti ∼ T ).

Then, by triangle inequality, we have d(Ti(X), Tj(X)) ≤ τ . Thus, SimCLR actually samples two
images which are closed in some distance metric, and then maximizes the cosine similarity, which
is equivalent to minimizing the normalized ℓ2 distance. This process can be viewed as enforcing a
Lipschitz regularization for the representation learning, since SimCLR minimizes the normalized
ℓ2 distance in representation space for two random images that are close in Wasserstein distance.
The remaining part that needs to be controlled is the maximum singular value of the last linear layer,
which can be enforced by using spectral normalization Miyato et al. (2018a). Motivated by this, in
Alg. 2 we propose a semi-supervised robust algorithm to defend against backdoor attacks.
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Algorithm 2: Semi-Supervised Algorithm for Robust Learning Against Backdoor Attacks
input: Corrupted training data Xϵ, Yϵ, Clean Augmented Dataset Xaug , perturbation limit: τ , learning

with noisy label algorithm A (e.g. PRL, SPL, Bootstrap).
return trained neural network ;
Use SimCLR on [Xϵ,Xaug] to learn the representation function h, then fine-tune the linear layer with

spectral normalization using noisy label algorithm as following
while epoch ≤ max_epoch do

for sampled minibatch Mx,My in Xϵ,Yϵ do
minf L(flin(h(Mx)),My) w.r.t. flin by using robust algorithm A for one step
use spectral normalization to truncate the largest singular value of last linear layer.

end
end

Backdoor Attack Defense Accuracy.
Dataset ϵ AT BootStrap Bootstrap-AT PRL PRL-AT SPL SPL-AT Standard Fine-Pruning SpecSig

CIFAR10
with Patch Attack,
Poison Accuracy

0.15 66.64 ± 5.28 2.09 ± 0.13 3.05 ± 0.47 81.71 ± 0.37 80.15 ± 0.42 34.60 ± 1.57 77.60 ± 3.81 2.10 ± 0.10 56.67 ± 0.23 35.90 ± 2.13
0.25 63.98 ± 7.16 2.01 ± 0.23 2.75 ± 0.17 45.94 ± 25.19 78.14 ± 0.48 10.87 ± 2.13 22.17 ± 10.51 2.13 ± 0.15 60.85 ± 0.42 29.02 ± 5.34
0.35 60.19 ± 1.35 1.98 ± 0.15 2.66 ± 0.16 31.27 ± 17.63 75.04 ± 0.29 11.74 ± 1.24 15.40 ± 7.56 2.01 ± 0.09 56.84 ± 0.15 51.59 ± 3.24
0.45 51.25 ± 1.81 1.94 ± 0.12 2.53 ± 0.20 17.50 ± 1.66 58.90 ± 12.52 12.32 ± 1.20 14.00 ± 5.35 1.88 ± 0.04 44.21 ± 3.24 24.10 ± 6.23

CIFAR10
with Patch Attack,

Clean Accuracy

0.15 66.77 ± 5.17 85.22 ± 0.48 82.62 ± 0.26 82.06 ± 0.16 80.25 ± 0.43 77.35 ± 2.76 77.70 ± 3.78 85.40 ± 0.37 80.34 ± 0.37 80.32 ± 0.26
0.25 63.98 ± 7.16 85.25 ± 0.19 81.90 ± 0.25 78.57 ± 1.03 78.22 ± 0.56 69.52 ± 2.38 68.49 ± 2.76 85.20 ± 0.26 79.50 ± 0.15 80.40 ± 0.15
0.35 60.31 ± 1.37 84.86 ± 0.13 81.75 ± 0.25 73.63 ± 0.75 75.10 ± 0.31 60.23 ± 3.14 58.88 ± 3.46 84.73 ± 0.13 79.10 ± 0.27 72.01 ± 0.31
0.45 51.25 ± 1.81 1.94 ± 0.12 2.53 ± 0.20 17.50 ± 1.66 58.90 ± 12.52 50.82 ± 1.48 14.00 ± 5.35 1.88 ± 0.04 78.73 ± 0.16 24.01 ± 0.34

CIFAR10
with Blend Attack,
Poison Accuracy

0.15 65.15 ± 0.94 2.17 ± 0.17 24.98 ± 10.01 6.41 ± 3.91 79.71 ± 0.33 11.60 ± 6.56 74.77 ± 3.53 2.29 ± 0.10 34.38 ± 0.13 70.74 ± 0.28
0.25 56.98 ± 0.72 2.06 ± 0.10 33.33 ± 20.03 6.77 ± 2.81 76.99 ± 0.37 11.60 ± 8.59 52.36 ± 10.57 2.03 ± 0.18 13.94 ± 0.24 75.40 ± 0.35
0.35 47.84 ± 1.49 1.86 ± 0.07 13.13 ± 7.11 9.42 ± 5.28 73.17 ± 0.96 12.71 ± 9.33 50.79 ± 7.92 1.97 ± 0.07 23.71 ± 0.43 66.87 ± 0.14
0.45 34.66 ± 1.49 1.83 ± 0.11 6.12 ± 2.86 8.13 ± 4.50 49.88 ± 8.43 8.69 ± 4.41 35.06 ± 4.00 1.88 ± 0.06 16.36 ± 0.26 41.32 ± 0.36

CIFAR10
with Blend Attack,

Clean Accuracy

0.15 66.14 ± 0.98 85.54 ± 0.58 81.44 ± 0.58 77.51 ± 1.20 80.06 ± 0.34 76.25 ± 2.78 75.65 ± 3.11 85.28 ± 0.34 79.53 ± 0.15 83.60 ± 0.37
0.25 58.91 ± 5.70 84.95 ± 0.30 80.89 ± 0.65 71.45 ± 1.40 77.82 ± 0.26 67.86 ± 2.58 65.08 ± 0.82 85.06 ± 0.39 79.32 ± 0.26 81.23 ± 0.26
0.35 50.07 ± 13.26 84.72 ± 0.58 80.63 ± 0.57 66.22 ± 1.15 74.34 ± 1.01 60.52 ± 2.26 60.16 ± 2.39 84.72 ± 0.28 78.28 ± 0.17 76.63 ± 0.19
0.45 38.03 ± 15.42 84.36 ± 0.38 80.35 ± 0.39 55.78 ± 2.09 57.17 ± 9.02 49.48 ± 2.19 46.74 ± 0.71 84.07 ± 0.17 76.70 ± 0.24 62.53 ± 0.29

Table 1: Performance on CIFAR10. ϵ is the corruption rate.

4.4 HOW TO CHOOSE THE NOISY LABEL ALGORITHM

One key question regarding our framework is how to choose the noisy label algorithm. In practice, we
found PRL gives consistent robustness against both badnet and blending attacks on different settings.
This might be because PRL is designed for agnostic corrupted supervision, which is suitable for a
variety of noisy label attack types.

From a theoretical view, analyzing how different noisy label algorithms minimize the first term of
RHS in Eq. 6 depends on the noisy label algorithm used. Here we present a high-level analysis for
PRL. PRL guarantees convergence to the ϵ-approximated stationary point, where ϵ is the corrupted
ratio. Formally, we have the following proposition:

Proposition 2. Given the assumptions used in Theorem 1, assume the objective function ϕw = L ◦ f
is Lϕ-Lipschitz smooth and satisfying the PL condition 1

2∥∇ϕw∥ ≥ µ(ϕw − ϕw∗). Then, with the
assumption of bounded operator norm of gradient before loss layer, we have with probability at least
1-δ, by applying PRL-AT, we have:

Rt ≤ 1
µO(ϵ) + Lϕ(2τ + ϵτ) + Γ.

The proof is in the Appendix. In general, considering ϕ is a deep neural network, the first term is
more difficult to analyze without further assumptions (i.e. PL condition). Nevertheless, empirical
study shows that many noisy label algorithms can effectively minimize the first term, noisy label loss,
even though some of them have theoretical guarantees while do not. This motivates us to treat these
algorithms as black-box algorithms.

5 EXPERIMENT

We perform experiments on CIFAR10, CIFAR100, and STL10 benchmark data to validate our
approach. We use ResNet-32 (He et al., 2016) as the backbone network structure for the experiments.
We also use AdamW (Loshchilov & Hutter, 2017) with initial learning rate as 3e-4 as the optimizer
for all methods. The batchsize is 128 for all methods. The evaluation metric is the top-1 accuracy for
both clean testing data and testing data with backdoor trigger.
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Table 2: Accuracy on CIFAR10 in semi-supervised setting. ϵ is the corruption rate.
Backdoor Attack Defense Accuracy. CIFAR100→ CIFAR10 STL10 → CIFAR10
Dataset ϵ Standard PRL-AT PRL-SimCLR PRL-SimCLR-SN PRL-SimCLR PRL-SimCLR-SN

Patch Attack,
Poison Accuracy

0.15 26.66 ± 0.07 64.43 ± 8.37 83.72 ± 0.04 82.99 ± 0.05 80.73 ± 0.06 82.96 ± 0.05
0.25 5.67 ± 0.02 60.94 ± 0.88 26.91 ±0.05 80.78 ± 0.12 78.07 ± 0.08 77.92 ± 0.23
0.35 5.20 ± 0.13 55.53 ± 0.60 36.12 ± 0.06 77.90 ± 0.23 26.91 ± 0.14 45.99 ± 0.27
0.45 5.28 ± 0.24 46.46 ± 0.33 16.97 ± 1.04 32.94 ± 0.31 45.40 ± 0.25 45.39 ± 0.31

Patch Attack,
Clean Accuracy

0.15 67.16 ± 0.09 64.44 ± 0.21 83.65 ± 0.03 83.08 ± 0.05 80.79 ± 0.05 83.01 ± 0.04
0.25 67.34 ± 0.07 60.92 ± 0.27 81.54 ± 0.42 80.95 ± 0.13 78.14 ± 0.09 78.05 ± 0.31
0.35 65.44 ± 0.17 55.62 ± 0.47 79.17 ± 0.41 78.23 ± 0.21 71.87 ± 0.16 63.99 ± 0.25
0.45 63.70 ± 0.13 46.48 ± 0.34 73.97 ± 1.02 72.93 ± 0.33 45.36 ± 0.22 45.41 ± 0.29

Blend Attack,
Poison Accuracy

0.15 6.55 ± 0.05 64.22 ± 0.26 82.83 ± 0.43 81.96 ± 0.04 79.82 ± 0.08 83.82 ± 0.08
0.25 5.44 ± 0.07 59.88 ± 0.98 81.22 ± 0.59 80.21 ± 0.17 77.34 ± 0.15 82.33 ± 0.18
0.35 4.56 ± 0.14 52.66 ± 2.02 78.18 ± 1.71 77.47 ± 0.22 72.70 ± 0.19 80.31 ± 0.23
0.45 4.82 ± 0.27 35.62 ± 0.92 69.81 ± 2.19 71.45 ± 0.39 47.36 ± 0.23 76.03 ± 0.29

Blend Attack,
Clean Accuracy

0.15 69.46 ± 0.04 63.60 ± 0.29 83.43 ± 0.65 82.62 ± 0.04 80.64 ± 0.07 84.50 ± 0.08
0.25 68.02 ± 0.05 54.54 ± 0.31 81.80 ± 0.36 80.76 ± 0.16 78.09 ± 0.13 81.09 ± 0.16
0.35 66.64 ± 0.08 54.54 ± 0.41 78.70 ± 0.80 78.13 ± 0.23 71.92 ± 0.18 82.99 ± 0.24
0.45 65.34 ± 0.12 40.25 ± 1.13 71.13 ± 1.37 72.51 ± 0.37 47.93 ± 0.23 75.23 ± 0.26

For backdoor attacks, we use simple badnet attack (Gu et al., 2017) and Gaussian blending at-
tack (Chen et al., 2017), since these two attacks do not require any information about the model
or training procedure (Pang et al., 2020). Examples of the poisoned samples can be found in the
Appendix. We deploy the multi-target backdoor attack in this paper and we provided the discussion
about single-target attack and clean label attack in the appendix. Our data poisoning approach is as
follows: we first systematically flip the label to perform a label-flipping attack. We then add triggers
to the features associated with the attacked samples. Without adding the trigger, the problem would
have reduced to the noisy label problem.

We use the following two evaluation metrics: (1) top-1 clean accuracy, which is calculated from
the clean test examples without any triggers and (2) top-1 poison accuracy, which is calculated
by comparing the predicted class of the poisoned test examples against their ground truth clean
labels. The first metric evaluates how well the model performs on benign (uncorrupted) data while
the second metric assesses how well the model performs on the corrupted data. We vary the training
data poisoning rate as [15%, 25%, 35%, 45%] to investigate how the algorithms perform for different
corruption ratios. All the methods are trained for 100 epochs, Furthermore, we assume there is no
clean validation data available. Thus, it is difficult to perform early stopping or decide which epoch
result to use. We report the average accuracy across the last 10 epochs for each method.

We study three noisy label algorithms by comparing the performance of the original and reinforced
methods. Specifically, we choose SPL, PRL, and Bootstrap as our original noisy label algorithm
and denote their corresponding reinforced algorithm with adversarial training as SPL-AT, PRL-AT,
Bootstrap-AT. We also compare our method against adversarial training only (AT), which uses
adversarial training without a noisy label algorithm. To measure the success of the attack, we also
include the Standard training (i.e. no defense) results.

We also evaluate the performance of other backdoor defense algorithms. Note that a large fraction
of them are either designed for single target attacks (Liu et al., 2018) or require clean data (Liu
et al., 2018; Wang et al., 2019; Li et al., 2021). In this paper, we compare our framework against
the following two baselines: (1) spectral signature (Tran et al., 2018): which filters the data by
examining the score of projecting to singular vector, and (2) fine-pruning (Liu et al., 2018), which
prunes the model by deleting non-activated neurons. Note this method uses 5% clean training data.

How well do existing robust noisy label algorithms defend against backdoor attacks? To answer
this, we evaluate the performance of PRL, SPL, and Bootstrap on the CIFAR10 and CIFAR100
datasets. The results of CIFAR10 are given in Table 1 and the results of CIFAR100 are given in the
Tables 5 in Appendix due to the limited space. Observe that the existing algorithms perform well on
the benign testing data (i.e. high clean accuracy) but poorly on the corrupted data (i.e. low poison
accuracy) especially when the corruption ratio is high. This suggests the ability of backdoor attacks
to compromise the defense mechanism of existing robust noisy label algorithms.

How adversarial training improves noisy label algorithms? To investigate whether adversarial
training can enhance the robustness of existing noisy label algorithms against backdoor attacks, we
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Table 3: Sensitivity analysis of ϵ and τ . Average top-1 accuracy across three random seeds. The first
number is the clean accuracy while the second number is the poisoned accuracy. The hyperparameter
ϵ is fixed to be 0.5 while the ground truth ϵ is varied. The sensitivity analysis for the adversarial
budget τ is conducted by fix both estimated ϵ and ground-truth ϵ as 0.25

ϵ PRL-AT (patch) PRL-AT (blend) τ PRL-AT (patch) PRL-AT (blend)
0.15 68.14/68.00 67.97/68.48 0.01 73.34/3.00 73.15/22.13
0.25 71.78/71.74 71.28/71.87 0.05 78.87/78.52 77.28/77.14
0.35 74.26/74.15 74.17/74.32 0.1 76.03/75.24 65.23/65.02
0.45 69.91/27.02 64.78/54.19 0.5 46.82/46.41 50.82/50.21

evaluate the performance of our proposed reinforced algorithms, SPL-AT, PRL-AT and Bootstrap-AT,
on both the clean and corrupted test examples. The results shown in Tables 1 and 5 suggest that the
performance of the reinforced noisy label algorithms on the triggered data is largely boosted, with
significant improvement in the poison accuracy. The improvement is observed for all three noisy label
algorithms, which indicates the effectiveness of the proposed method on improving the robustness of
the existing algorithms against backdoor attacks. Also, compared to adversarial training only (AT),
adding noisy labels does indeed improve the performance, particularly, when comparing PRL-AT to
AT. We also found that compared to consistency-based noisy-label algorithm (i.e., Bootstrap), the
filtering based algorithms (i.e., SPL and PRL) are more easier to be boosted by adversarial training.
The potential reason behind this could be that the filtering-based methods are more efficient compared
to consistency-based algorithms Han et al. (2018); Jiang et al. (2017); Liu et al. (2021). Finally, we
observe that PRL-AT has higher poisoned accuracy compared to spectral signature and fine-pruning
under most settings while its clean accuracy is still high, which indicates the advantage of PRL-AT.
For high corruption ratio, the robustness of spectral signature and fine-pruning significantly decreases
while PRL-AT still gives reasonable poison accuracy.
Semi-supervised learning. We evaluate our algorithm on backdoored CIFAR10 data with CIFAR100
or STL10 (unlabeled part) as augmented data. For the semi-supervised setting, we only use 20%
backdoored data as labeled training data (i.e. in backdoored CIFAR10, when ϵ = 0.2, we have
7500 clean labeled images, 2500 backdoored images, and clean augmented data without label).
To investigate the advantage of decoupling the Lipschitz constant of the objective function and
to determine whether semi-supervised learning helps improve robustness, we compare standard
training, PRL-SimCLR (i.e. algorithm 2 with PRL as the noisy label algorithm without spectral
normalization), PRL-SimCLR-SN (i.e. algorithm 2 with PRL as the noisy label algorithm) and
PRL-AT. The results are given in Table 2. We see that PRL-AT provides consistent robustness
against both patch and blending backdoor attacks. When utilizing more data, both PRL-SimCLR
and PRL-SimCLR-SN can achieve improved performance for the blending attack. For the patch
attack, PRL-SimCLR and PRL-SimCLR-SN show robustness when the corruption ratio is small.
For large corruption ratio, PRL-SimCLR fails to achieve its robustness against patch attack while
PRL-SimCLR-SN still maintains good performance, which indicates the necessity of adding spectral
normalization to regularize the maximum singular value of the last layer.
Ablation study for ϵ and τ . Since the degree of corruption is often unknown, we hereby investigate
how well our algorithm performs without knowing the true corruption ratio. Specifically, we provide
the worst-case result by setting ϵ = 0.5 for our algorithm regardless of the ground truth ϵ. We choose
this as it would be impossible to learn a reasonable classifier when the corruption ratio is more than
0.5. We evaluate the performance of PRL-AT on CIFAR10 for both badnet and blending attacks. The
results in Table 3 suggest that our algorithm is still robust despite using the highly-overestimated
ϵ when compared to the standard training results in Table 1. We also vary the adversarial training
budget τ since neither do we know the ground-truth τ in practice. We see that increasing τ makes the
model more robust while when τ is too large, the clean accuracy significantly drops. This suggests a
large adversarial training budget is preferred to defend against backdoor attacks, which is consistent
with reported findings (Gao et al., 2021). Besides ϵ and τ , in appendix we present additional ablation
studies of the inner-maximization and outer-minimization.
6 CONCLUSION
In this paper, we investigate the connection between noisy label attack and backdoor data poisoning
attack. We show that although existing robust noisy label algorithms cannot effectively defend
against backdoor data poisoning attacks, adding adversarial training on the existing algorithm could
largely improve its robustness against backdoor attacks. Both theoretical and empirical analysis have
validated the effectiveness of our proposed meta algorithm.
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A APPENDIX

In this section, we provided proof of theorem and more discussion.

A.1 PROOF OF INEQUALITY IN EQ. (3)

In this section we provide a formal proof of the inequality in Eqt. (3) in the main paper:

1

n

∑
x∈X,y∈Y

[L(f(x+ c),y)] ≤ 1

n

∑
x∈Xϵ,y∈Y

ϕw(xi + c,y) + ϵτL.

Proof. let G denote the initially clean sample set (i.e. (X,Y)), and B the corrupted sample set (i.e.
the training set corrupted with a trigger whereas the labels are untouched). Let R denote the clean
sample set which is replaced by the adversary (i.e. R is the subset of G, and is replaced by B, i.e.
G′

= G \ R ∪ B = (Xϵ,Y)), and let ϕw denote the function L ◦ f .

One can decompose the inner part of our mini-max objective in Equation 2 as follows,

1

n

∑
x∈X,y∈Y

[L(f(x+ c),y)] =
1

n

∑
i∈G′\B

ϕw(xi + c,y) +
1

n

∑
i∈R

ϕw(xi + c,y)

=
1

n

∑
i∈G′\B

ϕw(xi + c,y) +
1

n

∑
i∈R

ϕw(xi + c,y) +
1

n

∑
i∈B

ϕw(xi + t+ c,y)− 1

n

∑
i∈B

ϕw(xi + t+ c,y)

=
1

n

∑
x∈Xϵ,y∈Y

ϕw(xi + c,y) +

(
1

n

∑
i∈R

ϕw(xi + c,y)− 1

n

∑
i∈B

ϕw(xi + c+ t,y)

)

≤ 1

n

∑
x∈Xϵ,y∈Y

ϕw(xi + c,y) +

∣∣∣∣∣
(
1

n

∑
i∈R

ϕw(xi + c,y)− 1

n

∑
i∈B

ϕw(xi + c+ t,y)

)∣∣∣∣∣
≤ 1

n

∑
x∈Xϵ,y∈Y

ϕw(xi + c,y) + ϵL∥t∥ ≤ 1

n

∑
x∈Xϵ,y∈Y

ϕw(xi + c,y) + ϵτL,

This concludes the proof.

A.2 PROOF OF THEOREM 1 AND COROLLARY 1

Theorem 2. Let R̃emp
c ,Remp

c ,Rt, ϵ, τ , is defined as above. Assume the prior distribution of the
network parameter w is N (0, σ), and the posterior distribution of parameter is N (w, σ) is the
posterior parameter distribution, where w is learned according to training data. Let k to be the
number of parameters, n to be the sample size, assume the objective function ϕw = L ◦ f is
Lϕ-lipschitz smooth, then, with probability at least 1-δ, we have:

Rt ≤ Remp
c + Lϕ(2τ + ϵτ) +

√√√√ 1
4k log

(
1 +

∥w∥2
2

kσ2

)
+ 1

4 + log n
δ + 2 log(6n+ 3k)

n− 1
.

Proof. we first decompose the gap as following

Rt −Remp
c = (Rt −Remp

t ) + (Remp
t −Remp

c ) ≤ |(Rt −Remp
t )|+ |(Remp

t −Remp
c )|
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We bound the second part first.

Remp
t −Remp

c

≤ ∥Remp
t −Remp

c ∥

=
1

n
∥

∑
x∈Xr,y∈Yr

[ϕ(x+ t,y)− ϕ(x+ c,y)] +

 ∑
x∈Xo,y∈Yo

ϕ(x+ t,y)−
∑

x∈Xb,y∈Yo

ϕ(x+ c,y)

 ∥

≤ 1

n
∥

∑
x∈Xr,y∈Yr

[ϕ(x+ t,y)− ϕ(x+ c,y)] ∥+ 1

n
∥

∑
x∈Xo,y∈Yo

ϕ(x+ t,y)−
∑

x∈Xb,y∈Yo

ϕ(x+ c,y)∥

≤ (1− ϵ)Lϕ∥t− c∥+ ϵLϕ∥t− c∥+ Lϕ max
xo,xb

∥xo − xb∥

≤ (1− ϵ)Lϕ∥t− c∥+ ϵLϕ∥t− c∥+ ϵLϕ∥t∥
= Lϕ∥t− c∥+ ϵLϕ∥t∥
≤ Lϕ2τ + ϵLϕ∥t∥
≤ Lϕ(2τ + ϵτ)

Now, we bound the second term. Note the second term is a typical gap term between empirical loss
and generalization loss, and there are many approaches to bound this term like VC dimension. Since
we aimed to focus the deep neural network, we follow the PAC-Bayes framework McAllester (1999)
to analyze the generalization bound. Specifically, we use results from Foret et al. (2020), which gives√

1
4k log

(
1+

∥w∥22
kσ2

)
+ 1

4+log n
δ +2 log(6n+3k)

n−1 under the assumption of gaussian prior and posterior. The
proof for this can be found in the appendix of Foret et al. (2020) (i.e. equation 13 on the paper).

As for the corollary 1, the proof is straightforward. By decomposing the Lipschitz constant of the
loss function to the Lipschitz constant of representation network, last linear layer, and cross-entropy
loss, respectively. Since the cross-entropy loss gradient is ∥ŷ−y∥, where y is a one-hot vector and ŷ

is a probability vector. Thus, the maximum gradient (i.e. Lipschitz constant) is
√
2. As for the linear

layer, according to the definition of the operator norm, the Lipschitz constant is exactly the maximum
singular value of that linear layer. This concludes the proof.

A.3 PROOF OF PROPOSITION 2

We first introduct the property of PRL in the following corollary:

Corollary 1 (Convergence of PRL to clean objective (Liu et al., 2021)). Assuming the maximum
clean gradient before loss layer has bounded operator norm:∥W∥op ≤ C, applying PRL to any
ϵ-fraction supervision corrupted data, yields mint∈[T ] E (∥∇ϕ(wt)∥) = O(ϵ

√
q) for large enough

T , where q is the dimension of the supervision.

Details can be found in Liu et al. (2021). According to above corollary, let wPRL is the solution
get by PRL algorithm, we can have ∥∇wPRL

Remp
c ∥ = O(ϵ) (i.e. assume q is small). With Polyak-

Lojasiewicz (PL) condition with some constant µ such that
1

2
∥∇f(x)∥ ≥ µ(f(x)− f∗) holds, we

have µ(Remp
c −Remp∗

c ) ≤ 1

2
∥∇wPRL

Remp
c ∥ = O(ϵ). For a highly-overparameterized deep neural

network, the global optima Remp∗
c is usually 0. Thus, we can conclude that with PL condition, using

PRL as the noisy label algorithm in our framework can guarantee Remp
c can be minimized to the

order
1

µ
O(ϵ).

A.4 NOISY LABEL ALGORITHM

The details of PRL, SPL, and Bootstrap is showed in table 4. We would like to highlight that many
other potential noisy label algorithms can be applied to our framework and it is important to further
investigate them. We leave a more comprehensive exploration of noisy label algorithms as future
work.
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Mini-batch
PRL Keep data with small loss-layer gradient norm and perform back-propagation
SPL Keep data with small loss and perform back-propagation
Bootstrap change the label by using ytrue = αytrue + (1− α)ypred and perform back-propagation

Table 4: Overview of noisy-label defending algorithms, which achieve robustness against up to 45%
of pairwise flipping label noises.

A.5 EXPERIMENT RESULTS FOR CIFAR 100

The experiment results for CIFAR100 is in Table 5. As we can see, the pattern is consistent with the
CIFAR10 experiment result.

Backdoor Attack Defense Accuracy.
Dataset ϵ AT BootStrap Bootstrap-AT PRL PRL-AT SPL SPL-AT Standard Fine-Pruning SpecSig

CIFAR100
with Patch Attack,
Poison Accuracy

0.15 23.70 ± 1.39 5.23 ± 0.81 44.74 ± 4.05 15.15 ± 9.17 47.11 ± 0.58 24.87 ± 5.27 42.24 ± 0.76 5.28 ± 0.50 12.50 ± 0.51 30.01 ± 0.23
0.25 21.84 ± 1.17 3.07 ± 0.23 44.09 ± 1.10 17.53 ± 18.06 43.81 ± 0.41 8.48 ± 1.13 35.46 ± 1.13 3.10 ± 0.60 13.00 ± 0.53 33.82 ± 0.18
0.35 17.16 ± 1.09 2.85 ± 0.12 40.14 ± 0.20 20.83 ± 10.03 39.76 ± 0.72 7.37 ± 0.59 28.41 ± 1.72 3.24 ± 1.04 25.80 ± 0.12 29.07 ± 0.21
0.45 13.61 ± 0.74 10.60 ± 10.49 31.21 ± 0.30 23.98 ± 9.32 29.76 ± 1.11 7.26 ± 0.76 20.43 ± 1.69 10.51 ± 11.21 32.33 ± 0.04 16.83 ± 0.43

CIFAR100
with Patch Attack,

Clean Accuracy

0.15 34.08 ± 0.40 52.39 ± 0.38 47.76 ± 0.14 50.50 ± 0.41 47.21 ± 0.56 46.38 ± 0.41 42.38 ± 0.73 52.42 ± 0.59 43.42 ± 0.12 44.23 ± 0.16
0.25 31.72 ± 0.75 50.54 ± 0.25 44.82 ± 0.52 47.49 ± 0.91 43.89 ± 0.35 39.98 ± 0.80 35.65 ± 1.14 50.53 ± 0.55 41.11 ± 0.03 39.64 ± 0.25
0.35 29.50 ± 1.73 48.41 ± 0.42 40.38 ± 0.18 44.21 ± 0.21 39.80 ± 0.67 34.11 ± 1.10 28.52 ± 1.70 48.75 ± 0.71 39.34 ± 0.08 29.23 ± 0.39
0.45 23.93 ± 3.43 41.46 ± 5.00 31.48 ± 0.38 34.34 ± 0.91 29.79 ± 1.13 27.87 ± 2.28 20.55 ± 1.75 41.02 ± 6.06 36.32 ± 0.13 16.94 ± 0.14

CIFAR100
with Blend Attack,
Poison Accuracy

0.15 33.65 ± 0.54 2.19 ± 0.28 46.65 ± 0.33 2.10 ± 0.43 46.01 ± 0.50 6.14 ± 1.12 41.57 ± 0.74 2.09 ± 0.20 19.09 ± 0.48 35.64 ± 0.44
0.25 30.95 ± 0.42 1.17 ± 0.08 41.84 ± 0.59 1.45 ± 0.21 41.78 ± 0.76 2.95 ± 0.56 33.54 ± 1.76 1.12 ± 0.20 8.80 ± 0.32 33.61 ± 0.36
0.35 27.30 ± 0.45 1.05 ± 0.06 31.88 ± 1.26 1.51 ± 0.17 34.51 ± 1.60 2.00 ± 0.49 25.71 ± 2.31 1.08 ± 0.16 6.12 ± 0.05 27.13 ± 0.17
0.45 20.79 ± 4.97 0.99 ± 0.07 23.61 ± 1.07 2.68 ± 1.17 22.00 ± 1.95 2.39 ± 0.17 18.62 ± 1.21 0.92 ± 0.11 8.13 ± 0.02 18.35 ± 0.32

CIFAR100
with Blend Attack,

Clean Accuracy

0.15 34.22 ± 0.58 52.65 ± 0.19 47.77 ± 0.36 48.61 ± 0.18 46.92 ± 0.47 46.01 ± 0.40 42.40 ± 0.70 52.60 ± 0.59 43.30 ± 0.11 45.54 ± 0.16
0.25 33.65 ± 0.55 51.12 ± 0.37 44.75 ± 0.45 45.23 ± 0.34 42.87 ± 0.72 40.47 ± 1.47 35.71 ± 1.10 50.98 ± 0.43 41.11 ± 0.08 41.02 ± 0.24
0.35 28.14 ± 0.48 49.80 ± 0.24 40.85 ± 0.37 40.46 ± 0.17 36.30 ± 1.24 35.70 ± 1.68 28.56 ± 2.05 49.65 ± 0.49 39.84 ± 0.06 32.13 ± 0.35
0.45 22.03 ± 0.49 48.46 ± 0.53 34.78 ± 1.39 34.98 ± 0.83 24.71 ± 1.37 29.91 ± 1.40 21.82 ± 1.21 48.07 ± 0.52 37.83 ± 0.08 19.40 ± 0.27

Table 5: Performance on CIFAR100. ϵ is the corruption rate.

A.6 DISCUSSION ABOUT CLEAN LABEL ATTACK AND SINGLE TARGET BACKDOOR ATTACK

In this section, we provide a further discussion about clean label attack and single target backdoor
attack. Thus, we will discuss these two types of attack separately.

A.6.1 CLEAN LABEL ATTACKS

One interesting question is Can our framework defend against clean label (CL) attack? In short,
yes. By reviewing our bound in 1, we have:

Rt ≤ Remp
c + Lϕ(2τ + ϵτ) + Γ. (7)

The impact of clean label attack is that now the first term Remp
c becomes the clean empirical loss

without noisy label. Thus, if we can control the lipschitz constant, then the classifier should be
robust to backdoor attack. This makes sense since a classifier with small lipschitz constant should
not change prediction results given small perturbations (i.e. adding trigger). Thus, our theorem
suggests that using adversarial training is enough to defend against clean label backdoor attack. This
conclusion seems to be contradict with the previous study in (Weng et al., 2020). However, there are
further recent study shows that adversarial training does improve the robustness against the backdoor
attack as long as we give enough adversarial training budget (Gao et al., 2021; Geiping et al., 2021).
To the best of our knowledge, the CL attack cannot be applied to multi-target backdoor attack in
our experiment setting. We therefore tried adversarial training (AT) on single target CL attack, and
adversarial training achieves 88/84 clean/poison accuracy with 500 poisoned image in CIFAR10,
which is consistent with previous study (Gao et al., 2021; Geiping et al., 2021). We provide the
following explanation. The naive CL method in the original CL paper (Turner et. al. 2017) directly
adds a trigger to the target class. Such approach may easily fail since the model can easily classify
the clean image without using trigger. Adding adversarial attack on the original image makes the
classification harder and therefore the learned model tends to pick up the trigger, leading to more
effective attacks. More details can be found in section 4 of the original CL paper. In our framework,
we train the network using adversarial training, which will make the model robust to the adversarial
attack, thus reducing the proposed CL attack to the naive CL attack.
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A.6.2 SINGLE TARGET ATTACK

Now, we discuss the single target attack, which is one of the most popular backdoor attack mechanisms.
Unlike our experiment setting, single target attacks choose one target class and add small amounts
of poisoned data to attack the model. Previous studies also show that adversarial training alone can
achieve robustness against single target backdoor attacks (Gao et al., 2021; Geiping et al., 2021).
Thus, it is also interesting to investigate whether our framework can defend the single-target attacks.
We also start by reviewing our bound below:

Rt ≤ Remp
c + Lϕ(2τ + ϵτ) + Γ. (8)

One of the most important differences between the single-target attack and multi-target attacks is
that the corruption ratio ϵ of the single target is much smaller than the multi-target attacks. For
example, in our setting, the corruption ratio varies from 0.15 to 0.45 while for most typical single
target backdoor attack, the number of injected corrupted images are very small (i.e. less than 500,
which is approximately 0.01 corruption ratio in CIFAR10). Thus, it is necessary to investigate how ϵ
affects the first two terms. As we can see, due to the backdoor attack setting, the Lipschitz constant
would be extremely large since similar images have different labels (i.e. same image before/after
injecting the trigger). Thus, although ϵ is small, the second term could still be large due to the large
Lipschitz constant. The key difference between a multi-target attack and a single-target attack is
the first term. In the single-target attacks with small ϵ, we claim that using noisy label algorithm
is not as important as using it in multi-target attack settings. This is because we observed that in
most noisy-label attacks, only flipping an extremely small amount of the data label cannot decrease
the model performance significantly. According to our best knowledge, almost all robust learning
against noisy label algorithms studies the scenario when the corrupted rate of the label is at least
0.15. Thus, the first term will be still small without using any noisy label algorithm due to small
ϵ, which explained why only using adversarial training with enough budget can defend against the
single target backdoor attack (Gao et al., 2021; Geiping et al., 2021).

A.7 ABLATION STUDY OF INNER MAXIMIZATION AND OUTER MINIMIZATION

In this section, we aim to explore more about the proposed framework. Since our algorithm use
the noisy-label solver for both inner and outer optimization. A interesting question to ask is that
whether both inner and outer noisy-label solver plays an important role in defense the backdoor attack.
Thus, we have two variants. One is we only use noisy label algorithm to update the model for outer
minimization and another one is we only use the noisy label algorithm to update the model for inner
maximization. The results can be found at table 6 and table 7 in the appendix. As we could see in
these two tables, using noisy label algorithm to perform the inner maximization is more important
compared to using noisy label algorithm to perform out minimization.

Backdoor Attack Defense Accuracy.
Dataset ϵ BootStrap-inner Bootstrap-outer PRL-inner PRL-outer SPL-inner SPL-outer

CIFAR10 with Patch Attack,
Poison Accuracy

0.15 3.15 ± 0.61 3.20 ± 0.63 80.78 ± 0.31 2.84 ± 0.23 65.50 ± 16.22 3.09 ± 0.35
0.25 2.74 ± 0.10 2.73 ± 0.09 79.07 ± 0.20 2.50 ± 0.10 18.95 ± 9.91 2.58 ± 0.19
0.35 2.70 ± 0.24 2.67 ± 0.15 76.06 ± 0.37 2.39 ± 0.26 13.45 ± 5.40 2.38 ± 0.14
0.45 2.32 ± 0.08 2.51 ± 0.11 67.87 ± 2.63 2.24 ± 0.10 12.10 ± 4.46 2.23 ± 0.26

CIFAR10 with Patch Attack,
Clean Accuracy

0.15 82.58 ± 0.33 82.45 ± 0.25 80.86 ± 0.31 83.09 ± 0.12 76.48 ± 3.03 83.02 ± 0.49
0.25 82.14 ± 0.28 81.87 ± 0.23 79.10 ± 0.17 83.13 ± 0.21 69.33 ± 2.57 83.30 ± 0.13
0.35 81.71 ± 0.46 81.55 ± 0.54 76.08 ± 0.34 82.83 ± 0.38 59.76 ± 3.59 83.05 ± 0.38
0.45 81.53 ± 0.16 81.00 ± 0.47 69.96 ± 0.37 82.78 ± 0.18 49.31 ± 0.53 82.84 ± 0.27

CIFAR10 with Blend Attack,
Poison Accuracy

0.15 29.85 ± 10.65 40.79 ± 13.27 80.38 ± 0.15 46.29 ± 18.09 72.89 ± 6.14 48.21 ± 14.90
0.25 14.81 ± 10.42 27.57 ± 10.93 78.44 ± 0.19 27.34 ± 18.42 54.46 ± 10.45 21.18 ± 11.85
0.35 6.52 ± 3.80 17.41 ± 10.13 71.93 ± 2.69 11.25 ± 5.92 46.12 ± 13.77 14.58 ± 7.12
0.45 11.58 ± 14.94 9.01 ± 4.66 64.98 ± 2.74 5.90 ± 2.28 42.30 ± 5.85 5.16 ± 1.64

CIFAR10 with Blend Attack,
Clean Accuracy

0.15 81.54 ± 0.25 81.18 ± 0.75 80.73 ± 0.18 82.51 ± 0.36 76.11 ± 3.32 82.35 ± 0.22
0.25 80.99 ± 1.12 80.37 ± 0.94 78.23 ± 0.46 82.35 ± 0.65 66.64 ± 2.31 82.15 ± 0.37
0.35 81.04 ± 0.81 79.54 ± 1.32 71.62 ± 2.65 82.55 ± 0.47 57.44 ± 1.78 81.81 ± 1.00
0.45 81.06 ± 0.25 78.93 ± 0.84 62.34 ± 2.51 82.15 ± 0.48 48.82 ± 0.94 81.81 ± 1.06

Table 6: Ablation study on CIFAR10. ϵ is the corruption rate.
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Backdoor Attack Defense Accuracy.
Dataset ϵ BootStrap-inner Bootstrap-outer PRL-inner PRL-outer SPL-inner SPL-outer

CIFAR100 with Patch Attack,
Poison Accuracy

0.15 45.76 ± 2.65 41.66 ± 8.37 47.34 ± 0.44 44.32 ± 5.45 43.05 ± 0.39 43.41 ± 6.36
0.25 44.41 ± 1.55 43.65 ± 0.88 44.71 ± 0.40 41.13 ± 5.82 35.69 ± 1.05 41.81 ± 3.89
0.35 40.02 ± 0.19 38.72 ± 0.60 40.19 ± 0.39 38.75 ± 0.60 24.98 ± 6.34 38.97 ± 1.10
0.45 31.12 ± 0.40 29.46 ± 0.33 31.49 ± 1.04 29.74 ± 0.35 20.13 ± 1.80 30.19 ± 0.31

CIFAR100 with Patch Attack,
Clean Accuracy

0.15 48.01 ± 0.28 47.91 ± 0.21 47.43 ± 0.43 48.41 ± 0.40 43.29 ± 0.21 48.12 ± 0.36
0.25 45.27 ± 0.82 44.68 ± 0.27 44.83 ± 0.38 45.58 ± 0.39 36.21 ± 0.80 45.14 ± 0.64
0.35 40.49 ± 0.23 38.98 ± 0.47 40.40 ± 0.41 39.46 ± 0.30 29.58 ± 1.49 39.89 ± 0.50
0.45 31.32 ± 0.48 29.81 ± 0.34 31.49 ± 1.02 30.39 ± 0.27 20.70 ± 1.51 30.77 ± 0.55

CIFAR100 with Blend Attack,
Poison Accuracy

0.15 46.72 ± 0.23 46.56 ± 0.26 46.59 ± 0.43 46.83 ± 1.00 42.15 ± 0.68 46.80 ± 0.70
0.25 41.64 ± 1.54 40.60 ± 0.98 43.43 ± 0.59 40.02 ± 1.44 34.10 ± 1.60 39.30 ± 3.16
0.35 31.18 ± 2.83 30.91 ± 2.02 35.84 ± 1.71 28.86 ± 2.82 25.36 ± 2.65 28.94 ± 3.49
0.45 22.98 ± 1.18 23.37 ± 0.92 24.60 ± 2.19 22.16 ± 3.73 19.57 ± 1.64 24.17 ± 2.70

CIFAR100 with Blend Attack,
Clean Accuracy

0.15 48.05 ± 0.33 47.83 ± 0.29 47.24 ± 0.65 48.43 ± 0.44 42.94 ± 0.55 48.37 ± 0.68
0.25 44.85 ± 0.52 44.59 ± 0.31 44.17 ± 0.36 45.19 ± 0.26 36.18 ± 1.20 45.06 ± 0.18
0.35 40.80 ± 0.56 40.08 ± 0.41 38.23 ± 0.80 41.84 ± 0.51 30.23 ± 1.25 41.18 ± 0.69
0.45 35.32 ± 1.77 34.13 ± 1.13 27.33 ± 1.37 39.06 ± 0.45 24.22 ± 1.66 38.62 ± 1.30

Table 7: Ablation study on CIFAR100. ϵ is the corruption rate.

(a) clean data (b) two samples are
added with small trigger
and flipped label

(c) Inner maximization
by noisy label algorithm

(d) Reduce the backdoor
attack to label flipping
attack

Figure 1: Illustration of our meta algorithm. By combining the minimax objective and noisy label
algorithm, we could reduce a backdoor attack problem to a label flipping attack. The left most is
the clean original data. The second shows corrupted samples. The third figure shows the inner
maximization step while the last figure shows the outer minimization step.

A.8 DISCUSSION ABOUT LIPSCHITZ REGULARIZATION AND ADVERSARIAL TRAINING

As seen from the above theorem that a small Lipschitz constant could bring robustness against
backdoor attack. In this section, we elaborate why we claim adversarial training helps Lipschitz
regularization. The definition of Lipschitz function is ∥f(x)− f(y)∥ ≤ L∥x− y∥,∀x,y. Since the
Lipschitz constant shows in the upper bound of the error, we would like to get the minimum Lipschitz
constant to tighten the bound. Follow (Terjék, 2019), the minimum Lipschitz constant can be written
as:

∥f∥L = sup
x,y∈X;x ̸=y

dY (f(x), f(y))

dX(x, y)
.

Rewrite y as x+ c, we get:

∥f∥L = sup
x,x+r∈X;0<dX(x,x+c)

dY (f(x), f(x+ r))

dX(x, x+ r)
.

Minimizing the above objective respect to function f reduces to the adversarial learning:

inf
f

∥f∥L = inf
f

sup
x,x+c∈X;0<dX(x,x+c)

dY (f(x), f(x+ c))

dX(x, x+ c)
.

If we treat the denominator as a constant, then this is exactly the same as our minimax objective.
More details can be found in (Terjék, 2019).
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(a) clean example (b) badnet attack (c) blend attack

Figure 2: Example of clean and various poisoned samples.badnet patch attack: trigger is a 3 × 3
black-white checkerboard and it is added to the right bottom corner of the image. blending attack:
trigger is a fixed Gaussian noise which has the same dimension as the image. The corrupted image
generated by xϵ

i = (1− α)xi + αt. In our experiment, we set the α as 0.1.

A.9 SUPPLEMENTARY EXPERIMENT RESULTS

We provided the experiment hyperparameters, and supplementary results for the experiment. We
provided the code in the supplementary materials.

A.9.1 EXPERIMENT HYPERPARAMETERS

We list the details of experiment in this section. All the methods use Resnet-32 as the backbone
network. AdamW is used as the optimizer for all methods. The perturbation limit τ is set to be 0.05
for all methods requiring τ . All methods are repeated for three different random seeds to calculate
the standard deviation. For the SimCLR, we train the network by 500 epochs.

The trigger for badnet attack and blending attack can be found in figure 2.

A.9.2 EXPERIMENT ON MNIST

Our experiments showed interesting results on MNIST. In MNIST, we found adversarial training itself
sometimes gives robustness to the backdoor attack. We hypothesize that this is because that learning
from MNIST is potentially an easier task than that from CIFAR. Here, we show the performance of
adversarial training and PRL-AT on MNIST. The results can be found at Table 8.

Backdoor Attack Defense Accuracy.
Dataset ϵ AT BootStrap Bootstrap-AT PRL PRL-AT SPL SPL-AT

MNIST with Patch Attack,
Poison Accuracy

0.15 0.30 ± 0.07 0.04 ± 0.01 3.17 ± 3.23 97.96 ± 0.21 98.44 ± 0.05 59.24 ± 33.30 85.61 ± 12.56
0.25 0.26 ± 0.17 0.04 ± 0.02 0.17 ± 0.10 89.91 ± 7.53 97.04 ± 1.07 25.25 ± 1.38 30.70 ± 6.62
0.35 0.10 ± 0.02 0.08 ± 0.06 0.14 ± 0.01 77.91 ± 10.41 97.71 ± 0.18 13.54 ± 0.76 26.03 ± 5.27
0.45 0.11 ± 0.01 0.04 ± 0.02 0.42 ± 0.34 43.42 ± 11.66 76.42 ± 8.65 12.85 ± 1.90 10.97 ± 2.16

MNIST with Patch Attack,
Clean Accuracy

0.15 98.17 ± 0.69 99.49 ± 0.05 95.48 ± 1.56 98.08 ± 0.26 98.44 ± 0.05 93.23 ± 4.72 97.74 ± 0.37
0.25 98.59 ± 0.22 99.48 ± 0.07 98.83 ± 0.19 97.46 ± 0.07 97.11 ± 1.06 86.98 ± 0.72 85.89 ± 1.76
0.35 94.48 ± 4.87 99.48 ± 0.04 98.45 ± 0.32 97.40 ± 0.46 97.86 ± 0.11 73.09 ± 4.34 77.49 ± 0.96
0.45 98.27 ± 0.43 99.42 ± 0.02 96.44 ± 1.36 75.69 ± 0.99 92.32 ± 4.25 60.58 ± 1.90 57.20 ± 0.37

MNIST with Blend Attack,
Poison Accuracy

0.15 63.42 ± 35.24 0.04 ± 0.01 96.66 ± 2.58 96.81 ± 1.30 96.74 ± 1.03 97.43 ± 0.13 96.16 ± 0.19
0.25 70.43 ± 28.61 0.04 ± 0.01 97.83 ± 0.91 77.68 ± 20.34 97.20 ± 0.66 6.43 ± 1.27 83.86 ± 2.74
0.35 58.32 ± 40.59 0.05 ± 0.03 97.94 ± 0.57 78.79 ± 17.74 97.59 ± 0.12 11.05 ± 2.70 69.69 ± 6.59
0.45 97.66 ± 1.04 0.03 ± 0.03 98.16 ± 0.58 27.18 ± 19.53 95.17 ± 1.83 4.49 ± 1.08 64.78 ± 3.14

MNIST with Blend Attack,
Clean Accuracy

0.15 64.78 ± 33.81 99.44 ± 0.02 98.29 ± 0.81 97.93 ± 0.25 96.18 ± 1.44 97.30 ± 0.22 95.93 ± 0.20
0.25 74.00 ± 25.25 99.46 ± 0.05 97.44 ± 0.99 97.30 ± 0.63 97.10 ± 0.74 77.75 ± 0.74 83.34 ± 2.81
0.35 58.62 ± 40.18 99.44 ± 0.02 97.43 ± 0.94 96.25 ± 1.84 97.39 ± 0.19 72.41 ± 3.80 67.92 ± 8.38
0.45 96.78 ± 1.42 99.42 ± 0.06 97.89 ± 0.61 76.47 ± 8.66 95.07 ± 1.59 63.63 ± 4.47 63.82 ± 4.12

Table 8: Performance on MNIST. ϵ is the corruption rate.
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(a) clean data for binary feature value and continuous
feature value

(b) label flipping attack on both binary feature value and
continuous feature value

Figure 3: Example of label flipping attacks on both binary feature values and continuous feature
values.

As seen for the MNIST, especially for the blend attack, the poison accuracy for adversarial training
does show good performance with a large standard deviation. This is because that some random
seeds work while some random seeds failed. We hypothesize that this is because MNIST dataset has
almost binary feature values. When adding a small Gaussian noise on feature x, the label flipping
attack cannot change the decision boundary much. That is why the noisy label algorithm seems is not
as important as the noisy label algorithm in CIFAR dataset. We plot a two dimensional toy example
in figure 3 to illustrate label flipping attack on continuous features and binary features. As seen in
the figure, for the binary-valued features, the label flipping attack is not easy to change the decision
boundary too much, while it can easily change the decision boundary in the continuous feature value
scenario. However, this is a very rough conjecture for the reason why in MNIST, adversarial training
sometimes works. We leave the investigation of this phenomenon in the future work.
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