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Abstract

We introduce ProLoRA, enabling zero-shot adap-
tation of parameter-efficient fine-tuning in text-
to-image diffusion models. ProLoRA transfers
pre-trained low-rank adjustments (e.g., LoRA)
from a source to a target model without additional
training data. This overcomes the limitations of
traditional methods that require retraining when
switching base models, often challenging due
to data constraints. ProLoRA achieves this via
projection of source adjustments into the target
model’s weight space, leveraging subspace and
null space similarities and selectively targeting
aligned layers. Evaluations on established text-to-
image models demonstrate successful knowledge
transfer and comparable performance without re-
training.

1. Introduction

Recent advances in text-to-image diffusion models like Sta-
ble Diffusion XL (Podell et al., 2024) and Imagen (Rombach
et al., 2022) have fueled widespread adoption for diverse
applications, from photorealistic image creation (Hu et al.,
2022; Ruiz et al., 2022; Ye et al., 2023) and artistic render-
ing (Zhang et al., 2023) to sophisticated image and video
editing (Meng et al., 2022; Qi et al., 2023). However, full
fine-tuning for each specific task incurs significant storage
overhead as model sizes grow. Parameter-Efficient Fine-
Tuning (PEFT) methods, such as Low-Rank Adaptation
(LoRA) (Hu et al., 2022), mitigate this by learning a small
set of parameters representing the weight updates. While
effective, LoORA adapters are tightly coupled to their base
model, posing a significant challenge when base models
are updated or deprecated. Migrating these adapters to new
models necessitates retraining, which is often impractical
due to resource constraints or the unavailability of the origi-
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Figure 1. Various training-free transfers of LoRA adapter from
SDXL to SSD-1B. CSD-MMD is evaluated against LoRA trained
on SSD-1B. ‘Subspace Proj.’ indicates when the null space com-
ponent is ignored. Higher values on the y-axis indicate better style
transfer. Adapter: “Origami”, Prompt: “doberman dog”.

nal training data.

We introduce ProLoRA, a novel and efficient method for
transferring LoRA adapters between diffusion models with-
out retraining or requiring access to the original data. Pro-
LoRA achieves this by meticulously transferring the impact
of the source LoRA on both the subspace and null space
of the source model’s weights to the target model. This
preserves the stylistic and functional characteristics of the
original adapter. Figure 1 illustrates the effectiveness of Pro-
LoRA in transferring a “Origami” style from a SDXL LoRA
to SSD-1B, while quantitative results using our proposed
metric, CSD-MMD, demonstrate superior style retention
compared to existing baselines.

2. Related Work

Parameter-Efficient Fine-Tuning (PEFT) (Xu et al., 2023)
has become essential for adapting large pre-trained models
to downstream tasks, minimizing computational overhead.
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Various PEFT strategies, including Adapter Modules (Sung
et al., 2022), Prompt Tuning (Lester et al., 2021), and Low-
Rank Adaptation methods like LoRA (Hu et al., 2022),
VeRA (Kopiczko et al., 2023), SVDiff (Han et al., 2023),
DoRA (Liu et al., 2024) and FouRA (Borse et al., 2024),
aim to achieve efficient adaptation by modifying a limited
number of parameters.

Knowledge Distillation (KD) (Hinton, 2015; Gou et al.,
2021; Kim & Rush, 2016; Park et al., 2019; Bui Thi Mai &
Lampert, 2019) transfers knowledge from a larger teacher
model to a smaller student model. Variants like Self-
Distillation (Zhang et al., 2019; 2021; Zhang & Sabuncu,
2020) and Weak-to-Strong Distillation (Bang et al., 2021;
Kaplun et al., 2022; Wang et al., 2022) offer further refine-
ments. However, KD methods generally require training
data, making them unsuitable for data-free scenarios like
ours.

Several recent works address the challenge of LoRA transfer.
(Wang et al., 2024) employs synthetic data and a small
subset of the original dataset for transfer, while (Ran et al.,
2023) trains a universal mapper for each target model using
a shared dataset subset. In contrast, our proposed method,
ProLoRA, offers a training-free, closed-form solution for
transferring off-the-shelf LoRAs across different diffusion
models.

LoRA-X (Farhadzadeh et al., 2025) shares our goal of
training-free LoRA transfer, but with key differences.
LoRA-X introduces a specialized LoRA variant that op-
timizes only singular values, restricting its impact to the
weight subspace of the pre-trained model. This limits its
flexibility compared to standard LoRA, which can affect
both the subspace and nullspace. ProLoRA, on the other
hand, provides a general methodology for transferring exist-
ing LoRA adapters without modification, preserving their
full expressiveness. Furthermore, LORA-X requires training
on the source model before transfer, whereas ProLoRA di-
rectly transfers pre-trained LoRAs. Finally, while LoRA-X
focuses on style LoRAs, ProLoRA extends to other types
like concept LoRA (Ruiz et al., 2022) and LCM-LoRA (Luo
et al., 2023b), which pose greater challenges for source
model training.

3. Motivation

Fine-tuning LoRA adapters ties them to their specific base
diffusion model, creating a significant obstacle when migrat-
ing to updated, distilled, or pruned versions. Consider tran-
sitioning from Stable Diffusion XL (SDXL) (Podell et al.,
2024) to a distilled variant like Segmind Stable Diffusion
1B (SSD-1B) (Gupta et al., 2024): directly applying existing
SDXL LoRAs to SSD-1B is impossible. Retraining is often
impractical due to resource constraints or the unavailability

of the original training data. This inflexibility limits the
longevity and broader applicability of LoRA adapters, pre-
venting users from benefiting from advancements in base
model architectures.

This work introduces ProLLoRA, a novel method for seam-
lessly transferring LoRA adapters across different diffusion
models without retraining or requiring the original training
data. ProLoRA leverages the strong correlations observed
between layers of different diffusion model versions, par-
ticularly in deeper layers where LoRAs exert the greatest
influence (Samragh et al., 2023; Frenkel et al., 2024). By
precisely mapping the LoRA’s impact on both the subspace
and nullspace of the source model’s weights onto the cor-
responding spaces of the target model, ProLoRA ensures
consistent performance across model architectures. This
approach unlocks the full potential of LoRA adaptation, en-
abling users to easily migrate their customized models to
newer and more efficient base models while preserving their
carefully tuned functionalities.

4. Method

Our method consists of three main parts: Identifying Mod-
ule Pairs: We first need to identify pairs of modules from
the source and target models that show high similarity. Since
the source and target models might have different numbers
of modules, it is crucial to find pairs of modules with the
highest similarity. Section 4.1 demonstrates how to measure
similarity between each pair. Decomposing Source LoRA:
Next, we decompose the source LoRA into two components:
one that lies in the subspace defined by the source model
weights and one in the null space. This decomposition cap-
tures the effect of the LoRA on both the subspace and null
space. Section 4.1 demonstrates how to decompose the
source LoRA. Transferring Decomposed LoRA: Finally,
we need to transfer the decomposed LoRA to the subspace
and null space defined by the weights of the target model.
Section 4.3 elaborates on how to perform this transfer.

4.1. Subspace Similarity

We begin by applying Singular Value Decomposition (SVD)
to W, € R™*" the source base model weight, and
W, € R™*" the target base model weight, with rank
rs < min(m,n) and < min(m,n), respectively, of a
given pair of modules. We obtain W, = USESV;T, where
U, € R™*™ and V; € R™*" are left and right singular ma-
trices, respectively, and ¥, € R™*" is a rectangular diago-
nal matrix of singular values. Similarly, W, = U, 3, VtT,
where U; € R™*™ and V; € R"*", are the left and right
singular matrices, respectively, and 3; € R™*" is a rectan-
gular diagonal matrix of singular values.

Following the approach outlined by (Hu et al., 2022;
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Farhadzadeh et al., 2025), we utilize

U'u,|?

O (W, W) = U(U,,Uy) = w o)
to measure the column subspace similarity between two
matrix weights W, and W; of the source and target models.

T 2
Similarly, we use ®,(W,, W;) = ¥(V;, V;) = 1Y% Yille
to capture row subspace similarity between W and W,.

4.2. Decomposing Source LoRA

To transfer the adapter AWy, trained on a source model
with weights W, we project AW onto the column and
row spaces (and their respective null spaces) of W.

The left singular matrix U, can be decomposed as U, =
[US’H US’J_} , where U, | € R™*"s contains the or-
thonormal bases spanning the column subspace of W, and
U, € R™*(m=72) contains the orthonormal bases span-
ning the null space of WST. Similarly, the right singular ma-
trix V; can be decomposed as V, = [V, V; 1], where
V| € R™ " contains the orthonormal bases spanning the
row subspace of W, and V; | € R™*(n=7:) contains the
orthonormal bases spanning the null space of W. By pro-
jecting AW; to the column (row) and null spaces of W,
we obtain

AW, = U, | U ) AWV, V|
+U, U AWV, V, |
=AW, |+ AW, | (2)
In the following section, we demonstrate how to transfer

each component of the source adapter AW, i.e., AW,
and AW;_ |, to a target model.

WS,J. AW = AI/VS,II + AWS,J.

Wy

AW,
= Us,J_ U:s‘r,J_AWs V.I,_LVS,J_

AW,
=U, U, AW V]V
sIYs, sV sV sl

Figure 2. Projecting the source adapter into the subspace and null
space of the source model weights.

4.3. Transferring Decomposed LoRA

Consider W, € R™*™ the source model weight and
AW, € R™*" ijts corresponding adapter. Our goal is
to transfer the adapter to a target model with base model
weights W; € R™*" such that the transferred adapter

AW, € R™*™ has the similar effect on the subspace
and null space of W; as of AW} on the subspace and
null space of W,. To achieve this, we use decomposed
AW, = AW, | + AW | as shown in eq. 2 and project it
into the column (row) and null spaces of the base weights
of the target model W/, ; as follows:

AWics = Uy U AW, V[V
+ Ut,LUtTLAWs,L‘/tTLVZ,L
=AW, |+ AW s 1 (3)
where Uy | and U, form the right singular matrix U; =
Uy U] of W, the target model weight. Simi-

larly, V;,” and V; | form the left singular matrix V; =
[UV7H UV,L] of Wt.

v Wy
AVVI.‘«—s,ll

AWt<—s,J_T N T -
= U U AW, Ve Ve = Uy U AW Vi Ve

Figure 3. Projecting the decomposed source adapter, into the sub-
space and null space of the target model weights.

When the source and target base model weights have dif-
ferent dimensions (i.e., m # m’ or n # n’), we identify a
common subspace of equal dimension that maximizes the
correlation between the source and target weight subspaces
using linear projection, as described in (Farhadzadeh et al.,
2025).

LoRA-X (Farhadzadeh et al., 2025) constrains its adapter
AW to the subspace of W (i.e., AW, = AW ). There-
fore, the transferred adapter AW;,_, consists solely of
the subspace projection component AW, . In contrast,
other adapters like standard LoRA (Hu et al., 2022) are not
subject to this constraint, requiring the transfer of both the
subspace and nullspace components AW | .

4.4. Computation Complexity

While transferring a LoRA adapter requires an initial full
SVD computation for both source W; € R™*™ and target
W, € R™*"™ models (O(mn - min(m, n)) complexity for
each), this cost is amortized over multiple transfers. Subse-
quent adapter transfers between these pre-processed models
are significantly faster than training new LoRAs on the tar-
get model, resulting in substantial computational savings.
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Source + LoRA
SDXL
SD v1.5

SSD-1B
| SDEffv1.0

Target + ProLoRA

RVXL v3.0
RV v3.0

Figure 4. Generated samples using the LoRA style adapter trained
on SDXL and SD-v1.5 as source models, and the corresponding
training-free transferred ProLoRA adapter on SSD-1B and SD
Eff-v1.0 as target models. Adapter: “Painting”, Prompt: 1) “ship
sailing on the sea, sunset” 2) “house on the mountains” 3) “night
flowers in vest”.

5. Experiment

This section describes our experiments to evaluate the effec-
tiveness of ProLoRA in transferring a LoRA from a source
to a target diffusion model. We first train the LoRA from
scratch for a specific task on both source and target models
and then compare the performance of the LoRA trained on
the target model with the one transferred from the source
model using ProLoRA. We analyze and quantify ProLoRA
through text-to-image generation experiments in the follow-
ing sections, with additional text-generation experiments
presented in Appendix E.

5.1. Experimental Setup for Text-To-Image Generation

We detail the experimental setup and present our evaluation
results, assessing ProLoRA across three types of adapters:
(1) style adapters, using datasets with specific styles like
origami, (2) concept adapters, with datasets focused on
particular subjects, and (3) LCM-LoRA (Luo et al., 2023b)
acceleration adapters designed to reduce the number of steps
in image generation.

Datasets: For style transfer, we are using datasets from pub-
lic domains, such as BlueFire, Origami Styles, and Paintings.
We follow the same setup as described in (Borse et al., 2024;
Farhadzadeh et al., 2025). For concept adapter, we use
DreamBooth dataset (Ruiz et al., 2022). For transferring
acceleration adapter we only use the off-the-shelf LCM-
LoRA (Luo et al., 2023b).

Models: We employ Stable Diffusion v1.5 (SD-v1.5) (Rom-
bach et al., 2022) and Stable Diffusion XL (SDXL) (Podell
et al., 2024) as the source models. SD-v1.5 serves as the
source model for target models including Stable Diffusion
Efficient v1.0 (SD Eff-v1.0, also used by (Farhadzadeh et al.,
2025)), Realistic Vision v3.0 (RV-v3.0). SDXL serves as
the source model for target model including Segmind Sta-
ble Diffusion 1B (SSD-1B) (Gupta et al., 2024), Realistic

Table 1. Comparison of text-to-image generation using LoRAs
trained from scratch on target diffusion models versus training-free
transfer using ProLoRA. LoRA rank is 32 for all cases.

Datasets Base Model Adapter HPSv2({) LPIPS (1) CSD-MMD (|)
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Vision XL v3.0 (RVXL-v3.0), SDXL-LCM and SSD-1B-
LCM (Luo et al., 2023a), as well as their LCM-LoRA coun-
terparts (Luo et al., 2023b).

Metrics: To quantify the quality of images generated by
LoRA and its transferred version using ProLoRA, we report
the DINOvV2 (Oquab et al., 2024), HPSv2.1 (Wu et al., 2023),
and LPIPS (Zhang et al., 2018) diversity scores, as well as
CSD-MMD. DINOv?2 assesses image similarity based on
embedded representations. The HPSv2 metric evaluates im-
age quality and alignment with the prompt/style. The LPIPS
diversity score captures the diversity among all possible
pairs of generated images across different seeds. Addition-
ally, we use MMD (Smola et al., 2006) on CSD (Somepalli
et al., 2024) embedded representations to demonstrate how
LoRA style is transferred. Specifically, for two image sets,
we obtain the CSD descriptors using the ViT backbone and
compute the MMD between the features of the two image
sets. This metric provides an indication of whether the two
image sets have a similar style, with a lower score being
better.

5.2. Performance of LoRA Transfer

To enable training-free adapter transfer between source and
target base models, we first identify correlated modules
using equation 1. Following (Farhadzadeh et al., 2025),
a threshold of 0.8 is applied to select the most relevant
modules. The source LoRA is then projected onto its corre-
sponding target module using equation 2.
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5.2.1. STYLE LORA

Table 1 compares the performance of LoRA style adapters
trained directly on various models (using BlueFire, Painting,
and Origami datasets) against ProLoRA, our training-free
transfer method. The similarity in HPSv2 and LPIPS scores
demonstrates ProLoRA’s effectiveness, achieving compa-
rable performance to training from scratch. High DINOv2
scores indicate strong correlation between the generated
samples, while low CSD-MMD confirms successful style
transfer.

Figure 4 showcases generated samples based on the Painting
dataset. The top row displays samples from source models
(SDXL and SD-v1.5) using directly trained LoRAs. The
following rows present samples from target models (SSD-
1B, SD Eff-v1.0, RVXL-v3.0, and RV-v3.0) using trans-
ferred ProLoRAs. Qualitative visualizations for BlueFire
and Origami are in Appendix A.

Beyond models with identical sampling steps, ProLoRA
effectively transfers across models with different sampling
configurations. Table 2 presents ProLoRA performance
when transferring style LoRAs between standard diffusion
models (SDXL, SSD-1B) and their 4-step LCM counter-
parts (SDXL-LCM, SSD-LCM). Notably, DINOv2 scores
remain consistent for “within-model” transfers (e.g., SDXL
to SDXL-LCM), suggesting ProLoRA preserves the distri-
butional relationship. However, larger DINOv2 differences
are observed for cross-model transfers (e.g., SDXL to SSD-
LCM), likely due to architectural differences and incomplete
LoRA transfer.

Finally, Figure 5 presents samples generated by LCM mod-
els (4-step sampling) using ProLoRAs transferred from stan-
dard diffusion models (20-step sampling).

Table 2. Evaluation of training-free transferred style LoORA from
diffusion source models (SDXL, SSD-1B) to LCM versions
(SDXL-LCM, SSD-LCM 4 steps) using the Origami dataset.

Method HPSv2 (1) LPIPS (1) DINOV2 (1)
SDXL LoRA 0.244 0.346 0.920
SDXL-LCM ProLoRA 0.246 0.307
SDXL w/o LoRA 0.259 0.358 0910
SDXL-LCM w/o LoRA 0.2580 0.3753
SSD LoRA 0.244 0351 0916
SSD-LCM ProLoRA 0.247 0.346
SSD w/o LoRA 0271 0.297 0925
SSD-LCM w/o LoRA 0.259 0.257
SDXL LoRA 0.244 0.346 0928
SDXL to SSD-LCM ProLoRA  0.245 0.328
SDXL w/o LoRA 0.259 0.358 0.906
SSD-LCM w/o LoRA 0.259 0.257

ProLoRA

SSD-LCM | SSD-LCM }SDXL-LCM
ProLoRA" | ProLoRA
;
X E )/
)
v
LN

Figure 5. Training-free LoRA transfer using ProLoRA. Top:
SDXL LoRAs transferred to SDXL-LCM. Middle: SDXL LoRAs
transferred to SSD-LCM. Bottom: SSD-1B LoRA transferred to
SSD-LCM. All samples generated in 4 steps. Adapter: “Origami”.
Prompts: 1) “elephant” 2) “bird with spread wings” 3) “doberman
dog” 4) “dragon” 5) “flower” 6) “truck”.

5.2.2. CONCEPT LORA

We also investigated the effect of ProLoRA on concept-
specific LoRAs. For this, source model (SDXL) adapters
were fine-tuned on each Dreambooth dataset concept using
both denoising and prior preservation losses. Each concept
adapter was then transferred to the target model (SSD-1B)
using ProLoRA. Table 3 presents the transfer results, eval-
uated with DINOv2, CLIP-I, and CLIP-T metrics. These
metrics clearly indicate that ProLoRA achieves quantitative
performance close to training from scratch, significantly
outperforming direct LoRA copying from source to target
and the "No LoRA” baseline, which yields poor results.

SDXL

SSD-1B
Copy LorRA| SSD-1B

SSD-1B
ProLoRA

Figure 6. Comparison of DreamBooth-trained and transferred Lo-
RAs. Rows 1-2: SDXL and SSD-1B with concept LoRAs trained
using DreamBooth. Rows 3-4: SSD-1B with LoRAs transferred
from SDXL using copying with subspace similarity matching and
ProLoRA. Prompt: 1) “a cube shaped sks dog” 2) “a sks cat in the
jungle” 3) “a sks backpack in the snow” 4) “a sks toy in a beach”
5) “a sks toy with the Eiffel tower in the background” 6) “a sks
glasses on top of a dirt road”.
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Table 3. Evaluating ProLoRA for training-free concept LoRA
transfer from SDXL to SSD-1B on the Dreambooth dataset. Per-
formance is compared to direct LoORA copy, No LoRA, and LoRA
fine-tuned from scratch on SSD-1B.

Method CLIP-T (1) CLIP-I(T) DINOV2 (1)
No LoRA 0.251 0.521 0.352
LoRA 0.294 0.745 0.539
Copy LoRA 0.300 0.719 0.475
ProLoRA 0.287 0.737 0.501

5.2.3.LCM LoRA

Table 4 compares the performance of LCM-LoRA using
checkpoints (Luo et al., 2023b) and the training-free trans-
ferred Pro-LCM-LoRA. The similar HPSv2 and LPIPS
scores indicate that Pro-LCM-LoRA performs comparably
to the trained LCM-LoRA, demonstrating its effectiveness.
High DINOV?2 scores suggest strong correlation in generated
samples for both methods. Notably, LCM-LoRA applies the
LoRA adapter to both linear and convolutional layers, show-
ing ProLoRA’s capability to handle Conv layers as well.
Figure 7 shows several samples generated by LCM-LoRA
with 4 steps. The first row displays samples generated by
the source models SDXL using LCM-LoRA, while the sec-
ond and third rows show samples generated by training-free
transferred Pro-LCM-LoRA and copy-LCM-LoRA (sim-
ply copying LCM-LoRA from the source to the target on
modules with high subspace similarity) to the target models
SSD-1B.

Table 4. Evaluation of training-free transferred LCM-LoRA from
SDXL to SSD-1B. Results are shown using the evaluation prompt
of the Bluefire dataset after removing the trigger word versus LCM-
LoRA trained on SDXL from scratch using BlueFire dataset.

Method HPSv2 (1) LPIPS (1) DINOvV2 (1)
LCM-LoRA 0.329 0.494 —_—
Copy LCM-LoRA 0.276 0.483 0.885
Pro-LCM-LoRA 0.315 0.497 0.944
5.3. Ablation Studies

5.3.1. IMPACT OF NULL SPACE AND SUBSPACE

We analyze the role of the nullspace in LoRA transfer by ex-
amining source ||AW;|| and transferred ||[AW; || LoRA
norms. Figure 8a-c visualizes the norm relationship be-
tween LoRAs trained on SD-v1.5 (source) and transferred
to SD Eff-v1.0 (target) for the Origami dataset. The strong
correlation in the overall norm (Figure 8a) indicates near-
perfect transfer, attributed to the high subspace similarity
demonstrated by (Farhadzadeh et al., 2025). Decomposing
the norm into subspace and nullspace components (Fig-
ure 8b-c) reveals high correlation in both. Notably, the

LCM-LoRA

Pro-LCM -
LoRA

LoRA

Copy LCM-

Figure 7. Comparison of sample generation using LCM-LoRA in
SSD-1B (4 steps). Row 1: LCM-LoRA trained directly on SSD-
1B. Row 2: LCM-LoRA transferred from SDXL using ProLoRA.
Row 3: LCM-LoRA weights copied from SDXL with subspace
similarity matching. Prompt: 1) “blazing fiery car, lightning”
2) “panda in the woods” 3) “ferocious fox, high resolution” 4)
“flaming medussa in the graveyard, curly hair” 5) “beautiful parrot,
long beak” 6) “blazing chess rooke, intricate work”.

nullspace norms range (0-5) exceeds the subspace norms
range (0-3), underscoring the nullspace’s significance. This
range difference originates from LoRAs applied to fully
connected layers, which are crucial for capturing complex
relationships. Figure 8d demonstrates the high correlation
between the norms of a transferred LoRA and a LoRA
trained from scratch on SD Eff-v1.0, explaining the effec-
tiveness of training-free transfer. Appendix B presents the
same analysis for SDXL (source model) and SSD-1B (target
model).

To further investigate the nullspace’s impact, we compare
ProLoRA, our proposed transfer method, to variants that
ablate different components. We trained a LoRA on SDXL
(source) with the Origami dataset and transferred it to SSD-
1B (target). “ProLoRA w/o NS” ignores the nullspace pro-
jection (second term in equation 3), considering only the
subspace. Table 5 shows a significantly higher CSD-MMD
for ProLoRA w/o NS compared to ProLoRA, indicating de-
ficient style transfer. Conversely, “ProLoRA w/o SS,” which
only projects into the nullspace, performs similarly to having
no LoRA, confirming the subspace’s critical role. Finally,
applying ProLoRA only to modules with non-square weight
matrices (“Where NS Proj.” in Table 5), where a nullspace
exists, also results in high CSD-MMD, demonstrating the
importance of leveraging subspace similarity wherever it is
present. Qualitative visualizations are in Appendix B.

5.3.2. Copry LORA

We evaluate ProLoRA against directly copying LoRAs from
the source (SDXL) to the target (SSD-1B) model. While
copying still can involve identifying the closest module
based on subspace similarity, it omits the crucial subspace
and nullspace projections employed by ProLoRA. Although
not explicitly formulated like equation 3, Copy LoRA can
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Figure 8. Correlation between SD-v1.5 (source) LoRA and trans-
ferred LoRAs (ProLoRA) to SD Eff-v1.0 (target): (a) full LoORA
norms, (b) subspace components, and (c) nullspace components,
and (d) correlation between the norms of a transferred LoRA and
a LoRA trained from scratch on SD Eff-v1.0.

Table 5. Effect of null space projection in ProLoRA by compar-
ing samples genrated by SSD-1B using style LoRA trained from
scratch using the Origami dataset against various ProLoRA varia-
tions transferred from SDXL.

Method HPSv2 (1) LPIPS (1) CSD-MMD(])
LoRA 0.244 0.351 —

ProLoRA 0.256 0.343 0.0245
ProLoRA w/o NS 0.270 0.313 0.1344
ProLoRA w/o SS 0.265 0.312 0.2120
Where NS Proj. 0.265 0.331 0.1824
Copy w/ SS LoRA 0.269 0.316 0.1663
Copy w/o SS LoRA 0.264 0.309 0.1968
No LoRA 0.271 0.297 0.2394

be represented similarly:

AW o =U, U/,
t<s ’

t’”AWZGVI;:‘r‘V{ﬁ,H + Ut,LUJLAW9‘/,;:IL‘/t,L

It effectively performs a direct transfer without the align-
ment terms. For instance, comparing the expansion of Copy
LoRA to equation 3 reveals the absence of alignment terms
such as U, U, U U/, which project the source sub-
space onto the target subspace. While utilizing subspace
similarity for module pairing mitigates misalignment to
some extent, we demonstrate that these explicit alignment
operations within ProLoRA significantly impact transfer
performance.

This comparison includes style, concept, and LCM-LoRAs.
For style LoRAs (Table 5), copying with (“Copy w/ SS
LoRA”) and without (“Copy w/o SS LoRA”) subspace sim-
ilarity yields comparable HPSv2 and LPIPS scores to Pro-
LoRA, but significantly higher CSD-MMD reveals inferior
style transfer. Qualitative visualizations are in Appendix B.

Similar results are observed for concept LoRAs (Table 3).
Despite similar quantitative metrics, potentially due to the
subspace similarity criterion used during copying, the gener-
ated samples (Figure 6, rows 3 vs. 4) reveal inconsistencies
in object transfer with copied LoRAs.

Finally, for LCM-LoRAs (Table 4), copying proves inef-
fective, particularly as evidenced by lower DINOvV2 scores.
Figure 7 (row 3) further highlights the detrimental impact
of copied LCM-LoRAs on image generation quality.

5.3.3. LORA RANK EFFECT ON TRANSFERRABILITY

This analysis investigates the impact of LoRA rank on Pro-
LoRA’s performance when transferring adapters from SD-
v1.5 to SD Eff-v1.0. As Table 6 illustrates, the CSD-MMD
between samples generated by SD Eff-v1.0 using natively
trained LoRAs and those using ProLoRA-transferred Lo-
RAs (originally trained on SD-v1.5) generally increases
as the adapter rank decreases, with the exception of the
BlueFire dataset. This trend likely arises from the inherent
information loss during ProLoRA’s cross-model transfer
process. ProLoRA projects the LoRA adapter onto the sub-
space and null space of the target model (SD Eff-v1.0), but
these subspaces are not perfectly aligned with those of the
source model (SD-v1.5). Consequently, lower ranks pro-
vide less capacity for information transfer, exacerbating this
misalignment and increasing susceptibility to transfer loss.

Table 6. Evaluating the Impact of LoRA Rank on Transferring
LoRA from SD-v1.5 to SD Eff-v1.0.

Dataset  Adapter Rank HPSv2(}) LPIPS(1) CSD-MMD (|)
PrtiiﬁA 32 812(1)2 8:222 0.0025
BlueFire p::)il?)?A 16 85?; gzgg 00024
e T R s Bl
PoloRA 2 0a16  oads 000
Paintings P::,(])_EQA 16 8;38 8323 0.0035
Pr]Zﬁ)ﬁA 1 81522 8:322 0.0042
btk 2 0257 oau 000
Origami pr]:)(])_lng 16 8;2}1 gigg 0.0038
polors | 02% o 000
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5.3.4. SENSITIVITY TO SUBSPACE SIMILARITY
THRESHOLD

The initial subspace similarity threshold of 0.8 was selected
based on empirical analysis. To assess ProLoRA’s sensitivity
to this hyperparameter, we experimented with thresholds
of 0.9 and 1.0 during LoRA transfer from SDv1.5 to Eff
v1.0. As shown in Table 7, these initial results indicate that
ProLoRA exhibits relative robustness to variations in this
threshold.

Table 7. Performance sensitivity of ProLoRA to the subspace simi-
larity threshold during LoRA transfer from SDv1.5 to Eff v1.0 on
the BlueFire dataset.

Threshold CSD-MMD (])

0.8 0.0025
0.9 0.0031
1.0 0.0082

5.3.5. ITERATIVE TRANSFER ACROSS CHAIN OF
MODELS

To assess iterative transfer, we compared chained trans-
fers (SD1.5 — RV3 — EffNet v1.0) against direct transfer
(SD1.5 — EffNet v1.0). As shown in Table 8, the results
indicate that iterative transfer degrades performance, par-
ticularly on the Origami dataset, potentially due to error
accumulation.

Table 8. Performance sensitivity of ProLoRA to the chain of itera-
tive transfer.

Dataset | Chain CSD-MMD (|)
Painting SD-1.5 — Eff v1.0 0.0026
SD-1.5 — RV-3 — Eff v1.0 0.0027
Origami SD-1.5 — Eff v1.0 0.0025
SD-1.5 — RV-3 — Eff v1.0 0.0045
BlucFire SD-1.5 — Eff v1.0 0.0025
SD-1.5 — RV-3 — Eff v1.0 0.0025

5.4. Transferring DoRA Adapters with ProLoRA

This section demonstrates the effectiveness of ProLoRA
for transferring DoRAs (Liu et al., 2024) from a source
model (SDXL) to a target model (SSD-1B). We apply our
projection method to both the up and down matrices of
the DoRA adapter. Quantitative results for the paintings
and origami datasets are presented in Table 9, showing
that transferring DoRAs via ProLoRA yields performance
comparable to training DoRAs from scratch on the target
model (SSD-1B). Qualitative visualization results are shown
in Appendix C.

Table 9. ProLoRA performance on transferring style DoRA from
SDXL to SSD-1B. DoRA rank is 8.

Dataset  Adapter HPSv2 (1) LPIPS (1) CSD-MMD (|)
_ DoRA 0.304 0.462

Paintings 1 oRA  0.307 0.472 0.0143
 DoRA 0.249 0341

Origami | ORA 0234 0315 0.0101

5.5. Transferring FouRA Adapters with ProLoRA

This section explores the application of ProLoRA to
cross-model transfer of Fourier Low-Rank Adapters
(FouRAs) (Borse et al., 2024), specifically from SD-v1.5
to RV3.0. By projecting both the up and down matrices of
the FouRA adapter, we facilitate adaptation to the target
model. Table 10 presents quantitative results on the paint-
ings dataset, demonstrating the efficacy of this approach,
with transferred FouRA performance rivaling that of train-
ing from scratch on RV3.0. Qualitative visualization results
are shown in Appendix D.

Table 10. ProLoRA performance on transferring style FouRA from
SD-v1.5 to RV3.0. FouRA rank is 64.

Dataset  Adapter HPSv2 (1) LPIPS (1) CSD-MMD (/)
. FouRA 0.303 0.469
Paintings 1 oRA  0.307 0.464 0.0023

5.6. Comparison with X-adapter

We compare the performance of our training-free LoORA
transfer method, ProLoRA, with X-Adapter (Ran et al.,
2023), which utilizes plug-and-play modules trained on the
target model. Table 11 presents this comparison. ProLoRA
denotes our training-free transfer from SSD-1B to SDXL.
X-Adapter refers to their transfer method using modules
trained for adaptation from SD-v1.5 to SDXL. LoRA repre-
sents a LoRA adapter trained from scratch on the BlueFire
dataset using the target model (SDXL). The results show
that HPSv2 and LPIPS have similar performance changes
from the trained baseline. However, ProLoRA achieves
a higher DINOvV2 score due to its transfer from a related
source, SSD-1B. Additionally, X-adapter has longer infer-
ence times because it processes through the base model,
transferred model, and adapter.

Table 11. Evaluation of LoRA trained from scratch on SDXL ver-
sus training-free transferred ProLoRA from SSD-1B into SDXL
and X-adapter from SD-v1.5 to SDXL using BlueFire dataset. Wall
clock inference time is measured on A100 GPU.

Adapter | HPSv2 (1) LPIPS () | DINOv2 (1) | Time (1)

LoRA 0302 0451 | — 3.7s
ProLoRA |  0.281 0.443 0.961 3.7s
X-adapter | 0.271 0403 |  0.884 16.1s
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5.7. Comparison with LoRA-X

This section compares the performance of transferred LoRA-
X adapters (Farhadzadeh et al., 2025) against transferred
standard LoRAs using our subspace and nullspace transfer
(Equation 3). Table 12 provides a quantitative comparison
across various datasets. Both LoRA and LoRA-X adapters
are transferred from SDXL (source) to Stable Diffusion
1B (SSD-1B, target) and benchmarked against their respec-
tive counterparts trained from scratch on the target model.
Transferred LORA-X demonstrates slightly improved perfor-
mance in certain cases. It is important to note the significant
difference in rank between the two adapter types: LoRA
uses rank 32, while LoRA-X uses rank 320. As discussed
in Section 5.3.3, ProLoRA transfer is inherently lossy, and
rank significantly impacts performance. Despite this, Pro-

Table 13. Wall clock time comparison when different adapters are
trained on the source model SDXL and transferred to the target
model SSD-1B. Measurements are done on 1 A100 GPU

LoRA-X Train LoRA Train LoRA-X Transfer ProLoRA Transfer
2.3s/iter 2.1s/iter 92s 271s

vs random initalization. As shown in Table 14, using Pro-
LoRA as initialization approach produces a large boost in
performance. The performance of transfer at 250 iterations
is also similar to that of random initialization at 1000 itera-
tions.

Table 14. Performance sensitivity of ProLoRA to the chain of iter-
ative transfer.

LoRA achieves comparable, underscoring the effectiveness Iteration Initilization CLIP-T CLIP-I DINOv2
of the subspace and nullspace projection method. 250 ProLoRA 0.285 0.746 0.524
Random 0.31 0.513 0.368
Table 12. Comparison of performance of transferred LoRA with 500 IEOLCCI)RA 8;2,17 gggg (O)fé?
rank 32 using ProLoRA with transferred LoRA-X with rank 320. andom : : :
The adapter is transferred from SDXL to SSD-1B. 750 ProLoRA 0.292 0.752 0.556
Random 0.293 0.664 0.482
Datasets  Adapter  HPSv2 (1) LPIPS (1) DINOv2(}) CSD-MMD (}) 1000 ProLoRA 0.295 0.761 0.558
LoRA 0.323 0.448 0.951 0.0207 Random 0.294 0.745 0.539
BlucFire _ PrOLORA 0.318 0.413
LoRA-X 0316 0.428
Tran LoRA-X__ 0.300 0.392 0.969 0.0618 6. C lusi
LoRA 0.328 0.436 . Lonclusions
Paintings ProLoRA 0318 0.433 0.946 0.0134
. LoRA-X 0319 0.409 0.961 0.0391 The increasing popularity of text-to-image diffusion models
ran LoRA-X  0.320 0.355 . . .
ToRA 0244 0351 has spurred the adoption of PEFT techniques like LoRA,
0.952 0.0245 . . . . .
Origami MEEIOCORCY 0256 0.343 offering efficient fine-tuning with minimal parameter over-
LoRA-X 0.244 0.412 e s .
T LoRAX  0.269 0.388 0.941 0.0424 head. However, LORA’s inherent dependence on its base

5.8. Timing Comparison between different Transfer
Methods

This section compares the time complexity of our proposed
method, ProLoRA, with LoORA-X (Farhadzadeh et al., 2025).
We benchmark performance transferring LoRAs between
SDXL and SSD-1B. While LoRA-X boasts a faster transfer
time of 92 seconds compared to ProLoRA’s 271 seconds,
due to ProLoRA’s null space and full matrix SVD compu-
tations, LoORA-X requires training a specialized LoRA on
the source model. This training takes significantly longer
than standard LoRA training (0.2 iterations/second slower),
resulting in an additional 400 seconds to reach convergence
(over 2000 iterations). Therefore, despite faster transfer, the
overall time overhead for LoORA-X adaptation significantly
exceeds that of ProLoRA, which requires no source model
training.

5.9. ProLoRA as Initialization

We experiment on finetuning the SSD-1B on the Dream-
booth dataset with concept LoRA transferred from SDXL

model necessitates retraining when new models emerge, of-
ten hampered by data availability constraints. ProLoRA, our
proposed method, overcomes this limitation by enabling the
direct transfer of LoRA adapters between diffusion models
without retraining or requiring access to the original train-
ing data. By carefully mapping the LoRA’s impact onto the
subspace and nullspace of the target model’s weights, Pro-
LoRA preserves the adapter’s functionality across different
model architectures. Our experiments with text-to-image
diffusion models demonstrate the efficacy of this approach,
offering a practical solution for adapting LoRAs to evolving
model landscapes while addressing data privacy and avail-
ability concerns. This work opens exciting avenues for fu-
ture research, including extending ProLoRA to other PEFT
methods and exploring its application in broader model
adaptation scenarios.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Visualization Results using ProL.oRA

Generated samples using ProLoRA-transferred style LoRAs are shown. Figures 9, 10, and 11 compare these transferred
LoRAs (from SD-v1.5 to SD Eff-v1.0 and RV-v3.0) against LoRAs trained from scratch on BlueFire, Paintings, and Origami,
respectively.
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Figure 9. Generated samples using LoRA style adapter for BlueFire style on the SD-v1.5 as source model and ProLoRA training-free
transfer to SD Eff-v1.0 and RV-v3.0. Results are also shown when SD Eff-v1.0 and RV-v3.0 are trained from scratch as the source model.
Results are also shown when adapters on SD Eff-v1.0 and RV-v3.0 are trained from scratch as the source model. Adapter: “BlueFire”,
Prompt: 1) “wolf” 2) “girl in spiderman costume” 3) “car” 4) “woman in batman costume” 5) “castle in desert” 6) “man in batman
costume”.

B. More Ablation Studies
B.1. Impact of Null Space and Subspace

Figures 12a-c visualize the norm relationships between LoRAs trained on SDXL (source) and transferred to SSD-1B (target)
using the Origami dataset. The strong correlation in overall norm (Figure 12a) suggests successful transfer, likely due to
high subspace similarity. Further analysis, decomposing the norm into subspace and nullspace components (Figures 12b-c),
reveals strong correlations in both, confirming the preservation of these components during transfer.

B.2. No LoRA Baseline

We report the “No LoRA” baseline performance for the SD1.5-derived model family in Table 15. A comparison with Table 1
reveals that the CSD-MMD score for “No LoRA” is considerably poorer. This suggests that the baseline model without
LoRA fails to capture the target style and, consequently, that our proposed CSD-MMD metric effectively detects style
adaptation.

12
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Source
Eff-v1.0
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Figure 10. Generated samples using LoRA style adapter for Painting style on the SD-v1.5 as source model and ProLoRA training-free
transfer to SD Eff-v1.0 and RV-v3.0. Results are also shown when SD Eff-v1.0 and RV-v3.0 are trained from scratch as the source model.
Adapter: “Painting”, Prompt: 1) “house on the prairie.” 2) “tiger in the woods” 3) “bird on a tree branch” 4) “elephant in a grassland” 5)
“horses eating grass, wooden hut” 6) “wild dolphins swimming”.

Table 15. Comparison of text-to-image generation using LoRAs trained from scratch on target diffusion models versus training-free
transfer using ProLoRA. LoRA rank is 32 for all cases.

Datasets Base Model HPSv2 (1) LPIPS (1) CSD-MMD (/)

BlueFire SD Eff-v1.0 0.238 0.514 0.0071
RV-v3.0 0.279 0.498 0.0084
Paintings SD Eff-v1.0 0.284 0.518 0.0038
RV-v3.0 0.311 0.443 0.0049
Origami SD Eff-v1.0 0.239 0.501 0.0079
RV-v3.0 0.284 0.432 0.0065

B.3. Qualitative Results

Figure 13 compares generated origami samples from SSD-1B using different methods: (1) style LoRA trained from scratch
(baseline), (2) ProLoRA transferred from SDXL, (3) ProLoRA without nullspace projection, (4) copied LoRA with subspace
similarity, and (5) copied LoRA without subspace similarity. Comparing rows 2 and 3 to the baseline (row 1) reveals that
omitting nullspace projection affects 3D appearance. Rows 4 and 5 demonstrate that directly copying LoRAs produces
distorted images compared to both the baseline and ProLoRA. Using subspace similarity (row 4) improves results, generating
more diverse and origami-like images.

13
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Figure 11. Generated samples using LoRA style adapter for Origami style on the SD-v1.5 as source model and ProLoRA training-free
transfer to SD Eff-v1.0 and RV-v3.0. Results are also shown when SD Eff-v1.0 and RV-v3.0 are trained from scratch as the source model.
Results are also shown when adapters on SD Eff-v1.0 and RV-v3.0 are trained from scratch as the source model. Adapter: “Origami”,
Prompt: 1) “flower” 2) “boat” 3) “medieval witch” 4) “lion” 5) “bird” 6) “fox”.
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Figure 12. Correlation between SDXL (source) LoRA and transferred LoRAs (ProLoRA) to SSD-1B (target): (a) full LoRA norms, (b)
subspace components, and (c) nullspace components.
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w/o Null space

w/ SS

Copy LoRA|Copy LoRA| ProLoRA
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Figure 13. Effect of null space projection in ProLoRA by comparing samples genrated by SSD-1B using: (first row) style LoRA trained
from scratch, (second row) style ProLoRA transferred from SDXL and (third row) ProLoRA without considering the null space projection.
The forth row shows samples generated by SSD-1B using LoRA copied naively from SDXL. Adapter: “Origami”, Prompt: 1) “elephant”
2) “bird with spread wings” 3) “doberman dog” 4) “dragon” 5) “flower” 6) “truck”.

C. Qualitative Results transferred DoRA

Figure 14 visualizes Origami dataset results, comparing generated samples using DoRA trained on SDXL and SSD-1B
against DoRA transferred from SDXL to SSD-1B using ProLoRA.
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Figure 14. Generated samples using DoRA style adapter for origami style on the SDXL as source model and ProLoRA training-free
transfer to SSD-1B. Results are also shown when DoRA is trained on SSD-1B from scratch as the source model. Adapter: “Origami”,
Prompt: 1) “boat” 2) “bird with spread wings” 3) “green fox” 4) “gladiator” 5) “doberman dog” 6) “wolf”.

D. Qualitative Results transferred FouRA

Figure 15 visualizes paintings dataset results, comparing generated samples using FouRAs trained on SD-v1.5 and RV-v3.0
against FouRAs transferred from SD-v1.5 to RV-v3.0 using ProLoRA.

E. Experimental Setup for Text Generation

We implemented ProLoRA to fine-tune TinyLlama (Zhang et al., 2024) and successfully transferred adapters from TinyLlama
3T to TinyLlama 2.5T. We evaluated ProLoRA’s transferability for different adapter types (LoRA and VeRA) on two standard
text generation benchmarks from the original LoRA paper (Hu et al., 2022): text-to-text generation on the E2E NLG dataset
(Novikova et al., 2017) (Table 16) and text summarization on the SamSum dataset (Gliwa et al., 2019) (Table 17). In both
tasks, we observed only minor differences in BLEU and ROUGE scores between ProLoRA adaptations trained from scratch
on the target model versus those transferred from the source model or directly copied. These results demonstrate ProLoRA’s
potential for efficient knowledge transfer across different language tasks and model variants.

Table 16. Evaluation of LoRA and VeRA trained from scratch on the base model TinyLlama 2.5T versus training-free transferred using
ProLoRA from the source model TinyLlama 3T to the target model TinyLlama 2.5T in a text-generation task using the E2E-NLG dataset.

Adapter Method ROUGE-1(1) ROUGE-2(1) ROUGE-L (1) ROUGE-LSum (1)

Trained 0.7882 0.6341 0.7692 0.7634
LoRA  Transferred 0.7881 0.6340 0.7684 0.7642
Copied 0.7634 0.6123 0.7482 0.7421
Trained 0.7764 0.6224 0.7524 0.7532
VeRA Transferred 0.7782 0.6343 0.7620 0.7621
Copied 0.7544 0.6136 0.7481 0.7425

16



Zero-Shot Adaptation of Parameter-Efficient Fine-Tuning in Diffusion Models

Source
RV-v3.0 'SD-v1.5

Target
RV v3.0

Figure 15. Generated samples using FouRA style adapter for paintings style on the SD1.5 as source model and training-free transfer to
RV3.0. Results are also shown when FouRA is trained on RV3.0 from scratch as the source model. Adapter: “Painting”, 1) “house on the
Mountains.” 2) “bird on a tree branch” 3) “man in a mythical forest, masterpiece, perfect face, intricate details, spiked hair” 4) “night
flowers in vase, table ” 5) “Ship sailing on sea” 6) “knight on a horse”.

Table 17. Evaluation of LoRA and VeRA trained from scratch on the base model TinyLlama 2.5T versus training-free transferred using
ProLoRA from the source model TinyLlama 3T to the target model TinyLlama 2.5T in a text-generation task using the SamSum dataset.

Adapter ~ Method = ROUGE-1 (1) ROUGE-2 (1) ROUGE-L (1) ROUGE-LSum (1)

Trained 0.3461 0.1596 0.2832 0.2862
LoRA  Transferred 0.3432 0.1546 0.2834 0.2852
Copied 0.3213 0.1422 0.2623 0.2642
Trained 0.3324 0.146 0.2722 0.2759
VeRA  Transferred 0.3312 0.1422 0.2712 0.2752
Copied 0.3222 0.1402 0.26 0.2612
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