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Abstract

Bayesian inference often faces a trade-off between computational speed and sampling accuracy.
We propose an adaptive workflow that integrates rapid amortized inference with gold-standard
MCMC techniques to achieve a favorable combination of both speed and accuracy when
performing inference on many observed datasets. Our approach uses principled diagnostics to
guide the choice of inference method for each dataset, moving along the Pareto front from fast
amortized sampling via generative neural networks to slower but guaranteed-accurate MCMC
when needed. By reusing computations across steps, our workflow synergizes amortized
and MCMC-based inference. We demonstrate the effectiveness of this integrated approach
on several synthetic and real-world problems with tens of thousands of datasets, showing
efficiency gains while maintaining high posterior quality.

1 Introduction

In many statistical modeling applications, from finance to biology and neuroscience, we often aim to infer
unknown parameters θ from observables y modeled as a joint distribution p(θ, y) (e.g., Raulo et al., 2023;
Seaton et al., 2023; George et al., 2022; Landmeyer et al., 2020; Chen et al., 2019; Malén et al., 2022; Schneider
et al., 2018; Tsilifis & Ghosh, 2022). The posterior p(θ | y) is the statistically optimal solution to this inverse
problem, and there are different computational approaches to approximate this target distribution.

Markov chain Monte Carlo (MCMC) methods constitute the most popular family of posterior sampling
algorithms and still remain the gold standard for modern Bayesian inference due to their theoretical guarantees
and powerful diagnostics (Gelman et al., 2013; 2020). MCMC methods yield autocorrelated draws conditional
on a fixed dataset yobs. As a consequence, the probabilistic model has to be re-fit for each new dataset, which
involves repeating the entire MCMC procedure from scratch. Modern implementations equip MCMC with
state-of-the-art extensions, for example, through Hamiltonian dynamics (HMC; Neal, 2011), by minimizing
the required tuning by users (NUTS; Hoffman & Gelman, 2014), or by parallelizing thousands of chains on
GPU hardware (ChEES-HMC; Hoffman et al., 2021). The well-established Bayesian workflow (Gelman et al.,
2020) leverages these tools in an iterative process of model specification, fitting, evaluation, and revision.
While powerful, this approach becomes computationally burdensome when applied independently to large
collections of datasets.

Differently, amortized Bayesian inference (ABI) aims to learn a direct mapping from observables y to the
corresponding posterior p(θ | y), using flexible function approximators such as deep neural networks (Cranmer
et al., 2020; Radev et al., 2020; Greenberg et al., 2019; Papamakarios et al., 2021; Wildberger et al., 2023;
Sharrock et al., 2024; Zammit-Mangion et al., 2025). Amortized inference typically follows a two-stage
approach: (i) a training stage, where neural networks learn to distill information from the probabilistic model
based on simulated examples of observations and parameters (θ, y) ∼ p(θ) p(y | θ); and (ii) an inference stage
where the neural networks approximate the posterior distribution for an unseen dataset yobs in near-instant
time without repeating the training stage. In other words: The upfront training cost is amortized by negligible
inference cost on arbitrary amounts of unseen test data. Owing to its reliance on simulated data, amortized
inference in this form overlaps with simulation-based inference (Cranmer et al., 2020), which originated from
posterior computations for models with intractable likelihood.

However, amortized inference lacks the powerful diagnostics and gold-standard guarantees associated with
MCMC samplers in the standard Bayesian workflow (Gelman et al., 2020). Yet, applying a standard workflow
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Figure 2: Our adaptive workflow leverages near-instant amortized posterior sampling when possible and
gradually resorts to slower—but more accurate—sampling algorithms. As indicated by the blue dashed
arrows, we reuse the S draws from the amortized posterior in Step 1 for the subsequent steps in the form of
PSIS proposals (Step 2) and initial values in ChEES-HMC (Step 3).

is computationally prohibitive at scale. In modern Bayesian computation, MCMC and ABI occupy different
ends of a Pareto frontier (see Figure 1): the former provides reliable accuracy at high cost, while the latter
offers near-instant inference speed with limited per-dataset reliability (Hermans et al., 2022; Schmitt et al.,
2023; Lueckmann et al., 2021).
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Figure 1: Our workflow adaptively
moves along the Pareto front and
reuses previous computations.

In this paper, we propose an adaptive workflow that consistently yields
high-quality posterior draws while remaining computationally efficient.
Our proposed workflow moves along the Pareto front, enabling fast-
and-accurate inference when possible, and slow-but-guaranteed-accurate
inference when necessary (see Figure 1). It combines the strengths of
ABI and MCMC by incorporating diagnostic checks to guide inference
decisions and reuse computations wherever possible. The resulting
amortized Bayesian workflow therefore offers a principled, scalable, and
diagnostic-driven approach for efficient posterior inference on many
observed datasets; see Figure 2 for a conceptual overview.

2 Integrating amortized inference into the Bayesian workflow

Our adaptive workflow starts with neural network training to enable subsequent amortized inference on a large
number of unseen datasets—typically well into tens of thousands. This training phase is conceptually identical
to standalone amortized inference training (e.g., Radev et al., 2020; Cranmer et al., 2020). For the inference
phase, however, we develop a principled control flow that guides the analysis. Based on state-of-the-art
diagnostics that are tailored to each step along the workflow, we propose decision criteria to select the
appropriate inference algorithm for each observed dataset. In order to optimize the overall efficiency, our
workflow contains mechanisms to reuse previous computations along the way.

2.1 Training phase: simulation-based optimization

In ABI, we train an amortized estimator qϕ which is parameterized by neural network weights ϕ. This
optimization objective is formalized as minimizing the Kullback–Leibler (KL) divergence between the true
posterior p(θ | y) and the learned approximation qϕ(θ | y) (Papamakarios & Murray, 2016; Greenberg et al.,
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2019; Radev et al., 2020):

ϕ = arg min
ϕ

Ep(y) [KL (p(θ | y) ∥ qϕ(θ | y)] = arg min
ϕ

Ep(θ)Ep(y | θ) [− log qϕ(θ | y)] . (1)

Since most Bayesian models are generative by design, we can readily simulate M synthetic tuples of parameters
and corresponding observations from the joint probabilistic model,

(θ(m), y(m)) ∼ p(θ, y) ⇔ θ(m) ∼ p(θ), y(m) ∼ p(y | θ) for m = 1, . . . ,M, (2)

which results in the training set {(θ(m), y(m))}Mm=1 for optimizing Eq. 1. Throughout this paper, we use
coupling-based normalizing flows (Durkan et al., 2019; Papamakarios et al., 2021) as a flexible conditional
density estimator qϕ. However, our proposed workflow is agnostic to the specific choice of neural network
architecture used for amortization, as long as the model supports efficient sampling (see Section 2.2.1) and
density evaluations (see Section 2.2.2).

Diagnostics. Since the neural network training algorithm hinges on simulated data, we cannot evaluate
the amortized posterior approximator on real data just yet. However, we can easily simulate a synthetic test
set {(θ(j)

⋆ , y(j))}Jj=1 of size J from the joint model via Eq. 2. In this closed-world setting, we know which
“true” parameter vector θ(j)

⋆ generated each simulated test dataset y(j). A key diagnostic for evaluating the
amortized posterior estimator is simulation-based calibration checking (SBC; Talts et al., 2018; Säilynoja et al.,
2022; Modrák et al., 2023). Formally, SBC involves defining a test quantity f : Θ × Y → R (e.g., marginal
projections θ or the log likelihood p(y | θ)), computing this statistic for the true data-generating parameter
θ

(j)
⋆ , and comparing it to the empirical distribution of the same statistic computed from amortized posterior

draws given y(j) (Modrák et al., 2023). The rank of the true statistic within the posterior draws should be
uniformly distributed if the amortized posterior estimator is well-calibrated. A complementary diagnostic to
SBC is the parameter recovery check, where parameter estimates are compared against known ground-truth
parameters (Radev et al., 2020; 2023). We refer to Appendix A for details.

Training phase: If simulation-based calibration checking and parameter recovery diagnostics pass, proceed
to Step 1. Otherwise, tune the training hyperparameters (e.g., simulation budget, training epochs, learning
rate, or neural network architecture) and re-train the amortized network.

2.2 Inference phase: posterior approximation on observed datasets

Once the amortized estimator is capable of yielding sufficiently accurate posterior draws in closed-world
settings (i.e., in-distribution), we use the pre-trained neural network to achieve rapid amortized posterior
inference on a total of K observed datasets {y(k)

obs}Kk=1. Recall that a given pre-trained amortized neural
approximator may be perfectly suitable for some real datasets while it is utterly untrustworthy for others.
Therefore, we want to assess on a per-dataset basis whether the amortized posterior draws are trustworthy and
should be accepted, or whether we should proceed to a slower algorithm with stronger accuracy guarantees.
The diagnostics in the inference phase are evaluated conditionally on each observed dataset, with the ultimate
goal of determining whether the set of current posterior draws is acceptable for that specific dataset.

2.2.1 Step 1: Amortized posterior draws

We want to exploit the rapid sampling capabilities of the amortized posterior approximator qϕ as much as
possible, as long as the sampled posteriors are reliable according to a set of principled diagnostics. Therefore,
the natural first step for each observed dataset y(k)

obs is to query the amortized posterior and sample S posterior
draws θ̂(k)

1 , . . . , θ̂
(k)
S ∼ qϕ(θ | y(k)) in near-instant time (see Figure 2, first panel).

Diagnostics. Like other neural network based approaches, amortized inference may yield unfaithful results
under distribution shifts (Schmitt et al., 2023; Ward et al., 2022; Huang et al., 2023). To address this, we
directly quantify whether an observed dataset yobs is atypical under the data-generating process p(θ, y). We
first compute a low-dimensional summary statistic s(y) ∈ Rd for each dataset.1 The summary statistics

1The summary statistic can be either learned by the amortized estimator qϕ or be based on domain knowledge.
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from the training dataset {y(m)}Mm=1 are used to define a Mahalanobis distance. We compute this metric for
each training dataset y(m) to establish a frequentist sampling distribution under the null hypothesis (i.e., of
in-distribution datasets). Given a new dataset yobs, we can now simply compare its empirical Mahalanobis
distance to a predefined percentile threshold (e.g., 95th) of the sampling distribution (see Figure 3). In
a nutshell, this is a sampling-based hypothesis test for distributional typicality, similar in spirit to the
kernel-based test proposed by Schmitt et al. (2023). Since the amortized approximator has no guarantees nor
known error bounds for data outside of the typical set of the joint model (Elsemüller et al., 2024; Schmitt
et al., 2023; Frazier et al., 2024; Elsemüller et al., 2025), we propagate such atypical datasets to Step 2.
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Figure 3: Illustration of our sampling-based hy-
pothesis test that flags atypical datasets.

Alternative diagnostics. In addition to the proposed
OOD test, more sophisticated data-conditional diagnos-
tics can further assess the accuracy of amortized posterior
draws for individual datasets. Examples include posterior
simulation-based calibration checking (posterior SBC; Säi-
lynoja et al., 2025) or the local classifier two-sample test
(L-C2ST; Linhart et al., 2023), to name a few. These diag-
nostics each offer distinct advantages and limitations, but
typically require substantially more computation than the
OOD test; we refer to Appendix B for a detailed discussion.
By default, we recommend the OOD test for its simplicity,
efficiency, and suitability as a first-line diagnostic.

Step 1: If the observed dataset passes the OOD test (i.e., Mahalanobis distance is below the threshold),
accept the amortized draws; otherwise, proceed to Step 2.

2.2.2 Step 2: Pareto-smoothed importance sampling

In this step, we use a Pareto-smoothed sampling importance sampling (PSIS) scheme (Vehtari et al., 2024) to
improve the quality of the amortized posterior draws of datasets which have previously been rejected (see
Figure 2, second panel). Based on the amortized posterior draws from Step 1, PSIS computes importance
weights w(k)

s = p(y(k) | θ̂s) p(θ̂s)/qϕ(θ̂s | y(k)) for each observed dataset y(k) (as in default importance sampling).
Then, PSIS fits a generalized Pareto distribution, which in turn is used to smooth the tail of the weight
distribution (Vehtari et al., 2024). Finally, these smoothed importance weights are used for computing
posterior expectations and for improving the posterior draws with the sampling importance resampling (SIR)
scheme (Rubin, 1988). While the utility of standard importance sampling for improving neural posterior
draws has previously been investigated (Dax et al., 2023), we specifically use the PSIS algorithm, which is
self-diagnosing (see Diagnostics below) and therefore better suited for a principled workflow. Further details
of PSIS are provided in Appendix A.

Diagnostics. We use the Pareto-k̂ diagnostic to gauge the fidelity of the PSIS-refined posterior draws.
According to established guidelines (Vehtari et al., 2024; Yao et al., 2018), Pareto-k̂ ≤ 0.7 indicates good
results, whereas k̂ > 0.7 implies that the draws should be rejected and the respective datasets proceed to
Step 3.

Note. The posterior estimator in ABI is typically mass-covering since it optimizes the forward KL divergence
in Eq. 1. When the neural network training is insufficient (e.g., small simulation budget or poorly optimized
network), this may lead to overdispersed posteriors. Fortunately, this tends to err in the right direction, and
PSIS can generally mitigate overdispersed mass-covering draws in low to moderate dimensions (Dhaka et al.,
2021). In contrast, variational inference typically optimizes the reverse KL divergence (Rezende & Mohamed,
2015), which implies mode-seeking behavior that is less favorable for importance sampling.

Step 2: If Pareto-k̂ ≤ 0.7, accept the importance sampling results; otherwise, proceed to Step 3.
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2.2.3 Step 3: Many-chains MCMC with amortized initializations

If PSIS does not yield satisfactory samples, we resort to an MCMC sampling scheme as a safe fall-back option.
In our amortized workflow, the MCMC step is augmented by reusing computations from the previous steps
as initialization values. In principle, this step can incorporate any MCMC algorithm suited to the problem
at hand. Examples include slice sampling for models with non-differentiable likelihoods (Neal, 2003), or
HMC (Neal, 2011) samplers when gradients are available.

In this work, we use the ChEES-HMC algorithm (Hoffman et al., 2021) as an instantiation of MCMC.
Most notably, ChEES-HMC supports the execution of thousands of parallel chains on a GPU for high-
throughput sampling (Sountsov et al., 2024). Amortized posterior draws from previous steps provide a
natural and convenient choice for initializing MCMC chains to accelerate convergence (Figure 4). This
approach is conceptually similar to using methods like parallel quasi-Newton variational inference (i.e.,
Pathfinder ; Zhang et al., 2022) to obtain initial values for MCMC chains. However, the amortized
initial values are drawn in parallel in near-instant time, while Pathfinder requires re-fitting the varia-
tional approximation for each new observed dataset. For the purpose of ChEES-HMC initializations
with multimodal posterior distributions, it is again desirable that the amortized posterior draws are typ-
ically mass-covering (cf. Step 2). See Appendix A for additional details on the ChEES-HMC algorithm.

1

2

Amortized initializations
ChEES-HMC samples
Target posterior

Figure 4: We initialize many ChEES-HMC
chains with amortized draws.

Diagnostics. In this last step, we use the nested R̂ diagnos-
tic (Margossian et al., 2024), which is specifically designed to
assess the convergence of the many-but-short MCMC chains.2
If the diagnostics in this step indicate unreliable inference, we
recommend resorting to the overarching Bayesian workflow (Gel-
man et al., 2020) and addressing the computational issues that
even persist when using the (ChEES-)HMC algorithm. This
could involve increasing the number of warmup iterations, using
the established NUTS-HMC algorithm (Hoffman & Gelman,
2014; Carpenter et al., 2017), or revising the Bayesian model
specification and parametrization.

Step 3: If (nested) R̂ is below the convergence threshold (e.g., 1.01), accept the MCMC draws. Otherwise,
increase warm-up or revise the model according to the standard Bayesian workflow.

2.3 Related work

Both simulation-based inference and amortized inference have seen rapid progress over the past decade
(Zammit-Mangion et al., 2025; Cranmer et al., 2020; Lavin et al., 2021), driven by the need to perform
Bayesian inference in complex models with intractable likelihoods (e.g., Dingeldein et al., 2024; Wehenkel
et al., 2024; Zhou et al., 2024; Ghaderi-Kangavari et al., 2023; von Krause et al., 2022; Bieringer et al., 2021;
Radev et al., 2021). These advances have been fueled by modern generative modeling, such as normalizing
flows (Papamakarios et al., 2021; Radev et al., 2020; Greenberg et al., 2019), transformers (Müller et al., 2022;
Chang et al., 2025; Whittle et al., 2025), diffusion models (Song et al., 2021; Sharrock et al., 2024; Linhart
et al., 2024; Geffner et al., 2023; Gloeckler et al., 2024), consistency models (Song et al., 2023; Schmitt et al.,
2024b), and flow matching (Lipman et al., 2023; Wildberger et al., 2023).

To address the potential systematic errors of (amortized) neural posteriors, several works propose corrections
using importance reweighting schemes (Dax et al., 2023; Starostin et al., 2025), augmented training objectives
(Delaunoy et al., 2022; Mishra et al., 2025; Orozco et al., 2025; Schmitt et al., 2024a), or post-hoc corrections
(Siahkoohi et al., 2023). Simultaneously, hybrid approaches that combine density estimators with MCMC
have gained traction (Salimans et al., 2015; Hoffman et al., 2019; Gabrié et al., 2022; Midgley et al., 2022;
Arbel et al., 2021; Cabezas et al., 2024; Grenioux et al., 2023). These include using variational approximations
or learned flows as preconditioners for MCMC (Hoffman et al., 2019; Cabezas & Nemeth, 2023), adaptive

2In more conventional settings involving long MCMC chains, the standard R̂ diagnostics (Vehtari et al., 2021) can be applied.
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proposal mechanisms (Parno & Marzouk, 2018; Gabrié et al., 2022), and initialization strategies to accelerate
convergence or improve diagnostics (Zhang et al., 2022; Wang et al., 2023; Starostin et al., 2025).

Our proposed workflow builds on these lines of work by integrating amortized inference, likelihood-based
correction, and many-chain MCMC into a unified, diagnostic-driven pipeline. It dynamically adapts the
inference strategy to the dataset at hand, improving robustness without retraining. This modular design
provides a practical foundation for principled amortized inference across diverse data regimes.

3 Experiments

In this section, we empirically evaluate the effectiveness of our proposed amortized Bayesian workflow across
various synthetic and real-world problems. We also examine how reusing amortized posterior draws in
subsequent steps can improve the downstream sampling performance. The source code to reproduce all
experiments is available in the supplementary material.

3.1 Procedure

Training settings. For each problem, we begin by training the amortized posterior approximator on
simulated parameter-observation pairs (i.e., simulation-based training). We verify that the model performance
is satisfactory in a closed-world setting, as diagnosed by simulation-based calibration and parameter recovery
checking (see Section 2.1). Details on diagnostic results, simulation budgets, and training hyperparameters
are provided in Appendix C.

Inference settings. For the out-of-distribution diagnostics in Step 1, we use the 1 − α = 95% percentile as
the rejection threshold. We compute Mahalanobis distances in the summary statistics using 10,000 training
simulations. We draw 2,000 posterior samples from the amortized posterior qϕ at Step 1. In Step 2, we
correct the amortized draws using PSIS, rejecting draws if Pareto-k̂ > 0.7. Step 3 uses ChEES-HMC with
convergence determined by nested R̂ < 1.01. We run 2048 chains in parallel (16 superchains, each with 128
subchains), with 200 warmup steps and a single sampling step, for a total of 2048 posterior draws.

Evaluation metrics. To assess the quality of posterior draws from our workflow, we compare them to
reference posterior draws using two evaluation metrics: the 1-Wasserstein distance (W1) and the mean
marginal total variation distance (MMTV). The W1 distance quantifies the overall discrepancy between full
joint distributions. MMTV measures the lack of overlap between marginal distributions and takes value in
the range [0, 1]; for example, an MMTV value of 0.2 implies that, on average, the approximate posterior
draws and reference draws share an 80% overlap for their marginal distributions. For both metrics, lower
values indicate better posterior approximation quality. As a rule of thumb, MMTV values below 0.2 indicate
good posterior approximation fidelity (Acerbi, 2020; Li et al., 2025).

3.2 Applications

We apply the proposed workflow to four posterior inference problems, including both simulated benchmarks and
real-world experimental datasets. These case studies were chosen to reflect a range of commonly encountered
statistical inference scenarios, including classical distributional parameter estimation and analyses of large-
scale datasets arising in psychology and cognitive modeling. We describe each problem briefly below, with
further details provided in Appendix C.

Generalized extreme value distribution (GEV). We consider parameter inference for the generalized
extreme value (GEV) distribution, which models the maxima of samples from a distribution family. Each
observation yi is modeled as:

yi ∼ GEV(µ, σ, ξ), (3)
where µ ∈ R is the location, σ ∈ R>0 is the scale, and ξ ∈ R is the shape parameter. We follow the prior
specification from Caprani (2021). For each dataset, we collect N = 65 i.i.d. observations and infer the
posterior distribution over the parameter vector θ = (µ, σ, ξ). We generate a total of K = 1000 test datasets
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by deliberately simulating from a model with a 2× wider prior distribution to emulate out-of-distribution
settings in real applications (see Appendix C for details).

Bernoulli GLM. The Bernoulli generalized linear model (GLM) is a classical model with binary outcomes,
included in the SBI benchmark suite (Lueckmann et al., 2021). Each observation yi ∈ {0, 1} is modeled as:

yi ∼ Bernoulli(σ(v⊤
i θ)), (4)

where vi ∈ R10 is a fixed input vector, θ ∈ R10 is the parameter vector, and σ(·) denotes the logistic function.
We generate K = 10, 000 in-distribution test datasets by sampling parameters from the model prior and
simulating corresponding observations {yi}100

i=1 (Lueckmann et al., 2021).

Psychometric curve fitting. Psychometric functions are widely used in perceptual and cognitive science to
characterize the relationship between stimulus intensity and the probability of a specific response (Wichmann
& Hill, 2001). We use the overdispersed hierarchical model from Schütt et al. (2016), where the number of
correct trials yi at stimuli level xi is modeled as:

yi ∼ Binomial(ni, pi), pi ∼ Beta
((

1
η2 − 1

)
p̄i,

(
1
η2 − 1

)
(1 − p̄i)

)
, (5)

where ni is the number of trials, η ∈ [0, 1] controls overdispersion, and p̄i = ψ(xi;m,w, λ, γ) is the expected
success probability given by the psychometric function ψ(x;m,w, λ, γ) = γ + (1 − λ− γ)S(x;m,w), where S
is a sigmoid function (e.g., cumulative normal), m is the threshold, w is the width, λ is the lapse rate for
infinitely high stimulus levels, and γ is the guess rate for infinitely low stimulus levels. In total, the model
parameters are θ = (m,w, λ, γ, η). Our empirical evaluation uses 8,526 mouse behavioral datasets from the
International Brain Laboratory public database (The International Brain Laboratory et al., 2021).

Decision model. The drift-diffusion model (DDM) is a popular evidence accumulation model for psycho-
logical models of human decision making (Ratcliff & McKoon, 2008). It describes a two-choice decision task
as a stochastic process in which noisy evidence accumulates over time until it reaches one of the decision
boundaries. The evolution of the decision variable z(t) is modeled as

dz(t) = v dt+ σ dW (t), (6)

where v is the drift rate (the average rate of evidence accumulation), σ is the noise scale, and W (t) denotes
a standard Wiener process. A decision is made when z(t) reaches either a positive or negative boundary,
typically placed symmetrically at ±a, where a is the boundary separation. The model also includes a
non-decision time parameter τ , capturing processes that are not part of the decision process. We adopt
the model specification from von Krause et al. (2022), which extends the standard DDM to incorporate
experimental condition effects via six parameters: θ = (v1, v2, a1, a2, τc, τn). The test datasets consist of
15,000 participants from the online implicit association test (IAT) database (Xu et al., 2014; von Krause
et al., 2022), providing a large-scale, real-world benchmark for Bayesian inference in cognitive modeling.

3.3 Main Results

Table 1 summarizes the performance of the proposed amortized Bayesian workflow across the four problems
described in Section 3.2. Step 1 (ABI) exhibits extremely low time per accepted dataset (TPA), with most
of the cost incurred as a one-time expense during the training phase—including prior simulation, model
training, and diagnostic evaluation. Once trained, ABI incurs negligible marginal cost (≪ 1sec) when applied
to a new dataset. Datasets flagged as out-of-distribution in Step 1 are forwarded to Step 2 for correction
via PSIS. PSIS is highly effective, successfully correcting most rejected amortized draws and substantially
reducing the number of datasets requiring full MCMC. Only a small subset of datasets progresses to Step 3,
where ChEES-HMC is used for high-fidelity sampling. As the most computationally expensive component,
ChEES-HMC is applied selectively, allowing the workflow to retain both accuracy and efficiency. Overall, the
amortized workflow completes inference for nearly all datasets.3 Compared to using ChEES-HMC for all

3A small number of datasets with particularly difficult properties require extended MCMC runs to converge.
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Table 1: Summary of our amortized Bayesian workflow across four problems. For each step, we report the
number of accepted datasets, wall-clock time (minutes), and time per accepted dataset (TPA) in seconds.
The time for Step 1 includes training, inference, and diagnostics for the amortized model. “Workflow total”
aggregates the results of our method across all steps. As a baseline reference, “Baseline workflow total” is an
estimate of the total required runtime for ChEES-HMC on all datasets.

Problem Step Accepted datasets Time (min) TPA (s)

GEV

Step 1: Amortized inference 523/1000 3 0.4
Step 2: Amortized + PSIS 357/477 0.8 0.1
Step 3: ChEES-HMC w/ inits 87/120 11 7
Workflow total (ours) 967/1000 15 0.9
Baseline workflow total — 85 —

Bernoulli GLM

Step 1: Amortized inference 9519/10000 1 0.007
Step 2: Amortized + PSIS 425/481 0.4 0.06
Step 3: ChEES-HMC w/ inits 56/56 4 4
Workflow total (ours) 10000/10000 5 0.03
Baseline workflow total — 688 —

Psychometric curve

Step 1: Amortized inference 7213/8526 7 0.06
Step 2: Amortized + PSIS 1215/1313 4 0.2
Step 3: ChEES-HMC w/ inits 69/98 26 22
Workflow total (ours) 8497/8526 37 0.3
Baseline workflow total — 2217 —

Decision model

Step 1: Amortized inference 13498/15000 86 0.4
Step 2: Amortized + PSIS 827/1502 47 3
Step 3: ChEES-HMC w/ inits 554/675 526 57
Workflow total (ours) 14879/15000 659 3
Baseline workflow total — 11594 —
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Figure 5: Evaluation of posterior draws across four problems based on two metrics: W1 distance (top row)
and MMTV distance (bottom row). Lower values indicate better posterior approximation. ABI(✓) and
ABI(✗) denote accepted and rejected draws, respectively, from amortized Bayesian inference in Step 1. PSIS
denotes importance-weighted draws accepted in Step 2, and C-HMC denotes draws accepted via ChEES-HMC
in Step 3.

datasets, our workflow achieves substantial computational savings—approximately over 5×, 120×, 60×, and
15× faster for the GEV, Bernoulli GLM, psychometric curve, and decision model tasks, respectively.
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datasets in Step 3.

Figure 5 presents the quality of posterior draws using the W1 distance (top row) and MMTV distance
(bottom row), comparing draws from each step of the workflow against reference posteriors obtained via
well-tuned NUTS. Rejected amortized draws (ABI✗) exhibit markedly worse performance than accepted
ones (ABI✓), confirming the effectiveness of the OOD diagnostics.4 PSIS-corrected draws offer accuracy
comparable to ChEES-HMC samples, with only a slight decrease in quality. While amortized draws accepted
in Step 1 are less accurate than those produced by PSIS or ChEES-HMC, they still provide high-quality
approximations across the majority of datasets, as implied by the W1 and MMTV metrics. These results
demonstrate that the proposed workflow not only scales efficiently but also consistently produces high-quality
posterior estimates.

3.4 Advantage of amortized initializations for MCMC

One major goal of our workflow is to minimize reliance on expensive MCMC by maximizing the reuse of
computations. Even when ABI and the PSIS refinement fail to yield acceptable posterior draws after Step 2,
we can still leverage the amortized outputs to accelerate MCMC in Step 3.

To evaluate whether amortized posterior estimates remain useful in such cases, we test their effectiveness as
initializations for ChEES-HMC chains. We conduct experiments on 20 randomly selected test datasets that
progress to Step 3 of the workflow. This indicates that both the amortized posterior draws and their Pareto-
smoothed refinement are deemed unacceptable, as quantified by Pareto-k̂ > 0.7 in Step 2. We compare three
initialization methods for ChEES-HMC chains: (1) amortized posterior draws, (2) PSIS-refined amortized
draws, and (3) a random initialization scheme similar to Stan (Carpenter et al., 2017). We run the chains for
varying numbers of warmup iterations, followed by a single sampling iteration. As described in Section 2, we
use the nested R̂ value to gauge whether the chains converged appropriately during the warmup stage, as
quantified by the common R̂− 1 threshold of 0.01 (Vehtari et al., 2021).

Figure 6 shows that amortized posterior draws (and their PSIS-refined counterparts) can significantly reduce
the required number of warmup iterations to achieve ChEES-HMC chain convergence, even though the draws
themselves have previously been flagged as unacceptable. For the GEV problem and the decision model, chains
initialized with amortized draws converge faster than those using random initialization. In the Bernoulli
GLM, all methods perform similarly. For the psychometric curve model, random initialization leads to
faster convergence for the early stage, but amortized draws still reach the convergence threshold at a similar
speed at iteration 200, indicating competitive performance. These findings are particularly relevant in the
many-short-chains regime, where computational cost is dominated by the warmup phase. For instance,
with 2048 parallel chains, every single post-warmup step yields 2048 posterior samples, leading to enormous
efficiency gains from shorter warmup.

4For the Bernoulli GLM, the rejected amortized draws appear of good quality because the test datasets are drawn directly
from the same prior used during training (i.e., in-distribution).
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Overall, these results demonstrate that amortized inference may provide suitable initializations for ChEES-
HMC. However, the added benefit of initializing chains with PSIS-refined amortized draws (Step 2) instead
of raw amortized draws (Step 1) remains unclear. While PSIS often accelerates convergence, it occasionally
degrades worst-case performance (see upper error bounds for GEV task in Figure 6). We further study
the impact of initialization for the popular NUTS sampler (Hoffman & Gelman, 2014), with similar results:
amortized initializations reduce the required warmup in most cases (see Appendix D).

4 Discussion

We presented an adaptive Bayesian workflow to combine the rapid speed of amortized inference with the
undisputed sampling quality of MCMC. Our amortized workflow enables a fundamental shift in the scale
and feasibility of Bayesian inference. Applying traditional MCMC (e.g., ChEES-HMC) within a standard
Bayesian workflow to every dataset independently would require approximately 10 days of GPU computation
across our experimental suite. In contrast, our amortized workflow completes inference in half a day, achieving
speedups ranging from over 5× to 120× depending on the problem. Crucially, high-quality posterior draws
are retained through a cascade of diagnostics and selective escalation to PSIS and MCMC. In conclusion, our
workflow efficiently uses resources by (i) applying fast amortized inference when the results are accurate; (ii)
refining draws with PSIS when possible; and (iii) amortized initializations of slower but accurate MCMC
chains when needed.

Modularity and practical flexibility. A key strength of the proposed workflow lies in its modular
structure, which allows practitioners to tailor each component to the specific constraints and objectives of
their application. For example, the choice of MCMC sampler in Step 3 is fully interchangeable: alternative
algorithms such as slice sampling, ensemble samplers (e.g., emcee; Foreman-Mackey et al., 2013), or NUTS can
be substituted if the model is non-differentiable, multimodal, or requires richer exploration. In settings where
GPU resources are limited, launching many parallel MCMC chains on CPUs offers a practical alternative,
making the workflow more accessible for a broader range of users.

In cases where preliminary analysis or low-latency decision-making is essential (e.g., real-time experimental
pipelines) or where likelihood evaluations are computationally expensive, the workflow can operate in a
lightweight mode using amortized inference with out-of-distribution rejection alone (i.e., Step 1 in our
workflow). Conversely, in high-stakes applications where accuracy is paramount, analysts can route all
amortized draws through PSIS and, if needed, proceed to full MCMC to guarantee statistical robustness.

Limitations and future directions. Training amortized models requires upfront investment in optimiza-
tion and simulation. In our experiments, we found that default neural network hyperparameter settings, such
as normalizing flow architectures, summary network configurations, and optimizer settings, generally yield
good performance. However, in more challenging cases, such as the GEV problem, adjustments may be neces-
sary, guided by training-phase diagnostics. The simulation burden can be exacerbated in high-dimensional
or weakly identifiable models, where neural estimators may struggle to approximate complex inverse maps.
Alternative amortized inference approaches (see, e.g., Mittal et al., 2025) could be explored in future work
to complement simulation-based amortized inference in such scenarios. Moreover, while our diagnostic for
the amortized posterior draws in Step 1 is effective and highly efficient in practice, it remains an imperfect
proxy for the true posterior approximation error and can occasionally result in the acceptance of poor-quality
amortized draws (cf. Figure 5). Future work could explore even more expressive discrepancy measures tailored
to the task at hand.

More broadly, the workflow supports a compelling vision of training amortized models once and reusing them
across tasks or studies—a strategy well suited to applications ranging from psychology to computational
biology, among others. In such settings, our layered diagnostics and selective escalation are crucial for
maintaining reliability and efficiency. This positions the workflow as a practical bridge between amortized
inference and traditional Bayesian rigor, enabling scalable yet trustworthy inference.
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This appendix provides additional details and analyses to complement the main text, included in the following
sections:

• Background, Appendix A

• Inference phase: Step 1 diagnostics, Appendix B

• Experiment details, Appendix C

• Amortized initialization for NUTS, Appendix D

A Background

In this section, we give a brief review of simulation-based calibration checking, parameter recovery checking,
Pareto-smoothed importance sampling, and ChEES-HMC algorithm.

Simulation-based calibration checking. Simulation-based calibration (SBC; Talts et al., 2018; Modrák
et al., 2023) is a principled technique for assessing the calibration of posterior distributions estimated by
Bayesian inference procedures, particularly useful in simulation-based amortized inference settings. SBC
is based on the idea that if the posterior p(θ | y) is correctly specified, then the rank of the true parameter
θ⋆ among posterior draws should follow a uniform distribution. Formally, SBC defines a test statistic
f : Θ × Y → R (e.g., a component of θ, or the log-likelihood p(y | θ)). For each simulated dataset y(j)

generated from the joint model p(θ, y), the test statistic is evaluated at the ground-truth parameter θ(j)
⋆

and compared to the same statistic evaluated over posterior samples {θ(j)
s } ∼ qϕ(θ | y(j)). The rank of

f(θ(j)
⋆ , y(j)) among {f(θ(j)

s , y(j))} is recorded. Repeating this process for all simulated datasets yields a
distribution of rank statistics, which should be uniform under well-calibrated inference. Deviations from
uniformity signal systematic bias (e.g., over/under-dispersion) in the posterior approximation. We use the
graphical-based approach proposed by Säilynoja et al. (2022) to assess the uniformity of the rank statistics
in SBC. This method provides visual diagnostics for identifying systematic biases or miscalibrations in the
posterior approximation by plotting the empirical cumulative distribution function (ECDF) and confidence
bands. Examples of SBC checking results using this approach are provided in Appendix C.

Parameter recovery checking. Parameter recovery is a complementary diagnostic to SBC and provides
a direct visualization of posterior approximation in recovering true generative parameters (Radev et al., 2020;
2023). The idea is to simulate a collection of datasets {y(j)} along with their corresponding ground-truth
parameters {θ(j)

⋆ } from the joint model, and assess whether the posterior distributions qϕ(θ | y(j)) effectively
recover these known values. In our workflow, we compare the posterior median extracted from each posterior
to the corresponding ground-truth values, along with the median absolute deviation to indicate uncertainty.
These comparisons are visualized using scatter plots, with correlation coefficients quantifying the strength of
recovery. While not a direct measure of posterior calibration or correctness, parameter recovery provides
important practical insight into whether the learned inverse mapping from y to θ is effective. Examples of
parameter recovery checking results using this approach are provided in Appendix C.

Pareto-smoothed importance sampling. Pareto-smoothed importance sampling (PSIS; Vehtari et al.,
2024) is a robust method for improving the stability and reliability of importance sampling (IS) estimates.
Given a target distribution p(y | θ) p(θ) and a proposal distribution qϕ(θ), with samples θ̂s ∼ qϕ(θ), PSIS
stabilizes the raw importance weights ws = p(y | θ̂s) p(θ̂s)/qϕ(θ̂s | y) by modeling the tail behavior of the
importance weights. Specifically, the distribution of extreme importance weights can be approximated by a
generalized Pareto distribution:

p(t |u, σ, k) =
{

1
σ

(
1 + k

(
t−u
σ

))− 1
k −1

, k ̸= 0
1
σ exp

(
t−u
σ

)
, k = 0,

(7)

where k is the shape parameter, u is the location parameter and σ is the scale parameter. The number of finite
fractional moments of the importance weight distribution depends on k: a generalized Pareto distribution
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has 1/k finite moments when k > 0. To stabilize the importance sampling estimate, the extreme importance
weights are replaced with well-spaced order statistics drawn from the fitted generalized Pareto distribution,
leading to a more stable and efficient IS estimator. The estimated shape parameter k̂ serves as a diagnostic for
the reliability of the importance sampling estimate. For moderate sample size (S > 2000), k̂ < 0.7 indicates
good reliability.

ChEES-HMC algorithm. The ChEES-HMC algorithm (Hoffman et al., 2021) is a massively parallel and
adaptive extension of Hamiltonian Monte Carlo (HMC) designed to leverage single-instruction multiple-data
(SIMD) hardware accelerators such as GPUs. This enables rapid generation of posterior draws following
an initial warm-up phase. During warm-up, ChEES-HMC adaptively tunes the trajectory length T and
step size ϵ by maximizing the “Change in the Estimator of the Expected Square” (ChEES), a heuristic that
serves as a proxy for reducing autocorrelation in the second moments of the Markov chain. ChEES-HMC is
particularly suitable for our amortized workflow, as we can easily generate a large number of good starting
points (amortized draws) to launch many short MCMC chains. For our experiments, we used ChEES-HMC
to run 2048 parallel chains, organized into 16 superchains with 128 subchains each. This configuration is
essential for computing the nested R̂ diagnostic (Margossian et al., 2024), which assesses convergence across
a large number of short chains.

B Inference phase: Step 1 diagnostics

In this section, we provide details on the out-of-distribution (OOD) checking procedure used to detect atypical
datasets in Step 1 of the workflow. We also discuss potential additional diagnostics that can be used to assess
the quality of amortized inference beyond the default check.

B.1 Testing for atypicality in Step 1

Inspired by an out-of-distribution checking method for amortized inference under model misspecification
(Schmitt et al., 2023), we use a sampling-based hypothesis test to flag atypical datasets where the trustwor-
thiness of amortized inference might be impeded.

Concretely, let {y(m)}Mm=1 denote the training datasets used during simulation-based amortization, and let
hψ(y) denote a low-dimensional summary statistic (e.g., learned or handcrafted) that maps a dataset y into a
feature space Rd. We compute the summary statistics s(m) = hψ(y(m)) for all training datasets and use them
to estimate the empirical mean µs and covariance Σs in the summary space. Then, for any dataset y, its
Mahalanobis distance to the training set is:

DM (y) =
√

(hψ(y) − µs)⊤Σ−1
s (hψ(y) − µs). (8)

To form a null distribution of typical distances, we compute {DM (y(m))}Mm=1 for all training datasets. Given
a new observed dataset yobs, we then compute its Mahalanobis distance DM (yobs) and compare it to the
empirical distribution of training distances.

We define the out-of-distribution rejection rule as:

RejectOOD(yobs) = I
{
DM (yobs) > Quantileα

(
{DM (y(m))}Mm=1

)}
, (9)

where α is typically set to 95% to flag the top 5% most atypical datasets under the training distribution.
The type-I error rate (1 − α) of this test can be set relatively high to obtain a conservative test that will flag
many datasets for detailed investigation in further steps of our workflow.

Note. In the applications of this paper, we perform the above test in the learnt summary space, that is, hψ
is a summary neural network that learns a low-dimensional representation of the data (see Appendix C for
details).5

5Except for Bernoulli GLM problem, the sufficient summary statistics is known without the need for learning.
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B.2 Additional diagnostics

In addition to OOD tests for identifying atypical datasets, data-conditional diagnostics can gauge the reliability
of amortized posterior inferences for specific datasets. Examples for such data-conditional diagnostics include
posterior simulation-based calibration checking (posterior SBC; Säilynoja et al., 2025) and the local classifier
two-sample test (L-C2ST; Linhart et al., 2023). These diagnostics each offer distinct advantages and
limitations.

Posterior SBC is conceptually straightforward and offers necessary conditions for the accuracy of amortized
posterior samples by assessing consistency. However, it requires additional simulations for each test dataset
and requires training the amortized estimator on inputs that effectively double the size of the original
observations. L-C2ST, which trains classifiers to distinguish between qϕ(θ | y) p(y) and the joint distribution
p(θ, y), provides theoretically sufficient and necessary conditions for amortized inference accuracy. In practice,
however, its effectiveness can be very sensitive to several factors, including classifier design choices (e.g., data
pre-processing and optimization strategies), classifier calibration, and the relative sizes of the simulation
budgets allocated to classifier training and amortized estimator training.

The choice to apply these additional diagnostics depends on context-specific factors, including the number
of observed datasets, the relative computational cost of simulations versus likelihood evaluations,6 and the
dimensionality of the observations. Ultimately, whether amortized posterior draws are deemed acceptable
hinges on the accuracy requirements of the specific application. By default, we recommend the OOD test for
its simplicity, efficiency, and suitability as a first-line diagnostic.

C Experiment details

In this section, we provide additional experimental details omitted from the main text for brevity.

Evaluation metrics. To assess the quality of posterior approximations produced by each step of the
workflow, we compare them against reference posterior draws obtained via a well-tuned No-U-Turn Sampler
(NUTS). Specifically, we precomputed NUTS-based posterior samples for a subset of 5000 test datasets, which
serve as a ground-truth reference for evaluation.7 We then evaluate the 1-Wasserstein distance (W1) and
the mean marginal total variation (MMTV) distance on up to 100 datasets from each inference step: Step 1
(amortized inference), Step 2 (amortized + PSIS), and Step 3 (ChEES-HMC with amortized initializations).
These metrics are reported in the main text (Figure 5).

Neural network architecture for amortized inference. For all experiments, we use a coupling-based
normalizing flow implemented in BayesFlow (Radev et al., 2023). The flow consists of 6 transformation layers,
each comprising an invertible normalization, two affine coupling transformations, and a random permutation
between elements. Before entering the coupling flow network as conditioning variables, the observed dataset
y is encoded into a lower-dimensional summary statistic hψ(y) via a summary network hψ. This summary
network is implemented either as a DeepSet architecture (Zaheer et al., 2017) or a SetTransformer (Lee et al.,
2019), depending on the problem setting. Both architectures are designed to handle permutation-invariant
data structures. For the Bernoulli GLM, we bypass the summary network and directly use the known
10-dimensional sufficient statistics (Lueckmann et al., 2021). The specific choice of summary network for
each application is described in the respective problem descriptions below.

Training-phase optimization. For all problems, the neural network is optimized via the AdamW optimizer
(Loshchilov & Hutter, 2019) with weight decay of 10−3 and a cosine decay learning rate schedule (initial
learning rate of 2.5 × 10−4, a warmup target of 5 × 10−4, α = 0) as implemented in Keras (Chollet et al.,
2015). A global gradient clip norm of 1.5 is applied. Training is performed with a batch size of 512 for 300

6For example, if likelihood evaluations are cheap, it is often worthwhile to process to Step 2, where Pareto-smoothed
importance sampling can offer more informative and powerful diagnostics.

7For the generalized extreme value distribution problem, 1000 reference datasets were used, corresponding to the total number
of test datasets.
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epochs,8 with cosine decay steps set to the product of batch size and epochs. A held-out validation set is
used to monitor optimization and select the best-performing model checkpoint.

Space transformation. Following standard practice in Bayesian computation (e.g., PyMC; Oriol et al.,
2023, Stan; Carpenter et al., 2017), we transform parameters to an unconstrained space for inference. The
amortized neural approximator is trained to estimate parameters in this unconstrained space. PSIS operates
independently of the parameterization and thus remains unaffected by this transformation. ChEES-HMC
also performs inference in the unconstrained space. All evaluation metrics (W1 and MMTV distances) are
computed in this space. However, parameter recovery and simulation-based calibration plots are shown in
the original constrained space for better interpretability.

Computing infrastructure and software. For all applications, the full workflow—including amortized
training, inference, diagnostics, Pareto-smoothed importance sampling, and ChEES-HMC sampling—was
conducted on a single NVIDIA V100 GPU (32GB), 8 cores of an AMD EPYC 7452 processor, and 8-16GB
RAM. For runtime details across experiments, refer to Table 1 in the main text. The core code base was built
using BayesFlow (Radev et al., 2023) (MIT license), PyMC (Oriol et al., 2023) (Apache-2.0 license), ArviZ
(Kumar et al., 2019) (Apache-2.0 license) and JAX (Bradbury et al., 2018) (Apache-2.0 license). We used
the implementation of ChEES-HMC provided by TensorFlow Probability (Dillon et al., 2017) (Apache-2.0
license).

Below, we provide details for each problem to complement the main text.

C.1 Generalized extreme value distribution

Problem description. Following Caprani (2021), the prior distribution for the parameters of the generalized
extreme value distribution (GEV) is defined as:

µ ∼ N (3.8, 0.04)
σ ∼ Half-Normal(0, 0.09)
ξ ∼ Truncated-Normal(0, 0.04) with bounds [−0.6, 0.6].

(10)

Simulation budgets. We use 10,000 simulated parameter–observation pairs for training the amortized
approximator, 1000 for validation, and 200 for training-phase diagnostics, including parameter recovery and
simulation-based calibration.

Summary network. We use a DeepSet as the summary network. The dimensionality of the learned
summary statistics is 16. The DeepSet has a depth of 1, uses a mish activation, max inner pooling layers, 64
units in the equivariant and invariant modules, and 5% dropout.

Training-phase diagnostics. The closed-world diagnostics (parameter recovery and simulation-based
calibration checking) in Figure 7 indicate that the neural network training has successfully converged to an
acceptable posterior approximator within the scope of the training set.

Test datasets. In order to emulate distribution shifts that arise in real-world applications while preserving
the controlled experimental environment, we simulate the “observed” datasets from a joint model whose prior
is 2× wider (i.e., with 4× the variance) than the model used during training. More specifically, the prior is
specified as:

µ ∼ N (3.8, 0.16)
σ ∼ Half-Normal(0, 0.36)
ξ ∼ Truncated-Normal(0, 0.16) with bounds [−1.2, 1.2].

(11)

8For Bernoulli GLM, we only train for 100 epochs.
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Figure 7: Training-phase diagnostics for the GEV problem. The parameter recovery is strong for the
parameters µ, σ, and good for the shape parameter ξ. Simulation-based calibration checking indicates
good calibration for all parameters. Parameter recovery and simulation-based calibration checking indicate
acceptable convergence of the amortized posterior estimator.

C.2 Bernoulli GLM

Problem description. Following Lueckmann et al. (2021), we set the prior for θ as:

θ ∼ N
(

0,
[
2 0
0 (F⊤F )−1

])
, (12)

where the matrix F is defined such that Fi,i−2 = 1, Fi,i−1 = −2, Fi,i = 1 +
√

i−1
9 , and Fi,j = 0 otherwise,

for 1 ≤ i, j ≤ 9. The task duration is set to T = 100, with fixed input vectors {vi}100
i=1, where each vi ∈ R10.

Corresponding observations are denoted by {yi}100
i=1. Further details can be found in Lueckmann et al. (2021);

Gonçalves et al. (2020).

Simulation budgets. We use 10,000 simulated parameter–observation pairs for training the amortized
approximator, 1000 for validation, and 200 for training-phase diagnostics, including parameter recovery and
simulation-based calibration.

Summary network. For Bernoulli GLM, the 10-dimensional sufficient summary statistic for each dataset
can be computed as V y⊤ where y = [y1, · · · , y100] and V = [v1, · · · , v100]. We therefore use this summary
statistic for amortized training directly without relying on a separate summary neural network.

Training-phase diagnostics. The closed-world diagnostics (parameter recovery and simulation-based
calibration checking) in Figure 8 indicate that the neural network training has successfully converged to an
acceptable posterior approximator within the scope of the training set.

Test datasets. We generate K = 10,000 in-distribution test datasets by sampling parameters from the
model prior and simulating corresponding observations {yi}100

i=1 from the Bernoulli distribution.
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(b) Simulation-based calibration checking.

Figure 8: Training-phase diagnostics for the Bernoulli GLM problem. The parameter recovery is strong for all
parameters. Simulation-based calibration checking indicates good calibration for all parameters. Parameter
recovery and simulation-based calibration checking indicate acceptable convergence of the amortized posterior
estimator.

C.3 Psychometric curve fitting

Problem description. We adopt an overdispersed psychometric model (Schütt et al., 2016) with the error
function (erf) as the sigmoid function in the psychometric function:

ψ(x;m,w, λ, γ) = γ + (1 − λ− γ) erf(x;m,w), (13)

where m is the threshold, w is the width, λ is the lapse rate, and γ is the guess rate.
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(b) Simulation-based calibration checking.

Figure 9: Training-phase diagnostics for the psychometric curve fitting problem. Recovery is good for m̃ and
w, while the other parameters exhibit weaker recoverability. Simulation-based calibration checking indicates
excellent calibration for all parameters. Parameter recovery and simulation-based calibration checking indicate
acceptable convergence of the amortized posterior estimator.

The full probabilistic model is defined as follows:

m̃ ∼ Beta(2, 2),
w ∼ Half-Normal(0, 1),

λ, γ, η ∼ Beta(1, 10),
m = 2m̃− 1,
p̄i = ψ(xi;m,w, λ, γ),

pi ∼ Beta
((

1
η2 − 1

)
p̄i,

(
1
η2 − 1

)
(1 − p̄i)

)
,

yi ∼ Binomial(ni, pi),

(14)

where ni denotes the number of trials, and xi is the stimulus level. Stimuli are presented at nine fixed levels:
xi ∈ {−100.0, −25.0, −12.5, −6.25, 0.0, 6.25, 12.5, 25.0, 100.0} and each value is further normalized by
dividing by 100.

Simulation budgets. We use 50,000 simulated parameter–observation pairs for training the amortized
approximator, 1000 for validation, and 200 for training-phase diagnostics, including parameter recovery and
simulation-based calibration.

Summary network. We use a DeepSet as the summary network, which maps the input dataset to a
16-dimensional summary statistic. The DeepSet has a depth of 2, uses a gelu activation, mean inner pooling
layers, 64 units in the equivariant and invariant modules, and 5% dropout.

Training-phase diagnostics. The closed-world diagnostics (parameter recovery and simulation-based
calibration checking) in Figure 9 indicate that the neural network training has successfully converged to an
acceptable posterior approximator within the scope of the training set.

Test datasets. Our empirical evaluation uses 8,526 mouse behavioral datasets from the International Brain
Laboratory public database (The International Brain Laboratory et al., 2021). We retrieve the data using
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the provided API with the argument task="biasedChoiceWorld", which corresponds to behavioral data
collected after the mice have completed training. Each dataset is processed into an observation tensor of
shape (9, 3), where each row contains the number of correct trials yi, the total number of trials ni, and the
stimulus level xi.

C.4 Decision model

Problem description. Following von Krause et al. (2022), we specify the prior distributions for the
drift-diffusion model parameters as:

v1, v2 ∼ Gamma(2, 1),
a1, a2 ∼ Gamma(6, 0.15),

τc ∼ Gamma(3, 0.15),
τn ∼ Gamma(3, 0.5),

(15)

where all Gamma distributions use the shape–scale parametrization.9 We implement the drift-diffusion model
likelihood using the hssm package (Fengler et al., 2025) and PyMC.

Simulation budgets. We use 100,000 simulated parameter–observation pairs for training the amortized
approximator, 1000 for validation, and 200 for training-phase diagnostics, including parameter recovery and
simulation-based calibration.

Summary network. We use a SetTransformer as the summary network, which maps the input dataset to
a 16-dimensional summary statistic. The SetTransformer has two set attention blocks, followed by a pooling
multi-head attention block and a fully connected output layer. Each multilayer perceptron (MLP) in the set
blocks has two hidden layers of width 128, with gelu activation and 5% dropout.

Training-phase diagnostics. The closed-world diagnostics (parameter recovery and simulation-based
calibration checking) in Figure 10 indicate that the neural network training has successfully converged to an
acceptable posterior approximator within the scope of the training set.

Test datasets. The test datasets consist of 15,000 participants pre-processed from the online implicit
association test (IAT) database (Xu et al., 2014; von Krause et al., 2022). Each test dataset is a tensor of
shape (120, 4), where each row corresponds to a single trial and contains the response time, missing data
mask, experiment condition type, and stimulus type.

9The prior distributions for the boundary separation parameters a1 and a2 differ slightly from those in von Krause et al.
(2022) due to a different parametrization of boundary separation.
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(b) Simulation-based calibration checking.

Figure 10: Training-phase diagnostics for the decision model. Parameter recovery is strong for all parameters.
Simulation-based calibration checking indicates good calibration for all parameters except τn, which shows mild
deviations, suggesting occasional overestimation by the amortized estimator for this parameter. Parameter
recovery and simulation-based calibration checking indicate acceptable convergence of the amortized posterior
estimator.
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D Amortized initialization for NUTS

In addition to ChEES-HMC, we evaluate the effectiveness of amortized posterior draws as initializations for
the NUTS sampler. The experimental settings mirror those used for ChEES-HMC (Section 3.4), except that
we launch only four chains, which is the typical configuration for NUTS. As shown in Figure 11, amortized
initializations reduce the number of required warm-up iterations for both the GEV problem and the decision
model. For the psychometric curve and Bernoulli GLM problems, all three initialization methods (amortized,
PSIS-refined, and random) yield similar convergence behavior according to R̂ diagnostic.

Notably, NUTS generally requires fewer warm-up iterations than ChEES-HMC across the evaluated problems,
suggesting that while amortized initializations are still beneficial, the relative gain is more pronounced for
ChEES-HMC, which runs many short chains in parallel.
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Figure 11: The effect of initialization for NUTS. The figure shows median±IQR across 20 test datasets. Using
amortized posterior draws as initializations for ChEES-HMC reduces the required warmup in the GEV and
decision model tasks.
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