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Abstract

Bayesian inference often faces a trade-off between computational speed and sampling accuracy.
We propose an adaptive workflow that integrates rapid amortized inference with gold-standard
MCMC techniques to achieve a favorable combination of both speed and accuracy when
performing inference on many observed datasets. Our approach uses principled diagnostics to
guide the choice of inference method for each dataset, moving along the Pareto front from fast
amortized sampling via generative neural networks to slower but guaranteed-accurate MCMC
when needed. By reusing computations across steps, our workflow synergizes amortized
and MCMC-based inference. We demonstrate the effectiveness of this integrated approach
on several synthetic and real-world problems with tens of thousands of datasets, showing
efficiency gains while maintaining high posterior quality.

1 Introduction

In many statistical modeling applications, from finance to biology and neuroscience, we often aim to infer
unknown parameters 6 from observables y modeled as a joint distribution p(8,y) (e.g., Raulo et al., 2023;
Seaton et al., 2023; George et al., 2022; Landmeyer et al., 2020; Chen et al., 2019; Malén et al., 2022; Schneider
et al., 2018; Tsilifis & Ghosh, 2022). The posterior p(f |y) is the statistically optimal solution to this inverse
problem, and there are different computational approaches to approximate this target distribution.

Markov chain Monte Carlo (MCMC) methods constitute the most popular family of posterior sampling
algorithms and still remain the gold standard for modern Bayesian inference due to their theoretical guarantees
and powerful diagnostics (Gelman et al., 2013; 2020). MCMC methods yield autocorrelated draws conditional
on a fixed dataset yops. As a consequence, the probabilistic model has to be re-fit for each new dataset, which
involves repeating the entire MCMC procedure from scratch. Modern implementations equip MCMC with
state-of-the-art extensions, for example, through Hamiltonian dynamics (HMC; Neal, 2011), by minimizing
the required tuning by users (NUTS; Hoffman & Gelman, 2014), or by parallelizing thousands of chains on
GPU hardware (ChEES-HMC; Hoffman et al., 2021). The well-established Bayesian workflow (Gelman et al.,
2020) leverages these tools in an iterative process of model specification, fitting, evaluation, and revision.
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While powerful, this approach becomes computationally burdensome when applied independently to large
collections of datasets.

Differently, amortized Bayesian inference (ABI) aims to learn a direct mapping from observables y to the
corresponding posterior p(f | y), using flexible function approximators such as deep neural networks (Cranmer
et al., 2020; Radev et al., 2020; Greenberg et al., 2019; Papamakarios et al., 2021; Wildberger et al., 2023;
Sharrock et al., 2024; Zammit-Mangion et al., 2025). Amortized inference typically follows a two-stage
approach: (i) a training stage, where neural networks learn to distill information from the probabilistic model
based on simulated examples of observations and parameters (6,y) ~ p(0) p(y | 6); and (ii) an inference stage
where the neural networks approximate the posterior distribution for an unseen dataset yons in near-instant
time without repeating the training stage. In other words: The upfront training cost is amortized by negligible
inference cost on arbitrary amounts of unseen test data. Owing to its reliance on simulated data, amortized
inference in this form overlaps with simulation-based inference (Cranmer et al., 2020), which originated from
posterior computations for models with intractable likelihood.

However, amortized inference lacks the powerful diagnostics

and gold-standard guarantees associated with MCMC samplers § o]

in the standard Bayesian workflow (Gelman et al., 2020). Yet, E g

applying a standard workflow is computationally prohibitive 55

at scale. In modern Bayesian computation, MCMC and ABI 5o Py
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former provides reliable accuracy at high cost, while the latter 5 ® [ ) ® ® inference
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In this paper, we propose an adaptive workflow that consistently Figure 1: Our workflow adaptively moves
yields high-quality posterior draws while remaining computa- along the Pareto front and reuses previous
tionally efficient. Our proposed workflow moves along the Pareto  computations.

front, enabling fast-and-accurate inference when possible, and

slow-but-guaranteed-accurate inference when necessary (see Figure 1). It combines the strengths of ABI and
MCMC by incorporating diagnostic checks to guide inference decisions and reuse computations wherever pos-
sible. The resulting amortized Bayesian workflow therefore offers a principled, scalable, and diagnostic-driven
approach for efficient posterior inference on many observed datasets; see Figure 2 for a conceptual overview.!
To summarize, our contributions are:

e Design of—and systematic guidance through—an adaptive Bayesian workflow for accelerating Bayesian
inference, which combines the strengths of amortized inference, importance sampling, and MCMC in
a theoretically motivated and modular manner.

e Empirical validation of the workflow and of its inference speedup, demonstrating the applicability of
the workflow on both synthetic and large-scale, real-world problems.

2 Integrating amortized inference into the Bayesian workflow

Our adaptive workflow starts with neural network training to enable subsequent amortized inference on a large
number of unseen datasets—typically well into tens of thousands. This training phase is conceptually identical
to standalone amortized inference training (e.g., Radev et al., 2020; Cranmer et al., 2020). For the inference
phase, however, we develop a principled control flow that guides the analysis. Based on state-of-the-art
diagnostics that are tailored to each step along the workflow, we propose decision criteria to select the
appropriate inference algorithm for each observed dataset. In order to optimize the overall efficiency, our
workflow contains mechanisms to reuse previous computations along the way.

IThe software implementation is available at https://github.com/pipme/amortized-Bayesian-workflow.
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Figure 2: Our adaptive workflow leverages near-instant amortized posterior sampling when possible and
gradually resorts to slower—but more accurate—sampling algorithms. As indicated by the blue dashed
arrows, we reuse the S draws from the amortized posterior in Step 1 for the subsequent steps in the form of
PSIS proposals (Step 2) and initial values in ChEES-HMC (Step 3).

2.1 Training phase: simulation-based optimization

In ABI, a neural estimator g4 with trainable parameters ¢ typically minimizes a strictly proper scoring rule S
(Gneiting & Raftery, 2007; Pacchiardi & Dutta, 2022) in expectation over the joint model p(8,y) = p(8)p(y | 6),

¢ = argmin By ~p(0.9) [S(as(- 1), 0)] - (1)

A popular choice is the logarithmic scoring rule, S (q¢(~ ly), 0) = —log ¢4(0 | y), which amounts to the forward
Kullback-Leibler (KL) objective used for training normalizing flows in ABI (Greenberg et al., 2019; Radev
et al., 2020). Score-based formulations that target a time-dependent gradient Vg, logp(6; | y) are also possible
(Sharrock et al., 2024; Gloeckler et al., 2024). Since most Bayesian models are generative by design, we can
readily simulate M synthetic tuples of parameters and corresponding observations from the joint probabilistic
model,

O,y M) ~p(0y) = 00 ~p(6), y" ~ply|6) form=1,..., M, (2)

which results in the training set {(H(m),y(m))}%:l for optimizing Eq. 1. Throughout this paper, we use
coupling-based normalizing flows (Durkan et al., 2019; Papamakarios et al., 2021) as a flexible conditional
density estimator g, and the forward KL divergence as the training objective. However, our proposed workflow
is agnostic to the specific choice of generative backbone used for amortization, as long as the model supports
efficient sampling (see Section 2.2.1) and density evaluations (see Section 2.2.2).

Diagnostics. Since the neural network training algorithm hinges on simulated data, we cannot evaluate
the amortized posterior estimator on real data just yet. However, we can easily simulate a synthetic test
set {(9£j),y(j))}3-]:1 of size J from the joint model via Eq. 2. In this closed-world setting, we know which
“true” parameter vector 99 ) generated each simulated test dataset y/). A key diagnostic for evaluating the
amortized posterior estimator is simulation-based calibration checking (SBC; Talts et al., 2018; Siilynoja
et al., 2022; Modrék et al., 2025; Yao & Domke, 2023). Formally, SBC involves (1) defining a test quantity
f:©xY — R (e.g., marginal projections 6 or the log likelihood p(y | ¢)), (2) computing this statistic for the
true data-generating parameter 9£] ), and (3) comparing it to the empirical distribution of the same statistic
derived from amortized posterior draws given y/) (Modrék et al., 2025). The rank of the true statistic within
the posterior draws should be uniformly distributed if the amortized posterior estimator is well-calibrated.

We recommend assessing uniformity using the graphical approach by Siilynoja et al. (2022), which reveals
the type of miscalibration present (e.g., bias or over-/under-dispersion) and is therefore useful for guiding
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improvements to amortized training. The choice of test quantity in SBC determines the sensitivity of the
check; for example, the log-likelihood test quantity is typically more sensitive at detecting discrepancies
than marginal projections (Modrdk et al., 2025); using expressive neural classifiers is also possible (Yao &
Domke, 2023). We further note a trade-off: imposing stricter criteria can improve the fidelity of the amortized
estimator but will also tend to reject otherwise practically useful amortized estimators.

By default, we use marginal projections as the test quantities for SBC and complement SBC checking with
parameter recovery checking, where parameter estimates are compared against known ground-truth parameters
via direct visualization (Radev et al., 2020; 2023). Parameter recovery checking provides practical insight
into whether the learned inverse mapping from y to 6 is effective and helps mitigate a known failure mode of
SBC with marginal projections as test quantities, in which the posterior approximation simply recovers the
prior. We refer to Appendix A for further details and corresponding pseudocodes.

Note. Amortized inference lies at the intersection of Bayesian modeling and deep learning, unlocking
massive potential for scalable posterior inference. However, this also comes with the practical challenges
inherent to training deep neural networks. While a detailed treatment of neural architecture design and
optimization exceeds the scope of this paper, practitioners can use established simulation-based inference
libraries like sbi (Boelts et al., 2025) or BayesFlow (Radev et al., 2023), which provide modern plug-and-play
components as well as sensible defaults for a wide range of applications. We summarize a set of best practices
and actionable recommendations for training amortized posterior estimators in Appendix B.

Training phase: If simulation-based calibration checking and parameter recovery diagnostics pass, proceed
to Step 1. Otherwise, tune the training hyperparameters (e.g., simulation budget, training epochs, learning
rate, or neural network architecture) and re-train the amortized network.

2.2 Inference phase: posterior approximation on observed datasets

Once the amortized estimator is capable of yielding sufficiently accurate posterior draws in closed-world
settings (i.e., in-distribution), we use the pre-trained neural network to achieve rapid amortized posterior
inference on a total of K observed datasets {yég}ﬁil Recall that a given pre-trained amortized neural
estimator may be perfectly suitable for some real datasets while it is utterly untrustworthy for others.
Therefore, we want to assess on a per-dataset basis whether the amortized posterior draws are trustworthy
and should be accepted, or whether we should proceed to a slower algorithm with stronger accuracy guarantees.
The diagnostics in the inference phase are evaluated conditionally on each observed dataset, with the ultimate
goal of determining whether the set of current posterior draws is acceptable for that specific dataset.

2.2.1 Step 1: Amortized posterior draws

We want to exploit the rapid sampling capabilities of -
the amortized posterior estimator g4 as much as possi- 0.4 gﬁlllngilsgtsi%rggéens)
ble, as long as the sampled posteriors are trustworthy Test samples
according to a set of principled diagnostics. Therefore, 2 0.31 s 00D Cut-off
the natural first step for each observed dataset yc()lf))s is % 02
to query the amortized posterior and sample S posterior A
draws 0. 0% ~ ¢4(0]y™)) in near-instant time (see 0.1
Figure 2, first panel).
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(Y.ang et al,, 2024), an?ort.ized’ infer(?nce may {Yield U™ Pigure 3: Illustration of our sampling-based hy-
faithful results under distribution shifts (Schmitt et al., pothesis test that flags OOD datasets (to the right

2023; Ward et al., 2022; Huang et al., 2023). To address of the OOD cut-off).
this, we detect whether an observed dataset yops is out-of-
distribution (OOD) relative to the data-generating process
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p(6,y). We first compute a low-dimensional summary statistic s(y) € R? for each dataset.? The summary
statistics from the training dataset {y(m)}n]\le are used to approximate the Mahalanobis distance by estimat-
ing their empirical mean ug and covariance ¢. Then, for any test dataset y, its Mahalanobis distance to the
training set is:

Dar(y) =/ (s(y) — 1) TS (5(y) — pis): (3)

We compute {Dy(y™)}M_, for all training datasets to establish a frequentist sampling distribution of
distances under the null hypothesis (i.e., of in-distribution datasets). Given a new observed dataset yops, we
compare its Mahalanobis distance Dz (yobs) to the empirical distribution of training distances. We define the
OOD rejection rule as:

Rejectoop (Yobs) =1 {DM (Yobs) > Quantile; _, ({DM(y(m))}%zl)} , (4)

where « is by default set to 0.05 and we flag datasets whose Mahalanobis distances fall in the right « tail of
the empirical training distances as out-of-distribution (see Figure 3). The type-I error rate « (false rejection)
of this test can be set relatively high to obtain a conservative test that will flag many datasets for detailed
investigation in further steps of our workflow.

In a nutshell, this is a sampling-based hypothesis test for distribution shifts, similar in spirit to the kernel-based
test proposed by Schmitt et al. (2023). Since the amortized estimator has no guarantees nor known error
bounds for data outside of the empirical support of the joint model p(6, y)(Elsemiiller et al., 2024; Schmitt
et al., 2023; Frazier et al., 2024; Elsemiiller et al., 2025), we propagate such out-of-distribution datasets to
Step 2. It is worth noting that a smaller Mahalanobis distance does not necessarily imply better posterior
quality and that this OOD test is only intended to filter out datasets that are most likely to be problematic
for the amortized estimator—specifically, those requiring extrapolation outside the ellipsoid defined by the
training summary statistics.

Alternative diagnostics. In addition to the proposed out-of-distribution test, more sophisticated data-
conditional diagnostics can further assess the accuracy of amortized posterior draws for individual datasets and
enhance the reliability of accepted amortized draws. Examples include posterior simulation-based calibration
checking (posterior SBC; Siilynoja et al., 2025) or the local classifier two-sample test (L-C2ST; Linhart et al.,
2023), to name a few. These diagnostics each offer distinct advantages and limitations, but typically require
substantially more computation than the OOD test.

Posterior SBC is conceptually straightforward and offers necessary conditions for the accuracy of amortized
posterior samples by assessing consistency. However, it requires additional simulations for each test dataset
and requires training the amortized estimator on inputs that effectively double the size of the original
observations. L-C2ST, which trains classifiers to distinguish between ¢4(6 | y) p(y) and the joint distribution
p(0,y), provides theoretically sufficient and necessary conditions for amortized inference accuracy. In practice,
however, its effectiveness can be very sensitive to several factors, including classifier design choices (e.g., data
pre-processing and optimization strategies), classifier calibration, and the relative sizes of the simulation
budgets allocated to classifier training and amortized estimator training.

The choice to apply these additional diagnostics depends on context-specific factors, including the number
of observed datasets, the relative computational cost of simulations versus likelihood evaluations,® and the
dimensionality of the observations. Ultimately, whether amortized posterior draws are deemed acceptable
hinges on the accuracy requirements of the specific application. By default, we recommend the OOD test for
its simplicity, efficiency, and suitability as a first-line diagnostic.

2The summary statistic can be either learned by the amortized estimator ge in the training phase or be based on domain
knowledge.

3For example, if likelihood evaluations are relatively cheap, instead of applying sophisticated diagnostics in Step 1, it is often
worthwhile to process directly to Step 2, where Pareto-smoothed importance sampling can offer more informative and powerful
diagnostics.
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Step 1: If the observed dataset passes the OOD test (i.e., Mahalanobis distance is below the threshold),
accept the amortized draws; otherwise, proceed to Step 2.

2.2.2 Step 2: Pareto-smoothed importance sampling

In this step, we use Pareto-smoothed importance sampling (PSIS) (Vehtari et al., 2024) to both improve
and assess the quality of the amortized posterior draws of datasets which have previously been rejected (see
Figure 2, second panel). Based on the amortized posterior draws from Step 1, PSIS computes importance
weights w*) = p(y™® | 8,) p(0,)/qs(8s | y™®) for each observed dataset y*) (as in default importance sampling).
Then, PSIS fits a generalized Pareto distribution to the largest importance weights, which in turn is used to
smooth the tail of the weight distribution (Vehtari et al., 2024). Finally, these smoothed importance weights
are used for computing posterior expectations and for improving the posterior draws with the sampling
importance resampling (SIR) scheme (Rubin, 1988). While the utility of standard importance sampling for
improving neural posterior draws has previously been investigated (Dax et al., 2023), we specifically use the
PSIS algorithm, which is self-diagnosing (see Diagnostics below) and therefore better suited for a principled
workflow. Further details of PSIS are provided in Appendix A.

Diagnostics. We use the Pareto-k diagnostic to gauge the fidelity of the PSIS-refined posterior draws.
Pareto-k is the estimated shape parameter of the generalized Pareto distribution and quantifies the tail
heaviness of the largest importance weights. According to Vehtari et al. (2024), for moderate sample size
(S > 2000), Pareto-k < 0.7 indicates that PSIS estimates are reliable;* when k > 0.7, the minimum sample
size for obtaining a reliable Monte Carlo estimate through (Pareto-smoothed) importance sampling rapidly
grows infeasibly large in practice, implying that the amortized posterior is a poor proposal for importance
sampling correction and the corresponding dataset should be routed to Step 3. This k threshold is consistent
with the established practice of using PSIS to improve and assess the quality of posterior approximations
obtained from variational inference (Yao et al., 2018; Dhaka et al., 2021; Zhang et al., 2022).

Note. The posterior estimator in ABI is typically mode-covering since it optimizes the forward KL divergence
in Eq. 1. When the neural network training is insufficient (e.g., small simulation budget or poorly optimized
network), this may lead to overdispersed posteriors. Fortunately, this tends to err in the right direction, and
PSIS can generally mitigate overdispersed mode-covering draws in low to moderate dimensions (Dhaka et al.,
2021). In contrast, variational inference typically optimizes the reverse KL divergence (Rezende & Mohamed,
2015), which implies mode-seeking behavior that is less favorable for importance sampling.

Step 2: If Pareto-k < 0.7, accept the importance sampling results; otherwise, proceed to Step 3.

2.2.3 Step 3: Many-chains MCMC with amortized initializations

If PSIS does not yield satisfactory results, we resort to an MCMC sampling scheme as a safe fallback option.
In our amortized workflow, the MCMC step is augmented by reusing computations from the previous steps
as initialization values. In principle, this step can incorporate any MCMC algorithm suited to the problem
at hand. Examples include slice sampling for models with non-differentiable likelihoods (Neal, 2003), or
HMC (Neal, 2011) samplers when gradients are available.

In this work, we use the ChEES-HMC algorithm (Hoffman et al., 2021) as an instantiation of MCMC.
Most notably, ChEES-HMC supports the execution of thousands of parallel chains on a GPU for high-
throughput sampling (Sountsov et al., 2024). Amortized posterior draws from previous steps provide a
natural and convenient choice for initializing MCMC chains to accelerate convergence (Figure 4). This
approach is conceptually similar to using methods like parallel quasi-Newton variational inference (i.e.,
Pathfinder; Zhang et al., 2022) to obtain initial values for MCMC chains. However, the amortized
initial values are drawn in parallel in near-instant time, while Pathfinder requires re-fitting the varia-
tional approximation for each new observed dataset. For the purpose of ChEES-HMC initializations

4For small sample size (S < 2000), the threshold of Pareto-k is min(1 — 1/log;4(S),0.7).
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with multimodal posterior distributions, it is again desirable that the amortized posterior draws are typ-
ically mass-covering (cf. Step 2). See Appendix A for additional details on the ChEES-HMC algorithm.

Diagnostics. In this last step, we use the nested R diagnos- s Amortized initializations
tic (Margossian et al., 2024), which is specifically designed to ++++ ChEES-HMC samples
assess the convergence of the many-but-short MCMC chains.? — Target posterior

If the diagnostics in this step indicate unreliable inference, we ~
recommend resorting to the overarching Bayesian workflow (Gel- @ —

man et al., 2020) and addressing the computational issues that
even persist when using the (ChEES-)HMC algorithm. This
could involve increasing the number of warmup iterations, using
the established NUTS-HMC algorithm (Hoffman & Gelman, 0,

2014; Carpenter et al., 2017), or revising the Bayesian model

. . L Figure 4: We initialize many ChEES-HMC
specification and parametrization.

chains with amortized draws.

Step 3: If (nested) R is below the convergence threshold (e.g., 1.01), accept the MCMC draws. Otherwise,
increase warm-up or revise the model according to the standard Bayesian workflow (Gelman et al., 2020).

2.3 Related work

Both simulation-based inference and amortized inference have seen rapid progress over the past decade
(Zammit-Mangion et al., 2025; Cranmer et al., 2020; Lavin et al., 2021), driven by the need to perform
Bayesian inference in complex models with intractable likelihoods (e.g., Dingeldein et al., 2024; Wehenkel
et al., 2024; Zhou et al., 2024; Ghaderi-Kangavari et al., 2023; von Krause et al., 2022; Bieringer et al., 2021;
Radev et al., 2021). These advances have been fueled by modern generative modeling, such as normalizing
flows (Papamakarios et al., 2021; Radev et al., 2020; Greenberg et al., 2019), transformers (Miiller et al., 2022;
Chang et al., 2025; Whittle et al., 2025), diffusion models (Song et al., 2021; Sharrock et al., 2024; Linhart
et al., 2024; Gefner et al., 2023; Gloeckler et al., 2024), consistency models (Song et al., 2023; Schmitt et al.,
2024b), and flow matching (Lipman et al., 2023; Wildberger et al., 2023). Practical software toolkits such as
BayesFlow (Radev et al., 2023) and sbi (Boelts et al., 2025) further make these simulation-based inference
techniques accessible to practitioners in user-friendly interfaces.

To address the potential systematic errors of (amortized) neural posteriors, several works propose corrections
using importance reweighting schemes (Dax et al., 2023; Starostin et al., 2025), augmented training objectives
(Delaunoy et al., 2022; Mishra et al., 2025; Orozco et al., 2025; Schmitt et al., 2024a), or post-hoc corrections
(Siahkoohi et al., 2023). Simultaneously, hybrid approaches that combine density estimators with MCMC
have gained traction (Salimans et al., 2015; Hoffman et al., 2019; Gabrié et al., 2022; Midgley et al., 2022;
Arbel et al., 2021; Cabezas et al., 2024; Grenioux et al., 2023). These include using variational approximations
or learned flows as preconditioners for MCMC (Hoffman et al., 2019; Cabezas & Nemeth, 2023), adaptive
proposal mechanisms (Parno & Marzouk, 2018; Gabrié et al., 2022), and initialization strategies to accelerate
convergence or improve diagnostics (Zhang et al., 2022; Wang et al., 2023; Starostin et al., 2025).

More broadly, automated Bayesian inference has been a central design goal of probabilistic programming
systems such as Stan (Carpenter et al., 2017), PyMC (Oriol et al., 2023), (Num)Pyro (Bingham et al.,
2019; Phan et al., 2019). These libraries provide general-purpose inference engines—typically gradient-based
MCMC and variational inference—that can be applied to a wide range of likelihood-based models and are
accompanied by well-developed diagnostic recommendations and workflow guidelines (Gelman et al., 2020).
However, they do not natively support amortized inference across many datasets, and inference must be
rerun from scratch for each dataset.

Our proposed workflow builds on and complements these lines of work by integrating amortized inference,
likelihood-based correction, and many-chain MCMC into a unified, modular, and diagnostic-driven pipeline for
accelerating Bayesian inference. It dynamically adapts the inference strategy to the dataset at hand—using

5In more conventional settings involving long MCMC chains, the standard R diagnostics (Gelman & Rubin, 1992; Vehtari
et al., 2021) can be applied.
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amortized posterior draws when they are adequate and escalating to PSIS and MCMC otherwise—thereby
improving the robustness of amortized inference and the overall efficiency of posterior computation. This
modular design provides a practical foundation for principled amortized inference across diverse data regimes.

3 Experiments

In this section, we empirically evaluate the effectiveness of our proposed amortized Bayesian workflow across
various synthetic and real-world problems. We also examine how reusing amortized posterior draws in
subsequent steps can improve the downstream sampling performance. The source code to reproduce all
experiments is available in the supplementary material.

3.1 Procedure

Training settings. For each problem, we begin by training the amortized posterior estimator on simulated
parameter-observation pairs (i.e., simulation-based training). We verify that the model performance is
satisfactory in a closed-world setting, as diagnosed by simulation-based calibration and parameter recovery
checking (see Section 2.1). Details on diagnostic results, simulation budgets, and training hyperparameters
are provided in Appendix C.

Inference settings. For the out-of-distribution diagnostics in Step 1, we use the a = 0.05 as the rejection
threshold. We compute Mahalanobis distances in the summary statistics using 10,000 training simulations.
We draw 2,000 posterior samples from the amortized posterior ¢4 at Step 1. In Step 2, we correct the
amortized draws using PSIS, rejecting draws if Pareto-k > 0.7. Step 3 uses ChEES-HMC with convergence
determined by nested R < 1.01. We run 2048 chains in parallel (16 superchains, each with 128 subchains),
with 200 warmup steps and a single sampling step, for a total of 2048 posterior draws.

Evaluation metrics. To assess the quality of posterior draws from our workflow, we compare them to
reference posterior draws using two evaluation metrics: the 1-Wasserstein distance (W1) and the mean
marginal total variation distance (MMTV). The W1 distance quantifies the overall discrepancy between full
joint distributions. MMTV measures the lack of overlap between marginal distributions and takes value in
the range [0, 1]; for example, an MMTYV value of 0.2 implies that, on average, the approximate posterior
draws and reference draws share an 80% overlap for their marginal distributions. For both metrics, lower
values indicate better posterior approximation quality. As a rule of thumb, MMTYV values below 0.2 indicate
good posterior approximation fidelity (Acerbi, 2020; Li et al., 2025).

3.2 Applications

We apply the proposed workflow to four posterior inference problems, including both simulated benchmarks and
real-world experimental datasets. These case studies were chosen to reflect a range of commonly encountered
statistical inference scenarios, including classical distributional parameter estimation and analyses of large-
scale datasets arising in psychology and cognitive modeling. We describe each problem briefly below, with
further details provided in Appendix C.

Generalized extreme value distribution (GEV). We consider parameter inference for the generalized
extreme value (GEV) distribution, which models the maxima of samples from a distribution family. Each
observation y; is modeled as:

Yi ~ GEV(:“’? g, 5)7 (5)

where p € R is the location, 0 € R+ is the scale, and £ € R is the shape parameter. We follow the prior
specification from Caprani (2021). For each dataset, we collect N = 65 i.i.d. observations and infer the
posterior distribution over the parameter vector § = (u,0,&). We generate a total of K = 1000 test datasets
by deliberately simulating from a model with a 2x wider prior distribution to emulate out-of-distribution
settings in real applications (see Appendix C for details).
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Bernoulli GLM. The Bernoulli generalized linear model (GLM) is a classical model with binary outcomes,
included in the SBI benchmark suite (Lueckmann et al., 2021). Each observation y; € {0,1} is modeled as:

y; ~ Bernoulli(o(v; ), ©)

where v; € R is a fixed input vector, § € R0 is the parameter vector, and o(-) denotes the logistic function.
We generate K = 10,000 in-distribution test datasets by sampling parameters from the model prior and
simulating corresponding observations {y;}1% (Lueckmann et al., 2021).

Psychometric curve fitting. Psychometric functions are widely used in perceptual and cognitive science to
characterize the relationship between stimulus intensity and the probability of a specific response (Wichmann
& Hill, 2001). We use the overdispersed hierarchical model from Schiitt et al. (2016), where the number of
correct trials y; at stimuli level x; is modeled as:

1 1
yi ~ Binomial(n;, p;), p; ~ Beta ((172 — 1) Di, (772 — 1) (1- ﬁi)) , (7)

where n; is the number of trials, € [0, 1] controls overdispersion, and p; = ¥ (x;; m,w, A, 7) is the expected
success probability given by the psychometric function t(xz;m,w, \,v) = v+ (1 — XA — ) S(z; m,w), where S
is a sigmoid function (e.g., cumulative normal), m is the threshold, w is the width, A is the lapse rate for
infinitely high stimulus levels, and « is the guess rate for infinitely low stimulus levels. In total, the model
parameters are § = (m,w, \,y,n). Our empirical evaluation uses 8,526 mouse behavioral datasets from the
International Brain Laboratory public database (The International Brain Laboratory et al., 2021).

Decision model. The drift-diffusion model (DDM) is a popular evidence accumulation model for psycho-
logical models of human decision making (Ratcliff & McKoon, 2008). It describes a two-choice decision task
as a stochastic process in which noisy evidence accumulates over time until it reaches one of the decision
boundaries. The evolution of the decision variable z(¢) is modeled as

dz(t) = vdt + o dW (), (8)

where v is the drift rate (the average rate of evidence accumulation), o is the noise scale, and W (t) denotes
a standard Wiener process. A decision is made when z(t) reaches either a positive or negative boundary,
typically placed symmetrically at +a, where a is the boundary separation. The model also includes a
non-decision time parameter 7, capturing processes that are not part of the decision process. We adopt
the model specification from von Krause et al. (2022), which extends the standard DDM to incorporate
experimental condition effects via six parameters: § = (v1,v2,a1,a2,7¢, 7). The test datasets consist of
15,000 participants from the online implicit association test (IAT) database (Xu et al., 2014; von Krause
et al., 2022), providing a large-scale, real-world benchmark for Bayesian inference in cognitive modeling.

3.3 Main Results

Table 1 summarizes the performance of the proposed amortized Bayesian workflow across the four problems
described in Section 3.2. Step 1 (ABI) exhibits extremely low time per accepted dataset (TPA), with most
of the cost incurred as a one-time expense during the training phase—including prior simulation, model
training, and diagnostic evaluation. Once trained, ABI incurs negligible marginal cost (< 1sec) when applied
to a new dataset. Datasets flagged as out-of-distribution in Step 1 are forwarded to Step 2 for correction
via PSIS. PSIS is highly effective, successfully correcting most rejected amortized draws and substantially
reducing the number of datasets requiring full MCMC. Only a small subset of datasets progresses to Step 3,
where ChEES-HMC is used for high-fidelity sampling. As the most computationally expensive component,
ChEES-HMC is applied selectively, allowing the workflow to retain both accuracy and efficiency. Overall, the
amortized workflow completes inference for nearly all datasets.® Compared to using ChEES-HMC for all
datasets, our workflow achieves substantial computational savings—approximately over 5x, 120x, 60x, and
15x faster for the GEV, Bernoulli GLM, psychometric curve, and decision model tasks, respectively.

6A small number of datasets with particularly difficult properties require extended MCMC runs to converge.
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Table 1: Summary of our amortized Bayesian workflow across four problems. For each step, we report the
number of accepted datasets, wall-clock time (minutes), and time per accepted dataset (TPA) in seconds. The
time for the training phase includes amortized estimator training, simulations, and diagnostics evaluations.
The time for Step 1 includes amortized posterior draws and the OOD test. The TPA for Step 1 accounts
for both the training phase and Step 1. “Workflow total” aggregates the results of our method across all
steps. As a baseline reference, “Baseline workflow total” is an estimate of the total required runtime for
ChEES-HMC on all datasets.

Problem Step Accepted datasets Time (min) TPA (s)
Training phase — 3 0.4
GEV Step 1: Amortized inference 523,/1000 0.1 ’
Step 2: Amortized + PSIS 357/477 0.8 0.1
Step 3: ChEES-HMC w/ inits 87/120 11 7
Workflow total (ours) 967,/1000 15 0.9
Baseline workflow total — 85 —
Training phase — 0.8 0.007
Bernoulli GLM Step 1: Amortized inference 9519,/10000 0.3 ’
Step 2: Amortized 4+ PSIS 425/481 04 0.06
Step 3: ChEES-HMC w/ inits 56/56 4 4
Workflow total (ours) 10000,/10000 5 0.03
Baseline workflow total — 688 —
Training phase — 6 0.06
Psychometric curve Step 1: Amortized inference 7213/8526 0.4
Step 2: Amortized + PSIS 1215/1313 4 0.2
Step 3: ChEES-HMC w/ inits 69/98 26 22
Workflow total (ours) 8497/8526 37 0.3
Baseline workflow total — 2217 —
Training phase — 85 0.4
Decision model Step 1: Amortized inference 13498,/15000 1 ‘
Step 2: Amortized + PSIS 827/1502 47 3
Step 3: ChEES-HMC w/ inits 554/675 526 57
Workflow total (ours) 14879,/15000 659 3
Baseline workflow total — 11594

Figure 5 presents the quality of posterior draws using the W1 distance (top row) and MMTV distance
(bottom row), comparing draws from each step of the workflow against reference posteriors obtained via
well-tuned NUTS. Rejected amortized draws (ABIX) exhibit markedly worse performance than accepted
ones (ABIV), confirming the effectiveness of the OOD diagnostics.” PSIS-corrected draws offer accuracy
comparable to ChEES-HMC samples, with only a slight decrease in quality. While amortized draws accepted
in Step 1 are less accurate than those produced by PSIS or ChEES-HMC, they still provide high-quality
approximations across the majority of datasets, as implied by the W1 and MMTV metrics. These results
demonstrate that the proposed workflow not only scales efficiently but also consistently produces high-quality
posterior estimates.

3.4 Advantage of amortized initializations for MCMC

One major goal of our workflow is to minimize reliance on expensive MCMC by maximizing the reuse of
computations. Even when ABI and the PSIS refinement fail to yield acceptable posterior draws after Step 2,
we can still leverage the amortized outputs to accelerate MCMC in Step 3.

To evaluate whether amortized posterior estimates remain useful in such cases, we test their effectiveness as
initializations for ChEES-HMC chains. We conduct experiments on 20 randomly selected test datasets that
progress to Step 3 of the workflow. This indicates that both the amortized posterior draws and their Pareto-

"For the Bernoulli GLM, the rejected amortized draws appear of good quality because the test datasets are drawn directly
from the same prior used during training (i.e., in-distribution).
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Figure 5: Evaluation of posterior draws across four problems based on two metrics: W1 distance (top row)
and MMTYV distance (bottom row). Lower values indicate better posterior approximation. ABI(v') and
ABI(X) denote accepted and rejected draws, respectively, from amortized Bayesian inference in Step 1. PSIS
denotes importance-weighted draws accepted in Step 2, and C-HMC denotes draws accepted via ChEES-HMC
in Step 3. Metrics are computed on up to 100 datasets for each type of draws.
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smoothed refinement are deemed unacceptable, as quantified by Pareto-k > 0.7 in Step 2. We compare three
initialization methods for ChEES-HMC chains: (1) amortized posterior draws, (2) PSIS-refined amortized
draws, and (3) a random initialization scheme similar to Stan (Carpenter et al., 2017). We run the chains for
varying numbers of warmup iterations, followed by a single sampling iteration. As described in Section 2, we
use the nested R value to gauge whether the chains converged appropriately during the warmup stage, as
quantified by the common R — 1 threshold of 0.01 (Vehtari et al., 2021).

Figure 6 shows that amortized posterior draws (and their PSIS-refined counterparts) can significantly reduce
the required number of warmup iterations to achieve ChEES-HMC chain convergence, even though the draws
themselves have previously been flagged as unacceptable. For the GEV problem and the decision model, chains
initialized with amortized draws converge faster than those using random initialization. In the Bernoulli
GLM, all methods perform similarly. For the psychometric curve model, random initialization leads to
faster convergence for the early stage, but amortized draws still reach the convergence threshold at a similar
speed at iteration 200, indicating competitive performance. These findings are particularly relevant in the
many-short-chains regime, where computational cost is dominated by the warmup phase. For instance,
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with 2048 parallel chains, every single post-warmup step yields 2048 posterior samples, leading to enormous
efficiency gains from shorter warmup.

Overall, these results demonstrate that amortized inference may provide suitable initializations for ChEES-
HMC. However, the added benefit of initializing chains with PSIS-refined amortized draws (Step 2) instead
of raw amortized draws (Step 1) remains unclear. While PSIS often accelerates convergence, it occasionally
degrades worst-case performance (see upper error bounds for GEV task in Figure 6). We further study
the impact of initialization for the popular NUTS sampler (Hoffman & Gelman, 2014), with similar results:
amortized initializations reduce the required warmup in most cases (see Appendix E).

4 Discussion

We presented an adaptive Bayesian workflow to combine the rapid speed of amortized inference with the
undisputed sampling quality of MCMC. Our amortized workflow enables a fundamental shift in the scale
and feasibility of Bayesian inference. Applying traditional MCMC (e.g., ChEES-HMC) within a standard
Bayesian workflow to every dataset independently would require approximately 10 days of GPU computation
across our experimental suite. In contrast, our amortized workflow completes inference in half a day, achieving
speedups ranging from over 5x to 120x depending on the problem. Crucially, high-quality posterior draws
are retained through a cascade of diagnostics and selective escalation to PSIS and MCMC. In conclusion, our
workflow efficiently uses resources by (i) applying fast amortized inference when the results are accurate; (ii)
refining draws with PSIS when possible; and (iii) amortized initializations of slower but accurate MCMC
chains when needed.

Modularity and practical flexibility. A key strength of the proposed workflow lies in its modular
structure, which allows practitioners to tailor each component to the specific constraints and objectives
of their application. In cases where preliminary analysis or low-latency decision-making is essential (e.g.,
real-time experimental pipelines) or where likelihood evaluations are computationally expensive, the workflow
can operate in a lightweight mode using amortized inference with out-of-distribution rejection alone (i.e., Step
1 in our workflow). Conversely, in high-stakes applications where accuracy is paramount, analysts can enforce
escalation of all amortized draws through PSIS and, if needed, proceed to full MCMC to guarantee statistical
robustness. The choice of MCMC sampler in Step 3 is also fully interchangeable: alternative algorithms such
as slice sampling, ensemble samplers (e.g., emcee; Foreman-Mackey et al., 2013), or NUTS can be substituted
if the model is non-differentiable, multimodal, or requires richer exploration.

Furthermore, while our paper focuses on the trade-off between wall-clock inference speed and posterior quality,
practical deployments may also involve additional factors, such as inference cost (e.g., monetary expense for
GPU/CPU hours) and hardware availability. Consequently, the most suitable workflow variant can differ
across settings. For example, when GPU resources are limited, launching parallel MCMC chains on CPUs
offers a practical alternative, making the workflow more accessible for a broader range of users.

Applicability, limitations and future directions. Our proposed workflow targets likelihood-based
Bayesian models for which prior predictive simulation and likelihood evaluation are possible. It is most
beneficial in repeated-inference regimes (many datasets or frequent re-fits), with moderate effective dimen-
sionality, and when a good amortized estimator can be trained once and subsequently reused. Hence, it is not
universally suitable and does not yield inference speedup gains for all Bayesian models. Training amortized
models requires upfront investment in optimization and simulation. In our experiments, we found that
default neural network hyperparameter settings, such as normalizing flow architectures, summary network
configurations, and optimizer settings, generally yield good performance.

However, in more challenging cases, such as the GEV problem, adjustments may be necessary, guided by
training-phase diagnostics. The simulation burden can be exacerbated in high-dimensional (2 10 parameters)
or weakly identifiable models, where neural estimators may struggle to approximate complex inverse maps.
Alternative amortized inference approaches (see, e.g., Mittal et al., 2025) could be explored in future work to
complement simulation-based amortized inference in such scenarios. In settings where likelihood evaluations
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are particularly expensive, iterative refinements of the amortized estimator on individual datasets (Glockler
et al., 2022) may also be a practical alternative to likelihood-based corrections in Steps 2 and 3.

Moreover, while our diagnostic for the amortized posterior draws in Step 1 is effective and highly efficient
in practice, it remains an imperfect proxy for the true posterior approximation error and can occasionally
result in the acceptance of poor-quality amortized draws (cf. Figure 5). An additional empirical study
in Appendix D shows that (1) the Mahalanobis distance and the posterior quality metrics are positively
correlated when OOD datasets are present; (2) however, some low-distance datasets still yield poor metrics,
highlighting the limitation that the OOD diagnostic cannot fully guarantee accuracy and motivating enforced
escalation to PSIS (Step 2) when higher accuracy is a requirement. Future work could explore even more
effective discrepancy measures, potentially tailored to the task at hand.

More broadly, the workflow supports a compelling vision of training amortized models once and reusing them
across tasks or studies—a strategy well suited to applications ranging from psychology to computational
biology, among others. In such settings, our layered diagnostics and selective escalation are crucial for
maintaining reliability and efficiency. This positions the workflow as a practical bridge between amortized
inference and traditional Bayesian rigor, enabling scalable yet trustworthy inference.
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Appendix

This appendix provides additional details and analyses to complement the main text, included in the following
sections:

e Background, Appendix A

e Best practices for training amortized estimators, Appendix B

e Experiment details, Appendix C

« Additional experimental study of the OOD diagnostic in Step 1, Appendix D

e Amortized initialization for NUTS, Appendix E

A Background

This section provides a concise overview of the diagnostics and algorithms used in our workflow, including
simulation-based calibration checking, parameter recovery checking, out-of-distribution diagnostic with
Mahalanobis distance, Pareto-smoothed importance sampling, the ChEES-HMC algorithm, and the nested R
convergence diagnostic. Pseudocodes are also given for reference.

Simulation-based calibration checking. Simulation-based calibration (SBC; Talts et al., 2018; Modrak
et al., 2025) is a principled technique for assessing the calibration of posterior distributions estimated by
Bayesian inference procedures, particularly useful in simulation-based amortized inference settings. SBC
is based on the idea that if the posterior p(6|y) is correctly specified, then the rank of the true parameter
0, among posterior draws should follow a uniform distribution. Formally, SBC defines a test statistic
f:O0xY — R (eg., a component of 8, or the log-likelihood p(y|#)). For each simulated dataset y)
generated from the joint model p(6,y), the test statistic is evaluated at the ground-truth parameter 99 ) and
compared to the same statistic evaluated over posterior samples {9? )} ~ qp(0]y"). The rank of f (09 ), y))

among { f (9? ), yU))} is recorded. Repeating this process for all simulated datasets yields a distribution of
rank statistics, which should be uniform under well-calibrated inference. Deviations from uniformity signal
systematic bias (e.g., over/under-dispersion) in the posterior approximation. We use the graphical approach
proposed by Siilynoja et al. (2022) to assess the uniformity of the rank statistics in SBC. This method provides
visual diagnostics for identifying systematic biases or miscalibrations in the posterior approximation by
plotting the empirical cumulative distribution function (ECDF) and confidence bands (95%). The pseudocode
of SBC is provided in Algorithm 1. Examples of SBC checking results using this approach are provided in
Appendix C.

Algorithm 1 SBC diagnostic

Require: Joint model p(f,y); amortized posterior g4(0|y); scalar test function f; number of simulated
datasets J (e.g., 200); posterior draws S (e.g., 1000)
1: fOI‘j: 1,...,J do
2 Sample 0 ~ p(0), y© ~ p(y | 6)
3 Draw 0§])~q¢(0|y(j)) fors=1,...,8
4: Compute 7Y = f(@ﬁj),y(j)), 7Y = f(@gj),y(j))
5 Compute rank () = Zle ]I[Ts(j) < T*(j)] + uniform(0, Zle H[Ts(j) = T*(j)])
6: end for
7. Compare empirical ranks (/) against the uniform(0,.S) distribution using the graphical approach of
Sailynoja et al. (2022) to identify miscalibration patterns. Alternatively, the uniformity test based on the
scalar statistic in Eq. 7 of Modrék et al. (2025) can also be applied.
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Parameter recovery checking. Parameter recovery is a complementary diagnostic to SBC and provides
a direct visualization of posterior approximation in recovering true generative parameters (Radev et al., 2020;
2023). The idea is to simulate a collection of datasets {y(j )} along with their corresponding ground-truth
parameters {0& )} from the joint model, and assess whether the posterior distributions g, (6| y7)) effectively
recover these known values. In our workflow, we compare the posterior median extracted from each posterior
to the corresponding ground-truth values, along with the median absolute deviation to indicate uncertainty.
These comparisons are visualized using scatter plots, with correlation coefficients quantifying the strength of
recovery. While not a direct measure of posterior calibration or correctness, parameter recovery provides
important practical insight into whether the learned inverse mapping from y to 6 is effective. The pseudocode
of the parameter recovery diagnostic is provided in Algorithm 2. Examples of parameter recovery checking
results using this approach are provided in Appendix C.

Algorithm 2 Parameter recovery diagnostic

Require: Joint model p(6,y); amortized posterior ¢,(6 | y); number of datasets J; posterior draws S
1: fOI‘jZl,...,JdO

2 Sample 0 ~ p(6), y@ ~ p(y| 0"

3 Draw ng)~q¢(0|y(j)) fors=1,...,8

4: for each parameter component k£ do

5 Compute posterior median GA,(;) = median, [08,1]

6 Optionally compute a dispersion measure (e.g., median absolute deviation) for 98 ,1
7 end for

8: end for

9: For each k, plot HA,(CJ ) vs. Oij ,)C and report correlation

)

OOD diagnostic with Mahalanobis distance. The out-of-distribution (OOD) diagnostic used in Step 1
tests whether an observed dataset yobs falls outside the support of the prior predictive distribution (i.e.,
the training distribution for the amortized estimator). We work with low-dimensional summary statistics
s(y) € RY, which are either learned (e.g., via a summary network hy) or hand-crafted with domain knowledge.
In the latter case, the amortized estimator g4, must be trained using these same hand-crafted statistics. The
pseudocode for computing the Mahalanobis distance and checking whether an observed dataset yns is OOD
is provided in Algorithm 3.

Algorithm 3 OOD diagnostic with Mahalanobis distance (Step 1)

Require: Training datasets {y(™}M_, (e.g., M = 10000); summary statistic function s(-); rejection level a
(e.g., « = 0.05)
1: Compute s = s(y(™)) for all m

M M
1 1 ,
2: Compute empirical mean pgs = i mgﬂ 5™ and covariance ¥, = i mE:1(s(7”) - us)(s(m) — )"

3: For each m, compute Mahalanobis distance Dy (y™)) = \/(S(m) — 1) TR H(s(m) — )
Let T, be the empirical (1 — a)-quantile of { Dy, (y™))}M

m=1

b

procedure TESTOOD (yobs)

Compute Sobs = $(Yobs) and Dz (Yobs)

return [p,, (y...)>7. > 1 = 00D, 0 = in-distribution
end procedure

Pareto-smoothed importance sampling. Pareto-smoothed importance sampling (PSIS; Vehtari et al.,
2024) is a robust method for improving the stability and reliability of importance sampling (IS) estimates.
Given a target distribution p(y|6) p(¢) and a proposal distribution g4(6), with samples 65 ~ ¢4(6), PSIS
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stabilizes the raw importance weights ws, = p(y| és)p(és)/q(z,(és | y) by modeling the tail behavior of the
importance weights. Specifically, the distribution of extreme importance weights can be approximated by a
generalized Pareto distribution (GPD):

p<t|u,a,k>{%£l+k(tu)) o (9)

where k is the shape parameter, u is the location parameter and o is the scale parameter. The number of finite
fractional moments of the importance weight distribution depends on k: a generalized Pareto distribution
has 1/k finite moments when & > 0. To stabilize the importance sampling estimate, the extreme importance
weights are replaced with well-spaced order statistics drawn from the fitted generalized Pareto distribution,
leading to a more stable and efficient IS estimator. The estimated shape parameter k serves as a diagnostic
for the reliability of the importance sampling estimate. The pseudocode of PSIS is provided in Algorithm 4.

Algorithm 4 PSIS weights and Pareto-k diagnostic (Step 2)

Require: Observed data yons; log-likelihood log p(y | 0); log-prior log p(#); amortized posterior g4(0 | y); draws
Oy ~qy,s5=1,...,8

1: fors=1,...,5 do

22 L =1ogp(yobs | 0s) + log p(0s) — 10g ¢y (0s [ Yobs)

3: end for

4 Uy =0y — maxg Uy

5: w, = exp(ly)

6: Sort w, to obtain w(l) < --- < w(S)

7: Choose tail size M = |min(0.25,3v/S)| and define tail W(S—MA1)s -+ > W(S)

8: Fit a GPD to the M largest importance weights w(s_nr41), - - -, w(s) and obtain shape estimate k

9: Replace the M largest welghts with smoothed values from the ﬁtted GPD to obtain stabilized weights w,
10: Normalize: w, = ws/zr 1 Wr

11: Use 6, 0, as weighted PSIS-corrected posterior draws; treat them as reliable if & < min(1—1/log;((S),0.7)

Given the PSIS-stabilized weights w, from Algorithm 4, one can either compute weighted Monte Carlo
estimates directly (Vehtari et al., 2024) or apply the SIR procedure in Algorithm 5 to obtain approximately
unweighted posterior draws for downstream use (e.g., visualization or MCMC initialization).

Algorithm 5 Sampling importance resampling (SIR) using PSIS weights

Require: PSIS-corrected weighted sample { (6, w4)}5_;; desired number of resampled draws S’ (e.g., S’ = S)

1: Define a categorical distribution on indices s € {1,...,S} with probabilities w, ..., ws
2: for j=1,...,5 do
: Sample index I; ~ Categorical(wn, ..., wg) > Typically with replacement; weighted sampling without
replacement is useful for generating unique initializations for MCMC chains
Set éj = 91].
5: end for

6: Return unweighted PSIS-corrected posterior draws {6; }f;l

ChEES-HMC algorithm. The ChEES-HMC algorithm (Hoffman et al., 2021) is a massively parallel and
adaptive extension of Hamiltonian Monte Carlo (HMC) designed to leverage single-instruction multiple-data
(SIMD) hardware accelerators such as GPUs. This enables rapid generation of posterior draws following
an initial warm-up phase. During warm-up, ChEES-HMC adaptively tunes the trajectory length 7" and
step size € by maximizing the “Change in the Estimator of the Expected Square” (ChEES), a heuristic that
serves as a proxy for reducing autocorrelation in the second moments of the Markov chain. ChEES-HMC is
particularly suitable for our amortized workflow, as we can easily generate a large number of good starting
points (amortized draws) to launch many short MCMC chains. For our experiments, we used ChEES-HMC
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to run 2048 parallel chains, organized into 16 superchains with 128 subchains each. This configuration is
essential for computing the nested R diagnostic (Margossian et al., 2024), which assesses convergence across
a large number of short chains. The pseudocode explaining the use of ChEES-HMC in Step 3 is provided in
Algorithm 6.

Algorithm 6 Use of ChEES-HMC in Step 3

Require: Log-posterior density logp(6, yobs) = 10g p(Yobs | 8) + log p(6) and its gradient w.r.t. §; number of
superchains K; number of subchains per superchain M; warm-up length Nyarmup (€-8-, Nwarmup = 200);
after warm-up sampling length N (e.g., N = 1)

1: Collect K unique amortized posterior draws or PSIS-corrected draws for chain initialization; each of these
K draws must have a finite log-posterior density value.
2: For each superchain group k = 1,..., K, initialize M subchains at the same initial state (total K x M
chains)

Run ChEES-HMC warm-up for Nyarmup iterations to adapt step size € and trajectory length L

Fix (e, L) and run N iterations to collect draws from K M parallel chains

Compute nested R for each parameter component of 6

If nested R is below a chosen threshold (e.g. < 1.01), accept the combined draws as Step 3 posterior

draws; otherwise increase warmup length, use alternative MCMC algorithm (e.g., NUTS-HMC) or revise

the model

Nested R diagnostic. The potential scale reduction factor R (Gelman & Rubin, 1992; Vehtari et al., 2021)
is arguably the most popular diagnostic for assessing the convergence of MCMC chains. The basic idea is
that multiple MCMC chains starting from overdispersed initial points should produce similar Monte Carlo
estimators if they have converged, i.e., the impact of initialization vanishes as the chains converge to the
stationary distribution. Nested R dlagnostlc (Margossian et al., 2024) extends the classical R diagnostic for
monitoring convergence of many-short-chain MCMC samplers buch as the ChEES-HMC algorithm. It requires
organizing chains into K superchains, each consisting of M subchains that share the same initial point. Thus,
one can assess convergence through comparing the variability between superchains and the variability within
superchains, similar to the standard R diagnostic. We provide the pseudocode for computing the nested R
diagnostic in Algorithm 7 for reference.

Algorithm 7 Nested R diagnostic

Require: Posterior draws {#("™)} after warm-up, where k € {1,..., K} (superchains), m € {1,..., M}
(subchains), n € {1,..., N} (draws); scalar function of interest f
Compute scalar values (%) < f(9( k)Y for all n, m, k.
Compute subchain means: f(™F) « L Zﬁi f(nmk)
Compute superchain means f(%) M Z - fCmE) and overall mean f() % Zszl fFOR)
for each superchain k =1,..., K do _
Compute between-chain variancg By: - 3
If M >1, B, + 57 %:l(f('m’“) — fUR)2: else By, « 0.
Compute within-chain variance W:
N> 1, Wy &3 (ﬁ SN (fmk) _ fmk)y ) else Wy, + 0.
end for R - -
Compute between-superchain variance: B, + ﬁ Zszl(f("k) — )2

— =
= o

1. . . L T1 1 K ~ 4
: Compute within-superchain variance: W, < 3 >, (Bx + Wy)
W, +B,

v

. Return nested R <

—_
[\
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B Best practices for training amortized estimators

Amortized inference approaches problems of Bayesian modeling with methods from deep learning. While
the precise training setup naturally depends on the concrete problem at hand, some general principles have
proven help across a wide range of amortized inference applications. We summarize these here as initial
guidance for applied practitioners.

Rely on established tooling. Modern libraries for amortized inference such as sbi (Boelts et al., 2025)
and BayesFlow (Radev et al., 2023) provide well-tested neural density estimators, training loops, and data
pipelines. In many cases, their default architectures and optimization settings already yield strong performance
without manual tuning. First and foremost, we strongly recommend starting from these defaults and only
introducing additional complexity if the diagnostics indicate deficiencies.

Monitor the training process. In many amortized inference settings, data are generated on the fly by a
forward simulation program (see Eq. 2), and training does not rely on a fixed dataset. In this case, classical
data splits into training and validation set are less meaningful, since each minibatch effectively constitutes
fresh data from the joint model. Nonetheless, it is still important to monitor training progress with multiple
signals, such as the training loss, calibration diagnostics, or summary statistics of posterior samples. These
checks help assess whether the model continues to improve or has already reached a performance plateau
after a short period. In other settings, amortized inference may be trained on a fized set of simulated data,
for example due to an expensive simulator or precomputed datasets. In such cases, holding out a validation
set is strongly recommended to detect overfitting and guide selection of the amortized estimator.

Track multiple performance signals. Regardless of whether data are simulated on the fly or fixed,
we recommend monitoring multiple indicators during training (e.g., after each epoch). Loss curves provide
a coarse signal of optimization progress but are often insufficient on their own. For example, normalizing
flows are usually trained with a negative log-likelihood loss, which does not account for mode coverage
in multi-modal posterior distributions. Complementary diagnostics such as simulation-based calibration,
parameter recovery, or posterior predictive checks on held-out datasets offer more direct insight into posterior
quality and failure modes.

Assess and adjust model expressiveness. When training stagnates or diagnostics indicate systematic
errors, the limiting factor is often model expressiveness rather than optimization details. Underexpressive
models may show symptoms such as poor parameter recovery, persistent miscalibration, or posterior collapse
toward the prior (i.e., data insensitivity), even when the training loss decreases. A pragmatic strategy is to
begin with an overly expressive architecture (i.e., many trainable weights) to establish a performance baseline,
and then gradually simplify the model. Conversely, if diagnostics remain unsatisfactory, increasing model
capacity is often more effective than tuning hyperparameters of the optimizer.

Accept that training is iterative. Even with modern tooling, amortized inference training may require
many iterations during development, especially for complex or weakly identifiable models. The objective is
not to find a universally optimal neural architecture, but to reach a regime where the amortized posterior is
reliable enough to enter the adaptive workflow proposed in this paper, where subsequent diagnostics and
correction steps can take over.

C Experiment details
In this section, we provide additional experimental details omitted from the main text for brevity.

Evaluation metrics. To assess the quality of posterior approximations produced by each step of the
workflow, we compare them against reference posterior draws obtained via a well-tuned No-U-Turn Sampler
(NUTS). Specifically, we precomputed NUTS-based posterior samples for a subset of 5000 test datasets, which
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serve as a ground-truth reference for evaluation.® We then evaluate the 1-Wasserstein distance (W1) and
the mean marginal total variation (MMTYV) distance on up to 100 datasets from each inference step: Step 1
(amortized inference), Step 2 (amortized + PSIS), and Step 3 (ChEES-HMC with amortized initializations).
These metrics are reported in the main text (Figure 5).

Neural network architecture for amortized inference. For all experiments, we use a coupling-based
normalizing flow implemented in BayesFlow (Radev et al., 2023). The flow consists of 6 transformation layers,
each comprising an invertible normalization, two affine coupling transformations, and a random permutation
between elements. Before entering the coupling flow network as conditioning variables, the observed dataset
y is encoded into a lower-dimensional summary statistic hy(y) via a summary network h,. This summary
network is implemented either as a DeepSet architecture (Zaheer et al., 2017) or a SetTransformer (Lee et al.,
2019), depending on the problem setting. Both architectures are designed to handle permutation-invariant
data structures. For the Bernoulli GLM, we bypass the summary network and directly use the known
10-dimensional sufficient statistics (Lueckmann et al., 2021). The specific choice of summary network for
each application is described in the respective problem descriptions below.

Training-phase optimization. For all problems, the neural network is optimized via the AdamW optimizer
(Loshchilov & Hutter, 2019) with weight decay of 1072 and a cosine decay learning rate schedule (initial
learning rate of 2.5 x 107%, a warmup target of 5 x 1074, o = 0) as implemented in Keras (Chollet et al.,
2015). A global gradient clip norm of 1.5 is applied. Training is performed with a batch size of 512 for 300
epochs,? with cosine decay steps set to the product of batch size and epochs. A held-out validation set is
used to monitor optimization and select the best-performing model checkpoint.

Space transformation. Following standard practice in Bayesian computation (e.g., PyMC; Oriol et al.,
2023, Stan; Carpenter et al., 2017), we transform parameters to an unconstrained space for inference. The
amortized neural estimator is trained to estimate parameters in this unconstrained space. PSIS operates
independently of the parameterization and thus remains unaffected by this transformation. ChEES-HMC
also performs inference in the unconstrained space. All evaluation metrics (W1 and MMTYV distances) are
computed in this space. However, parameter recovery and simulation-based calibration plots are shown in
the original constrained space for better interpretability.

Computing infrastructure and software. For all applications, the full workflow—including amortized
training, inference, diagnostics, Pareto-smoothed importance sampling, and ChEES-HMC sampling—was
conducted on a single NVIDIA V100 GPU (32GB), 8 cores of an AMD EPYC 7452 processor, and 8-16GB
RAM. For runtime details across experiments, refer to Table 1 in the main text. The core code base was built
using BayesFlow (Radev et al., 2023) (MIT license), PyMC (Oriol et al., 2023) (Apache-2.0 license), ArviZ
(Kumar et al., 2019) (Apache-2.0 license) and JAX (Bradbury et al., 2018) (Apache-2.0 license). We used
the implementation of ChEES-HMC provided by TensorFlow Probability (Dillon et al., 2017) (Apache-2.0
license).

Below, we provide details for each problem to complement the main text.

C.1 Generalized extreme value distribution

Problem description. Following Caprani (2021), the prior distribution for the parameters of the generalized
extreme value distribution (GEV) is defined as:

o~ N(3.8,0.04)
o ~ Half-Normal(0, 0.09) (10)
& ~ Truncated-Normal(0,0.04) with bounds [—0.6, 0.6].

8For the generalized extreme value distribution problem, 1000 reference datasets were used, corresponding to the total number
of test datasets.
9For Bernoulli GLM, we only train for 100 epochs.
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Figure 7: Training-phase diagnostics for the GEV problem. The parameter recovery is strong for the
parameters p, o, and good for the shape parameter £. Simulation-based calibration checking indicates
good calibration for all parameters. Parameter recovery and simulation-based calibration checking indicate
acceptable convergence of the amortized posterior estimator.

Simulation budgets. We use 10,000 simulated parameter—observation pairs for training the amortized
estimator, 1000 for validation, and 200 for training-phase diagnostics, including parameter recovery and
simulation-based calibration.

Summary network. We use a DeepSet as the summary network. The dimensionality of the learned
summary statistics is 16. The DeepSet has a depth of 1, uses a mish activation, max inner pooling layers, 64
units in the equivariant and invariant modules, and 5% dropout.

Training-phase diagnostics. The closed-world diagnostics (parameter recovery and simulation-based
calibration checking) in Figure 7 indicate that the neural network training has successfully converged to an
acceptable posterior estimator within the scope of the training set.

Test datasets. In order to emulate distribution shifts that arise in real-world applications while preserving
the controlled experimental environment, we simulate the “observed” datasets from a joint model whose prior
is 2x wider (i.e., with 4x the variance) than the model used during training. More specifically, the prior is
specified as:

e~ N(3.8,0.16)

o ~ Half-Normal(0, 0.36)

& ~ Truncated-Normal(0, 0.16) with bounds [—1.2,1.2].

(11)

C.2 Bernoulli GLM

Following Lueckmann et al. (2021), we set the prior for § as:

1< (0[5 e )
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where the matrix F' is defined such that F;; o =1, F; ;1 = -2, F;; =1+ ,/%, and F; ; = 0 otherwise,
for 1 <i,j <9. The task duration is set to 7' = 100, with fixed input vectors {v; }1%}, where each v; € R*0.
Corresponding observations are denoted by {y;}19}. Further details can be found in Lueckmann et al. (2021);
Gongalves et al. (2020).

Simulation budgets. We use 10,000 simulated parameter—observation pairs for training the amortized
estimator, 1000 for validation, and 200 for training-phase diagnostics, including parameter recovery and
simulation-based calibration.

Summary network. For Bernoulli GLM, the 10-dimensional sufficient summary statistic for each dataset
can be computed as Vy' where y = [y1,- -+ ,y100] and V = [v1, -+ ,v100]. We therefore use this summary
statistic for amortized training directly without relying on a separate summary neural network.

Training-phase diagnostics. The closed-world diagnostics (parameter recovery and simulation-based
calibration checking) in Figure 8 indicate that the neural network training has successfully converged to an
acceptable posterior estimator within the scope of the training set.

Test datasets. We generate K = 10,000 in-distribution test datasets by sampling parameters from the
model prior and simulating corresponding observations {y; }1%} from the Bernoulli distribution.

C.3 Psychometric curve fitting

Problem description. We adopt an overdispersed psychometric model (Schiitt et al., 2016) with the error
function (erf) as the sigmoid function in the psychometric function:
Y(xymyw, A\, y) =5+ (1 =X —7) erf(z;m,w), (13)
where m is the threshold, w is the width, A is the lapse rate, and -y is the guess rate.
The full probabilistic model is defined as follows:
m ~ Beta(2, 2),
w ~ Half-Normal(0, 1),
A,7v,n ~ Beta(1, 10),
m=2m —1,

ﬁi = 1/’(1% m,w, AaV)?

1 1
U U ( |
y; ~ Binomial(n;, p;),

where n; denotes the number of trials, and x; is the stimulus level. Stimuli are presented at nine fixed levels:
x; € {—100.0, —25.0, —12.5, —6.25, 0.0, 6.25, 12.5, 25.0, 100.0} and each value is further normalized by
dividing by 100.

Simulation budgets. We use 50,000 simulated parameter—observation pairs for training the amortized
estimator, 1000 for validation, and 200 for training-phase diagnostics, including parameter recovery and
simulation-based calibration.

Summary network. We use a DeepSet as the summary network, which maps the input dataset to a
16-dimensional summary statistic. The DeepSet has a depth of 2, uses a gelu activation, mean inner pooling
layers, 64 units in the equivariant and invariant modules, and 5% dropout.

Training-phase diagnostics. The closed-world diagnostics (parameter recovery and simulation-based

calibration checking) in Figure 9 indicate that the neural network training has successfully converged to an
acceptable posterior estimator within the scope of the training set.
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Figure 8: Training-phase diagnostics for the Bernoulli GLM problem. The parameter recovery is strong for all
parameters. Simulation-based calibration checking indicates good calibration for all parameters. Parameter
recovery and simulation-based calibration checking indicate acceptable convergence of the amortized posterior

estimator.

Test datasets. Our empirical evaluation uses 8,526 mouse behavioral datasets from the International Brain
Laboratory public database (The International Brain Laboratory et al., 2021). We retrieve the data using
the provided API with the argument task="biasedChoiceWorld", which corresponds to behavioral data
collected after the mice have completed training. Each dataset is processed into an observation tensor of
shape (9, 3), where each row contains the number of correct trials y;, the total number of trials n;, and the

stimulus level z;.
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Figure 9: Training-phase diagnostics for the psychometric curve fitting problem. Recovery is good for m and
w, while the other parameters exhibit weaker recoverability. Simulation-based calibration checking indicates
excellent calibration for all parameters. Parameter recovery and simulation-based calibration checking indicate
acceptable convergence of the amortized posterior estimator.

C.4 Decision model

Problem description. Following von Krause et al. (2022), we specify the prior distributions for the
drift-diffusion model parameters as:
vy, vy ~ Gamma(2, 1),

(2,

a1, as ~ Gamma(6,0.15),
Te ~ Gamma(3,0.15),
Tn, ~ Gamma(3,0.5),

(15)

where all Gamma distributions use the shape-scale parametrization.!® We implement the drift-diffusion
model likelihood using the hssm package (Fengler et al., 2025) and PyMC.

Simulation budgets. We use 100,000 simulated parameter—observation pairs for training the amortized
estimator, 1000 for validation, and 200 for training-phase diagnostics, including parameter recovery and
simulation-based calibration.

Summary network. We use a SetTransformer as the summary network, which maps the input dataset to
a 16-dimensional summary statistic. The SetTransformer has two set attention blocks, followed by a pooling
multi-head attention block and a fully connected output layer. Each multilayer perceptron (MLP) in the set
blocks has two hidden layers of width 128, with gelu activation and 5% dropout.

Training-phase diagnostics. The closed-world diagnostics (parameter recovery and simulation-based
calibration checking) in Figure 10 indicate that the neural network training has successfully converged to an
acceptable posterior estimator within the scope of the training set.

Test datasets. The test datasets consist of 15,000 participants pre-processed from the online implicit
association test (IAT) database (Xu et al., 2014; von Krause et al., 2022). Each test dataset is a tensor of

10The prior distributions for the boundary separation parameters a1 and as differ slightly from those in von Krause et al.
(2022) due to a different parametrization of boundary separation.
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Figure 10: Training-phase diagnostics for the decision model. Parameter recovery is strong for all parameters.
Simulation-based calibration checking indicates good calibration for all parameters except 7,,, which shows mild
deviations, suggesting occasional overestimation by the amortized estimator for this parameter. Parameter
recovery and simulation-based calibration checking indicate acceptable convergence of the amortized posterior
estimator.

shape (120, 4), where each row corresponds to a single trial and contains the response time, missing data
mask, experiment condition type, and stimulus type.

D Additional experimental study of the OOD diagnostic in Step 1

To further investigate the relationship between the Mahalanobis distance in the OOD diagnostic and the
quality of the amortized posterior, we visualize this relationship using scatter plots in Figure 11a for the
four tasks considered in the main text. For each task, we use around 1000 test datasets and compute the
Pearson correlation coefficient r. The Mahalanobis distance is positively correlated with the two posterior
quality metrics (W1 and MMTYV) for the GEV, psychometric curve, and decision model tasks, where out-
of-distribution test datasets are present. For the Bernoulli GLM, the correlation is negative; here, all test
datasets were generated from the same distribution (prior simulations) as the training datasets and the
Mahalanobis distance is not informative. From Figure 1la, we see a key limitation of the Step-1 OOD
diagnostic: the Mahalanobis distance is clearly not a perfect proxy for the posterior quality. In particular,
the amortized estimator may still yield low-quality posterior draws on a dataset with a smaller Mahalanobis
distance, as also observed in Figure 5.

We next check the impact of the threshold « in the Step-1 OOD diagnostic by varying it from 0.01 to
0.5, specifically over the set [0.01,0.05,0.1,0.15,0.2,0.3,0.4,0.5], as shown in Figure 11b. As « increases,
more test datasets are rejected, and the overall posterior quality of accepted amortized posterior draws
generally improves as measured by the median and IQR of the posterior metrics (lower posterior metric values
indicate higher quality). The quality of rejected amortized posterior draws also improves as « increases, while
remaining consistently worse than that of the accepted amortized draws.'’ Overall, the posterior quality of
the accepted amortized draws, in terms of median and IQR of W1 and MMTYV, is not very sensitive to the
threshold a, and a = 0.05 appears to be a reasonable default choice.

These results support the use of the Mahalanobis-distance-based OOD test as a lightweight first-line diagnostic
in Step 1: it tends to flag the most problematic datasets and thereby improves the quality of accepted
amortized posterior draws at negligible additional cost. At the same time, the residual low-quality posteriors at

HFor Bernoulli GLM, where test datasets and training datasets come from the same distribution, we observe a slightly
reverse trend as « increases. This is consistent with the corresponding result shown in Figure 11a and further suggests that the
Mahalanobis distance is not a good measure for posterior quality for in-distribution datasets in this case.
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metrics is shown separately for accepted and rejected datasets.

Figure 11: Relationship between amortized posterior quality metrics, Mahalanobis distance, and the OOD
rejection threshold in Step 1. (a) Scatter plots of W1 and MMTYV versus Mahalanobis distance, with Pearson
correlation coefficient r reported in each panel. (b) Effect of varying the threshold « on the posterior quality
of accepted and rejected amortized posterior draws. See text in Appendix D for details.

small Mahalanobis distances underscore that this diagnostic cannot guarantee accuracy. For applications that
require tighter accuracy guarantees, it is therefore natural to enforce escalation to Step 2 (PSIS) irrespective
of the OOD outcome, trading additional computation for a more robust posterior approximation.
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E Amortized initialization for NUTS

In addition to ChEES-HMC, we evaluate the effectiveness of amortized posterior draws as initializations for
the NUTS sampler. The experimental settings mirror those used for ChEES-HMC (Section 3.4), except that
we launch only four chains, which is the typical configuration for NUTS. As shown in Figure 12, amortized
initializations reduce the number of required warm-up iterations for both the GEV problem and the decision
model. For the psychometric curve and Bernoulli GLM problems, all three initialization methods (amortized,
PSIS-refined, and random) yield similar convergence behavior according to the R diagnostic (Vehtari et al.,
2021).

Notably, NUTS generally requires fewer warm-up iterations than ChEES-HMC across the evaluated problems,
suggesting that while amortized initializations are still beneficial, the relative gain is more pronounced for
ChEES-HMC, which runs many short chains in parallel.

GEV ) Bernoulli GLM
10~
— 1071
\ 10=2 e
(g 10-2 %—i———ﬁ——(
10 1078 T ' ' ' - Amortized
101 o1 Decision model & Amortized + PSIS
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Figure 12: The effect of initialization for NUTS. The figure shows median+IQR across 20 test datasets. Using
amortized posterior draws as initializations for NUTS reduces the required warmup in the GEV and decision
model tasks.
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