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Abstract

Hallucination of text ungrounded in the input
is a well-known problem in neural data-to-text
generation. Many methods have been proposed
to mitigate it, but they typically require alter-
ing model architecture or collecting additional
data, and thus cannot be easily applied to an
existing model. In this paper, we explore a new
way to mitigate hallucinations by combining
the probabilistic output of a generator language
model (LM) with the output of a special “text
critic” classifier, which guides the generation
by assessing the match between the input data
and the text generated so far. Our method does
not need any changes to the underlying LM’s
architecture or training procedure and can thus
be combined with any model and decoding op-
erating on word probabilities. The critic does
not need any additional training data, using the
base LM’s training data and synthetic negative
examples. Our experimental results show that
our method improves over the baseline on the
WebNLG and OpenDialKG benchmarks.

1 Introduction

Hallucination, i.e., generated text lacking ground-
ing in the input data, is a major challenge in neural
data-to-text generation (Raunak et al., 2021; Re-
buffel et al., 2022; Corbelle et al., 2022; Ji et al.,
2023). Hallucinations can lead to inaccurate or
misleading information, significantly undermining
the quality and reliability of the generated output.
While many approaches have been proposed to
address this problem, they often involve modify-
ing the underlying model architecture (Rebuffel
et al., 2022) or acquiring additional data (Wang,
2019; Thomson et al., 2020), making them im-
practical for existing models. At the same time,
popular metrics for evaluating hallucinations are
based on text classification models, e.g. NLI-based
metrics (Honovich et al., 2021; Dušek and Kasner,
2020). This indicates that text classifiers have the
potential to accurately identify and assess coher-

ence problems between the data and the generated
text. However, use of text classifiers in generation
typically involves producing many outputs with a
base model and reranking them afterwards (Hark-
ous et al., 2020).

In this paper, we propose a novel critic-driven
decoding approach that combines the probabilistic
output of a conditional language model (LM) with
the output of a specialized text critic classifier that
guides the generation process by evaluating the co-
herence of the textual prefix generated so far with
the input data. This allows us to influence the gen-
eration on-the-fly, without the need to overgenerate
many outputs. Furthermore, our approach does
not require modifications to the underlying LM or
additional fine-tuning. This ensures compatibility
with a wide range of existing models and decoding
algorithms that operate on word probabilities. Fi-
nally, our method does not rely on the collection of
additional data, as training data for the critic can
be synthesized from the data-to-text dataset used
to train the underlying conditional LM.

We verify the effectiveness of our critic-driven
decoding in experiments on the WebNLG (Gardent
et al., 2017) and OpenDialKG (Moon et al., 2019)
benchmarks, with both automatic and manual eval-
uation of text hallucinations in the model outputs.
The results show that our method is able to limit
hallucinations and produce a more faithful text, yet
close to the base LM’s output. Our implementation
of the proposed method is publicly available.1

2 Critic-driven decoding

Recall that auto-regressive conditional LMs for
data-to-text generation rely on the following proba-
bility factorization:

P (y|x) =
n∏

i=1

P (yi|y≤i−1, x) (1)

1https://github.com/langus0/
critic-aware-decoding
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where x is the data representation and y is the gen-
erated text. We use y≤j to denote all the tokens
y1, y2, y3, ..., yj .

In our approach, we introduce to this probability
an additional text generation critic which evaluates
the match between the generated text and the data
representation. The output of the critic c can be
seen as a binary variable, equal to 1 if the text
matches the input data and 0 otherwise. This leads
to the following probability factorization:

P (y|x, c) =
n∏

i=1

P (yi|y≤i−1, x, c) (2)

i.e. generation of text y given the data representa-
tion x and the output of the critic c. By apply-
ing simple probability transformations (see Ap-
pendix A), we obtain the following factorization:

P (yi|y≤i−1, x, c) ∝ P (c|y≤i, x)P (yi|y≤i−1, x)
(3)

This formulation combines two probabilities:
the probability of a standard conditional LM
P (yi|y≤i−1, x) and the probability of the match
between the text and the data as evaluated by the
critic model P (c|y≤i, x).

The critic is modelled as a binary classifier, con-
ditioned on the data, past tokens and the token
currently being decoded. It is thus run at each de-
coding step, and it is evaluating the viability of the
current prefix of the generation output (assuming
future generation will be successful). The proposed
formulation can be used with any auto-regressive
conditional LM without modification, as the opera-
tion is identical to Eq. 1. The critic can be trained
separately from the LM since our formulation im-
plies the conditional independence of those two
models.

The above factorization leads us to a practi-
cal proposal of a critic-driven decoding algorithm.
First, an additional critic model is trained, which
is able to approximate P (c|y≤i, x) (details are dis-
cussed in Sec. 3). We then perform standard greedy
decoding with the LM, but using the updated for-
mula for calculating probabilities of the next tokens
(Eq. 3). In practice, our implementation operates
on logarithms rather than raw probabilities and uses
an additional weight λ that adjusts the influence of
the critic on the final result:

lnP (yi|y≤i−1, x, c)

∝ λ lnP (c|y≤i, x) + lnP (yi|y≤i−1, x)

(4)

3 Training a text generation critic

The critic model P (c|y≤i, x) is a binary classifier
that checks the correspondence between the lin-
earized data representation x and the so far gen-
erated prefix of the output text y≤i. We assume
an encoder pretrained LM as the backbone of the
critic. The model input contains x and y≤i split by
a separator token.

Positive instances for the critic’s train-
ing are constructed from examples (x, y)
in the underlying LM’s dataset as prefixes:
(x, y1), (x, y≤2), (x, y≤3), ..., (x, y≤n). Negative
examples must be synthesized and are crucial for
training the critic, as they teach it how to detect
that the generated text starts deviating from the
input data (i.e. hallucinations). Therefore, we
explore five ways of generating negative examples
(see Appendix G for examples):

1. base – for each positive example, we replace
the last token with a random one. To make
the training set more challenging, the tokens
are sampled from another text reference for
the same data (if available) or another random
sentence from the dataset.

2. base with full sentences – a randomly selected
sentence of the reference text y is replaced
with a random sentence from the dataset. Neg-
ative examples are then generated in the same
way as positive examples, but starting from
the first token that deviates from the reference.
In addition, instances where a random token
in the reference is replaced by a wrong one
are also generated in the same way.

3. vanilla LM – for each positive example we
probe an unconditional LM to get a list of the
five most likely next tokens. We randomly
select a token from this list and construct a
negative example.

4. fine-tuned LM – similar to the previous, but
using the LM conditioned on the data.

5. fine-tuned LM with full sentences – the LM
conditioned on the data is used to generate
a textual description of the data. The nega-
tive examples are constructed for each token
starting from the one where the model starts
deviating from the reference.

All critic model variants are trained by optimiz-
ing binary cross-entropy loss.



4 Experimental evaluation

We compare all critic variants defined in Sec. 3 with
the baseline LM on both automatic and manual
metrics, focusing on the number of hallucinations.

4.1 Experimental setup

We performed most experiments on the WebNLG
benchmark (Gardent et al., 2017) containing data
expressed as RDF triples and corresponding text
references, which is prominent in many previous
works tackling hallucination. We also evaluate our
approach on the OpenDialKG dataset (Moon et al.,
2019), which contains dialogues annotated with
RDF triples representing the information expressed
in each utterance. We use it in a similar way as
WebNLG, treating the utterances as textualisations
of the data, i.e. without taking dialogue history
into account. The BART-base encoder-decoder
model (Lewis et al., 2020), finetuned on WebNLG,
is used as the base NLG system (see Appendix C
for training details).

Five different critic models were trained as dis-
cussed in Sec. 3 with classification heads on top
of a XLM-RoBERTa-base model (Conneau et al.,
2019), see Appendix D for details. The vanilla LM
critic uses BART-base without any fine-tuning, the
fine-tuned LM variants (4 & 5) use the base LM
to generate training data. The critics’ classifica-
tion performance is given in Table 1. This shows
that the critics are able to learn the synthetic data
well, which is, however, not necessarily reflected
in performance when used during generation.

We use greedy decoding by default. To speed up
computation of critic-driven decoding, we first eval-
uate the second term of Eq. 3, i.e. the conditional
LM, and we run the critic model only for k = 5
most probable tokens, modifying its probabilities
accordingly. The critic weight λ = 0.25 (see Eq. 4)
was used for all the models for WebNLG and λ = 1
for OpenDialKG. We found that the output of the
critic can be noisy when evaluating the match be-
tween the data and only a few initial tokens of the
text. Therefore, we add a simple linear warmup
for λ for the first five tokens: while decoding the
i-th token, λi = min( i5 , 1) · λ (cf. Appendix B for
choice of k and warmup).

4.2 Analysis of decoding performance with
automatic measures

The system outputs were evaluated using stan-
dard automatic metrics – BLEU (Papineni et al.,

critic model accuracy F1

1. base 0.969 0.970
2. base w/full sent. 0.984 0.975
3. vanilla. LM 0.931 0.798
4. fine-tuned LM 0.920 0.718
5. fine-tuned LM w/full sent. 0.929 0.714

Table 1: The classification performance of different
critic models as measured on the validation test.

2002), METEOR (Banerjee and Lavie, 2005)
and BERTScore (Zhang et al., 2020) – as well
as measures particularly targeting hallucinations:
BLEURT (Sellam et al., 2020) and the NLI-based
metric proposed by Dušek and Kasner (2020).

Overall results on WebNLG are presented in
Table 2. Except for the critic trained on full LM-
generated sentences (var. 5), all the other vari-
ants of critic-driven decoding slightly improve
performance according to BLEU, METEOR, and
BERTScore. Higher gains, up to 2.5% absolute on
the whole test set, can be observed on measures tar-
geting hallucinations, i.e. NLI and BLEURT. Note
that our approach achieves this without modify-
ing the original LM. The base critic achieves the
highest scores across most evaluation metrics.

Interestingly, both critics trained on data gener-
ated with the fine-tuned LM (i.e. the same system
as used for decoding) failed to improve the NLI
measure and only one improved BLEURT. This
shows that an effective critic can be trained sepa-
rately from the NLG system.

Analysis of introduced changes We also mea-
sured to what extent the critic-based approaches
change the outputs compared to the baseline, i.e.
the percentage of modified outputs as well as the
number of added and removed words.2 Results in
Tab. 4 show that critic-based approaches preserve
many outputs (30-70%) and generally only change
a few words, while keeping the output lengths
similar. This suggests that our critics make small
changes and only where necessary.

Out of domain generalization The test data of
the WebNLG dataset contains about 46% of in-
stances from categories not present in the training
data. Therefore, we also provide the fine-grained
results for both in-domain and out-domain part of
the test set in Table 2. The in-domain results are
naturally better, but we can observe consistent im-

2Replacing a word counts as one addition and one deletion.



decoding approach BLEU MET BERT NLI BLEURT
EOR Score all ood ind all ood ind

baseline 45.09 0.373 0.911 0.841 0.783 0.889 0.128 -0.026 0.257

1. critic (base) 45.48 0.377 0.913 0.855 0.801 0.901 0.155* 0.010* 0.277*
2. critic (base with full sentences) 44.90 0.371 0.913 0.868* 0.820* 0.909 0.153* 0.007* 0.274
3. critic (vanilla LM) 45.44 0.377 0.913 0.859* 0.811 0.900 0.139 -0.002 0.258
4. critic (fine-tuned LM) 45.41 0.373 0.911 0.834 0.772 0.886 0.128 -0.021 0.254
5. critic (fine-tuned LM w. full sentences) 45.59 0.374 0.912 0.839 0.779 0.889 0.136 -0.013 0.261

Table 2: Results of automatic evaluation on the WebNLG test set. NLI and BLEURT are reported for the whole test
set (all) as well as separately for its out-of-domain (ood) and in-domain (ind) parts. “*” marks statistical significance
at α = 0.05 level (NLI: exact test for proportions, BLEURT: unpaired t-test).

BLEU METEOR BERTScore NLI BLEURT

baseline 11.74 0.149 0.775 0.748 -0.933

1. critic (base) 9.67 0.137 0.771 0.796 -0.905
2. critic (base with full sentences) 11.88 0.151 0.776 0.754 -0.920
3. critic (vanilla LM) 10.37 0.139 0.763 0.713 -0.980
4. critic (fine-tuned LM) 10.76 0.143 0.768 0.739 -0.964
5. critic (fine-tuned LM with full sentences) 11.41 0.149 0.771 0.712 -0.956

Table 3: Results of automatic evaluation on the OpenDialKG test set.

provements of our critic-aware approach on both
in-domain and out-of-domain data.

Statistical analysis We performed statistical hy-
pothesis testing to compare the results of the base-
line with our approach with critic (base with full
sentences). As expected, the differences on text
quality measures (BLEU, METEOR, BERTScore)
are not statistically significant, in contrast to the
differences on measures targeting hallucinations,
which are statistically significant at the α = 0.05
significance level (cf. Table 2).

Beam search experiment To verify the con-
sistency of our critic’s improvements, we run
additional experiments with a stronger baseline,
i.e. beam search decoding. The results, confirming
greedy decoding results, are in Appendix F.

Results on OpenDialKG are presented in Ta-
ble 3 and are mostly in line with those obtained
for WebNLG. The base critic approach (var. 1) ob-
tained a gain of 5 percentage points on NLI and of 3
points on BLEURT over the baseline. The values of
basic word-overlap metrics are lower, but our qual-
itative assessment did not confirm any quality drop.
The second critic variant (base with full sentences),
which offered high performance of WebNLG, also
performed well on OpenDialKG. It scored best
on standard text quality metrics while offering
improvements over the baseline on hallucination-
focused metrics (NLI, BLEURT).

critic model mod [%] add. rem.

base 66.3 4.54 4.58
base w/full sent. 72.8 5.42 4.72
vanilla LM 72.8 5.03 5.39
fine-tuned LM 48.5 2.52 2.71
fine-tuned LM w/full sent. 31.9 1.63 1.76

Table 4: Percentage of modified outputs and average
number of words added/removed by different critics
compared to standard decoding on WebNLG.

4.3 Manual analysis of decoding performance

To verify the automatic metric results, we per-
formed a small-scale in-house human evaluation.
We sampled 100 instances from the test set of the
WebNLG dataset and annotated for them the out-
put of all the systems under study (600 system
outputs in total). The annotation was performed
by five NLP expert annotators, who assessed the
presence of minor hallucinations (mostly typos in
named entity names), major hallucinations (output
containing fact(s) not supported by the data), omis-
sions (missing information), disfluencies (grammar
errors or hard-to-read text) and repetitions (infor-
mation mentioned twice). Finally, the annotators
ranked the system outputs for each example from
best to worst, with ties allowed. The annotation
was blind, with system order randomly shuffled for
each example. Results are summarised in Table 5
(see Appendix E for inter-annotator agreement).

All critic-driven approaches achieved better av-



decoding approach min. hal. maj. hal. omi. disfl. rep. avg. rank

baseline 0.22 0.40 0.25 0.20 0.08 3.61

1. critic (base) 0.21 0.30 0.20 0.17 0.04 3.38
2. critic (base with full sentences) 0.21 0.29 0.27 0.11 0.08 3.43
3. critic (vanilla LM) 0.18 0.29 0.23 0.19 0.05 3.54
4. critic (fine-tuned LM) 0.22 0.37 0.26 0.21 0.07 3.53
5. critic (fine-tuned LM with full sentences) 0.20 0.37 0.26 0.18 0.07 3.54

Table 5: Results of manual evaluation on a sample of 100 examples from the WebNLG test set (percentage of
examples with minor and major hallucinations, omissions, disfluencies, repetitions; average relative ranking).

erage ranks than the baseline, with the base critic
(var. 1) having the best rank. The rank difference
compared to the baseline is not large (0.23), but
increases for more complex instances: in instances
with three or more triples, the difference is 0.33,
for instances with file or more triples, it is 0.53.
More importantly, the base critic reduced the rate
of major hallucination by 10% absolute. Again,
the improvements are bigger for more complex in-
stances (15.3% for ≥ 3 triples, 20% for ≥ 5). It
also performed better on all other criteria, produc-
ing a more fluent output, with fewer omissions and
repetitions, as well as a slightly reduced number of
minor hallucinations.

Other critic variants were also effective in re-
ducing hallucinations; in particular, the vanilla LM
critic (var. 3) was the most effective in reducing
both major and minor hallucinations. The fine-
tuned LM approaches (vars. 4 & 5) only provided
very limited benefits.

5 Related works

Hallucination in NLG is a widely studied problem,
with many different mitigation methods proposed,
including data cleaning or various model architec-
ture modifications (see Ji et al. (2023) for a detailed
review). Mitigation methods most similar to ours
include the controlled generation approach by Fil-
ippova (2020), which uses special control codes
to control hallucinations. This was followed by
Rashkin et al. (2021), who combine control codes
with resampling of several texts and selecting the
best one according to the metrics. However, both
approaches require training a new LM with control
codes and, in the latter case, additional resampling
of whole texts. Cao et al. (2020) proposed a two-
step generate & refine procedure, which is model-
independent but requires training of an additional
correcting LM and decoding the sequence twice.
Similarly to our approach, Chen et al. (2021) use
a text classifier to select the best output among the

so-called contrast candidates but does not use it
during decoding.

Our method is closely inspired by works on class-
conditional LMs, which use the Bayes rule to intro-
duce additional conditioning (Cohn-Gordon et al.,
2018; Dathathri et al., 2020). In particular, a for-
mulation similar to ours is used by FUDGE (Yang
and Klein, 2021) to impose a certain requirement,
such as a level of formality, on the text produced
by a LM. However, these works do not address the
issue of hallucinations.

The use of randomly generated words as negative
samples to improve natural language generation
has also been explored by Welleck et al. (2020).
In contrast to this work, their unlikelihood training
technique is mainly aimed at limiting repetitive text
generation and requires training a new model, as it
modifies the training objective.

6 Summary

Our paper introduces a novel critic-driven decoding
approach to mitigate hallucinations in data-to-text
generation. By using the output of a specialised text
critic classifier, we guide the generation process to
produce more grounded output without requiring
any modifications to the underlying LM. The exper-
imental results on the WebNLG and OpenDialKG
benchmarks show that the proposed method has the
potential to limit hallucinations without hindering
other text quality metrics.
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Limitations

While our approach strives to remove as many hal-
lucinations as possible from the NLG output, a
certain proportion still remains for all our setups.
The performance of the approach is limited by the
base LM and its proposed most likely next tokens
(as a limited number of next tokens is considered at
each step, cf. Sec. 4). Furthermore, the use of the
critic slows down the decoding. For application to
other datasets, the critic may become less effective
if the underlying training data is too noisy.
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A Derivation of the proposed probability
factorization that incorporates a critic
model

By applying the conditional probability formula
and the product rule to Eq. 2, we obtain the follow-
ing:

P (yi|y≤i−1, x, c) =

=
P (yi, y≤i−1, x, c)

P (y≤i−1, x, c)

=
P (c|yi, y≤i−1, x)P (yi|y≤i−1, x)P (y≤i−1, x)

P (y≤i−1, x, c)

= P (c|y≤i, x)P (yi|y≤i−1, x)
P (y≤i−1, x)

P (y≤i−1, x, c)

= P (c|y≤i, x)P (yi|y≤i−1, x)P (c|y≤i−1, x)
−1

∝ P (c|y≤i, x)P (yi|y≤i−1, x)

where the last line comes from the fact that when
computing the probability of the next token yi, the
previous tokens y≤i−1 are fixed, so the critic’s
score for the previous tokens P (c|y≤i−1, x) is a
constant and does not affect the result.

B Sensitivity analysis of the
hyperparameters of critic-aware
decoding

B.1 The number of most probable considered
tokens

To speed up computations of critic-driven decoding,
we run the critic model only for k most probable
tokens according to the LM and modify its prob-
abilities with Eq. 3. The results in the paper are
reported for k = 5, but we performed additional
experiments with k = 15 to investigate how it will
affect the performance. The results are given in
Table 6. In general, we observe minor differences
in comparison to k = 5. Some metrics has been
slightly improved, but it probably does not counter-
balance the additional computational cost.
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decoding approach BLEU METEOR BERTScore NLI BLEURT

baseline 45.09 0.373 0.911 0.841 0.128

1. critic (base) 45.57 0.378 0.914 0.857 0.157
2. critic (base with full sentences) 44.96 0.371 0.913 0.867 0.155
3. critic (unconditional LM) 45.53 0.377 0.913 0.865 0.141
4. critic (conditional LM) 45.41 0.373 0.911 0.834 0.129
5. critic (conditional LM with teacher forcing) 45.59 0.374 0.912 0.839 0.136

Table 6: Results of automatic evaluation on WebNLG dataset for k = 15

Figure 1: The accuracy of the critic (base) as a function
of prefix length on validation set

B.2 The importance of linear warm-up

A practical motivation for using linear warm-up of
the λ parameter can be found in Figure 1, which
shows the accuracy as a function of text prefix
length for one of the critic models (base, var. 1). It
can be observed that at the beginning of the gener-
ation process (i.e. for very short prefixes) the accu-
racy of the critic is low, but grows rapidly with the
length of the prefix, reaching a high level around
the length of 5 tokens.

The importance of linear warm-up is investigated
by comparing the decoding performance with a
constant λ and with linear warm-up (i.e. λi =
min( i5 , 1) · λ). The results of this experiment for
BLEU and BLEURT measures are depicted in Fig-
ure 2 and 3, respectively. It can be observed that
the linear warm-up provides better performance for
almost every model.

C Hyperparameters of BART fine-tuning

As a conditional language model, we used BART-
base model (Lewis et al., 2020) fine-tuned with
default architecture provided by HuggingFace li-
brary. AdamW with learning rate η = 2 · 10−5 and
parameters β = (0.9, 0.997), ϵ = 10−9 was used

Figure 2: BLEU as a function of λ parameter for sys-
tem outputs generated with different critic variants and
with/without warm-up of λ.

Figure 3: BLEURT as a function of λ parameter for
system outputs generated with different critic variants
and with/without warm-up of λ.



as optimizer. Additionally, we applied polynomial
scheduler of η with a warmup equal to 10% of op-
timization steps. The training was scheduled for
20 epochs with early stopping on validation loss
(patience of 10 epochs). We used batch size equal
to 8 and label smoothing with 0.1 smoothing factor.

D Details on critic model training

The architecture of the critic model consisted of a
pretrained XLM-RoBERTa-base model (Conneau
et al., 2019) and a classification head on top of the
representation of the first token. The classification
head contained a fully connected layer with SELU
activation function (Klambauer et al., 2017) and
one additional classification layer with sigmoid ac-
tivation. The number of neurons in the first layer
was set to the dimensionality of the output embed-
ding.

The critic models were trained as discussed
in Sec. 3 by optimizing the cross-entropy loss.
AdamW was used as an optimizer with a learn-
ing rate of η = 10−5. The training was continued
until the convergence, i.e. lack of the improvement
on validation loss.

All the experiments with the critics (both critic
training and decoding) were performed on one
GPU: nVidia Quadro P5000 16 GB. During decod-
ing the BART-based language model was loaded
with bitsandbytes library (8-bit mode).

E Inter-annotator agreement

To estimate the inter-annotator agreement, one of
the annotators re-annotated 10 (× 6 model outputs)
instances originally annotated by a different anno-
tator. 86% of annotations were identical. In terms
of Cohen’s kappa, 0.19 agreement was obtained for
minor hallucinations, 0.68 for major, 0.88 for omis-
sions, 0.48 for repetitions and 0.07 for disfluencies.

F Comparison with a stronger baseline

One simple method which generates multiple out-
puts and generally tends to offer texts of higher
quality is beam search. We run additional exper-
iments with beam size equal to 5 and present the
result in the Table 7. The improvements for this
stronger baseline are consistent with these reported
in the main paper for greedy decoding.

G Examples of negative instances
generated by different approaches for
critic training set construction

Let us consider the following data representation:

(A-Rosa Luna | length | 125800.0 (millimetres));
(A-Rosa Luna | power type | MTU Friedrichshafen)

and the reference:

The A-Rosa Luna is powered by a MTU
Friedrichshafen engine and is 125.8 metres in

length.

The positive examples for the critic consist on all
the possible prefixes generated from the reference,
i.e. "The", "The A-Rosa", "The A-Rosa Luna",
etc. The negative examples generated by different
approaches are as follows:

1. base – the negative examples are generated
with random words

"The Cruises", "The A-Rosa operated", "The
A-Rosa Luna located", ...

2. base with full sentences - a sentence or a token
from the reference is replaced with random
sentence/token and all possible negative ex-
amples are generated

"The Cruises", "The Cruises Luna", "The
Cruises Luna is", ..., "The A-Rosa operated",

"The A-Rosa operated is", ...

3. vanilla LM – the incorrect next words are sam-
pled from the five most probable tokens ac-
cording to (unconditioned) LM

"The United", "The A-Rosa is", "The A-Rosa
Luna powers", ...

4. fine-tuned LM with full sentences – for a
given data the NLG system generated the fol-
lowing output: "The A-Rosa Luna is 125.8m
long and is powered by MTU Friedrichs-
burger", which is used to generate negative
examples by comparing it against the refer-
ence

"The A-Rosa Luna is 125.8m", "The A-Rosa
Luna is 125.8m long", "The A-Rosa Luna is
125.8m and", "The A-Rosa Luna is 125.8m

and is", ...



BLEU METEOR BERTScore NLI BLEURT

baseline 47.57 0.380 0.916 0.852 0.176

1. critic (base) 47.75 0.387 0.918 0.886 0.202
2. critic (base with full sentences) 46.06 0.376 0.917 0.898 0.212
3. critic (vanilla LM) 46.56 0.379 0.913 0.881 0.161
4. critic (fine-tuned LM) 49.04 0.385 0.919 0.866 0.196
5. critic (fine-tuned LM with full sentences) 43.74 0.372 0.909 0.861 0.123

Table 7: Results of automatic evaluation on the WebNLG test set while using beam search (beam size equal to 5).

5. fine-tuned LM – the incorrect next words are
sampled from the five most probable tokens
according to data-conditioned LM

"The A-Rosa Luna is 125.8m", "The A-Rosa
Luna is supplied", "The A-Rosa Luna is

powered with", ...


