
Cluster Purge Loss: Structuring Transformer Embeddings for Equivalent
Mutants Detection

Anonymous ACL submission

Abstract

Recent pre-trained transformer models achieve001
superior performance in various code process-002
ing objectives. However, although effective at003
optimizing decision boundaries, common ap-004
proaches for fine-tuning them for downstream005
classification tasks — distance-based methods006
or training an additional classification head —007
often fail to thoroughly structure the embed-008
ding space to reflect nuanced intra-class seman-009
tic relationships. Equivalent code mutant de-010
tection is one of these tasks, where the quality011
of the embedding space is crucial to the per-012
formance of the models. We introduce a novel013
framework that integrates cross-entropy loss014
with a deep metric learning objective, termed015
Cluster Purge Loss. This objective, unlike con-016
ventional approaches, concentrates on adjust-017
ing fine-grained differences within each class,018
encouraging the separation of instances based019
on semantical equivalency to the class cen-020
ter using dynamically adjusted borders. Em-021
ploying UniXCoder as the base model, our022
approach demonstrates state-of-the-art perfor-023
mance in the domain of equivalent mutant de-024
tection and produces a more interpretable em-025
bedding space.026

1 Introduction027

Since the introduction of the transformer architec-028

ture (Vaswani et al., 2017), large language models029

showed radical improvements on a great range of030

NLP (Raiaan et al., 2024) and code-related (Zheng031

et al., 2023) tasks. Moreover, LLMs can be further032

fine-tuned for downstream tasks using a domain-033

specific dataset(Parthasarathy et al., 2024). For bi-034

directional encoder transformers — ones excelling035

in analyzing existing code (Nijkamp et al., 2023)036

— the standard approach in fine-tuning is using037

a task-specific head to train with the rest of the038

transformer. However, for some such tasks requir-039

ing deep semantic understanding, the structure of040

the resulting embedding space is extremely impor-041

tant (Li et al., 2022), and the method above may 042

struggle to provide it adequately. One such task is 043

equivalent mutant detection (EMD). 044

Mutation testing (Jia and Harman, 2011) is a 045

software testing approach. The principle of this ap- 046

proach is to generate programs based on an initial 047

program under test by applying mutation opera- 048

tors. Such generated programs called mutants, are 049

supposed to exhibit altered behavior so they can 050

be used to examine the adequacy of test suits for 051

that program. A mutant passing some test cases 052

in a suit signifies the inability to catch a potential 053

bug. Appendix D presents a graphic explanation 054

and Appendix E shows examples of generated mu- 055

tants. Although mutation testing is widely known 056

and has applications in other fields of testing (e.g., 057

test case prioritization (Lou et al., 2015), bug detec- 058

tion (Pradel and Sen, 2018), localization of faults 059

(Papadakis and Le Traon, 2015)), one of the main 060

reasons hindering its adoption is the existence of 061

equivalent mutants. Such programs are semanti- 062

cally equal to their origin, thus producing the same 063

output. Equivalent mutants have posed a persistent 064

challenge, as their presence distorts test outcomes 065

and the mutation score, which makes their detec- 066

tion necessary. 067

History of EMD includes a considerable number 068

of different approaches such as constraint-based 069

testing (Baer et al., 2020), compiler optimizations 070

(Papadakis et al., 2015; Kintis et al., 2018) and ma- 071

chine learning, i.e. SVM (Naeem et al., 2020) and 072

RNN based approaches (Peacock et al., 2021). A re- 073

cent study by Tian et al. (2024) showed that LLMs 074

significantly outperform previous techniques’ Pre- 075

cision, Recall, and F1-score, demonstrating an av- 076

erage 35.69% gain in the latter. Their approach 077

achieved the highest values with BERT (Devlin 078

et al., 2019)-based uniXCoder (Guo et al., 2022), 079

utilizing graph-guided masked attention(GGMA) 080

based on the representation of dependency rela- 081

tion between variables in the source code - Data 082

1

Flow(Guo et al., 2021).083

We hypothesize that even though mutants de-084

scended from the same original program - mutant085

class - are clustered and separated in the embed-086

ding space from other classes, the subtle intra-class087

differences between equivalent and non-equivalent088

mutants are not adequately formed and captured089

by the fine-tuned LLMs and the classifier alone.090

A further hypothesis was put forward that such091

properties can be obtained by utilizing deep metric092

learning(DML) (Mohan et al., 2023) and, in turn,093

improve the classification of mutants. However,094

most DML approaches such as contrastive loss095

(Chopra et al., 2005), triplet loss (Schroff et al.,096

2015), proxyNCA++ (Teh et al., 2020) concentrate097

at the inter-class level, without explicitly structur-098

ing instances inside formed class clusters.099

In our work, we confirm the hypothesis about100

the embedding space and propose an approach of101

carefully combining Cross-Entropy Loss from the102

classification head with a new loss function named103

Cluster Purge Loss. The idea of this function is104

that for each class, we update the Exponential105

Moving Average of all distances between equiv-106

alent mutants and their origin, do the same for107

non-equivalent mutants, and then try to push or108

pull mutants beyond the resulting average radius109

of their counterparts just enough to aid fine-tuning110

with distinguishing between them.111

By conducting an ablation study, using the same112

LLM (uniXCoder), classifier head (RoBERTa clas-113

sifier), training data, number of epochs, batch114

size and optimizer hyperparameters, we show115

that our method increases precision(5.12%), re-116

call(0.57%) and f1-score(2.24%) compared to the117

highest results obtained by Tian et al. (2024).118

Thus, the contributions of this paper can be sum-119

marized as follows:120

• Introduced new Deep Metric Learning loss121

function, which aims not to organize classes of122

instances but to adjust semantic relationships123

inside each already formed cluster according to124

the given binary distinction.125

• Showed that applying DML approach can be126

beneficial during fine-tuning a large language127

model for specific downstream tasks.128

• Obtained results superior to SOTA in EMD129

while isolating the performance gains at-130

tributable to the proposed approach.131

Figure 1: Baseline embeddings for classes with origins
1408 and 2001

Figure 2: CPL conditions mutants to cross the EMA
boundary of their counterparts, depicted as a circle of the
opposite color, which is adjusted throughout training.

2 Proposed approach 132

Figure 1 illustrates a 2D t-SNE visualization of 133

baseline model mutant embeddings of two classes 134

generated by samples 1408 and 2001. In both cases, 135

the distributions of equivalent and non-equivalent 136

mutants within each class overlap significantly, and 137

clustering fails to reflect semantic relationships. 138

We hypothesize that introducing a secondary loss 139

function explicitly designed to differentiate mu- 140

tants in the embedding space based on their seman- 141

tic equivalence to the ancestor program can facili- 142

tate the emergence of a more organized embedding 143

space during fine-tuning. This improved organi- 144

zation, in turn, may enhance the performance of 145

the classifier head by making distinctions between 146

instances more straightforward. 147

The joint loss function is formulated as follows: 148

L = LCPL · λ+ LCE (1) 149

Where LCE is Cross-Entropy Loss obtained from 150

the classifier head and LCPL is the proposed Cluster 151

Purge Loss. Combining loss functions may lead to 152

a situation where their goals may be inconsistent 153

(Luo et al., 2019). To combat this problem and 154

balance the weight of each loss, the hyperparameter 155

λ is used. 156

2.1 Cluster Purge Loss 157

We formalize the problem. Assume the minibatch 158

size of m where each sample is: 159

(ki, oki , si, li) where li ∈ {0, 1}, i ∈ {0, . . . ,m}
(2) 160

2

ki is the unique identifier of a class, oki is the em-161

bedding of the original program associated with ki,162

si is the embedding of the another mutant belong-163

ing to ki, and li represents its equivalence to the164

origin. Select all unique classes in the minibatch:165

K = {kj | j ∈ {0, . . . ,m}} (3)166

For each unique class, find distances between its167

origin and equivalent mutants in the minibatch,168

where d+c is a tuple of such distances for class c:169

∀c ∈ K, d+c = (dist(oki , si) | ki = c ∧ li = 1,

i ∈ {0, . . . ,m})
(4)

170

The equation for exponential moving average,171

where γ is a smoothing factor:172

EMAn+1 = EMAn·(1−s)+x·s, s = 2

γ + 1
(5)173

Derive closed form for several x1, ..., xh:174

EMAn+h = EMAn ·(1−s)h+s·
h∑

j=1

xj ·(1−s)h−j

(6)175

Using eq.6 we can update EMA of distances from176

the origin to equivalent mutants for each class.The177

resulting average for the class c we will call a pos-178

itive verge v+c . If v+c is updated for the first time,179

then it is pre-initialized with the d+c 0. Formulated180

as the following:181

∀c ∈ K, v+c = 0 =⇒ v+c = d+c 0 (7)182

183

∀c ∈ K, v+c ← v+c · (1− s)|d
+
c |+

s ·
|d+c |∑
j=1

d+c j · (1− s)|d
+
c |−j , s =

2

γ + 1

(8)

184

Next, we carry out the same calculations for non-185

equivalent mutants to find a tuple of distances186

d−c (pairs with li = 0) and a negative verge v−c :187

Finally, we can compute the loss function based188

on the current minibatch:189

LCPL =
1

m

m∑
i=1

(
[
dist(oki , si)− v−ki + ζ

]α
+
· li+[

v+ki − dist(oki , si) + ζ
]β
+
· (1− li))

(9)190

If li = 1, then si is equivalent and the calculation 191

is as follows: distance from si to the origin oki 192

of its class ki minus the negative verge for ki and 193

plus the margin ζ; then ReLU is applied and the 194

resulting expression is raised to the power of α. 195

Such formulation encourages keeping the distance 196

of equivalent mutants to the origin less than the 197

boundaries of non-equivalent mutants by ζ. The 198

same principle applies if si is non-equivalent, but in 199

the opposite direction and with the positive verge. 200

Hyperparameters α and β are introduced to con- 201

trol growth of the loss function for both cases sepa- 202

rately, when asymmetric structuring is beneficial. 203

3 Experimentation 204

To assess our approach we conducted the ablation 205

study. UniXCoder(110M) fine-tuned with GGMA 206

and cross-entropy loss, which was found by Tian 207

et al. (2024) to perform the best in terms of f1-score 208

among LLMs and other approaches, was taken as 209

the baseline of the study. It was compared with 210

UnixCoder fine-tuned with the same setup modified 211

to use a combination of cross-entropy and CPL. 212

The altered setup inherited the values of all shared 213

hyperparameters from the baseline, and its fine- 214

tuning was based on the same dataset. 215

3.1 Dataset preparation 216

Dataset utilized in the baseline study was derived 217

from MutantBench(van Hijfte and Oprescu, 2021) 218

aggregating many previously published datasets. 219

Tian et al. (2024) preprocessed it and obtained 220

3302 pairs of java mutants with the same origin 221

method and accompanied with the equivalency la- 222

bel. trainbase of size 1652 was constructed by sam- 223

pling 50/50 split of equivalent and non-equivalent 224

mutant pairs, while testbase was created with the 225

rest totaling 1650 mutants. 226

During preprocessing, we determined the origins 227

of all mutants in the datasets and based on them 228

introduced 52 mutant classes, each assigned a se- 229

quential id. To construct traincpl, we augmented 230

each pair of mutants from trainbase with the class 231

id, resulting in 1590 pairs. The same operation was 232

done to create testcpl with 1580 pairs. The number 233

of pairs in the obtained datasets is slightly lower 234

due to duplicates being removed. 235

3.2 Implementation 236

modelbase is the pre-trained UnixCoder paired 237

with the RoBERTa classification head. During fine- 238

tuning the input sequence is constructed from the 239

3

Figure 3: Embeddings after Cross-Entropy and Cluster
Purge Loss

source code of each mutant and Data Flow Graph.240

The input sequence is converted into input vectors,241

following Guo et al. (2021), and fed to the forward242

pass method. Input token embeddings and GGMA243

matrix are calculated and passed to the UniXCoder244

in the encoder mode.The embedding representing245

a mutant is acquired by taking a normalized CLS246

token out of the last layer output. Subsequently,247

pairs of embeddings are passed to the classifier248

head and softmax. Finally, the cross-entropy loss249

is computed using equivalence probability labels.250

For modelcpl, we set up the similar pipeline fol-251

lowing Guo et al. and Tian et al. Features are ex-252

tracted taking into account the addition of class id253

in traincpl and modelcpl is implemented to include254

the calculation of CPL. The Model class stores255

verges in the buffer during fine-tuning, preserving256

them between epoches, and computes CPL and the257

final loss as described in subsection 2.1.258

3.3 Evaluation259

3.3.1 Experiment results260

We conducted 56 experiments by fine-tuning261

modelcpl on traincpl and evaluating on testcpl262

with dist being normalized cosine distance, γ =263

12, α = 2, β = 1/2, ζ ∈ [−0.06, 0.01] with a step264

0.01 and λ ∈ [1.00, 1.30] with a step 0.05. Ra-265

tionale of choosing hyperparameters is present in266

Appendix A. The obtained metrics were compared267

against modelbase fine-tuned with the same num-268

ber of epochs = 30, batches = 4 and other shared269

hyperparameters. The results for all combinations270

of λ and ζ are presented in Appendix F where ac-271

quired precision(P), recall(R) and f1-score(F1) are272

stated. The best result in terms of f1-score is (P:273

95.31%, R: 85.41%, F1: 89.46%) at λ = 1.15 and ζ274

= -0.05. Given that the metrics of modelbase is (P:275

90.19%, R: 84.84%, F1: 87.22%), the absolute gain276

is (P: 5.12%, R: 0.57%, F1: 2.24%). In Table 1,277

we also include results obtained for modelbase by278

Technique Precision Recall F1-score
modelCPL 95.31% 85.41% 89.46%
modelbase 90.19% 84.84% 87.22%
modelbase, Tian 94.33% 81.81% 86.58%

Table 1: Comparison with the baseline

Tian et al. using epochs = 10. It is clear that our 279

approach shows better results for all metrics. 280

3.3.2 Impact on embeddings distribution 281

To prove the hypothesis about Cluster Purge 282

Loss promoting more organized embedding space, 283

which is beneficial for EMD, the embeddings of 284

mutants with origin 1408 and 2001 were extracted 285

from the best performing modelcpl and plotted af- 286

ter applying T-SNE(Figure 3). Non-equivalent mu- 287

tants can be observed to be distributed significantly 288

further away from the origin, while the distance 289

to equivalent mutants varies. For the origin 1408, 290

2 clusters of equivalent mutants were formed, the 291

first one is close to the origin, while the second is 292

distanced from it. The latter can be explained by 293

the negative ζ as discussed in Appendix A. 294

However, T-SNE doesn’t always preserve global 295

structure well. To investigate observations, the 296

mean distance of embeddings of all non-equivalent 297

mutants to their origin was computed: 0.105 ± 298

0.133 for modelbase and 0.398±303 for modelcpl 299

with p < 0.0001. For all equivalent mutants: 300

0.111 ± 0.215 for modelbase and 0.189 ± 0.284 301

for modelcpl with p = 0.83. That means that the 302

ratio between the mean distance of non-equivalents 303

to the origin and the mean distance of equivalents 304

to the origin increased from 0.95 to 2.11 and is 305

attributed to the statistically significant change in 306

the distribution of the non-equivalent mutants. 307

Thus, we can conclude that our hypothesis holds 308

and the introduction of CPL improved the perfor- 309

mance on the equivalent mutant detection task by 310

promoting the semantic meaning on distances be- 311

tween embeddings in the intra-class context. 312

4 Conclusion 313

In this study we introduced new Deep Metric Learn- 314

ing loss function named Cluster Purge Loss which 315

organizes instances in already formed class clus- 316

ters based on the semantical similarity to the class 317

center. By the ablation study, we showed that us- 318

ing CPL in the joint loss formulation with cross- 319

entropy loss shows state-of-the-art performance in 320

equivalent mutant detection and found out that it is 321

attributed to CPL impact on the embedding space. 322

4

5 Limitations323

The first limitation of our work concerns the dataset324

used. For a fair comparison, we employed the same325

mutant pairs as the baseline study, forming traincpl326

with 1590 samples and testcpl with 1580 samples.327

The relatively small dataset size can affect the vari-328

ance of fine-tuning results. Moreover, since all329

mutants are written in Java, it remains unclear how330

well our findings generalize to other programming331

languages.332

The second limitation is that we ran only one333

trial for each of the 52 hyperparameter experiments334

due to limited computational resources. Conduct-335

ing multiple runs for each experiment would help336

reduce variance caused by randomness and produce337

more robust conclusions.338

References339

Michael Baer, Norbert Oster, and Michael Philippsen.340
2020. MutantDistiller: Using Symbolic Execution341
for Automatic Detection of Equivalent Mutants and342
Generation of Mutant Killing Tests. In 2020 IEEE343
International Conference on Software Testing, Veri-344
fication and Validation Workshops (ICSTW), pages345
294–303, Porto, Portugal. IEEE.346

S. Chopra, R. Hadsell, and Y. LeCun. 2005. Learning347
a similarity metric discriminatively, with application348
to face verification. In 2005 IEEE Computer Society349
Conference on Computer Vision and Pattern Recog-350
nition (CVPR’05), volume 1, pages 539–546 vol. 1.351

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and352
Kristina Toutanova. 2019. BERT: Pre-training of353
Deep Bidirectional Transformers for Language Un-354
derstanding. In Proceedings of the 2019 Conference355
of the North, pages 4171–4186, Minneapolis, Min-356
nesota. Association for Computational Linguistics.357

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming358
Zhou, and Jian Yin. 2022. UniXcoder: Unified Cross-359
Modal Pre-training for Code Representation. In Pro-360
ceedings of the 60th Annual Meeting of the Associa-361
tion for Computational Linguistics (Volume 1: Long362
Papers), pages 7212–7225, Dublin, Ireland. Associa-363
tion for Computational Linguistics.364

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu365
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy-366
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun367
Deng, Colin B. Clement, Dawn Drain, Neel Sundare-368
san, Jian Yin, Daxin Jiang, and Ming Zhou. 2021.369
Graphcodebert: Pre-training code representations370
with data flow.371

Yue Jia and Mark Harman. 2011. An Analysis and Sur-372
vey of the Development of Mutation Testing. IEEE373
Transactions on Software Engineering, 37(5):649–374
678.375

Marinos Kintis, Mike Papadakis, Yue Jia, Nicos 376
Malevris, Yves Le Traon, and Mark Harman. 2018. 377
Detecting Trivial Mutant Equivalences via Compiler 378
Optimisations. IEEE Transactions on Software Engi- 379
neering, 44(4):308–333. 380

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S 381
Liang, and Tatsunori B Hashimoto. 2022. Diffusion- 382
lm improves controllable text generation. In Ad- 383
vances in Neural Information Processing Systems, 384
volume 35, pages 4328–4343. Curran Associates, 385
Inc. 386

Yiling Lou, Dan Hao, and Lu Zhang. 2015. Mutation- 387
based test-case prioritization in software evolution. 388
In 2015 IEEE 26th International Symposium on Soft- 389
ware Reliability Engineering (ISSRE), pages 46–57. 390

Hao Luo, Youzhi Gu, Xingyu Liao, Shenqi Lai, and 391
Wei Jiang. 2019. Bag of tricks and a strong baseline 392
for deep person re-identification. In 2019 IEEE/CVF 393
Conference on Computer Vision and Pattern Recog- 394
nition Workshops (CVPRW), pages 1487–1495. 395

Deen Dayal Mohan, Bhavin Jawade, Srirangaraj Setlur, 396
and Venu Govindaraju. 2023. Chapter 4 - deep metric 397
learning for computer vision: A brief overview. In 398
Venu Govindaraju, Arni S.R. Srinivasa Rao, and C.R. 399
Rao, editors, Deep Learning, volume 48 of Handbook 400
of Statistics, pages 59–79. Elsevier. 401

Muhammad Rashid Naeem, Tao Lin, Hamad Naeem, 402
and Hailu Liu. 2020. A machine learning approach 403
for classification of equivalent mutants. Journal 404
of Software: Evolution and Process, 32(5):e2238. 405
E2238 smr.2238. 406

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Sil- 407
vio Savarese, and Yingbo Zhou. 2023. Codegen2: 408
Lessons for training llms on programming and natu- 409
ral languages. CoRR, arXiv:2305.02309. 410

Mike Papadakis, Yue Jia, Mark Harman, and Yves 411
Le Traon. 2015. Trivial compiler equivalence: A 412
large scale empirical study of a simple, fast and effec- 413
tive equivalent mutant detection technique. In 2015 414
IEEE/ACM 37th IEEE International Conference on 415
Software Engineering, volume 1, pages 936–946. 416

Mike Papadakis and Yves Le Traon. 2015. Metallaxis-fl: 417
mutation-based fault localization. Softw. Test. Verif. 418
Reliab., 25(5–7):605–628. 419

Venkatesh Balavadhani Parthasarathy, Ahtsham Zafar, 420
Aafaq Khan, and Arsalan Shahid. 2024. The Ul- 421
timate Guide to Fine-Tuning LLMs from Basics 422
to Breakthroughs: An Exhaustive Review of Tech- 423
nologies, Research, Best Practices, Applied Re- 424
search Challenges and Opportunities. arXiv preprint. 425
ArXiv:2408.13296. 426

Samuel Peacock, Lin Deng, Josh Dehlinger, and Suran- 427
jan Chakraborty. 2021. Automatic Equivalent Mu- 428
tants Classification Using Abstract Syntax Tree Neu- 429
ral Networks. In 2021 IEEE International Confer- 430
ence on Software Testing, Verification and Validation 431
Workshops (ICSTW), pages 13–18. 432

5

https://doi.org/10.1109/ICSTW50294.2020.00055
https://doi.org/10.1109/ICSTW50294.2020.00055
https://doi.org/10.1109/ICSTW50294.2020.00055
https://doi.org/10.1109/ICSTW50294.2020.00055
https://doi.org/10.1109/ICSTW50294.2020.00055
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2017.2684805
https://doi.org/10.1109/TSE.2017.2684805
https://doi.org/10.1109/TSE.2017.2684805
https://proceedings.neurips.cc/paper_files/paper/2022/file/1be5bc25d50895ee656b8c2d9eb89d6a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/1be5bc25d50895ee656b8c2d9eb89d6a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/1be5bc25d50895ee656b8c2d9eb89d6a-Paper-Conference.pdf
https://doi.org/10.1109/ISSRE.2015.7381798
https://doi.org/10.1109/ISSRE.2015.7381798
https://doi.org/10.1109/ISSRE.2015.7381798
https://doi.org/10.1109/CVPRW.2019.00190
https://doi.org/10.1109/CVPRW.2019.00190
https://doi.org/10.1109/CVPRW.2019.00190
https://doi.org/10.1016/bs.host.2023.01.003
https://doi.org/10.1016/bs.host.2023.01.003
https://doi.org/10.1016/bs.host.2023.01.003
https://doi.org/10.1002/smr.2238
https://doi.org/10.1002/smr.2238
https://doi.org/10.1002/smr.2238
https://doi.org/10.48550/ARXIV.2305.02309
https://doi.org/10.48550/ARXIV.2305.02309
https://doi.org/10.48550/ARXIV.2305.02309
https://doi.org/10.48550/ARXIV.2305.02309
https://doi.org/10.48550/ARXIV.2305.02309
https://doi.org/10.1109/ICSE.2015.103
https://doi.org/10.1109/ICSE.2015.103
https://doi.org/10.1109/ICSE.2015.103
https://doi.org/10.1109/ICSE.2015.103
https://doi.org/10.1109/ICSE.2015.103
https://doi.org/10.1002/stvr.1509
https://doi.org/10.1002/stvr.1509
https://doi.org/10.1002/stvr.1509
https://doi.org/10.48550/arXiv.2408.13296
https://doi.org/10.48550/arXiv.2408.13296
https://doi.org/10.48550/arXiv.2408.13296
https://doi.org/10.48550/arXiv.2408.13296
https://doi.org/10.48550/arXiv.2408.13296
https://doi.org/10.48550/arXiv.2408.13296
https://doi.org/10.48550/arXiv.2408.13296
https://doi.org/10.48550/arXiv.2408.13296
https://doi.org/10.48550/arXiv.2408.13296
https://doi.org/10.1109/ICSTW52544.2021.00016
https://doi.org/10.1109/ICSTW52544.2021.00016
https://doi.org/10.1109/ICSTW52544.2021.00016
https://doi.org/10.1109/ICSTW52544.2021.00016
https://doi.org/10.1109/ICSTW52544.2021.00016

Michael Pradel and Koushik Sen. 2018. Deepbugs: a433
learning approach to name-based bug detection. Proc.434
ACM Program. Lang., 2(OOPSLA).435

Mohaimenul Azam Khan Raiaan, Md. Saddam Hos-436
sain Mukta, Kaniz Fatema, Nur Mohammad Fahad,437
Sadman Sakib, Most Marufatul Jannat Mim, Jubaer438
Ahmad, Mohammed Eunus Ali, and Sami Azam.439
2024. A Review on Large Language Models: Archi-440
tectures, Applications, Taxonomies, Open Issues and441
Challenges. IEEE Access, 12:26839–26874.442

Florian Schroff, Dmitry Kalenichenko, and James443
Philbin. 2015. Facenet: A unified embedding for444
face recognition and clustering. In IEEE Conference445
on Computer Vision and Pattern Recognition, CVPR446
2015, Boston, MA, USA, June 7-12, 2015, pages 815–447
823. IEEE Computer Society.448

Eu Wern Teh, Terrance DeVries, and Graham W. Taylor.449
2020. ProxyNCA++: Revisiting and Revitalizing450
Proxy Neighborhood Component Analysis. In Com-451
puter Vision – ECCV 2020: 16th European Confer-452
ence, Glasgow, UK, August 23–28, 2020, Proceed-453
ings, Part XXIV, pages 448–464, Berlin, Heidelberg.454
Springer-Verlag.455

Zhao Tian, Honglin Shu, Dong Wang, Xuejie Cao, Yasu-456
taka Kamei, and Junjie Chen. 2024. Large Language457
Models for Equivalent Mutant Detection: How Far458
Are We? arXiv preprint. ArXiv:2408.01760.459

Lars van Hijfte and Ana Oprescu. 2021. Mutantbench:460
an equivalent mutant problem comparison framework.461
In n 2021 IEEE International Conference on Soft-462
ware Testing, Verification and Validation Workshops463
(ICSTW). IEEE, 7–12. IEEE.464

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob465
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz466
Kaiser, and Illia Polosukhin. 2017. Attention is All467
you Need. In Advances in Neural Information Pro-468
cessing Systems, volume 30. Curran Associates, Inc.469

Zibin Zheng, Kaiwen Ning, Yanlin Wang, Jingwen470
Zhang, Dewu Zheng, Mingxi Ye, and Jiachi Chen.471
2023. A Survey of Large Language Models for Code:472
Evolution, Benchmarking, and Future Trends. arXiv473
preprint.474

A Hyperparameters selection475

To evaluate our approach, we conducted a series476

of experiments aiming to explore the hyperparam-477

eter space of Cluster Purge Loss. As the distance478

function normalized cosine distance was chosen:479

dist(a, b) = 1− cossim(a, b)

2
+ 1 (10)480

Inverse formulation means that the codomain is481

[0,1] where 0 indicates collinearity of vectors. The482

smoothing factor γ was chosen as 12 based on the483

preliminary experiments. The value of the expo- 484

nent of a loss term for equivalent mutants α is 2 485

and the exponent of a loss term for non-equivalent 486

mutants β is 1/2. Such initial values of α and β are 487

based on the assumption that equivalent mutants 488

are already located close enough to their origin, and 489

to give semantic similarity properties to the embed- 490

ding space, emphasis must be placed on changing 491

the distribution of non-equivalent mutants. Since 492

the square function shows sublinear growth on val- 493

ues close to 0 included in the codomain [0,1] of the 494

distance function, and the root function, on the con- 495

trary, grows superlinearly, then the loss value for 496

non-equivalent mutants will grow faster with the 497

distance from the verge than for equivalent ones. 498

The margin ζ between mutants and the corre- 499

sponding verges and the coefficient λ at LCPL 500

are considered the most influental and explored 501

in ranges: ζ ∈ [−0.06, 0.01] with the step 0.01 and 502

λ ∈ [1.00, 1.30] with the step 0.05. Such intervals 503

are chosen based on the preliminary findings show- 504

ing that smaller values are more favorable. For λ 505

we explain it by the assumption that Cluster Purge 506

Loss is more beneficial in the setup as the lesser 507

term in the equation shifts the negative gradient 508

towards the more optimal solution by imposing 509

the semantic meaning on the distance. For ζ, we 510

assume that since the model’s ability to capture 511

semantic differences between mutants is imperfect, 512

a negative boundary can create an “error zone” for 513

those mutants that cannot be correctly ordered with- 514

out worsening the arrangement of the rest. 515

B Scientific artifacts usage 516

Pre-trained UniXCoder model, trainbase, testbase, 517

modelbase are obtained from https://github. 518

com/tianzhaotju/EMD where the replication 519

package for Tian et al. (2024) was released. It 520

was sanctioned for replication, future research, and 521

practical use, which we consider our usage to fall 522

under. 523

C Computational budget 524

Each of the 52 experiments aimed at hyperparame- 525

ter search required approximately 2.25 GPU-hours 526

on a single NVIDIA RTX 4060, yielding a total 527

computational cost of around 126 hours. 528

6

https://doi.org/10.1145/3276517
https://doi.org/10.1145/3276517
https://doi.org/10.1145/3276517
https://doi.org/10.1109/ACCESS.2024.3365742
https://doi.org/10.1109/ACCESS.2024.3365742
https://doi.org/10.1109/ACCESS.2024.3365742
https://doi.org/10.1109/ACCESS.2024.3365742
https://doi.org/10.1109/ACCESS.2024.3365742
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1007/978-3-030-58586-0_27
https://doi.org/10.1007/978-3-030-58586-0_27
https://doi.org/10.1007/978-3-030-58586-0_27
https://doi.org/10.48550/arXiv.2408.01760
https://doi.org/10.48550/arXiv.2408.01760
https://doi.org/10.48550/arXiv.2408.01760
https://doi.org/10.48550/arXiv.2408.01760
https://doi.org/10.48550/arXiv.2408.01760
https://icst2021.icmc.usp.br/details/mutation-2021-papers/4/MutantBench-an-Equivalent-Mutant-Problem-Comparison-Framework
https://icst2021.icmc.usp.br/details/mutation-2021-papers/4/MutantBench-an-Equivalent-Mutant-Problem-Comparison-Framework
https://icst2021.icmc.usp.br/details/mutation-2021-papers/4/MutantBench-an-Equivalent-Mutant-Problem-Comparison-Framework
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.48550/ARXIV.2311.10372
https://doi.org/10.48550/ARXIV.2311.10372
https://doi.org/10.48550/ARXIV.2311.10372
https://github.com/tianzhaotju/EMD
https://github.com/tianzhaotju/EMD
https://github.com/tianzhaotju/EMD

D Mutation testing 529

Figure 4: The process of mutation testing of the test suite for the original program. Equivalent mutants don’t let
make conclusions about the true mutation score.

E Mutants examples 530

Origin Non-equivalent Mutant Equivalent Mutant

1 int binSearch(int arr[],
↪→ int x) {

2 int l = 0;
3 int h = arr.length - 1;
4 while (l <= h) {
5 int mid = l + (h - l)

↪→ / 2;
6 if (arr[mid] == x)
7 return mid;
8 if (arr[mid] < x)
9 l = mid + 1;

10 else
11 h = mid - 1;
12 }
13 return -1;
14 }

int binSearch(int arr[],
↪→ int x) {

int l = 0;
int h = arr.length - 1;
while (l <= h) {

int mid = l + (h - l)
↪→ / 2;

if (arr[mid++] == x)
return mid;

if (arr[mid] < x)
l = mid + 1;

else
h = mid - 1;

}
return -1;
}

int binSearch(int arr[],
↪→ int x) {

int l = 0;
int h = arr.length - 1;
while (l <= h) {

int mid = l + (h - l)
↪→ / 2;

if (arr[mid] == x)
return mid++;

if (arr[mid] < x)
l = mid + 1;

else
h = mid - 1;

}
return -1;
}

Table 2: Examples of code mutants. The first column shows the origin method intended to perform binary search on
array arr to find x. The second column is a non-equivalent mutant created by applying Unary Operator Insertion
(UIO) to the line 6. Post-increment affects the return statement inside if clause resulting in returning the wrong
value.The third column shows an equivalent mutant produced by applying UIO to the line 7. In this case post-
increment doesn’t influence behaviour as the method execution ends.

7

F Model performance matrix531

Figure 5: Model performance matrix presenting Precision(P), Recall(R), F1-score(F1) of the modelCPL for different
values of λ and ζ. Also, it can be observed that the matrix of metrics is heterogeneous, that can be attributed to the
non-linear nature of interaction between λ and ζ.

8

	Introduction
	Proposed approach
	Cluster Purge Loss

	Experimentation
	Dataset preparation
	Implementation
	Evaluation
	Experiment results
	Impact on embeddings distribution

	Conclusion
	Limitations
	Hyperparameters selection
	Scientific artifacts usage
	Computational budget
	Mutation testing
	Mutants examples
	Model performance matrix

