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ABSTRACT

Transformer-based models have shown promising performance on tabular data
compared to their classical counterparts such as neural networks and Gradient
Boosted Decision Trees (GBDTs) in scenarios with limited training data. They
utilize their pre-trained knowledge to adapt to new domains, achieving commend-
able performance with only a few training examples, also called the few-shot
regime. However, the performance gain in the few-shot regime comes at the ex-
pense of significantly increased complexity and number of parameters. To circum-
vent this trade-off, we introduce TabDistill, a new strategy to distill the pre-trained
knowledge in complex transformer-based models into simpler neural networks for
effectively classifying tabular data. Our framework yields the best of both worlds:
being parameter-efficient while performing well with limited training data. The
distilled neural networks surpass classical baselines such as regular neural net-
works, XGBoost and logistic regression under equal training data, and in some
cases, even the original transformer-based models that they were distilled from.

1 INTRODUCTION

Tabular data plays a central role in many high-stakes applications, ranging from finance and health-
care, to manufacturing and weather prediction (Shwartz-Ziv & Armon, 2022; van Breugel & van der
Schaar, 2024). However, the scarcity of labeled data can limit the application of machine learning in
some of these domains, e.g., some diseases are extremely rare, or certain natural phenomena occur
once in centuries (Hegselmann et al., 2023; Nam et al., 2023). In financial applications, annotating
data can be expensive, and suffer from issues such as subjectivity, mislabeling, lack of consensus,
and also data imbalances where only the data of accepted applicants may be available but not the re-
jected group (Crook & Banasik, 2004). Thus, tabular classification models that perform well under
limited training data, also called the few-shot regime, are of immense interest.

Recently, transformer-based models have been shown to surpass classical approaches such as neural
networks and Gradient Boosted Decision Trees (GBDTs) in the few-shot regime when the num-
ber of training examples is significantly small (Hollmann et al., 2023; Hegselmann et al., 2023;
Jayawardhana et al., 2025). While GBDTs such as XGBoost (Chen & Guestrin, 2016), CatBoost
(Prokhorenkova et al., 2018), and LightGBM (Ke et al., 2017) have long been the state-of-the-art
for tabular classification when there is sufficient labeled data for training (Shwartz-Ziv & Armon,
2022; Grinsztajn et al., 2022), transformer-based models instead exploit their pre-trained knowledge
to achieve improved performance in the few-shot regime. However, the performance gain in the
few-shot regime comes at the expense of efficiency. Transformer-based models are extremely com-
plex (millions or billions of parameters) in comparison to traditional neural networks and GBDTs,
requiring massive compute, energy, and time during inference. To be able to cater to applications
across varying levels of infrastructure, it is usually desirable that the deployed models are parameter-
efficient and scalable. In this work, our key question is: Can we achieve the best of both worlds, i.e.,
being parameter-efficient while also performing well with limited training data?

Toward answering this question, we propose TabDistill, a framework to distill the classification ca-
pabilities of pre-trained transformers into neural networks for few-shot tabular classification. We
draw inspiration from the image domain where transformer-based models have been found to be
good hypernetworks for generating neural networks to implicitly represent images (Chen & Wang,
2022; Gu & Yeung-Levy, 2025). Succinctly, TabDistill incorporates the pre-trained knowledge of a
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transformer-based model (the base model) into a neural network by fine-tuning the transformer to
infer its weights. We assume that the base model contains an informative intermediate representation
(for example, the encoder output of TabPFN (Hollmann et al., 2023) or encoder-decoder type lan-
guage models such as BERT (Devlin et al., 2019), BART (Lewis et al., 2019), BigScience T0 series
(Sanh et al., 2021) etc.). TabDistill learns a linear map for projecting the intermediate representation
provided by the base model into the parameter space of the neural network, by fine-tuning using
the cross-entropy loss of the resultant classifier. We employ a novel permutation-based training
technique to avoid overfitting the model to the extremely small number of training examples.

Our experiments span over four tabular datasets and two base models. We compare the TabDistill
framework with 5 baselines, including 3 classical models and the 2 base models. Experimental
results indicate that the neural network distilled using the proposed framework exceeds the classical
baselines in performance, particularly in the very-few-shot regime (when the number of training
examples is less than 10). Interestingly, under some settings, the distilled neural network exceeds
the performance of the base model which it was distilled from. In summary, our contributions can
be listed as follows:

• Propose TabDistill, a novel framework to distill transformers into neural networks. We
introduce a way to extract the performance of transformers into a much more efficient Multi-
Layer Perceptron (MLP). Accordingly, the framework has additional advantages of the resulting
model being differentiable and more easily explainable.

• Instantiate the framework with two transformer-based models. We instantiate the distillation
framework with two transformer-based models Bigscience T0pp (Sanh et al., 2021) and the more
recent TabPFN (Hollmann et al., 2023), which have ∼11B and ∼11M parameters respectively.
We distill these base models into significantly simpler neural networks with ∼1000 parameters.

• Experimental validation. We conduct experiments on four tabular datasets (Bank (Moro et al.,
2014), Blood (Yeh, 2008), Calhousing (Pace & Barry, 1997) and Income (Kohavi, 1996)) and five
baselines (MLP, logistic regression, XGBoost, and the two base models TabPFN and T0pp). The
distilled MLP surpasses the classical baselines in the few-shot regime under equal training data,
and in some cases, even the original transformer-based models that they were extracted from.

1.1 RELATED WORKS

Classical algorithms for tabular data. Despite the success of deep learning in various other do-
mains, classical machine learning algorithms such as logistic regression and GBDT methods such
as XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017) and CatBoost (Prokhorenkova
et al., 2018) have been dominating the domain of tabular datasets Shwartz-Ziv & Armon (2022).
While highlighting the lack of a proper benchmark and a standard way of tuning hyperparameters
for a fair comparison, Grinsztajn et al. (2022) point out that the deep learning models struggle on
tabular datasets mostly due to difficulties in learning irregular patterns of the target function. Mul-
tiple works have focused on overcoming such difficulties and adapting neural networks for tabular
datasets (See Gorishniy et al. (2024); Arik & Pfister (2021); Popov et al. (2019) and references
therein). However, given the fact that these classical models are trained from scratch for a given
dataset, their performance degrades significantly in the few-shot regime (Hegselmann et al., 2023).

Transformer-based models for tabular data. Transformer-based models have seen promising
performance gains within the tabular data domain. A multitude of works employ the transformer
as a way to model complex interactions between features of a tabular dataset. SAINT (Somepalli
et al., 2022) uses an attention mechanism across rows as well as columns to better learn the structures
within data. It also incorporates a self-supervised pre-training method for situations where the labels
are scarce. Hollmann et al. (2023) trains a transformer from scratch on a massive collection of syn-
thetic tabular datasets sampled from a causal mechanism. The trained transformer TabPFN can then
be used to predict new tabular tasks with no additional training. In an attempt to leverage the pre-
trained knowledge of a Large Language Model (LLM) for tabular data classification, Hegselmann
et al. (2023) fine-tune models from BigScience T0 series (Sanh et al., 2021) to achieve remarkable
performance in the few-shot regime. Jayawardhana et al. (2025) proposes PFN-Boost and LLM-
Boost techniques where a pre-trained transformer is incorporated as the initial weak classifier of a
GBDT ensemble. However, the performance gain of these methods is offset by the increased com-
plexity and resource consumption particularly during inference. Moreover, the increased complexity
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causes difficulty in assessing reliability, for instance, model multiplicity (Hamman et al., 2025). Our
method focuses on mitigating these limitations by distilling the transformer into an MLP.

Meta-Learning and hypernetworks. Meta-learning refers to the process of learning to generalize
to unseen tasks by observing few examples corresponding to each task (Vilalta & Drissi, 2002).
Transformers are known to be good at meta learning, particularly in the form of in-context learning
(Kirsch et al., 2022). Hypernetworks are closely related meta-learning, in the sense that they predict
parameters for other machine learning models by observing a few samples from the task at hand.
Transformers have been used as hypernetworks in computer vision applications, specifically for
generating implicit neural representations (Chen & Wang, 2022; Gu & Yeung-Levy, 2025). Chen &
Wang (2022) uses a transformer trained from scratch to predict weights of a neural network which
represents an image or a 3D scene. Gu & Yeung-Levy (2025) exploits the pre-trained knowledge
of a transformer-based foundation model for the same task. Both these works append additional
placeholder tokens to the input for predicting the neural network weights. In contrast, our framework
directly maps the embedding space to neural network parameters.

2 TABDISTILL: DISTILLING TRANSFORMERS INTO NEURAL NETWORKS

Here, we first discuss our proposed TabDistill framework along with the training procedure and
possible methods for hyperparameter tuning. We then elaborate on two example instantiations of
the framework using two popular transformer-based models for few-shot tabular data classification,
namely, TabPFN (Hollmann et al., 2023) and TabLLM (Hegselmann et al., 2023).

2.1 NOTATION AND PROBLEM SETUP

(a) The TabLLM framework. Tabular data is first converted to a natural language string using a serialization
technique (denoted by g(x)). The serialized text is given as the input to the LLM and a prediction is directly
generated as the output. Fine-tuning the LLM can improve classification performance.

(b) Our TabDistill framework. Similar to TabLLM, the serialized text is given as the input to the LLM. However,
in contrast to TabLLM, an MLP is generated as the final output of the transformer model. Only this MLP is
deployed for making predictions on real-world data. Fine-tuning the LLM gives an improved MLP.

Figure 1: Comparison of TabLLM and TabDistill frameworks. The tunable parameters which are
fine-tuned during training in each framework are depicted in green. The example dataset contains
Age and Education as features. The target is to predict whether the Income is >= 50k or not.

Let DN = {(xn, yn), xn ∈ X , yn ∈ {0, 1}, n = 1, . . . , N} be a small tabular dataset for binary
classification with d features (usually pre-processed, e.g., categorical features are one-hot encoded)
and N datapoints (N ∼ 10). Our focus is on transformer-based models capable of classifying
instances x ∈ X of tabular datasets. To this end, LLMs have been adapted as few-shot classifiers
through parameter-efficient fine-tuning (Hegselmann et al., 2023). To perform classification using an
LLM, the tabular data instance x must first be transformed into a natural language string (denoted
by s ∈ S where S is the space of all possible strings within a given length). Hegselmann et al.
(2023) studies a wide array of techniques for converting rows of a tabular dataset into text, known
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as “serialization techniques”. These techniques include using a fixed text template such as “The
<column name> is <value>” and using a list template of the form “<column name>:
<value>.” We denote such a serialization by g(x) : X → S.

The text output of the LLM can be converted to a binary class prediction using a similar technique
(for example, Yes → 1, and No → 0). We abstract out this mapping and denote the transformer
model by f(s) : S → {0, 1}. Note that with this setup, a meaningful classification can be carried out
by predicting ŷ = f (g(x))). For brevity, let g(x, y) represent a similar transform applied to both the
features and the label together, and g(DN ) represent the concatenation of all the strings g(xn, yn)
corresponding to each (xn, yn) ∈ DN . See Figure 1 for an example application of a text template.
It is worth noting that TabPFN (Hollmann et al., 2023) takes the tabular feature values themselves
as the input and hence, S = X and g(x) in this case is the identity function, i.e., g(x) = x.

Our goal is to use the pre-trained knowledge of the complex transformer-based model f to generate
a much simpler MLP hθ(x) : X → {0, 1} with parameters θ ∈ Θ that can classify x ∈ X . The
intuition is that the pre-trained knowledge of f will assist in generating hθ effectively in a few-shot
setting (i.e., when N is very small). We consider the complex model f(s) as consisting of two
major components: an encoder fE(s) : S → Z and a decoder fD(z) : Z → {0, 1}, where Z is an
embedding space. This is the case for the transformer-based models used in TabLLM (Hegselmann
et al., 2023) and TabPFN (Hollmann et al., 2023) as well as popular LLMs such as BERT (Devlin
et al., 2019), BART (Lewis et al., 2019), and T5 (Raffel et al., 2020).

The MLP hθ(x) has the following architecture. Let ReLU(u) denote the ReLU activation function
(Glorot et al., 2011). With the hyperparameters R and L denoting the number of layers and the
width of the hidden layers, respectively, hθ(x) is defined as

hθ(x) = ReLU (WRReLU (· · ·ReLU (W2ReLU (W1x+ b1) + b2) · · · ) + bR) (1)

where Wi and bi (i = 1, . . . , R) are the weights and the biases of each linear layer. The parameter
θ denotes the combination of all such weights and biases, i.e., θ = (W1, b1,W2, b2, . . . ,WR, bR)
and hence, dim(Θ) is equal to the total number of tunable parameters in hθ determined by d,R and
L. The first matrix W1 ∈ RL×d, where d is the input dimension. All the intermediate layers have
Wi ∈ RL×L for i = 2, . . . , R − 1 and the final layer has WR ∈ RL×2 for binary classification.
For all i = 1, . . . , R, bi ∈ R. The output logits hθ(x) can be normalized by applying a Softmax
function σ(·) to get the final class probability predictions. If desired, one can also choose different
dimensions for each weight matrix rather than a fixed L.

2.2 OUR PROPOSED TABDISTILL FRAMEWORK

Figure 2: TabDistill framework. In Phase 1 (left), the tunable parameters of the transformer model
(the linear mapping mη(z)) is fine-tuned, as depicted in green. The resultant output MLP hθ is
depicted in amber. When T0pp is used as the base model f , a text serialization g(x, y) is applied as
shown in the figure. When TabPFN is used as the base model, g(x, y) becomes the identity function.
In Phase 2 (right), the MLP may be further fine-tuned if desired, as depicted in green.

Phase 1: Fine-tuning the base transformer model. The distillation is achieved by using the
encoder fE of the complex model for inferring the weights of the MLP hθ. We learn a linear
mapping mη(z) : Z → Θ parameterized by η such that θ = mη(fE(g(DN ))) results in a useful
classifier hθ. We use a simple normalized linear layer as the mapping function, defined as mη(z) =
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LayerNorm(Az + b), where A ∈ Rdim(Θ)×dim(Z), b ∈ Rdim(Θ) and η = (A, b). During Phase 1,
the fine-tuning loss L(η;DN ) is computed as follows:

1. Create a combined serialized input g(DN ) for the complex model f using the training data DN

2. Prompt the complex model encoder to get the embeddings z = fE(g(DN ))

3. Infer the parameters θ = mη(z) for the MLP hθ

4. Compute the loss L(η;DN ) as the cross entropy loss of the classifier hθ

Ultimately, the fine-tuning loss function can be written as

L(η;DN ) =

N∑
n=1

yn log
(
σ(hθ(xn))[[1]]

)
+ (1− yn) log

(
σ(hθ(xn))[[0]]

)
(2)

with θ = mη(fE(g(DN ))) and the indexing [[c]] for c ∈ {0, 1} indicates the corresponding pre-
dicted class probabilities. Note that the parameters of the complex model f do not undergo any
modifications during the fine-tuning phase since this is a form of parameter-efficient fine-tuning.

Phase 2: Additional fine-tuning of the MLP. The distilled MLP hθ is extracted by prompting fE
with the same training dataset DN . One can further fine-tune hθ for K additional epochs on DN .
During inference, the predictions are made using hθ, similar to any ordinary MLP. The complex
model f is no longer involved in the inference phase after the initial extraction of hθ.

Nature of the input prompt: The same small training set DN (or a subset of DN ) is used for two
tasks during Phase 1: First, a serialized/transformed version of DN (i.e., g(DN )) is used to prompt
the base model f to retrieve hθ. Then,DN is used separately again (without serialization) to compute
the cross-entropy loss of hθ, i.e., L(η,DN ). Accordingly, we re-arrange the training set DN to the
following serialized/transformed structure for prompting (an example from the Calhousing dataset):

Prompt (N=4):
Example 0: The median income is 4.3292. The housing median age is 14.0. The total rooms
is 4412.0. The total number of bedrooms is 952.0. The population is 1656.0. The number
of households is 874.0. The latitude is 33.77. The longitude is -117.84. Is this house block
valuable? Yes or no? The answer is yes.

Example 1: The median income is 3.7813. The housing median age is 41.0. The total rooms
is 3170.0. The total number of bedrooms is 622.0. The population is 1091.0. The number of
households is 528.0. The latitude is 37.9. The longitude is -122.54. Is this house block valuable?
Yes or no? The answer is yes.

Example 2: The median income is 3.2731. The housing median age is 20.0. The total rooms
is 5998.0. The total number of bedrooms is 1320.0. The population is 3185.0. The number
of households is 1199.0. The latitude is 33.93. The longitude is -117.45. Is this house block
valuable? Yes or no? The answer is no.

Example 3: The median income is 1.6955. The housing median age is 24.0. The total rooms
is 2316.0. The total number of bedrooms is 599.0. The population is 1829.0. The number of
households is 532.0. The latitude is 34.0. The longitude is -117.4. Is this house block valuable?
Yes or no? The answer is no.

For computing the cross-entropy loss using DN , we let X train denote an N × d tensor which
includes the normalized feature values corresponding to the same N examples in the prompt.
These feature vectors are used as the input to hθ for computing L(η,DN ). y train denotes the
corresponding labels, also used for computing L(η,DN ). In this example, the datapoints used for
creating both the prompt and the X/y train are the same and N = 4. However, when N is
sufficiently large, we may use different subsets of datapoints from DN to create the prompt and
X/y train. Moreover, if N is even larger, we may generate multiple examples of the above form
with non-overlapping subsets from DN . Notice that when the base model is TabPFN, we directly
use DN for fine-tuning the transformer model without serialization.

The few-shot regime poses the inherent problem of overfitting. To overcome this problem, in each
epoch, we randomly permute the feature order of DN . E.g., if in epoch 1 the order was (age,
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education, label), in epoch 2 it will be (education, age, label). All examples in
a prompt will have the same feature order. DN is chosen to be class-wise balanced. A validation
accuracy is computed on the same set DN with a different randomly permuted feature order and is
used for determining the hyperparameters such as the number of epochs and the complexity of hθ.

See Figure 2 for an illustration of the framework. Algorithm 1 summarizes the procedure. See
Appendix A for more details on the exact training parameters corresponding to each dataset and N .

Algorithm 1: TabDistill framework
Input: Few-shot dataset DN , complex model f with encoder fE , transform g(·), number of

fine-tuning epochs T , number of post-fine-tuning epochs K, architecture of the MLP hθ

Output: Trained MLP hθ

PHASE 1: Fine-tuning the transformer model to get a good output MLP
Initialize the linear mapping mη(z) : Z → Θ based on the architecture of hθ ;
for t← 1 to T do

Randomly permute the feature order of DN ;
Create subsets Ds, Dq ⊆ DN ;
Generate Prompt← g(Ds),X train← {x : (x, y) ∈ Dq} and
y train← {y : (x, y) ∈ Dq};

Prompt the base model f and obtain embeddings z ← fE(Prompt) ;
Infer parameters θ ← mη(z) for the MLP hθ;
Compute cross-entropy loss of classifier hθ: L(η,Dq), as in equation 2 with
xn ∈ X train and yn ∈ y train;

Update η using gradient descent with gradients ∇ηL(η,Dq)
end
Prompt the fine-tuned base model f with original dataset DN and obtain the output MLP hθ;
PHASE 2: Additional fine-tuning of the obtained MLP if desired
for k ← 1 to K do

Compute cross-entropy loss J (θ,Dq) with xn ∈ X train and yn ∈ y train;
Update θ using gradient descent with gradients ∇θJ (θ,Dq) ;

end
return hθ ;

2.3 PROPOSED INSTANTIATIONS OF TABDISTILL WITH TABPFN AND T0PP

TabDistill with TabPFN: TabPFN (Hollmann et al., 2023) is a transformer-based model pre-trained
on a large number of synthetic tabular datasets. Tabular data (after pre-processing steps such as nor-
malizing and one-hot encoding) can directly be used as the input to the TabPFN model. There-
fore, the transform g(x) in this case is the identity function. The TabPFN library provides a
scikit-learn-style fit and predict functionality. In each training epoch, we fit the TabPFN
classifier to DN (with a randomly-permuted feature order) and obtain z = fE(DN ). Next, we get
θ = mη(z) and compute the loss L(η;DN ) in equation 2 to perform a gradient descent update on
η. At the end of the training phase, hθ is obtained by inputting DN to TabPFN encoder without any
permutations to the feature order. Finally, hθ is fine-tuned on DN for additional K = 100 epochs.
The encoder output dimensionality dim(Z) of TabPFN varies with the number of training examples
in multiples of 192. Consequently, the dimensionality of the matrix A in the mapping mη(z) is
taken to be dim(Θ)× 192N .

TabDistill with T0pp: The BigScience T0pp (Sanh et al., 2021) is an encoder-decoder style LLM
trained on a large number of English language tasks specified in natural language prompts. This
model has been used as the base LLM for TabLLM (Hegselmann et al., 2023). Since the input to
the model has to be a natural language prompt, we convert the training data DN (or a subset) into
natural language using the “The <column name> is <value>” style text template. g(x) in
this case represents this transform from tabular data to a natural language prompt. See Figure 1 for
a detailed illustration. Appendix B lists example serializations used for each dataset. The training
and inference phases are similar to that of TabDistill with TabPFN. In the end, the resultant MLP
hθ is fine-tuned on DN for additional K = 100 epochs. The dimensionality of the encoder output
z = fE(g(DN )) is 4096. Therefore, the dimensionality of the matrix A in the mapping mη(z) is
taken to be dim(Θ)× 4096.
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3 EXPERIMENTAL RESULTS

Datasets and metrics: We evaluate the TabDistill framework on four publicly available tabular
datasets: Bank (UCI Bank Marketing) (Moro et al., 2014), Blood (UCI Blood Transfusion Service
Center) (Yeh, 2008), Calhousing (California Housing Prices) (Pace & Barry, 1997) and Income
(Census Income) (Kohavi, 1996). We divide each dataset into a train and a test split. DN is selected
from the training split. More details about the datasets are given in Table 5. Performance of all the
models is compared with respect to the Receiver Operating Characteristic Area Under the Curve
(ROC-AUC) metric. We consider the few-shot regime where the number of training examples is
very low, specifically, N ∈ {4, 8, 16, 32, 64}.
Baselines and hθ: The architecture of hθ is constant across all the experiments, unless specified
explicitly. hθ consisted of two hidden layers (hence, four layers in total, i.e., R = 4) with 10 neurons
each (i.e., L = 10). We compare TabDistill with 3 simple and efficient classical baselines: logistic
regression, XGBoost (Chen & Guestrin, 2016), an MLP with an architecture similar to hθ but trained
independently. In addition, we provide a performance comparison w.r.t. the base models TabPFN
(Hollmann et al., 2023) and T0pp (Hegselmann et al., 2023) for completeness. All the models use
the same set of labeled examples as TabDistill for training. Logistic regression and XGBoost are the
best performing classical models in (Hegselmann et al., 2023), and hence, provide a strong baseline.
The performance of the independently trained MLP helps observing the performance improvement
obtained as a result of the distillation process.

Hyperparameters: Hyperparameters of all the baselines except were tuned using 4-fold cross-
validation similar to Hegselmann et al. (2023), except in the case of training set size 4. When the
training set size is 4, 2-fold cross-validation was used. We use Scikit-learn’s GridSearchCV
and RandomizedSearchCV for tuning the hyperparameters. For XGBoost and MLP, we adopt
the hyperparameter search ranges given in Grinsztajn et al. (2022). However, we keep the archi-
tecture of the MLP fixed to that of hθ. See Table 6 for more details on hyperparameter tuning
of the baselines. TabPFN does not require any hyperparameters to be tuned (Hollmann et al.,
2023). Weights and Biases sweeps were used for optimizing the hyperparameters of Tab-
Distill, based on a validation score computed using the same training set DN . See Figure 4 in
Appendix A for an example sweep.

Main observations: Table 1 presents the ROC-AUC of TabDistill along with that of the baselines,
over the four tabular datasets. TabDistill shows superior performance over its classical counterparts
particularly in the very few-shot regime. In general, the performance increases with the number
of labeled examples available (i.e., with increasing N ). Out of the three classical baselines, none
seems to be universally better in performance across the datasets or the number of labeled examples.
TabDistill + TabPFN shows better performance that TabDistill+T0pp in most cases, except in the
Income dataset, where TabDistill+T0pp performs consistently better.

Effect of the complexity of hθ: In Table 2 we study the effect of the complexity of hθ measured in
terms of the number of layers R. The layer size L is kept constant at 10. Bank dataset and TabPFN
base model were used for the evaluation. As it is evident from the results, when the complexity of
hθ increases beyond a certain limit, the performance degrades.

Performance with respect to the base models: Table 3 presents the performance of the MLP
hθ obtained using TabDistill compared to the corresponding transformer-based model f used for
distillation. Interestingly, in some cases, the MLP hθ distilled using our method surpasses the per-
formance of the base model f which it was distilled from.

Feature attribution comparison: We compute the Shapley feature attribution scores (Shapley et al.,
1953) using the SHAP library for the classical baseline models logistic regression and XGBoost, and
hθ using the Calhousing dataset. The number of training examples used was 16 and the base model
f was TabPFN. Figure 3 shows the corresponding beeswarm plots for each baseline. We observe
that the median income and the longitude have a greater impact on the output across all the
models, indicating that the distilled models are consistent with the baselines trained in the ordinary
fashion (See figures 3a, 3b and 3c). We also compute the attributions scores corresponding to an
MLP distilled using a DN with feature columns permuted (Figure 3d). Despite the permutation,
this model displays feature importances similar to the original hθ. Hence, it is evident that the base
model has correctly identified the correlation between the MLP weights and the feature order.
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Table 1: Test ROC-AUC performance of TabDistill compared with the classical baselines. Best
performance corresponding to each N and dataset is emphasized in bold. Reported values are the
average of 5 runs with different random states. The standard deviations are given as subscripts.

Dataset Method Number of labeled examples (N )
4 8 16 32 64

Bank

MLP 0.57.08 0.61.11 0.72.05 0.76.04 0.81.03

Logistic Regression 0.54.10 0.65.06 0.72.03 0.73.04 0.77.04
XGBoost 0.50.00 0.56.10 0.72.08 0.78.04 0.81.02

TabDistill + TabPFN (ours) 0.72.01 0.67.06 0.68.02 0.79.02 0.81.02

TabDistill + T0pp (ours) 0.70.02 0.67.02 0.72.01 0.74.02 0.80.02

Blood

MLP 0.57.10 0.61.09 0.60.09 0.61.07 0.67.08
Logistic Regression 0.60.16 0.66.12 0.63.11 0.65.10 0.73.03
XGBoost 0.50.00 0.55.09 0.55.07 0.65.07 0.72.02
TabDistill + TabPFN (ours) 0.56.07 0.67.05 0.69.07 0.68.09 0.75.00

TabDistill + T0pp (ours) 0.62.08 0.58.08 0.67.06 0.67.04 0.68.06

Calhousing

MLP 0.49.07 0.63.10 0.720.12 0.79.07 0.82.04
Logistic Regression 0.59.10 0.66.13 0.74.14 0.83.04 0.89.01

XGBoost 0.50.00 0.57.10 0.75.04 0.75.06 0.81.06
TabDistill + TabPFN (ours) 0.64.06 0.65.03 0.65.03 0.77.03 0.84.00
TabDistill + T0pp (ours) 0.67.05 0.67.03 0.66.05 0.74.03 0.81.01

Income

MLP 0.51.10 0.69.05 0.74.07 0.78.04 0.79.04
Logistic Regression 0.76.07 0.75.09 0.79.02 0.82.02 0.84.03
XGBoost 0.50.00 0.57.11 0.65.14 0.80.02 0.81.01
TabDistill + TabPFN (ours) 0.68.08 0.75.03 0.80.02 0.81.02 0.83.01
TabDistill + T0pp (ours) 0.70.03 0.77.02 0.83.01 0.83.02 0.85.01

Table 2: Test ROC-AUC performance of TabDistill with different MLP complexities

# Labeled
examples

Number of layers (R)
2 4 8 16

4 0.72.02 0.72.01 0.65.09 0.53.04
8 0.74.01 0.67.06 0.72.03 0.50.00

4 CONCLUSION

We introduce TabDistill, a novel distillation framework for extracting the pre-trained knowledge
of transformer models into neural networks for classifying tabular data. The framework produces
MLPs with enhanced performance particularly when the labeled data is limited. Experiments show
that the resulting MLPs surpass the classical machine learning models such as XGBoost and logistic
regression, and in some cases, the initial transformer model used for distilling itself in the few-shot
regime. TabDistill can be used to generate scalable, computationally efficient models with a small
number of training data, bringing together the advantages of transformers and classical models.

Limitations and future directions: While TabDistill produces MLPs which surpass the classical
models in the few-shot regime, the performance gain is limited when the number of labeled examples
increase. Hence, there is room for improvement when the training set is large. The linear mapping
function mη(·) used in the current experiments can be replaced with other alternatives to potentially
achieve performance improvements. Moreover, the extracted MLP may inherit the biases of the
base model, although it can be mitigated up to some extent through the MLP finetuning in the
second phase.
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Table 3: Test ROC-AUC performance of TabDistill compared with the base model f . Best perfor-
mance corresponding to each N and dataset is emphasized in bold. Reported values are the average
of 5 runs with different random states. The standard deviations are given as subscripts.

Dataset Method Number of labeled examples (N )
4 8 16 32 64

Bank

TabPFN (11M params) 0.62.05 0.68.08 0.75.08 0.82.05 0.86.02

TabDistill + TabPFN (ours) 0.72.01 0.67.06 0.68.02 0.79.02 0.81.02

T0pp (TabLLM, 11B params)† 0.59.10 0.64.05 0.65.05 0.640.6 0.69.03
TabDistill + T0pp (ours) 0.70.02 0.67.02 0.72.01 0.74.02 0.80.02

Blood

TabPFN (11M params) 0.55.20 0.61.14 0.59.12 0.68.07 0.73.02
TabDistill + TabPFN (ours) 0.56.07 0.67.05 0.69.07 0.68.09 0.75.00

T0pp (TabLLM, 11B params)† 0.58.09 0.66.03 0.66.07 0.68.04 0.68.04

TabDistill + T0pp (ours) 0.62.08 0.58.08 0.67.06 0.67.04 0.68.06

Calhousing

TabPFN (11M params) 0.59.08 0.70.10 0.83.04 0.84.04 0.88.02

TabDistill + TabPFN (ours) 0.64.06 0.65.03 0.65.03 0.77.03 0.84.00

T0pp (TabLLM, 11B params)† 0.63.05 0.60.07 0.70.08 0.77.08 0.770.4
TabDistill + T0pp (ours) 0.67.05 0.67.03 0.66.05 0.74.03 0.81.01

Income

TabPFN (11M params) 0.69.06 0.74.09 0.78.01 0.82.03 0.84.01

TabDistill + TabPFN (ours) 0.68.08 0.75.03 0.80.02 0.81.02 0.83.01

T0pp (TabLLM, 11B params)† 0.84.01 0.84.02 0.84.04 0.84.01 0.84.02
TabDistill + T0pp (ours) 0.70.03 0.77.02 0.83.01 0.83.02 0.85.01

† TabLLM performance values are as reported in Hegselmann et al. (2023)

(a) Logistic regression trained on DN (b) XGBoost trained on DN

(c) hθ distilled on DN (d) hθ distilled on feature-permuted DN

Figure 3: SHAP feature attributions. Computed on the Calhousing dataset with TabPFN as the base
model f . Training set size N is 16. 200 samples were used for computing the beeswarm plots.
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5 REPRODUCIBILITY STATEMENT

The TabDistill framework has been explained in detail under Section 2. Details on the experimental
setup including the datasets and the baselines are given in Section 3. Further details including
hyperparameters and training setup are given in Appendix A. All the experiments were done on
computer with a 3.5 GHz AMD EPYC 7763 64-Core Processor and an Nvidia RTX 6000 Ada GPU.
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A TRAINING SETUP AND HYPERPARAMETER OPTIMIZATION

The PHASE 1 fine-tuning was carried out for 300 epochs. The epoch with the best validation
accuracy (computed using a randomly permuted version of the DN ) was used for inferring the
weights for the final hθ. Learning rates were selected from the set [1e−6, 2e−4]. Adam optimizer
was used with a weight decay of 1e−3. For some of the experiments with N = 4, weight decay was
set to 0. The subsets Ds and Dq of the training set DN were selected as per Table 4. More details
on the datasets including the test-train split sizes is given in Table 5.

Table 4: The scheme of partitioning DN

Parameter Number of labeled examples
4 8 16 32 64

|Ds| 4 4 8 8 8
|Dq| 4 4 8 8 8

Ds = Dq? True True False False False
# of (Ds, Dq) pairs 1 2 1 2 4

Table 5: Dataset details

Dataset # Features Test size Train size Target

Bank 16 43211 2000 To predict whether the client will
subscribe a term deposit

Blood 4 374 374 To predict whether a person would
donate blood

Calhousing 12 19640 1000 To predict whether a given house
block is valuable or not

Income 12 44222 1000 To predict whether a person’s
annual income exceeds 50K

Figure 4: Weights and Biases sweeps used for optimizing hyperparameters for TabDistill
with TabPFN and Calhousing dataset, 64 training examples

Hyperparameter optimization for the classical baseline models was done using scikit-learn’s
GridSearchCV and RandomizedSearchCV methods. The search ranges are given in Table 6.
Hyperparameters for the TabDistill framework were deteremined using Weights and Biases
sweeps. Figure 4 illustrates one such sweep corresponding to the TabPFN base model and the
Calhousing dataset.
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Table 6: Hyperparameter ranges used for classical baseline models

Model Hyperparameter Range/Distribution Method

MLP

Number of layers 4

Grid searchHidden layer size 10
Number of epochs [30, 50, 100, 300]
Learning rate [1e-5, 1e-4, 1e-3, 1e-2]

Logistic Regression C [0.01, 0.1, 1, 10] Grid search

XGBoost

Max depth UniformInt[1,11]

Randomized
search with 20
iterations

Number of estimators 1000
Min child weight LogUniformInt[1, 1e2]
Subsample Uniform[0.5, 1]
Learning rate LogUniform[1e-5, 0.7]
Column sample by level Uniform[0.5, 1]
Column sample by tree Uniform[0.5, 1]
Gamma LogUniform[1e-8, 7]
Lambda LogUniform[1, 4]
Alpha LogUniform[1e-8, 1e2]

B SERIALIZATIONS USED FOR PROMPTING T0PP

Bank dataset, N=4:
Example 0: The age is 29.0. The job is blue-collar. The marital status is married. The education
is secondary. The default is no. The account balance is 314.0. The housing loan is available.
The personal loan is available. The contact communication type is cellular. The last contact day
of the month is 17.0. The last contact month of year is apr. The last contact duration, in seconds
is 357.0. The number of contacts in campaign is 1.0. The days since last contact is -1.0. The
number of previous contacts is 0.0. The previous contact outcome is unknown. Does this client
subscribe to a term deposit? Yes or no? The answer is no.

Example 1: The age is 62.0. The job is housemaid. The marital status is married. The education
is unknown. The default is no. The account balance is 2021.0. The housing loan is not available.
The personal loan is not available. The contact communication type is telephone. The last
contact day of the month is 26.0. The last contact month of year is feb. The last contact duration,
in seconds is 361.0. The number of contacts in campaign is 1.0. The days since last contact is
-1.0. The number of previous contacts is 0.0. The previous contact outcome is unknown. Does
this client subscribe to a term deposit? Yes or no? The answer is yes.

Example 2: The age is 32.0. The job is blue-collar. The marital status is single. The education
is secondary. The default is no. The account balance is 3.0. The housing loan is available. The
personal loan is not available. The contact communication type is unknown. The last contact
day of the month is 23.0. The last contact month of year is may. The last contact duration, in
seconds is 108.0. The number of contacts in campaign is 3.0. The days since last contact is -1.0.
The number of previous contacts is 0.0. The previous contact outcome is unknown. Does this
client subscribe to a term deposit? Yes or no? The answer is no.

Example 3: The age is 36.0. The job is management. The marital status is married. The
education is tertiary. The default is no. The account balance is 203.0. The housing loan is not
available. The personal loan is not available. The contact communication type is cellular. The
last contact day of the month is 25.0. The last contact month of year is jan. The last contact
duration, in seconds is 255.0. The number of contacts in campaign is 1.0. The days since last
contact is 88.0. The number of previous contacts is 1.0. The previous contact outcome is success.
Does this client subscribe to a term deposit? Yes or no? The answer is yes.
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Blood dataset, N=4:
Example 0: The previous blood donation record of a person is as follows: The months since last
donation is 14.0. The total number of donations is 3.0. The total amount of blood donated (in
cc) is 750.0. The months since first donation is 21.0. Will this person donate blood next time?
Yes or no? The answer is no.

Example 1: The previous blood donation record of a person is as follows: The months since last
donation is 4.0. The total number of donations is 2.0. The total amount of blood donated (in cc)
is 500.0. The months since first donation is 4.0. Will this person donate blood next time? Yes or
no? The answer is yes.

Example 2: The previous blood donation record of a person is as follows: The months since last
donation is 16.0. The total number of donations is 7.0. The total amount of blood donated (in
cc) is 1750.0. The months since first donation is 87.0. Will this person donate blood next time?
Yes or no? The answer is yes.

Example 3: The previous blood donation record of a person is as follows: The months since last
donation is 11.0. The total number of donations is 5.0. The total amount of blood donated (in
cc) is 1250.0. The months since first donation is 35.0. Will this person donate blood next time?
Yes or no? The answer is no.

Calhousing dataset, N=4:
Example 0: The median income is 4.3292. The housing median age is 14.0. The total rooms
is 4412.0. The total number of bedrooms is 952.0. The population is 1656.0. The number
of households is 874.0. The latitude is 33.77. The longitude is -117.84. Is this house block
valuable? Yes or no? The answer is yes.

Example 1: The median income is 3.7813. The housing median age is 41.0. The total rooms
is 3170.0. The total number of bedrooms is 622.0. The population is 1091.0. The number of
households is 528.0. The latitude is 37.9. The longitude is -122.54. Is this house block valuable?
Yes or no? The answer is yes.

Example 2: The median income is 3.2731. The housing median age is 20.0. The total rooms
is 5998.0. The total number of bedrooms is 1320.0. The population is 3185.0. The number
of households is 1199.0. The latitude is 33.93. The longitude is -117.45. Is this house block
valuable? Yes or no? The answer is no.

Example 3: The median income is 1.6955. The housing median age is 24.0. The total rooms
is 2316.0. The total number of bedrooms is 599.0. The population is 1829.0. The number of
households is 532.0. The latitude is 34.0. The longitude is -117.4. Is this house block valuable?
Yes or no? The answer is no.
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Income dataset, N=4:
Example 0: The age is 35. The workclass is Private. The education is HS-grad. The
marital-status is Married-civ-spouse. The occupation is Transport-moving. The relationship is
Husband. The race is White. The sex is Male. The capital-gain is 0. The capital-loss is 0. The
hours-per-week is 30. The native-country is United-States. Does this person make over 50K a
year? Answer with Yes or No. The answer is No.

Example 1: The age is 32. The workclass is Self-emp-not-inc. The education is 10th. The
marital-status is Married-civ-spouse. The occupation is Exec-managerial. The relationship is
Husband. The race is White. The sex is Male. The capital-gain is 0. The capital-loss is 0. The
hours-per-week is 55. The native-country is United-States. Does this person make over 50K a
year? Answer with Yes or No. The answer is No.

Example 2: The age is 56. The workclass is Private. The education is Some-college. The
marital-status is Married-civ-spouse. The occupation is Sales. The relationship is Husband. The
race is White. The sex is Male. The capital-gain is 0. The capital-loss is 0. The hours-per-week
is 45. The native-country is United-States. Does this person make over 50K a year? Answer
with Yes or No. The answer is Yes.

Example 3: The age is 44. The workclass is State-gov. The education is Masters. The marital-
status is Married-civ-spouse. The occupation is Prof-specialty. The relationship is Husband.
The race is White. The sex is Male. The capital-gain is 7688. The capital-loss is 0. The hours-
per-week is 50. The native-country is United-States. Does this person make over 50K a year?
Answer with Yes or No. The answer is Yes.

C ACRONYMS

GBDT Gradient Boosted Decision Tree. 1, 2

LLM Large Language Model. 2–4, 6

MLP Multi-Layer Perceptron. 2–8, 13

ROC-AUC Receiver Operating Characteristic Area Under the Curve. 7
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