
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DISTILLING TRANSFORMERS INTO NEURAL NETS FOR
FEW-SHOT TABULAR CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer-based models have shown promising performance on tabular data
compared to their classical counterparts such as neural networks and Gradient
Boosted Decision Trees (GBDTs) in scenarios with limited training data. They
utilize their pre-trained knowledge to adapt to new domains, achieving commend-
able performance with only a few training examples, also called the few-shot
regime. However, the performance gain in the few-shot regime comes at the ex-
pense of significantly increased complexity and number of parameters. To circum-
vent this trade-off, we introduce TabDistill, a new strategy to distill the pre-trained
knowledge in complex transformer-based models into simpler neural networks for
effectively classifying tabular data. Our framework yields the best of both worlds:
being parameter-efficient while performing well with limited training data. The
distilled neural networks surpass classical baselines such as regular neural net-
works, XGBoost and logistic regression under equal training data, and in some
cases, even the original transformer-based models that they were distilled from.

1 INTRODUCTION

Tabular data plays a central role in many high-stakes applications, ranging from finance and health-
care, to manufacturing and weather prediction (Shwartz-Ziv & Armon, 2022; van Breugel & van der
Schaar, 2024). However, the scarcity of labeled data can limit the application of machine learning in
some of these domains, e.g., some diseases are extremely rare, or certain natural phenomena occur
once in centuries (Hegselmann et al., 2023; Nam et al., 2023). In financial applications, annotating
data can be expensive, and suffer from issues such as subjectivity, mislabeling, lack of consensus,
and also data imbalances where only the data of accepted applicants may be available but not the re-
jected group (Crook & Banasik, 2004). Thus, tabular classification models that perform well under
limited training data, also called the few-shot regime, are of immense interest.

Recently, transformer-based models have been shown to surpass classical approaches such as neural
networks and Gradient Boosted Decision Trees (GBDTs) in the few-shot regime when the num-
ber of training examples is significantly small (Hollmann et al., 2023; Hegselmann et al., 2023;
Jayawardhana et al., 2025). While GBDTs such as XGBoost (Chen & Guestrin, 2016), CatBoost
(Prokhorenkova et al., 2018), and LightGBM (Ke et al., 2017) have long been the state-of-the-art
for tabular classification when there is sufficient labeled data for training (Shwartz-Ziv & Armon,
2022; Grinsztajn et al., 2022), transformer-based models instead exploit their pre-trained knowledge
to achieve improved performance in the few-shot regime. However, the performance gain in the
few-shot regime comes at the expense of efficiency. Transformer-based models are extremely com-
plex (millions or billions of parameters) in comparison to traditional neural networks and GBDTs,
requiring massive compute, energy, and time during inference. To be able to cater to applications
across varying levels of infrastructure, it is usually desirable that the deployed models are parameter-
efficient and scalable. In this work, our key question is: Can we achieve the best of both worlds, i.e.,
being parameter-efficient while also performing well with limited training data?

Toward answering this question, we propose TabDistill, a framework to distill the classification ca-
pabilities of pre-trained transformers into neural networks for few-shot tabular classification. We
draw inspiration from the image domain where transformer-based models have been found to be
good hypernetworks for generating neural networks to implicitly represent images (Chen & Wang,
2022; Gu & Yeung-Levy, 2025). Succinctly, TabDistill incorporates the pre-trained knowledge of a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

transformer-based model (the base model) into a neural network by fine-tuning the transformer to
infer its weights. We assume that the base model contains an informative intermediate representation
(for example, the encoder output of TabPFN (Hollmann et al., 2023) or encoder-decoder type lan-
guage models such as BERT (Devlin et al., 2019), BART (Lewis et al., 2019), BigScience T0 series
(Sanh et al., 2021) etc.). TabDistill learns a linear map for projecting the intermediate representation
provided by the base model into the parameter space of the neural network, by fine-tuning using
the cross-entropy loss of the resultant classifier. We employ a novel permutation-based training
technique to avoid overfitting the model to the extremely small number of training examples.

Our experiments span over four tabular datasets and two base models. We compare the TabDistill
framework with 5 baselines, including 3 classical models and the 2 base models. Experimental
results indicate that the neural network distilled using the proposed framework exceeds the classical
baselines in performance, particularly in the very-few-shot regime (when the number of training
examples is less than 10). Interestingly, under some settings, the distilled neural network exceeds
the performance of the base model which it was distilled from. In summary, our contributions can
be listed as follows:

• Propose TabDistill, a novel framework to distill transformers into neural networks. We
introduce a way to extract the performance of transformers into a much more efficient Multi-
Layer Perceptron (MLP). Accordingly, the framework has additional advantages of the resulting
model being differentiable and more easily explainable.

• Instantiate the framework with two transformer-based models. We instantiate the distillation
framework with two transformer-based models Bigscience T0pp (Sanh et al., 2021) and the more
recent TabPFN (Hollmann et al., 2023), which have ∼11B and ∼11M parameters respectively.
We distill these base models into significantly simpler neural networks with ∼1000 parameters.

• Experimental validation. We conduct experiments on four tabular datasets (Bank (Moro et al.,
2014), Blood (Yeh, 2008), Calhousing (Pace & Barry, 1997) and Income (Kohavi, 1996)) and five
baselines (MLP, logistic regression, XGBoost, and the two base models TabPFN and T0pp). The
distilled MLP surpasses the classical baselines in the few-shot regime under equal training data,
and in some cases, even the original transformer-based models that they were extracted from.

1.1 RELATED WORKS

Classical algorithms for tabular data. Despite the success of deep learning in various other do-
mains, classical machine learning algorithms such as logistic regression and GBDT methods such
as XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017) and CatBoost (Prokhorenkova
et al., 2018) have been dominating the domain of tabular datasets Shwartz-Ziv & Armon (2022).
While highlighting the lack of a proper benchmark and a standard way of tuning hyperparameters
for a fair comparison, Grinsztajn et al. (2022) point out that the deep learning models struggle on
tabular datasets mostly due to difficulties in learning irregular patterns of the target function. Mul-
tiple works have focused on overcoming such difficulties and adapting neural networks for tabular
datasets (See Gorishniy et al. (2024); Arik & Pfister (2021); Popov et al. (2019) and references
therein). However, given the fact that these classical models are trained from scratch for a given
dataset, their performance degrades significantly in the few-shot regime (Hegselmann et al., 2023).

Transformer-based models for tabular data. Transformer-based models have seen promising
performance gains within the tabular data domain. A multitude of works employ the transformer
as a way to model complex interactions between features of a tabular dataset. SAINT (Somepalli
et al., 2022) uses an attention mechanism across rows as well as columns to better learn the structures
within data. It also incorporates a self-supervised pre-training method for situations where the labels
are scarce. Hollmann et al. (2023) trains a transformer from scratch on a massive collection of syn-
thetic tabular datasets sampled from a causal mechanism. The trained transformer TabPFN can then
be used to predict new tabular tasks with no additional training. In an attempt to leverage the pre-
trained knowledge of a Large Language Model (LLM) for tabular data classification, Hegselmann
et al. (2023) fine-tune models from BigScience T0 series (Sanh et al., 2021) to achieve remarkable
performance in the few-shot regime. Jayawardhana et al. (2025) proposes PFN-Boost and LLM-
Boost techniques where a pre-trained transformer is incorporated as the initial weak classifier of a
GBDT ensemble. However, the performance gain of these methods is offset by the increased com-
plexity and resource consumption particularly during inference. Moreover, the increased complexity

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

causes difficulty in assessing reliability, for instance, model multiplicity (Hamman et al., 2025). Our
method focuses on mitigating these limitations by distilling the transformer into an MLP.

Meta-Learning and hypernetworks. Meta-learning refers to the process of learning to generalize
to unseen tasks by observing few examples corresponding to each task (Vilalta & Drissi, 2002).
Transformers are known to be good at meta learning, particularly in the form of in-context learning
(Kirsch et al., 2022). Hypernetworks are closely related meta-learning, in the sense that they predict
parameters for other machine learning models by observing a few samples from the task at hand.
Transformers have been used as hypernetworks in computer vision applications, specifically for
generating implicit neural representations (Chen & Wang, 2022; Gu & Yeung-Levy, 2025). Chen &
Wang (2022) uses a transformer trained from scratch to predict weights of a neural network which
represents an image or a 3D scene. Gu & Yeung-Levy (2025) exploits the pre-trained knowledge
of a transformer-based foundation model for the same task. Both these works append additional
placeholder tokens to the input for predicting the neural network weights. In contrast, our framework
directly maps the embedding space to neural network parameters.

2 TABDISTILL: DISTILLING TRANSFORMERS INTO NEURAL NETWORKS

Here, we first discuss our proposed TabDistill framework along with the training procedure and
possible methods for hyperparameter tuning. We then elaborate on two example instantiations of
the framework using two popular transformer-based models for few-shot tabular data classification,
namely, TabPFN (Hollmann et al., 2023) and TabLLM (Hegselmann et al., 2023).

2.1 NOTATION AND PROBLEM SETUP

(a) The TabLLM framework. Tabular data is first converted to a natural language string using a serialization
technique (denoted by g(x)). The serialized text is given as the input to the LLM and a prediction is directly
generated as the output. Fine-tuning the LLM can improve classification performance.

(b) Our TabDistill framework. Similar to TabLLM, the serialized text is given as the input to the LLM. However,
in contrast to TabLLM, an MLP is generated as the final output of the transformer model. Only this MLP is
deployed for making predictions on real-world data. Fine-tuning the LLM gives an improved MLP.

Figure 1: Comparison of TabLLM and TabDistill frameworks. The tunable parameters which are
fine-tuned during training in each framework are depicted in green. The example dataset contains
Age and Education as features. The target is to predict whether the Income is >= 50k or not.

Let DN = {(xn, yn), xn ∈ X , yn ∈ {0, 1}, n = 1, . . . , N} be a small tabular dataset for binary
classification with d features (usually pre-processed, e.g., categorical features are one-hot encoded)
and N datapoints (N ∼ 10). Our focus is on transformer-based models capable of classifying
instances x ∈ X of tabular datasets. To this end, LLMs have been adapted as few-shot classifiers
through parameter-efficient fine-tuning (Hegselmann et al., 2023). To perform classification using an
LLM, the tabular data instance x must first be transformed into a natural language string (denoted
by s ∈ S where S is the space of all possible strings within a given length). Hegselmann et al.
(2023) studies a wide array of techniques for converting rows of a tabular dataset into text, known

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

as “serialization techniques”. These techniques include using a fixed text template such as “The
<column name> is <value>” and using a list template of the form “<column name>:
<value>.” We denote such a serialization by g(x) : X → S.

The text output of the LLM can be converted to a binary class prediction using a similar technique
(for example, Yes → 1, and No → 0). We abstract out this mapping and denote the transformer
model by f(s) : S → {0, 1}. Note that with this setup, a meaningful classification can be carried out
by predicting ŷ = f (g(x))). For brevity, let g(x, y) represent a similar transform applied to both the
features and the label together, and g(DN) represent the concatenation of all the strings g(xn, yn)
corresponding to each (xn, yn) ∈ DN . See Figure 1 for an example application of a text template.
It is worth noting that TabPFN (Hollmann et al., 2023) takes the tabular feature values themselves
as the input and hence, S = X and g(x) in this case is the identity function, i.e., g(x) = x.

Our goal is to use the pre-trained knowledge of the complex transformer-based model f to generate
a much simpler MLP hθ(x) : X → {0, 1} with parameters θ ∈ Θ that can classify x ∈ X . The
intuition is that the pre-trained knowledge of f will assist in generating hθ effectively in a few-shot
setting (i.e., when N is very small). We consider the complex model f(s) as consisting of two
major components: an encoder fE(s) : S → Z and a decoder fD(z) : Z → {0, 1}, where Z is an
embedding space. This is the case for the transformer-based models used in TabLLM (Hegselmann
et al., 2023) and TabPFN (Hollmann et al., 2023) as well as popular LLMs such as BERT (Devlin
et al., 2019), BART (Lewis et al., 2019), and T5 (Raffel et al., 2020).

The MLP hθ(x) has the following architecture. Let ReLU(u) denote the ReLU activation function
(Glorot et al., 2011). With the hyperparameters R and L denoting the number of layers and the
width of the hidden layers, respectively, hθ(x) is defined as

hθ(x) = ReLU (WRReLU (· · ·ReLU (W2ReLU (W1x+ b1) + b2) · · ·) + bR) (1)

where Wi and bi (i = 1, . . . , R) are the weights and the biases of each linear layer. The parameter
θ denotes the combination of all such weights and biases, i.e., θ = (W1, b1,W2, b2, . . . ,WR, bR)
and hence, dim(Θ) is equal to the total number of tunable parameters in hθ determined by d,R and
L. The first matrix W1 ∈ RL×d, where d is the input dimension. All the intermediate layers have
Wi ∈ RL×L for i = 2, . . . , R − 1 and the final layer has WR ∈ RL×2 for binary classification.
For all i = 1, . . . , R, bi ∈ R. The output logits hθ(x) can be normalized by applying a Softmax
function σ(·) to get the final class probability predictions. If desired, one can also choose different
dimensions for each weight matrix rather than a fixed L.

2.2 OUR PROPOSED TABDISTILL FRAMEWORK

Figure 2: TabDistill framework. In Phase 1 (left), the tunable parameters of the transformer model
(the linear mapping mη(z)) is fine-tuned, as depicted in green. The resultant output MLP hθ is
depicted in amber. When T0pp is used as the base model f , a text serialization g(x, y) is applied as
shown in the figure. When TabPFN is used as the base model, g(x, y) becomes the identity function.
In Phase 2 (right), the MLP may be further fine-tuned if desired, as depicted in green.

Phase 1: Fine-tuning the base transformer model. The distillation is achieved by using the
encoder fE of the complex model for inferring the weights of the MLP hθ. We learn a linear
mapping mη(z) : Z → Θ parameterized by η such that θ = mη(fE(g(DN))) results in a useful
classifier hθ. We use a simple normalized linear layer as the mapping function, defined as mη(z) =

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

LayerNorm(Az + b), where A ∈ Rdim(Θ)×dim(Z), b ∈ Rdim(Θ) and η = (A, b). During Phase 1,
the fine-tuning loss L(η;DN) is computed as follows:

1. Create a combined serialized input g(DN) for the complex model f using the training data DN

2. Prompt the complex model encoder to get the embeddings z = fE(g(DN))

3. Infer the parameters θ = mη(z) for the MLP hθ

4. Compute the loss L(η;DN) as the cross entropy loss of the classifier hθ

Ultimately, the fine-tuning loss function can be written as

L(η;DN) =

N∑
n=1

yn log
(
σ(hθ(xn))[[1]]

)
+ (1− yn) log

(
σ(hθ(xn))[[0]]

)
(2)

with θ = mη(fE(g(DN))) and the indexing [[c]] for c ∈ {0, 1} indicates the corresponding pre-
dicted class probabilities. Note that the parameters of the complex model f do not undergo any
modifications during the fine-tuning phase since this is a form of parameter-efficient fine-tuning.

Phase 2: Additional fine-tuning of the MLP. The distilled MLP hθ is extracted by prompting fE
with the same training dataset DN . One can further fine-tune hθ for K additional epochs on DN .
During inference, the predictions are made using hθ, similar to any ordinary MLP. The complex
model f is no longer involved in the inference phase after the initial extraction of hθ.

Nature of the input prompt: The same small training set DN (or a subset of DN) is used for two
tasks during Phase 1: First, a serialized/transformed version of DN (i.e., g(DN)) is used to prompt
the base model f to retrieve hθ. Then,DN is used separately again (without serialization) to compute
the cross-entropy loss of hθ, i.e., L(η,DN). Accordingly, we re-arrange the training set DN to the
following serialized/transformed structure for prompting (an example from the Calhousing dataset):

Prompt (N=4):
Example 0: The median income is 4.3292. The housing median age is 14.0. The total rooms
is 4412.0. The total number of bedrooms is 952.0. The population is 1656.0. The number
of households is 874.0. The latitude is 33.77. The longitude is -117.84. Is this house block
valuable? Yes or no? The answer is yes.

Example 1: The median income is 3.7813. The housing median age is 41.0. The total rooms
is 3170.0. The total number of bedrooms is 622.0. The population is 1091.0. The number of
households is 528.0. The latitude is 37.9. The longitude is -122.54. Is this house block valuable?
Yes or no? The answer is yes.

Example 2: The median income is 3.2731. The housing median age is 20.0. The total rooms
is 5998.0. The total number of bedrooms is 1320.0. The population is 3185.0. The number
of households is 1199.0. The latitude is 33.93. The longitude is -117.45. Is this house block
valuable? Yes or no? The answer is no.

Example 3: The median income is 1.6955. The housing median age is 24.0. The total rooms
is 2316.0. The total number of bedrooms is 599.0. The population is 1829.0. The number of
households is 532.0. The latitude is 34.0. The longitude is -117.4. Is this house block valuable?
Yes or no? The answer is no.

For computing the cross-entropy loss using DN , we let X train denote an N × d tensor which
includes the normalized feature values corresponding to the same N examples in the prompt.
These feature vectors are used as the input to hθ for computing L(η,DN). y train denotes the
corresponding labels, also used for computing L(η,DN). In this example, the datapoints used for
creating both the prompt and the X/y train are the same and N = 4. However, when N is
sufficiently large, we may use different subsets of datapoints from DN to create the prompt and
X/y train. Moreover, if N is even larger, we may generate multiple examples of the above form
with non-overlapping subsets from DN . Notice that when the base model is TabPFN, we directly
use DN for fine-tuning the transformer model without serialization.

The few-shot regime poses the inherent problem of overfitting. To overcome this problem, in each
epoch, we randomly permute the feature order of DN . E.g., if in epoch 1 the order was (age,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

education, label), in epoch 2 it will be (education, age, label). All examples in
a prompt will have the same feature order. DN is chosen to be class-wise balanced. A validation
accuracy is computed on the same set DN with a different randomly permuted feature order and is
used for determining the hyperparameters such as the number of epochs and the complexity of hθ.

See Figure 2 for an illustration of the framework. Algorithm 1 summarizes the procedure. See
Appendix A for more details on the exact training parameters corresponding to each dataset and N .

Algorithm 1: TabDistill framework
Input: Few-shot dataset DN , complex model f with encoder fE , transform g(·), number of

fine-tuning epochs T , number of post-fine-tuning epochs K, architecture of the MLP hθ

Output: Trained MLP hθ

PHASE 1: Fine-tuning the transformer model to get a good output MLP
Initialize the linear mapping mη(z) : Z → Θ based on the architecture of hθ ;
for t← 1 to T do

Randomly permute the feature order of DN ;
Create subsets Ds, Dq ⊆ DN ;
Generate Prompt← g(Ds),X train← {x : (x, y) ∈ Dq} and
y train← {y : (x, y) ∈ Dq};

Prompt the base model f and obtain embeddings z ← fE(Prompt) ;
Infer parameters θ ← mη(z) for the MLP hθ;
Compute cross-entropy loss of classifier hθ: L(η,Dq), as in equation 2 with
xn ∈ X train and yn ∈ y train;

Update η using gradient descent with gradients ∇ηL(η,Dq)
end
Prompt the fine-tuned base model f with original dataset DN and obtain the output MLP hθ;
PHASE 2: Additional fine-tuning of the obtained MLP if desired
for k ← 1 to K do

Compute cross-entropy loss J (θ,Dq) with xn ∈ X train and yn ∈ y train;
Update θ using gradient descent with gradients ∇θJ (θ,Dq) ;

end
return hθ ;

2.3 PROPOSED INSTANTIATIONS OF TABDISTILL WITH TABPFN AND T0PP

TabDistill with TabPFN: TabPFN (Hollmann et al., 2023) is a transformer-based model pre-trained
on a large number of synthetic tabular datasets. Tabular data (after pre-processing steps such as nor-
malizing and one-hot encoding) can directly be used as the input to the TabPFN model. There-
fore, the transform g(x) in this case is the identity function. The TabPFN library provides a
scikit-learn-style fit and predict functionality. In each training epoch, we fit the TabPFN
classifier to DN (with a randomly-permuted feature order) and obtain z = fE(DN). Next, we get
θ = mη(z) and compute the loss L(η;DN) in equation 2 to perform a gradient descent update on
η. At the end of the training phase, hθ is obtained by inputting DN to TabPFN encoder without any
permutations to the feature order. Finally, hθ is fine-tuned on DN for additional K = 100 epochs.
The encoder output dimensionality dim(Z) of TabPFN varies with the number of training examples
in multiples of 192. Consequently, the dimensionality of the matrix A in the mapping mη(z) is
taken to be dim(Θ)× 192N .

TabDistill with T0pp: The BigScience T0pp (Sanh et al., 2021) is an encoder-decoder style LLM
trained on a large number of English language tasks specified in natural language prompts. This
model has been used as the base LLM for TabLLM (Hegselmann et al., 2023). Since the input to
the model has to be a natural language prompt, we convert the training data DN (or a subset) into
natural language using the “The <column name> is <value>” style text template. g(x) in
this case represents this transform from tabular data to a natural language prompt. See Figure 1 for
a detailed illustration. Appendix B lists example serializations used for each dataset. The training
and inference phases are similar to that of TabDistill with TabPFN. In the end, the resultant MLP
hθ is fine-tuned on DN for additional K = 100 epochs. The dimensionality of the encoder output
z = fE(g(DN)) is 4096. Therefore, the dimensionality of the matrix A in the mapping mη(z) is
taken to be dim(Θ)× 4096.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3 EXPERIMENTAL RESULTS

Datasets and metrics: We evaluate the TabDistill framework on four publicly available tabular
datasets: Bank (UCI Bank Marketing) (Moro et al., 2014), Blood (UCI Blood Transfusion Service
Center) (Yeh, 2008), Calhousing (California Housing Prices) (Pace & Barry, 1997) and Income
(Census Income) (Kohavi, 1996). We divide each dataset into a train and a test split. DN is selected
from the training split. More details about the datasets are given in Table 5. Performance of all the
models is compared with respect to the Receiver Operating Characteristic Area Under the Curve
(ROC-AUC) metric. We consider the few-shot regime where the number of training examples is
very low, specifically, N ∈ {4, 8, 16, 32, 64}.
Baselines and hθ: The architecture of hθ is constant across all the experiments, unless specified
explicitly. hθ consisted of two hidden layers (hence, four layers in total, i.e., R = 4) with 10 neurons
each (i.e., L = 10). We compare TabDistill with 3 simple and efficient classical baselines: logistic
regression, XGBoost (Chen & Guestrin, 2016), an MLP with an architecture similar to hθ but trained
independently. In addition, we provide a performance comparison w.r.t. the base models TabPFN
(Hollmann et al., 2023) and T0pp (Hegselmann et al., 2023) for completeness. All the models use
the same set of labeled examples as TabDistill for training. Logistic regression and XGBoost are the
best performing classical models in (Hegselmann et al., 2023), and hence, provide a strong baseline.
The performance of the independently trained MLP helps observing the performance improvement
obtained as a result of the distillation process.

Hyperparameters: Hyperparameters of all the baselines except were tuned using 4-fold cross-
validation similar to Hegselmann et al. (2023), except in the case of training set size 4. When the
training set size is 4, 2-fold cross-validation was used. We use Scikit-learn’s GridSearchCV
and RandomizedSearchCV for tuning the hyperparameters. For XGBoost and MLP, we adopt
the hyperparameter search ranges given in Grinsztajn et al. (2022). However, we keep the archi-
tecture of the MLP fixed to that of hθ. See Table 6 for more details on hyperparameter tuning
of the baselines. TabPFN does not require any hyperparameters to be tuned (Hollmann et al.,
2023). Weights and Biases sweeps were used for optimizing the hyperparameters of Tab-
Distill, based on a validation score computed using the same training set DN . See Figure 4 in
Appendix A for an example sweep.

Main observations: Table 1 presents the ROC-AUC of TabDistill along with that of the baselines,
over the four tabular datasets. TabDistill shows superior performance over its classical counterparts
particularly in the very few-shot regime. In general, the performance increases with the number
of labeled examples available (i.e., with increasing N). Out of the three classical baselines, none
seems to be universally better in performance across the datasets or the number of labeled examples.
TabDistill + TabPFN shows better performance that TabDistill+T0pp in most cases, except in the
Income dataset, where TabDistill+T0pp performs consistently better.

Effect of the complexity of hθ: In Table 2 we study the effect of the complexity of hθ measured in
terms of the number of layers R. The layer size L is kept constant at 10. Bank dataset and TabPFN
base model were used for the evaluation. As it is evident from the results, when the complexity of
hθ increases beyond a certain limit, the performance degrades.

Performance with respect to the base models: Table 3 presents the performance of the MLP
hθ obtained using TabDistill compared to the corresponding transformer-based model f used for
distillation. Interestingly, in some cases, the MLP hθ distilled using our method surpasses the per-
formance of the base model f which it was distilled from.

Feature attribution comparison: We compute the Shapley feature attribution scores (Shapley et al.,
1953) using the SHAP library for the classical baseline models logistic regression and XGBoost, and
hθ using the Calhousing dataset. The number of training examples used was 16 and the base model
f was TabPFN. Figure 3 shows the corresponding beeswarm plots for each baseline. We observe
that the median income and the longitude have a greater impact on the output across all the
models, indicating that the distilled models are consistent with the baselines trained in the ordinary
fashion (See figures 3a, 3b and 3c). We also compute the attributions scores corresponding to an
MLP distilled using a DN with feature columns permuted (Figure 3d). Despite the permutation,
this model displays feature importances similar to the original hθ. Hence, it is evident that the base
model has correctly identified the correlation between the MLP weights and the feature order.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Test ROC-AUC performance of TabDistill compared with the classical baselines. Best
performance corresponding to each N and dataset is emphasized in bold. Reported values are the
average of 5 runs with different random states. The standard deviations are given as subscripts.

Dataset Method Number of labeled examples (N)
4 8 16 32 64

Bank

MLP 0.57.08 0.61.11 0.72.05 0.76.04 0.81.03

Logistic Regression 0.54.10 0.65.06 0.72.03 0.73.04 0.77.04
XGBoost 0.50.00 0.56.10 0.72.08 0.78.04 0.81.02

TabDistill + TabPFN (ours) 0.72.01 0.67.06 0.68.02 0.79.02 0.81.02

TabDistill + T0pp (ours) 0.70.02 0.67.02 0.72.01 0.74.02 0.80.02

Blood

MLP 0.57.10 0.61.09 0.60.09 0.61.07 0.67.08
Logistic Regression 0.60.16 0.66.12 0.63.11 0.65.10 0.73.03
XGBoost 0.50.00 0.55.09 0.55.07 0.65.07 0.72.02
TabDistill + TabPFN (ours) 0.56.07 0.67.05 0.69.07 0.68.09 0.75.00

TabDistill + T0pp (ours) 0.62.08 0.58.08 0.67.06 0.67.04 0.68.06

Calhousing

MLP 0.49.07 0.63.10 0.720.12 0.79.07 0.82.04
Logistic Regression 0.59.10 0.66.13 0.74.14 0.83.04 0.89.01

XGBoost 0.50.00 0.57.10 0.75.04 0.75.06 0.81.06
TabDistill + TabPFN (ours) 0.64.06 0.65.03 0.65.03 0.77.03 0.84.00
TabDistill + T0pp (ours) 0.67.05 0.67.03 0.66.05 0.74.03 0.81.01

Income

MLP 0.51.10 0.69.05 0.74.07 0.78.04 0.79.04
Logistic Regression 0.76.07 0.75.09 0.79.02 0.82.02 0.84.03
XGBoost 0.50.00 0.57.11 0.65.14 0.80.02 0.81.01
TabDistill + TabPFN (ours) 0.68.08 0.75.03 0.80.02 0.81.02 0.83.01
TabDistill + T0pp (ours) 0.70.03 0.77.02 0.83.01 0.83.02 0.85.01

Table 2: Test ROC-AUC performance of TabDistill with different MLP complexities

Labeled
examples

Number of layers (R)
2 4 8 16

4 0.72.02 0.72.01 0.65.09 0.53.04
8 0.74.01 0.67.06 0.72.03 0.50.00

4 CONCLUSION

We introduce TabDistill, a novel distillation framework for extracting the pre-trained knowledge
of transformer models into neural networks for classifying tabular data. The framework produces
MLPs with enhanced performance particularly when the labeled data is limited. Experiments show
that the resulting MLPs surpass the classical machine learning models such as XGBoost and logistic
regression, and in some cases, the initial transformer model used for distilling itself in the few-shot
regime. TabDistill can be used to generate scalable, computationally efficient models with a small
number of training data, bringing together the advantages of transformers and classical models.

Limitations and future directions: While TabDistill produces MLPs which surpass the classical
models in the few-shot regime, the performance gain is limited when the number of labeled examples
increase. Hence, there is room for improvement when the training set is large. The linear mapping
function mη(·) used in the current experiments can be replaced with other alternatives to potentially
achieve performance improvements. Moreover, the extracted MLP may inherit the biases of the
base model, although it can be mitigated up to some extent through the MLP finetuning in the
second phase.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Test ROC-AUC performance of TabDistill compared with the base model f . Best perfor-
mance corresponding to each N and dataset is emphasized in bold. Reported values are the average
of 5 runs with different random states. The standard deviations are given as subscripts.

Dataset Method Number of labeled examples (N)
4 8 16 32 64

Bank

TabPFN (11M params) 0.62.05 0.68.08 0.75.08 0.82.05 0.86.02

TabDistill + TabPFN (ours) 0.72.01 0.67.06 0.68.02 0.79.02 0.81.02

T0pp (TabLLM, 11B params)† 0.59.10 0.64.05 0.65.05 0.640.6 0.69.03
TabDistill + T0pp (ours) 0.70.02 0.67.02 0.72.01 0.74.02 0.80.02

Blood

TabPFN (11M params) 0.55.20 0.61.14 0.59.12 0.68.07 0.73.02
TabDistill + TabPFN (ours) 0.56.07 0.67.05 0.69.07 0.68.09 0.75.00

T0pp (TabLLM, 11B params)† 0.58.09 0.66.03 0.66.07 0.68.04 0.68.04

TabDistill + T0pp (ours) 0.62.08 0.58.08 0.67.06 0.67.04 0.68.06

Calhousing

TabPFN (11M params) 0.59.08 0.70.10 0.83.04 0.84.04 0.88.02

TabDistill + TabPFN (ours) 0.64.06 0.65.03 0.65.03 0.77.03 0.84.00

T0pp (TabLLM, 11B params)† 0.63.05 0.60.07 0.70.08 0.77.08 0.770.4
TabDistill + T0pp (ours) 0.67.05 0.67.03 0.66.05 0.74.03 0.81.01

Income

TabPFN (11M params) 0.69.06 0.74.09 0.78.01 0.82.03 0.84.01

TabDistill + TabPFN (ours) 0.68.08 0.75.03 0.80.02 0.81.02 0.83.01

T0pp (TabLLM, 11B params)† 0.84.01 0.84.02 0.84.04 0.84.01 0.84.02
TabDistill + T0pp (ours) 0.70.03 0.77.02 0.83.01 0.83.02 0.85.01

† TabLLM performance values are as reported in Hegselmann et al. (2023)

(a) Logistic regression trained on DN (b) XGBoost trained on DN

(c) hθ distilled on DN (d) hθ distilled on feature-permuted DN

Figure 3: SHAP feature attributions. Computed on the Calhousing dataset with TabPFN as the base
model f . Training set size N is 16. 200 samples were used for computing the beeswarm plots.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 REPRODUCIBILITY STATEMENT

The TabDistill framework has been explained in detail under Section 2. Details on the experimental
setup including the datasets and the baselines are given in Section 3. Further details including
hyperparameters and training setup are given in Appendix A. All the experiments were done on
computer with a 3.5 GHz AMD EPYC 7763 64-Core Processor and an Nvidia RTX 6000 Ada GPU.

REFERENCES

Sercan Ö Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 6679–6687, 2021.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Yinbo Chen and Xiaolong Wang. Transformers as meta-learners for implicit neural representations.
In European Conference on Computer Vision, pp. 170–187. Springer, 2022.

Jonathan Crook and John Banasik. Does reject inference really improve the performance of appli-
cation scoring models? Journal of Banking & Finance, 28(4):857–874, 2004.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp.
315–323. JMLR Workshop and Conference Proceedings, 2011.

Yury Gorishniy, Akim Kotelnikov, and Artem Babenko. Tabm: Advancing tabular deep learning
with parameter-efficient ensembling. arXiv preprint arXiv:2410.24210, 2024.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform
deep learning on typical tabular data? Advances in neural information processing systems, 35:
507–520, 2022.

Jeffrey Gu and Serena Yeung-Levy. Foundation models secretly understand neural network weights:
Enhancing hypernetwork architectures with foundation models. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=cADpvQgnqg.

Faisal Hamman, Pasan Dissanayake, Saumitra Mishra, Freddy Lecue, and Sanghamitra Dutta.
Quantifying prediction consistency under model multiplicity in tabular llms. In Forty-second
International Conference on Machine Learning, 2025.

Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David
Sontag. Tabllm: Few-shot classification of tabular data with large language models. In Interna-
tional conference on artificial intelligence and statistics, pp. 5549–5581. PMLR, 2023.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A transformer
that solves small tabular classification problems in a second. In The Eleventh International Con-
ference on Learning Representations, 2023.

Mayuka Jayawardhana, Samuel Dooley, Valeriia Cherepanova, Andrew Gordon Wilson, Frank Hut-
ter, Colin White, Tom Goldstein, Micah Goldblum, et al. Transformers boost the performance of
decision trees on tabular data across sample sizes. arXiv preprint arXiv:2502.02672, 2025.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30, 2017.

10

https://openreview.net/forum?id=cADpvQgnqg
https://openreview.net/forum?id=cADpvQgnqg

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz. General-purpose in-context
learning by meta-learning transformers. In Sixth Workshop on Meta-Learning at the Conference
on Neural Information Processing Systems, 2022.

Ron Kohavi. Census Income. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5GP7S.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461, 2019.

S. Moro, P. Rita, and P. Cortez. Bank Marketing. UCI Machine Learning Repository, 2014. DOI:
https://doi.org/10.24432/C5K306.

Jaehyun Nam, Jihoon Tack, Kyungmin Lee, Hankook Lee, and Jinwoo Shin. STUNT: Few-shot
tabular learning with self-generated tasks from unlabeled tables. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=_xlsjehDvlY.

R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability Letters, 33
(3):291–297, 1997.

Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensembles for
deep learning on tabular data. arXiv preprint arXiv:1909.06312, 2019.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. Catboost: unbiased boosting with categorical features. Advances in neural information
processing systems, 31, 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari, Canwen
Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani,
Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica,
Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj,
Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan,
Stella Biderman, Leo Gao, Tali Bers, Thomas Wolf, and Alexander M. Rush. Multitask prompted
training enables zero-shot task generalization, 2021.

Lloyd S Shapley et al. A value for n-person games. Princeton University Press Princeton, 1953.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Information
Fusion, 81:84–90, 2022.

Gowthami Somepalli, Avi Schwarzschild, Micah Goldblum, C Bayan Bruss, and Tom Goldstein.
SAINT: Improved neural networks for tabular data via row attention and contrastive pre-training.
In NeurIPS 2022 First Table Representation Workshop, 2022.

Boris van Breugel and Mihaela van der Schaar. Why tabular foundation models should be a research
priority. arXiv preprint arXiv:2405.01147, 2024.

Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial
intelligence review, 18(2):77–95, 2002.

I-Cheng Yeh. Blood Transfusion Service Center. UCI Machine Learning Repository, 2008. DOI:
https://doi.org/10.24432/C5GS39.

11

https://openreview.net/forum?id=_xlsjehDvlY
https://openreview.net/forum?id=_xlsjehDvlY

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A TRAINING SETUP AND HYPERPARAMETER OPTIMIZATION

The PHASE 1 fine-tuning was carried out for 300 epochs. The epoch with the best validation
accuracy (computed using a randomly permuted version of the DN) was used for inferring the
weights for the final hθ. Learning rates were selected from the set [1e−6, 2e−4]. Adam optimizer
was used with a weight decay of 1e−3. For some of the experiments with N = 4, weight decay was
set to 0. The subsets Ds and Dq of the training set DN were selected as per Table 4. More details
on the datasets including the test-train split sizes is given in Table 5.

Table 4: The scheme of partitioning DN

Parameter Number of labeled examples
4 8 16 32 64

|Ds| 4 4 8 8 8
|Dq| 4 4 8 8 8

Ds = Dq? True True False False False
of (Ds, Dq) pairs 1 2 1 2 4

Table 5: Dataset details

Dataset # Features Test size Train size Target

Bank 16 43211 2000 To predict whether the client will
subscribe a term deposit

Blood 4 374 374 To predict whether a person would
donate blood

Calhousing 12 19640 1000 To predict whether a given house
block is valuable or not

Income 12 44222 1000 To predict whether a person’s
annual income exceeds 50K

Figure 4: Weights and Biases sweeps used for optimizing hyperparameters for TabDistill
with TabPFN and Calhousing dataset, 64 training examples

Hyperparameter optimization for the classical baseline models was done using scikit-learn’s
GridSearchCV and RandomizedSearchCV methods. The search ranges are given in Table 6.
Hyperparameters for the TabDistill framework were deteremined using Weights and Biases
sweeps. Figure 4 illustrates one such sweep corresponding to the TabPFN base model and the
Calhousing dataset.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 6: Hyperparameter ranges used for classical baseline models

Model Hyperparameter Range/Distribution Method

MLP

Number of layers 4

Grid searchHidden layer size 10
Number of epochs [30, 50, 100, 300]
Learning rate [1e-5, 1e-4, 1e-3, 1e-2]

Logistic Regression C [0.01, 0.1, 1, 10] Grid search

XGBoost

Max depth UniformInt[1,11]

Randomized
search with 20
iterations

Number of estimators 1000
Min child weight LogUniformInt[1, 1e2]
Subsample Uniform[0.5, 1]
Learning rate LogUniform[1e-5, 0.7]
Column sample by level Uniform[0.5, 1]
Column sample by tree Uniform[0.5, 1]
Gamma LogUniform[1e-8, 7]
Lambda LogUniform[1, 4]
Alpha LogUniform[1e-8, 1e2]

B SERIALIZATIONS USED FOR PROMPTING T0PP

Bank dataset, N=4:
Example 0: The age is 29.0. The job is blue-collar. The marital status is married. The education
is secondary. The default is no. The account balance is 314.0. The housing loan is available.
The personal loan is available. The contact communication type is cellular. The last contact day
of the month is 17.0. The last contact month of year is apr. The last contact duration, in seconds
is 357.0. The number of contacts in campaign is 1.0. The days since last contact is -1.0. The
number of previous contacts is 0.0. The previous contact outcome is unknown. Does this client
subscribe to a term deposit? Yes or no? The answer is no.

Example 1: The age is 62.0. The job is housemaid. The marital status is married. The education
is unknown. The default is no. The account balance is 2021.0. The housing loan is not available.
The personal loan is not available. The contact communication type is telephone. The last
contact day of the month is 26.0. The last contact month of year is feb. The last contact duration,
in seconds is 361.0. The number of contacts in campaign is 1.0. The days since last contact is
-1.0. The number of previous contacts is 0.0. The previous contact outcome is unknown. Does
this client subscribe to a term deposit? Yes or no? The answer is yes.

Example 2: The age is 32.0. The job is blue-collar. The marital status is single. The education
is secondary. The default is no. The account balance is 3.0. The housing loan is available. The
personal loan is not available. The contact communication type is unknown. The last contact
day of the month is 23.0. The last contact month of year is may. The last contact duration, in
seconds is 108.0. The number of contacts in campaign is 3.0. The days since last contact is -1.0.
The number of previous contacts is 0.0. The previous contact outcome is unknown. Does this
client subscribe to a term deposit? Yes or no? The answer is no.

Example 3: The age is 36.0. The job is management. The marital status is married. The
education is tertiary. The default is no. The account balance is 203.0. The housing loan is not
available. The personal loan is not available. The contact communication type is cellular. The
last contact day of the month is 25.0. The last contact month of year is jan. The last contact
duration, in seconds is 255.0. The number of contacts in campaign is 1.0. The days since last
contact is 88.0. The number of previous contacts is 1.0. The previous contact outcome is success.
Does this client subscribe to a term deposit? Yes or no? The answer is yes.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Blood dataset, N=4:
Example 0: The previous blood donation record of a person is as follows: The months since last
donation is 14.0. The total number of donations is 3.0. The total amount of blood donated (in
cc) is 750.0. The months since first donation is 21.0. Will this person donate blood next time?
Yes or no? The answer is no.

Example 1: The previous blood donation record of a person is as follows: The months since last
donation is 4.0. The total number of donations is 2.0. The total amount of blood donated (in cc)
is 500.0. The months since first donation is 4.0. Will this person donate blood next time? Yes or
no? The answer is yes.

Example 2: The previous blood donation record of a person is as follows: The months since last
donation is 16.0. The total number of donations is 7.0. The total amount of blood donated (in
cc) is 1750.0. The months since first donation is 87.0. Will this person donate blood next time?
Yes or no? The answer is yes.

Example 3: The previous blood donation record of a person is as follows: The months since last
donation is 11.0. The total number of donations is 5.0. The total amount of blood donated (in
cc) is 1250.0. The months since first donation is 35.0. Will this person donate blood next time?
Yes or no? The answer is no.

Calhousing dataset, N=4:
Example 0: The median income is 4.3292. The housing median age is 14.0. The total rooms
is 4412.0. The total number of bedrooms is 952.0. The population is 1656.0. The number
of households is 874.0. The latitude is 33.77. The longitude is -117.84. Is this house block
valuable? Yes or no? The answer is yes.

Example 1: The median income is 3.7813. The housing median age is 41.0. The total rooms
is 3170.0. The total number of bedrooms is 622.0. The population is 1091.0. The number of
households is 528.0. The latitude is 37.9. The longitude is -122.54. Is this house block valuable?
Yes or no? The answer is yes.

Example 2: The median income is 3.2731. The housing median age is 20.0. The total rooms
is 5998.0. The total number of bedrooms is 1320.0. The population is 3185.0. The number
of households is 1199.0. The latitude is 33.93. The longitude is -117.45. Is this house block
valuable? Yes or no? The answer is no.

Example 3: The median income is 1.6955. The housing median age is 24.0. The total rooms
is 2316.0. The total number of bedrooms is 599.0. The population is 1829.0. The number of
households is 532.0. The latitude is 34.0. The longitude is -117.4. Is this house block valuable?
Yes or no? The answer is no.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Income dataset, N=4:
Example 0: The age is 35. The workclass is Private. The education is HS-grad. The
marital-status is Married-civ-spouse. The occupation is Transport-moving. The relationship is
Husband. The race is White. The sex is Male. The capital-gain is 0. The capital-loss is 0. The
hours-per-week is 30. The native-country is United-States. Does this person make over 50K a
year? Answer with Yes or No. The answer is No.

Example 1: The age is 32. The workclass is Self-emp-not-inc. The education is 10th. The
marital-status is Married-civ-spouse. The occupation is Exec-managerial. The relationship is
Husband. The race is White. The sex is Male. The capital-gain is 0. The capital-loss is 0. The
hours-per-week is 55. The native-country is United-States. Does this person make over 50K a
year? Answer with Yes or No. The answer is No.

Example 2: The age is 56. The workclass is Private. The education is Some-college. The
marital-status is Married-civ-spouse. The occupation is Sales. The relationship is Husband. The
race is White. The sex is Male. The capital-gain is 0. The capital-loss is 0. The hours-per-week
is 45. The native-country is United-States. Does this person make over 50K a year? Answer
with Yes or No. The answer is Yes.

Example 3: The age is 44. The workclass is State-gov. The education is Masters. The marital-
status is Married-civ-spouse. The occupation is Prof-specialty. The relationship is Husband.
The race is White. The sex is Male. The capital-gain is 7688. The capital-loss is 0. The hours-
per-week is 50. The native-country is United-States. Does this person make over 50K a year?
Answer with Yes or No. The answer is Yes.

C ACRONYMS

GBDT Gradient Boosted Decision Tree. 1, 2

LLM Large Language Model. 2–4, 6

MLP Multi-Layer Perceptron. 2–8, 13

ROC-AUC Receiver Operating Characteristic Area Under the Curve. 7

15

	Introduction
	Related Works

	TabDistill: Distilling transformers into neural networks
	Notation and problem setup
	Our proposed TabDistill framework
	Proposed Instantiations of TabDistill with TabPFN and T0pp

	Experimental Results
	Conclusion
	Reproducibility Statement
	Training setup and hyperparameter optimization
	Serializations used for prompting T0pp
	Acronyms

