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Abstract

The local search methods have been widely used to solve the clustering problems.
In practice, local search algorithms for clustering problems mainly adapt the single-
swap strategy, which enables them to handle large-scale datasets and achieve
linear running time in the data size. However, compared with multi-swap local
search algorithms, there is a considerable gap on the approximation ratios of the
single-swap local search algorithms. Although the current multi-swap local search
algorithms provide small constant approximation, the proposed algorithms tend to
have large polynomial running time, which cannot be used to handle large-scale
datasets. In this paper, we propose a multi-swap local search algorithm for the
k-means problem with linear running time in the data size. Given a swap size t, our
proposed algorithm can achieve a (50(1 + 1

t ) + ϵ)-approximation, which improves
the current best result 509 (ICML 2019) with linear running time in the data size.
Our proposed method, compared with previous multi-swap local search algorithms,
is the first one to achieve linear running time in the data size. To obtain a more
practical algorithm for the problem with better clustering quality and running time,
we propose a sampling-based method which accelerates the process of clustering
cost update during swaps. Besides, a recombination mechanism is proposed to
find potentially better solutions. Empirical experiments show that our proposed
algorithms achieve better performances compared with branch and bound solver
(NeurIPS 2022) and other existing state-of-the-art local search algorithms on both
small and large datasets.

1 Introduction

Clustering is a fundamental problem in the field of machine learning with many real-world applica-
tions. The goal of clustering is to partition a given set of data points into different clusters according
to their similarity such that data points within the same cluster share high similarity as much as
possible. Among different objective functions, the k-means clustering aims to minimize the sum of
the squared distances between data points to their closest centers. More formally, given a set P ⊂ Rd
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of data points in a d-dimensional Euclidean space, the goal of the k-means clustering is to find a set
C ⊂ Rd of size at most k with the following objective: minC⊂Rd

∑
p∈P minc∈C ∥p− c∥2.

For the k-means problem, Lloyd’s algorithm [12] is one of the most widely used heuristic in practice.
However, there is no theoretical guarantee for Lloyd-type method unless certain data distribution
assumptions are introduced. It is known that there are several constant approximation schemes based
on primal-dual and randomized rounding techniques [2, 5, 8]. The current best approximation ratio
in polynomial time is 5.912 [5], which is based on primal-dual method and nested quasi-independent
set. For fixed dimension d or the number of clusters k, several (1 + ϵ)-approximation algorithms
were proposed [6, 7].

The k-means++ algorithm proposed by Arthur and Vassilvitskii [3] is a good seeding method that
runs in linear time in the data size with O(log k)-approximation. It is also known that the k-means++
algorithm gives a constant approximation by opening O(k) centers [1, 13, 16]. Lattanzi and Sohler
[11] showed a combination of k-means++ seeding and the local search algorithm (named as LS++
algorithm), which yields a constant approximation with running time O(ndk2 log log k). In each
round, LS++ algorithm samples a data point using k-means++ seeding and enumerates possible
swap pairs to make improvements on clustering cost. They proved that after O(k log log k) rounds of
sampling and swaps, one can obtain a 509-approximate solution in expectation. Choo et al. [4] proved
that one can achieve an O(1/ϵ3)-approximation using reduced O(ϵk) rounds of LS++ algorithm.
Under the assumption that each optimal cluster has size Ω(n/k), Huang et al. [9] gave an improved
approximation algorithm with ratio (100 + ϵ) by random sampling methods.

However, there are still several issues for local search methods. Although current local search
methods with multi-swap strategy can achieve good theoretical guarantee, the running time of them
have polynomial dependence on the data size, which are hard to be used to handle large-scale
datasets. Compared with the (9 + ϵ)-approximation multi-swap local search algorithm given in [10],
the approximation ratio 509 of LS++ is a large constant since it can only apply the single-swap
strategy. Numerical experiments [9] showed that LS++ could easily fall into a poor local optimum
when handling real-world datasets. An immediate idea is to apply the multi-swap strategy to LS++
algorithm for improvements. However, the swapping process of LS++ relies heavily on the one-to-one
matched swap pairs defined in [11]. Thus, it is challenging to apply the multi-swap strategy to solve
the k-means problem while maintaining a linear dependence of data size on the running time.

Secondly, in the process of local search swaps, the time and space complexities for clustering cost
update during swaps have great impact on the efficiency of the algorithms. A direct way in [11] is to
maintain the nearest and the second nearest centers for each data point such that picking the best swap
pair and updating the clustering cost can be implemented in time O(nd) and O(ndk), respectively.
Maintaining the distances from data points to their centers requires an extra space complexity of
O(nd). To obtain faster implementation, as pointed out in [4], one can use binary search trees to store
the distances from each data point to each of the clustering centers. By using this data structure, each
local search step can be implemented in time O(nd log k). However, the space complexity becomes
O(ndk). To get much practical algorithms for the k-means problem, it is necessary to further improve
the time and space complexities for updating the clustering cost during swaps.

1.1 Our Contributions

In order to further narrow the gap between theory and practice, in this paper, we propose the first
multi-swap local search algorithm for the k-means problem with linear running time in the data
size. A common feature for the existing multi-swap local search methods is that Θ((nk)t) candidate
swaps should be enumerated for finding clustering cost improvements in a single local search step,
which leads to at least quadratic running time. To overcome this challenge, our idea is to use a
sampling-based strategy to construct a candidate set of centers that are close to the optimal clustering
centers in linear time, which serves as the set of potentially good centers for swapping in. Based on
the candidate set of centers constructed, enumerations on the current set of centers opened suffice
to determine a good swap. Hence, the number of possible swaps can be reduced from Θ((nk)t) to
Θ(kt), where each local search step can be conducted in linear-time in the data size.

Sampling-based strategy has been used in [11] for designing single-swap local search algorithms.
However, the theoretical analysis relies heavily on the one-to-one matched swap pairs. Thus, the
approximation ratio is a large constant since there may exist some optimal clusters that cannot be well
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approximated by performing matched swaps. In this paper, to obtain better approximation guarantee,
we extend the notions of swap pairs and propose a new consecutive sampling method to construct
candidate centers for swap such that data points close to a subset of optimal clustering centers can be
swapped in simultaneously. A key challenge here is that there may exist some optimal clusters whose
clustering costs only take a tiny fraction of the total clustering cost such that sampling methods may
fail. To overcome this challenge, we propose new structures that divide optimal clusters into different
groups for establishing a lower bound for the success probability of sampling.

By using the proposed multi-swap local search method (denoted as MLS algorithm for short),
given a swap size t, an improved (50(1 + 1

t ) + ϵ)-approximation can be obtained in time
O(ndk2t+1 log(ϵ−1 log k)). To benefit more from the proposed multi-swap local search method
when handling large-scale datasets, we propose a sampling-based method for accelerating the MLS al-
gorithm. The proposed algorithm (denoted as MLSP algorithm) accelerates the updating of clustering
cost during the swaps such that each local search iteration in MLS algorithm can be implemented in
time O(ndk + poly(k)d) with extra space complexity of Õ(kd). In order to obtain better clustering
quality, we develop a recombination mechanism in MLSP which combines sampling and scoring
methods to help the local search algorithm find better solutions when the search falls into a poor local
optimum. By picking the top-k data points with the highest scores as new initialization, the chance to
get out of the local optimal solutions becomes large. Numerical experiments show that our proposed
method achieves better performances compared with branch and bound solver and other local search
algorithms. The main contributions of this paper are as follows.

• We propose the first multi-swap local search algorithm (MLS algorithm) with running time linearly
dependent on the data size. Given a swap size t with t ≥ 2, our MLS algorithm achieves a
(50(1 + 1

t ) + ϵ)-approximation in time O(ndk2t+1 log(ϵ−1 log k)), which improves the current
best approximation ratio 509 with linear running time in the data size.

• We give a practical heuristic algorithm (MLSP algorithm) for better implementation of the proposed
MLS algorithm, which accelerates the process of clustering cost update during swaps and provides
better scalability to large-scale datasets. Besides, a recombination mechanism is proposed to
prevent the local search algorithm falling into a poor local optimum too early.

Table 1 shows a detailed comparison of our results with the state-of-the-art ones.

Result Approximation Guarantee Method Assumption Running Time

[3] O(log k) k-means++ - O(ndk)
[10] (3 + 2

t )
2 Multi-Swap Local Search - O(nt+1ktd log∆)

[11] 509 Sampling + Single-Swap Local Search - O(ndk2loglogk)
[4] O(1) Sampling + Single-Swap Local Search - O(ndk log k)
[9] 100 + ϵ Sampling + Single-Swap Local Search |P ∗

h | ≥ nϵ
k O(ndk2 log ϵ−1)

This Paper 50(1 + 1
t ) + ϵ Sampling + Multi-Swap Local Search - O(ndk2t+1 log(ϵ−1 log k))

Table 1: Comparison with related results on k-means clustering, where n is the size of the given
dataset, d is the dimension, k is the number of clusters opened, t is the parameter representing the
swap size of local search methods, and ∆ is the aspect ratio (aspect ratio is defined as the maximum
pairwise distance of the given instance divided by the minimum pairwise distance).

2 Preliminaries

We use P ⊂ Rd and k to denote the given dataset and the number of clusters, respectively. For any
two points p, q ∈ P , we use d(p, q) = ∥p− q∥2 to denote the squared distance between them. Given
two sets A, B ⊆ P , let ∆(A,B) =

∑
p∈A minq∈B d(p, q) denote the sum of the squared distances

from data points in A to their closest points in B. Let C∗ = {c∗1, c∗2, ..., c∗k} be an optimal solution.
We use P(C∗) = {P ∗

1 , P
∗
2 , ..., P

∗
k } to denote the corresponding optimal clusters by assigning data

points in P to their closest centers in C∗. Let Opt be the cost of the optimal solution. For a subset
Q ⊆ P(C∗) of optimal clusters, we use Z(Q) = ∪P∗

h∈QP
∗
h to denote the set of data points in clusters

of Q. Denote Z ′(Q) = {c∗h : P ∗
h ∈ Q} as the set of optimal centers of clusters in Q. Given a subset

S ⊆ C∗, let J(S) = {P ∗
h : c∗h ∈ S} be the collection of optimal clusters whose clustering centers

are in G. For an integer t, let [t] = [1, 2, ..., t]. The following lemma is a folklore for the k-means
problem.
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Lemma 1 [3] Let P ⊆ Rd be a set of data points, and µ(P ) = 1
|P |
∑

p∈P p denote the center of
gravity. For any data point c ∈ Rd, we can get ∆(P, {c}) = |P |d(µ(P ), c) + ∆(P, {µ(P )}).
Theorem 1 [3] Algorithm 1 returns an O(log k)-approximate solution in time O(ndk).

Algorithm 1 k-means++
Input: An instance (P, k) of the k-means problem.
Output: A set C ⊆ Rd of centers with size at most k.

1: Randomly sample a point p ∈ P and set C = {p}.
2: for i = 1 to k − 1 do
3: Pick a point p ∈ P with probability ∆({p}, C)/∆(P,C), and add p to C.
4: return C.

3 Linear Time Local Search Algorithm with Multi-Swap Strategy

The general idea solving the k-means problem with multi-swap local search is that we propose a
new consecutive sampling method to construct candidate centers for swap such that data points close
to a subset of optimal clustering centers can be swapped in simultaneously. The multi-swap local
search algorithm (denoted as MLS) is given in Algorithm 2. There are mainly two stages in each
round of the MLS algorithm. Given a swap size t, in the first stage (steps 3 to 5), a candidate set
of centers with size t will be sampled using the k-means++ method. This avoids enumerating all
the data points for constructing the candidate sets for swapping in. In the second stage (steps 6 to
7), the algorithm enumerates all subsets (with size at most t) of the candidate set of centers opened
for swapping out. By extending the notions of swap pairs to swap set and carefully analyzing the
structures of local optimal solutions, we prove that the clustering cost can be reduced significantly
with certain probability in each iteration of the MLS Algorithm. The following is the main result of
this paper.
Theorem 2 In the i-th iteration of Algorithm 2, let C ′ be the set of centers obtained in step 7. If
the current clustering cost ∆(P,C) is larger than 50(1 + 1

t )Opt, then with probability at least
Ω(k−t), we have ∆(P,C ′) ≤ (1− 1

100k )∆(P,C). After O(kO(t) log(ϵ−1 log k)) iterations, we get
an approximate solution with ratio (50(1 + 1

t ) + ϵ) in expectation2.

3.1 Analysis

In this subsection, we analyze our proposed Algorithm 2, where a candidate set of centers for swap
is constructed by t independent sampling steps in each iteration. Our objective is to show that the
clustering cost can be reduced with certain probability in each iteration. Due to space limit, all the
detailed proofs are given in Appendix A.

In the following, we consider a single iteration of the proposed MLS algorithm. Assume ∆(P,C) ≥
50(1 + 1

t )Opt holds within a single iteration in Algorithm 2. Otherwise, C is already a 50(1 + 1
t )-

approximate solution for P . Let C = {c1, c2, ..., ck} denote the set of centers before the swap (steps
6-7) of Algorithm 2. Let P(C) = {P1, P2, ..., Pk} be the corresponding partition of clusters induced
by C. For an optimal cluster P ∗

h , let c∗h be its clustering center. For each cluster Ph ∈ P(C), let
ch ∈ C denote its clustering center. Following the ones in [11], we extend the definition of good
clusters with respect to C∗ as follows.
Definition 1 Good single cluster. A cluster P ∗

h ∈ P(C∗) is called good with a pair of points
(c∗h, cj) such that cj ∈ C and ∆(P ∗

h , C)− ζ(P,C, c∗h, cj)− 9∆(P ∗
h , {c∗h}) > 1

100k∆(P,C), where
ζ(P,C, c∗h, cj) = ∆(P\P ∗

h , C\{cj}) −∆(P\P ∗
h , C) is the reassignment cost by swapping cj out.

Otherwise we say that P ∗
h is a bad single cluster with (c∗h, cj).

Definition 2 Good t-Clusters. Given an integer t with t ≥ 2, for a collection of optimal clusters
Q ⊆ P(C∗) with |Q| ≤ t, Q is called good with a pair of sets (Z ′(Q), V ) such that V ⊆ C,
|V | = |Z ′(Q)| and ∆(Z(Q), C) − ζ(P,C,Z ′(Q), V ) − 9∆(Z(Q), C∗) > 1

100k∆(P,C), where
ζ(P,C,Z ′(Q), V ) = ∆(P\Z(Q), C\V ) −∆(P\Z(Q), C) is the reassignment cost by swapping
the points in V out. Otherwise we say that Q is a set of bad t-clusters with (Z ′(Q), V ).

2Note that the authors did not try to optimize the constants
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Algorithm 2 MLS
Input: An instance (P, k) of the k-means problem, parameters T and t.
Output: A set C ⊆ Rd of centers with size at most k.

1: Initialize C = k-means++(P, k).
2: for i = 1 to T do
3: I = ∅.
4: for j = 1 to t do
5: Pick a point p ∈ P with probability ∆({p}, C)/∆(P,C) and add p to I .
6: if ∃ U ⊆ I and V ⊆ C s.t. |U | = |V | and ∆(P,C\V ∪ U) < (1− 1

100k )∆(P,C) then
7: C = C\V ∪ U .
8: return C.

The above definitions estimate the changes of clustering cost by replacing a set of centers V ⊆ C
with a set Q′ of data points that are close to a subset of optimal clustering centers, where a new
clustering is constructed by reassigning data points in Z(Q) to Q′ and data points in P\Z(Q) to
C\V . The main idea behind Algorithm 2 is to iteratively find data points close enough to the optimal
clustering centers for swap to make a reduction on clustering cost by at least (1 − Θ( 1k )). In the
following, we will prove that with probability at least Ω(k−t), the sampling and swap process induces
a significant reduction on clustering cost in each iteration.

We start by dividing the optimal clusters into several groups to give an upper bound of reassignment
costs. Given a swap size t, for each optimal center c∗h ∈ C∗, we define Ψ(c∗h) as a mapping function
that maps c∗h to its closest center in C. For simplicity, we say that c∗h is captured by Ψ(c∗h). For a
center cj ∈ C, let Ψ−1(cj) be the set of optimal centers captured by cj . If |Ψ−1(cj)| = 0, then cj
is called a lonely center. If |Ψ−1(cj)| = 1, let c∗h = Ψ−1(cj). Then it is called that (c∗h, cj) forms
a type-1 matched swap pair. If 1 < |Ψ(cj)| ≤ t, let σh be an arbitrary set of unused lonely centers
with |σh| = |Ψ−1(cj)| − 1. Let A = Ψ−1(cj) and A′ = {cj} ∪ σh. Then, it is called that (A,A′)
forms a type-1 matched swap set. Let M1 = {(c∗h, cj) : (c∗h, cj) is a type-1 matched swap pair}
and M2 = {(A,A′) : (A,A′) is a type-1 matched swap set} be the collections of type-1 matched
swap pairs and type-1 matched swap sets, respectively. If |Ψ−1(cj)| > t, then find each lonely
center cq ∈ C that has not been used for constructing type-1 matched swap pairs or sets. For
each lonely center cq and each c∗h ∈ Ψ−1(cj), (c∗h, cq) forms a type-2 matched swap pair. We use
M3 = {(c∗h, cq) : (c∗h, cq) is a type-2 matched swap pair} to denote the set of type-2 matched swap
pairs. For a set V ⊆ C of centers, let X(V ) = ∪ch∈V Ph be the set of data points in P whose closest
centers are in V . Given a subset S ⊆ C of clustering centers, we also use J(S) = {Ph : ch ∈ G}
to denote the set of clusters whose centers are in S. The following lemma gives upper bounds of
reassignment cost by matched swap pairs or sets.

Lemma 2 Given a type-1 or type-2 matched swap pair (c∗h, cj), it holds that ζ(P,C, c∗h, cj) ≤
24∆(Pj , C

∗) + 1
5∆(Pj , C). Given a type-1 matched swap set (Q,V ), it holds that ζ(P,C,Q, V ) ≤

24∆(X(V ), C∗) + 1
5∆(X(V ), C).

Let H1 = {c∗h : (c∗h, cj) ∈ M1} be the set of optimal centers that participate in constructing type-1
matched swap pair. Let H2 = {A : (A,A′) ∈ M2} be the collection of the subsets of optimal
centers that participate in constructing type-1 matched swap set. Let L = {c∗h : (c∗h, cq) ∈ M3} be
the set of optimal centers that participate in constructing type-2 matched swap pair. Let H ′

1 = {cj :
(c∗h, cj) ∈ M1} be the set of centers in C that participate in constructing type-1 matched swap pair.
Let H ′

2 = {A′ : (A,A′) ∈ M2} be the collection of the subsets of centers in C that participate in
constructing type-1 matched swap set. Let L′ = {cq : (c∗h, cq) ∈ M3} denote the set of centers in C
that participate in constructing type-2 matched swap pair.

During the sampling and swap process in steps 4-7 of Algorithm 2, there are two cases that may
happen: (1) ∃ c∗h ∈ L such that P ∗

h is a good single cluster with a type-2 matched swap pair
(c∗h, cq) ∈ M3; (2) ∀ c∗h ∈ L, P ∗

h is a bad single cluster with any type-2 matched swap pair
(c∗h, cq) ∈ M3. We will discuss the two cases separately in the following. If case (1) happens, we
first show that with probability at least Ω( 1k ), the clustering cost can be reduced at least by 1−Θ( 1k ).
Let c∗h ∈ L be an optimal center such that P ∗

h is a good single cluster with a type-2 matched swap
pair (c∗h, cq) ∈ M3. By the definition of good single cluster, we have ∆(P ∗

h , C) ≥ 9∆(P ∗
h , {c∗h}).
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Define χ(P ∗
h ) = {p ∈ P ∗

h : d(p, c∗h) ≤ 1.5∆(P∗
h ,{c∗h})

|P∗
h | } as the set of data points in P ∗

h that are

close to the optimal center c∗h. Observe that |χ(P ∗
h )| ≥ 1

3 |P
∗
h |. Otherwise, the clustering cost

of data points in P ∗
h\χ(P ∗

h ) is at least ∆(P ∗
h , {c∗h}) using c∗h as center, which contradicts with

∆(P ∗
h\χ(P ∗

h ), {c∗h}) < ∆(P ∗
h , {c∗h}).

Next, we will show that whenever an optimal cluster P ∗
h has large clustering cost with respect to C,

i.e., ∆(P ∗
h , C) = b∆(P ∗

h , {c∗h}) for a real number b ≥ 3, it suffices to use data points in χ(P ∗
h ) to

approximate the clustering cost of P ∗
h .

Lemma 3 Let P ∗
h be an optimal cluster with ∆(P ∗

h , C) = b∆(P ∗
h , {c∗h}) for a real number b ≥ 3.

Then, ∆(χ(P ∗
h ), C) ≥ 1

200 (b− 1)∆(P ∗
h , {c∗h}).

We now argue that the clustering cost of each good single cluster takes a certain fraction of the
total clustering cost. Then, by sampling according to the squared distances, with good probability,
data points close to the center of a good single cluster can be sampled. According to the definition
of good single cluster, we can assume that ∆(P ∗

h , C) = b∆(P ∗
h , {c∗h}) for a real number b ≥ 9.

By Lemma 3, we know that ∆(χ(P ∗
h ), C) ≥ b−1

200∆(P ∗
h , {c∗h}) = b−1

200b∆(P ∗
h , C) ≥ 1

300∆(P ∗
h , C).

By the definition of good single cluster, we also have ∆(P ∗
h , C) ≥ 1

100k∆(P,C), which implies
that ∆(χ(P ∗

h ), C) ≥ 1
30000k∆(P,C). Thus, in each round of the sampling process in steps 4-5 of

Algorithm 2, with probability at least Ω( 1k ), we can sample a point q ∈ χ(P ∗
h ) for a good single

cluster P ∗
h with a type-2 matched swap pair (c∗h, cq) ∈ M3. The following lemma shows that, by

swapping q with cq and assigning all the data points in P ∗
h to q, the clustering cost can be reduced at

least by 1−Θ( 1k ).

Lemma 4 By swapping q with cq , the clustering cost of ∆(P,C) can be reduced at least by 1−Θ( 1k ).

We have shown that if case (1) happens, we can sample a data point q close to the center of a good
single cluster P ∗

h to make the clustering cost reduced significantly. Next, we assume that case (1)
never happens and case (2) happens. In case (2), the idea behind is to sample data points close to the
optimal centers in H1 or sets of optimal centers in H2 to reduce the clustering cost. We first bound
the clustering cost of optimal clusters in J(L).

Lemma 5 If case (2) happens, then ∆(X(L), C) ≤ (1 + 1
t )(9∆(X(L), C∗) + 24∆(X(L′), C∗) +

1
5∆(X(L′), C) + 1

100∆(P,C)).

Now, consider a set of centers Q ∈ H2. We will divide the optimal clusters in J(Q) into two
groups. Let QL = {P ∗

h ∈ J(Q) : ∆(P ∗
h , C) ≥ 1

30000k2t−1∆(P,C)} be the set of optimal clusters
in J(Q) with large clustering cost with respect to C and QS = {P ∗

h ∈ J(Q) : ∆(P ∗
h , C) <

1
30000k2t−1∆(P,C)} be the set of optimal clusters in J(Q) with small clustering cost with respect
to C, respectively. We define Q′

S = {P ∗
h ∈ QS : ∆(P ∗

h , C) < 3∆(P ∗
h , {c∗h})} as the set of optimal

clusters in QS whose clustering centers are close to one of the centers in C. Let Q′′
S = QS\Q′

S and
QT = QL ∪Q′′

S , respectively. We first show that, it suffices to only consider optimal clusters in QT .

Lemma 6 Let Q ∈ H2 be a set of centers in H2, where J(Q) is a set of good t-clusters with a
type-1 matched swap set (Q,A′) ∈ M2. Define V = A′\{cj}, where cj is the center in A′ with
|Ψ−1(cj)| > 1. Let U ⊆ P be the set of data points with |U | = |V | such that U ∩ χ(P ∗

h ) ̸= ∅ holds
for each P ∗

h ∈ QT . Then, ∆(P,C\V ∪ U) ≤ (1− 1
100k )∆(P,C).

Note that there are t sampling iterations in each step 4 of Algorithm 2. Let H∗
2 = {P ∗

h : P ∗
h ∈

QT , Q ∈ H2} and Ht = J(H1) ∪ H∗
2 . We will define a mapping function m which maps each

P ∗
h ∈ Ht to an integer m(P ∗

h ) ∈ [t]. For each P ∗
h ∈ Ht such that c∗h ∈ H1, we define m(P ∗

h ) = 1.
Then, consider each Q ∈ H2. For each P ∗

h ∈ QT , we define m(P ∗
h ) = i such that i ∈ [|QT |] and

m(P ∗
h ) ̸= m(P ∗

j ) for any two optimal clusters P ∗
h , P ∗

j ∈ QT . For each Q ∈ H2, let ps(Q) be the
success probability that for each P ∗

h ∈ QT , a data point is sampled from χ(P ∗
h ) in the m(P ∗

h )-th
iteration of Algorithm 2. For each c∗h ∈ H1, let ps(c∗h) be the success probability that a data point is
sampled from χ(P ∗

h ) in the first iteration (note that in this case m(P ∗
h ) = 1) of step 4. Let H1

G =
{c∗h ∈ H1 : P ∗

h is a good single cluster with the type-1 matched swap pair (c∗h, cj) ∈ M1} be the set
of centers in H1 whose optimal clusters are good single clusters with type-1 matched swap pairs in M1.
Let H2

G = {Q ∈ H2 : J(Q) is a set of good t-clusters with the type-1 matched swap set (Q,V ) ∈
M2} be the collection of the sets of centers in H2 whose corresponding optimal clusters are good
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t-clusters with type-1 matched swap sets in M2. Define pfs =
∑

c∗h∈H1
G
ps(c

∗
h) +

∑
Q∈H2

G
ps(Q) as

the summation of the success probability. Since all the optimal clusters in J(L) belong to bad single
cluster, and the events defined related to ps(Q) or ps(c∗h) for each Q ∈ H2 and c∗h ∈ H1 are mutually
exclusive, pfs gives a lower bound success probability to get a (1− 1

100k ) reduction on the clustering
cost in each iteration of steps 2-7. In the following, we will show how to obtain a lower bound for pfs .

Consider a set Q ∈ H2 of optimal centers such that J(Q) is a set of good t-clusters with a type-1
matched swap set (Q,A′). There are two subcases that may happen: (1) ∃ P ∗

h ∈ J(Q) such that P ∗
h

is a good single cluster with a swap pair (c∗h, cj), where cj is a lonely center used for constructing
type-1 matched swap set; (2) ∀ P ∗

h ∈ J(Q), P ∗
h is a bad single cluster with any swap pair (c∗h, cj),

where cj is a lonely center used to construct type-1 matched swap set. In subcase (1), since t is
usually a constant and could be much smaller than k, with probability at least Ω(k−1), a data point
q ∈ χ(P ∗

h ) can be sampled in the first iteration of step 4 in Algorithm 2 for swap to make the
clustering cost reduced at least by (1− 1

100k ) according to Lemma 4. Next, we assume that subcase
(1) never happens and subcase (2) happens. In subcase (2), our objective is to sample a set V of
data points such that V contains at least one point from χ(P ∗

h ) for each P ∗
h ∈ QT . For each optimal

cluster P ∗
h ∈ QL, with probability at least Ω(k−1), we can sample a data point q ∈ χ(P ∗

h ) in the
m(P ∗

h )-th iteration of step 4 in Algorithm 2. Thus, the probability can be bounded by Ω(k−|QL|).
Then, we only need to consider optimal clusters in QS . By Lemma 6, it suffices to consider optimal
clusters in Q′′

S . The following lemma gives an upper bound of the failure probability of not sampling
a data point from χ(P ∗

h ) for each P ∗
h ∈ Q′′

S in the m(P ∗
h )-th iteration in step 4 of Algorithm 2.

Lemma 7 Given a set Q ∈ H2 of centers such that J(Q) is a set of good t-clusters, the probability
that step 4 of Algorithm 2 fails to sample a data point q from χ(P ∗

h ) for each P ∗
h ∈ Q′′

S in the
m(P ∗

h )-th iteration is at most (1 + 1
30000k )e

−∆(Z(Q′′
S),C)/(300∆(P,C)).

Now we can bound the success probabilities of ps(Q) and ps(c
∗
h) for each Q ∈ H2 and c∗h ∈ H1.

We will divide the optimal clusters in P(C∗)\J(L) into two different groups HG and HB . Firstly,
we consider the centers in H1. For a center c∗h ∈ H1, if P ∗

h is a good single cluster with the type-1
matched swap pair (c∗h, cj) ∈ M1, then add P ∗

h to HG. Otherwise add P ∗
h to HB . For a set Q ∈ H2

of optimal clustering centers, if J(Q) is a set of good t-clusters with the type-1 matched swap set
(Q,V ) ∈ M2, then add each P ∗

h ∈ Q′′
S to HG and each P ∗

h ∈ J(Q)\Q′′
S to HB . If J(Q) is a set of

bad t-clusters with the type-1 matched swap set (Q,V ) ∈ M2, then add each P ∗
h ∈ J(Q) to HB .

The following lemma argues that the summation clustering cost of the optimal clusters in HG is large.
Lemma 8 For the optimal clusters in HG, we have ∆(Z(HG), C) ≥ 1

100∆(P,C).

For a good single cluster P ∗
h with the type-1 matched swap pair (c∗h, cj) ∈ M1 where c∗h ∈ H1,

define pf (c
∗
h) = 1 − ps(c

∗
h) as the probability that the first iteration in step 4 of Algorithm 2 fails

to sample a data point q ∈ χ(P ∗
h ). Then, we have pf (c

∗
h) ≤ e−ps(c

∗
h) ≤ e−∆(P∗

h ,C)/300∆(P,C) by
Lemma 3. For a set Q ∈ H2

G of optimal centers, we have that pf (Q′′
S) is the failure probability of not

sampling a data point from χ(P ∗
h ) for each P ∗

h ∈ Q′′
S in the m(P ∗

h )-th iteration of step 4 in Algorithm
2. Recall that pfs =

∑
c∗h∈H1

G
ps(c

∗
h) +

∑
Q∈H2

G
ps(Q) is the summation of success probability.

Then, we have pfs ≥ Ω(k−t)(
∑

c∗h∈H1
G
ps(c

∗
h) +

∑
Q∈H2

G
ps(Q

′′
S)). Let pf

′

s =
∑

c∗h∈H1
G
ps(c

∗
h) +∑

Q∈H2
G
ps(Q

′′
S). Observe that pf

′

s ≥ 1 −
∏

c∗h∈H1
G
(1 − ps(c

∗
h))
∏

Q∈H2
G
(1 − ps(Q

′′
S)). Since

there are at most k
2 good t-clusters, by Lemma 7, we have pf

′

s ≥ 1− (1 + 1
30000k )

k
2 e−

∆(Z(HG),C)

300∆(P,C) ≥
1−e

k
2 ln(1+ 1

30000k )−∆(Z(HG),C)

300∆(P,C) ≥ 1−e
1

60000−
1

30000 ≥ 1−e−
1

60000 ≥ 1
60001 , where the third inequality

follows from Lemma 8 and ln(1 + x) ≤ x. Then, it holds that pfs ≥ Ω(k−t)pf
′

s = Ω(k−t), which
indicates that with probability at least Ω(k−t), we can sample data points close to a set of good
t-clusters or a good single cluster for swap to make the clustering cost reduced at least by (1− 1

100k )
according to Lemma 6. Putting all things together, Theorem 2 can be proved (Detailed proof of
Theorem 2 is given in Appendix A).

Running Time Analysis. By Theorem 2, in order to obtain a (50(1 + 1
t ) + ϵ)-approximate solution,

the iteration rounds for Algorithm 2 should be O(kt+1 log(ϵ−1 log k)). In each iteration, it takes
O(ndk) time to update the distances between data points to their closest centers. During the sampling
process, t data points are sampled according to the D2-Sampling distribution to serve as the candidate
set of centers for swapping in, which takes time O(nt) if the distances from data points to their
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centers are already known. It takes O(kt) time to enumerate each subset with size at most t of the set
of current centers opened. It takes O(ndkt) time to recalculate the clustering cost after each swap if t
nearest centers of each data point are maintained during the whole process. Thus, the total running
time of Algorithm 2 is O(ndk2t+1 log(ϵ−1 log k)).

3.2 Accelerating Multi-Swap Local Search for k-means

In this subsection, we provide a more practical algorithm for the k-means problem to accelerate the
proposed multi-swap local search process. The algorithm is given in Algorithm 3. The main idea
behind is to use sampling-based methods to obtain fast clustering cost updating during swaps. In step
7 of Algorithm 3, a small sample set S of size 2k

ϵ log k
η is randomly taken from P . For clustering cost

updating, instead of calculating the clustering cost of all the data points in P , we use the clustering
cost of S ⊆ P as an estimation. This reduces the time for picking the best swap pair during a single
local search iteration from O(nd) to O(poly(k)d). Then, in steps 16-18, we design a recombination
method to find better initialization which prevents the local search algorithm from falling into a poor
local optimum too early. In step 16 of Algorithm 3, we randomly take a set D ⊆ P of centers with
size O(k log k). Let C1 = C ∪D be the set of the new candidate centers. For each center ch ∈ C1,
we add a score of ∆(Ph, C)/∆(P,C) to it. Similarly, for each center ch ∈ C, we also add a score
∆(Ph, C)/∆(P,C) to it. Then, by giving each center in C1 and C a score weight of 0.75 and 0.25,
respectively, we pick the top-k data points with the highest scores as a new initialization of clustering
centers to find potentially better clustering costs until convergence.

Algorithm 3 MLSP
Input: An instance (P, k) of the k-means problem, parameters T , t, R′, ϵ and η.
Output: A set C ⊆ Rd of centers with size at most k.

1: Initialize C = k-means++(P, k), r = 0, Cf = ∅.
2: while r < R′ do
3: for i = 1 to T do
4: I = ∅.
5: for j = 1 to t do
6: Pick a point p ∈ P with probability ∆({p}, C)/∆(P,C), and add p to I .
7: Randomly sample a set S from P of size 2k

ϵ log k
η .

8: Let (U, V ) be a swap set such that U ⊆ I , V ⊆ C, |U | = |V | and ∆(S,C\V ∪ U) is
minimized.

9: if ∆(P,C\V ∪ U) < (1− 1
100k )∆(P,C) then

10: C = C\V ∪ U .
11: For each center c ∈ C, find the 50-nearest neighbors in P to C for improvements on clustering

cost by swapping c with one neighbor until convergence.
12: if ∆(P,C) < ∆(P,Cf ) then
13: Cf = C.
14: else
15: r = r + 1, randomly sample a set D from P with size k

ϵ log
k
η , and set C1 = C ∪D.

16: For each ch ∈ C, calculate S′(ch) =
∆(Ph,C)
∆(P,C) , and add a score of 0.25S′(ch) to ch.

17: For each ch ∈ C1, calculate S′(ch) =
∆(Ph,C)
∆(P,C) , and add a score of 0.75S′(ch) to ch.

18: Reset C as data points in C1 with top k scores.
19: return Cf .

4 Experiments

In this section, we compare our proposed algorithms with the branch and bound solver and other
local search methods. For hardware, all the experiments are conducted on 72 Intel Xeon Gold 6230
CPUs with 500GB memory.

Datasets We evaluate the performance of our algorithms on 8 datasets used in [15] with sizes over
50,000, two datasets SUSY (5,000,000 × 17) and HIGGS (11,000,000 × 27) from the UCI Machine
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Learning Repository3, and one dataset SIFT (100,000,000 × 128) with size 100,000,000 used in [14].
In Appendix B, we give experiments on small datasets with sizes smaller than 50, 000 used in [15].

Experimental Setup In our experiments, we choose centers from the datasets such that the problem
can be solved by branch and bound solver (denoted as BB for short), which can serve as references
of optimal solutions. We compare our MLSP and MLS algorithms with the BB method and other
local search algorithms. Following the settings in [15], the centers obtained by different algorithms
are projected to their closest data points in P , and the number of clusters k is set to be 3, 5 and 10.
Each algorithm is executed for 10 times, and the average results with deviation, the best results and
the average running time are given. We test the performance of different choices of parameters in
Appendix B. We also conduct the experiments with fixed running time in Appendix B.

Algorithms In our experiments, we consider six algorithms. The first is the BB method in [15],
which is the state-of-the-art solver for handling large-scale datasets. For local search algorithms, we
compare our MLS and MLSP algorithms with the LS++ algorithm in [11] and FLS algorithm in
[9], using the Lloyd’s algorithm [12] as a baseline. For MLS algorithm, we use the sampling-based
method designed for MLSP to accelerate the swapping process. For MLSP and MLS algorithms,
we set the sampling rounds as T = 400 with a swap size t = 2. For MLSP algorithm, the failure
upper bound is set to be R′ = 5. For parameters ϵ and η, we fix them as 0.5. For fair comparison, we
also set the number of sampling rounds as 400 for LS++. Following the settings in [11], for all local
search algorithms, the Lloyd’s algorithm [12] is used as the final step to adjust the centers.

Method Dataset SampleSize BB(Cost) Best Cost Average Cost Time(s) Dataset SampleSize BB(Cost) Best Cost Average Cost Time(s)

LS++

rds 50,000*3 132.73

132.75 138.66±4.02 6.64

SPNET_3D 434,874*3 OOM

2.5720E+06 2.5801E+06±7.2E+03 55.28
FLS 131.74 136.19±2.78 27.25 2.5687E+06 2.5720E+06±1.8E+03 609.22

Lloyd 132.73 138.01±3.96 0.07 2.5702E+06 2.5816E+06±8.0E+03 0.62
MLSP 131.74 132.03±0.45 58.61 2.5677E+06 2.5688E+06±4.7E+02 561.06
MLS 131.78 136.71±2.76 5.12 2.5696E+06 2.5778E+06±7.3E+03 25.39
LS++

KEGG 53,413*23 6.1564E+07

6.1546E+07 6.2916E+07±1.5E+06 4.39

syn 1,000,000*2 OOM

560502.36 561679.14±1177.73 123.86
FLS 6.1534E+07 6.5554E+07±1.1E+06 20.99 562756.29 561856.27±1034.52 1087.1

Lloyd 6.1564E+07 6.3870E+07±2.3E+06 0.21 562761.91 571251.23±5796.86 0.89
MLSP 6.1534E+07 6.1546E+07±3.7E+04 59.71 560502.36 560737.88±706.23 789.83
MLS 6.1546E+07 6.3076E+07±1.9E+06 5.68 560502.36 561444.42±1153.94 60.61
LS++

Urban_10 100,000*2 25123

24787 25209±575 10.39

USC_1990 2,458,685*68 OOM

2.7091E+08 2.7302E+08±2.9E+06 817.52
FLS 24786 24826±328 54.12 2.7082E+08 2.7083E+08±9.4E+03 7148.45

Lloyd 24663 25484±696 0.09 2.7100E+08 2.8497E+08±9.5E+06 40.32
MLSP 24659 24716±58 71.91 2.7073E+08 2.7079E+08±7.8E+03 5687.57
MLS 24659 24889±257 5.96 2.7082E+08 2.7082E+08±2.4E+03 619.16
LS++

RNG_AGR 199,843*7 1.3678E+14

1.3738E+14 1.3917E+14±2.2E+12 28.13

SUSY 5,000,000*17 OOM

3.2738E+07 3.2875E+07±1.1E+05 827.21
FLS 1.3663E+14 1.3745E+14±8.0E+11 206.67 3.1632E+07 3.1672E+07±2.8E+05 9287.26

Lloyd 1.3671E+14 1.3799E+14±2.7E+12 0.47 3.1639E+07 3.1668E+07±3.1E+05 31.87
MLSP 1.3663E+14 1.3685E+14±2.0E+11 201.21 3.1575E+07 3.1633E+07±3.8E+04 7462.57
MLS 1.3701E+14 1.3906E+14±1.8E+12 14.24 3.2219E+07 3.2424E+07±1.4E+05 534.11
LS++

Urban_GB 360,177*2 OOM

88720 89677±1370 30.78

HIGGS 11,000,000*27 OOM

1.8604E+08 1.8834E+08±1.4E+06 2424.97
FLS 88329 89233±890 183.4 1.8938E+08 1.8964E+08±1.5E+05 39826.29

Lloyd 88346 92595±4131 0.41 1.8461E+08 1.8568E+08±1.2E+06 171.06
MLSP 88329 88935±668 175.75 1.8373E+08 1.8410E+08±1.1E+05 21928.97
MLS 88329 89557±1333 13.07 1.8623E+08 1.8686E+08±5.5E+05 2037.68
LS++

SIFT 100,000,000*128 OOM

1.3994E+13 1.4014E+13±8.2E+10 121260
FLS 1.3905E+13 1.3985E+13±5.6E+10 140560

Lloyd 1.3718E+13 1.3803E+13±9.6E+10 566.99
MLSP - - >48h
MLS 1.3715E+13 1.3883E+13±9.0E+10 15179

Table 2: Comparison results on clustering costs and running time with k = 10 on datasets with sizes
larger than 50,000, where OOM is short for out of memory

Results Table 2 shows the results on 11 datasets with sizes over 50,000 using k = 10. For clustering
cost, on each dataset, the best clustering cost returned by our MLSP algorithm is smaller than
BB method and other local search methods. For each dataset except for RNG_AGR, the average
clustering cost returned by our MLSP algorithm outperforms the result of BB method. It can be seen
that, as the sizes of datasets grow, BB method requires larger space complexity. When the size of
dataset is over 360,000, it requires a memory of over 500GB, which is not practical for handling
large-scale datasets. For LS++ method, it is more difficult to find high-quality solutions as the sizes
of datasets grow. As for FLS, although the performance of FLS is better than that of LS++, our
MLSP algorithm improves the performance of FLS on clustering cost with smaller deviation than
FLS. By calculating the average values over all datasets, for MLSP algorithm, we can get that the
clustering cost is reduced by 1.9%, 1.3% and 2.4% compared with LS++, FLS and Lloyd’s algorithm,
respectively. For MLS algorithm, on average, the clustering cost is reduced by 0.6% and 1.1%
compared with LS++ and Lloyd’s algorithm, respectively. As for running time, it can be seen that our
proposed algorithm scales well as the sizes of datasets grow. By calculating the average values over
all datasets, our proposed MLS algorithm is at least 1.79 times faster than LS++ algorithm.

3https://archive.ics.uci.edu/ml/index.php
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The experimental results on the performances with varying T and R′ (Appendix B.1) show that larger
T and R′ will not influence the results too much. In general, larger sampling rounds and larger failure
upper bound can result in potentially better solutions with higher running time. For parameters ϵ
and η, the results (Appendix B.1) show that the performances of our proposed algorithms are almost
the same for different choices of ϵ and η. Tables 3, 4 and 5 show the comparison results of different
algorithms with varying iteration rounds on dataset rds, KEGG and Urban_10, respectively. The
results show that, our proposed MLSP algorithm always achieves the best clustering cost compared
with LS++ and MLS algorithms. Tables 6, 7, and 8 show the results of MLSP algorithm with varying
number of failure upper bound R′ for fixed ϵ = 0.5, η = 0.5 and T = 400. It can be seen that a larger
failure upper bound will lead to smaller deviation, and the running time becomes higher. Tables 9, 10,
and 11 show the results of MLSP algorithm with varying parameters ϵ and η for fixed T = 400 and
R′ = 5 on dataset rds, KEGG, and Urban_10, respectively. It can be seen that smaller values of ϵ
and η result in better performances on clustering cost with smaller deviation, and the running time
becomes higher. The experimental results on small datasets (Appendix B.2) suggest that the proposed
MLSP method not only outperforms other algorithms in terms of clustering quality but also runs
much faster than the BB solver. The experimental results on the performances with different values
of k (Appendix B.3) show that our proposed MLSP algorithm can still achieve the best clustering
quality for smaller values of k. The experimental results on the performances with fixed time limit
(Appendix B.4) show that our proposed MLSP algorithm achieves the best clustering quality within
any given time constraints.

Tables 12 and 13 show the results on 18 datasets with sizes smaller than 50, 000 using k = 10.
It can be seen that, for each dataset, the best clustering cost returned by our MLSP algorithm is
smaller than BB method and other local search methods. For each dataset, the average clustering cost
returned by our MLSP algorithm nearly matches the result of the BB method. As for FLS, although
the performance of FLS is better than that of LS++, our proposed MLSP algorithm improves the
performance of FLS on clustering cost with smaller deviation on most datasets. As for running
time, there is no significant difference on running time among different local search algorithms for
small datasets. Tables 14 and 15 present the performances of different local search algorithms with
k = 3 on small datasets. Table 18 presents the performances of different local search algorithms
with k = 3 on large datasets. Tables 16 and 17 present the performances of different local search
algorithms with k = 5 on small datasets. Table 19 presents the performances of different local search
algorithms with k = 5 on large datasets. It can be seen that, our proposed MLSP algorithm achieves
the best clustering performance on most datasets with different values of k. On each dataset, the best
clustering cost returned by our MLSP algorithm matches the clustering cost of BB method. On each
dataset, the average clustering cost returned by our MLSP algorithm nearly matches the result of the
BB method. As for running time, there is no significant difference on running time among all local
search algorithms on small datasets. However, as the data sizes grow, our proposed MLS algorithm
becomes much faster than other local search algorithms.

5 Conclusion

In this paper, we propose fast local search algorithms for the k-means problem with multi-swap
strategy, which runs in linear time in the data size. We develop new sampling techniques, which
accelerate the process of clustering cost update during swaps. By proposing a recombination
mechanism, the proposed algorithm can find potentially better solutions. Experimental results show
that our algorithms achieve better performance on both small and large datasets compared with
the state-of-the-art algorithms. An interesting future direction is how to design fast local search
approximation algorithms for handling high dimensional clustering datasets.
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A Missing Proofs in Section 3

Lemma 2. Given a type-1 or type-2 matched swap pair (c∗h, cj), it holds that ζ(P,C, c∗h, cj) ≤
24∆(Pj , C

∗) + 1
5∆(Pj , C). Given a type-1 matched swap set (Q,V ), it holds that ζ(P,C,Q, V ) ≤

24∆(X(V ), C∗) + 1
5∆(X(V ), C).

Proof We first consider a type-1 matched swap set (Q,V ). For a data point p ∈ P , we use sp to
denote its closest center in C. Let op be its closest optimal center in C∗. Observe that

ζ(P,C,Q, V ) ≤
∑

p∈X(V )\Z(J(Q))

d(p, sop)− d(p, sp)

≤
∑

p∈X(V )\Z(J(Q))

(√
d(p, op) +

√
d(op, sop)

)2

− d(p, sp)

≤
∑

p∈X(V )\Z(J(Q))

(√
d(p, op) +

√
d(op, sp)

)2

− d(p, sp)

≤
∑

p∈X(V )\Z(J(Q))

(
2
√
d(p, op) +

√
d(p, sp)

)2

− d(p, sp)

≤
∑

p∈X(V )\Z(J(Q))

4d(p, op) + 2

√
2

λ

√
2λd(p, op)d(p, sp)

≤
∑

p∈X(V )\Z(J(Q))

(4 +
2

λ
)d(p, op) + 2λd(p, sp),

where the first inequality follows from the fact that sop is still in C\V for each data point p ∈
X(V )\Z(J(Q)) according to the definition of the swap set defined, the second and fourth steps
follow from the triangle inequality, the third step follows from the fact that sop is the nearest point
to op in C, and the last step follows from Cauchy Inequality. Let λ = 1

10 . Then ζ(P,C,Q, V ) ≤
24∆(X(V ), C∗) + 1

5∆(X(V ), C). The cases for matched swap pair are similar to the cases for
matched swap set. For a matched swap pair (c∗h, cj), we can get that ζ(P,C, c∗h, cj) ≤ 24∆(Pj , C

∗)+
1
5∆(Pj , C). □

Lemma 3. Let P ∗
h be an optimal cluster with ∆(P ∗

h , C) = b∆(P ∗
h , {c∗h}) for a real number b ≥ 3.

Then, ∆(χ(P ∗
h ), C) ≥ 1

200 (b− 1)∆(P ∗
h , {c∗h}).

Proof Let sc∗h be the closest center in C to c∗h. Observe that d(c∗h, sc∗h) ≥
(b−1)∆(P∗

h ,{c∗h})
|P∗

h | . Otherwise
∆(P ∗

h , {sc∗h}) < b∆(P ∗
h , {c∗h}) holds according to Lemma 1. Consider an arbitrary data point

p ∈ χ(P ∗
h ). By triangle inequality, we have

√
∆({p}, C) ≥

√
d(c∗h, sc∗h)−

√
d(p, c∗h) ≥

√
∆(P ∗

h , {c∗h})
|P ∗

h |
(
√
b− 1−

√
1.5).

Since
√
b− 1 ≥

√
2, we have

∆({p}, C) ≥

(
1−

√
3

4

)2
(b− 1)∆(P ∗

h , {c∗h})
|P ∗

h |
.

Together with the fact that |χ(P ∗
h )| ≥ 1

3 |P
∗
h |, we have ∆(χ(P ∗

h ), C) ≥ b−1
200∆(P ∗

h , {c∗h}), which
proves the Lemma. □

Lemma 4. By swapping q with cq , the clustering cost of ∆(P,C) can be reduced at least by 1−Θ( 1k ).
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Proof Observe that ∆(P ∗
h , {q}) < 9∆(P ∗

h , {c∗h}) holds by Lemma 1. Then, we can get that

∆(P,C\{cq} ∪ {q}) = ∆(P,C)− (∆(P,C)−∆(P,C\{cq} ∪ {q}))
= ∆(P,C)− (∆(P ∗

h , C) + ∆(P\P ∗
h , C)−∆(P ∗

h , C\{cq} ∪ {q})
−∆(P\P ∗

h , C\{cq} ∪ {q}))
≤ ∆(P,C)− (∆(P ∗

h , C)− ζ(P,C, c∗h, cq)− 9∆(P ∗
h , {c∗h}))

≤ (1− 1

100k
)∆(P,C),

where the second to the last inequality follows from the fact that ∆(P ∗
h , {q}) < 9∆(P ∗

h , {c∗h}), and
the last inequality follows from the definition of good single cluster. □

Lemma 5. If case (2) happens, then ∆(X(L), C) ≤ (1 + 1
t )(9∆(X(L), C∗) + 24∆(X(L′), C∗) +

1
5∆(X(L′), C) + 1

100∆(P,C)).

Proof By the condition of case (2), it holds that all the optimal clusters in J(L) belong to bad single
cluster. For any bad single cluster P ∗

h ∈ J(L), let (c∗h, c
m
h ) ∈ M3 be the type-2 matched swap pair

with minimum reassignment cost, i.e., (c∗h, c
m
h ) = argmin(c∗h,cn)∈M3

ζ(P,C, c∗h, cn). According to
the definition of bad single cluster, we have

∆(P ∗
h , C) ≤ 1

100k
∆(P,C) + 9∆(P ∗

h , {c∗h}) + ζ(P,C, c∗h, c
m
h ).

Let κ(M3) be the set of lonely centers used for constructing type-2 matched swap pair. For an optimal
center c∗h ∈ C∗, denote sc∗h as the center in C closest to c∗h. Let L1 = ∪c∗h∈Lsc∗h . By the definitions
of κ(M3) and L, for each sc∗h ∈ L1, we can find a set z(sc∗h) ⊆ κ(M3) with size |Ψ−1(sc∗h)| − 1

such that z(a) ∩ z(b) = ∅ for any a, b ∈ L1. For each sc∗h ∈ L1, since |Ψ−1(sc∗h)| > t, it holds
that |Ψ−1(sc∗h)|/|z(sc∗h)| ≤ 1 + 1

t . By taking a summation over all the centers in L, we have
|L| =

∑
c∗h∈L 1 =

∑
sc∗

h
∈L1

|Ψ−1(sc∗h)| ≤
∑

sc∗
h
∈L1

|z(sc∗h)|(1 +
1
t ) ≤ |κ(M3)|(1 + 1

t ). Then, by

considering all the optimal centers in L and taking a summation, we have

∆(X(L), C) =
∑
c∗h∈L

∆(P ∗
h , C) ≤

∑
c∗h∈L

1

100k
∆(P,C) + 9∆(P ∗

h , {c∗h}) + ζ(P,C, c∗h, c
m
h )

≤ 1

100
∆(P,C) + 9∆(X(L), C∗) +

∑
c∗h∈L

∑
c∈κ(M3)

ζ(P,C, c∗h, c)

|κ(M3)|

≤ (1 +
1

t
)(9∆(Z(J(L)), C∗) + 24∆(X(L′), C∗)

+
1

5
∆(X(L′), C) +

1

100
∆(P,C)),

where the second to the last inequality follows from the fact that cmh is the center with minimum
reassignment cost, and the last inequality follows from Lemma 2 and the fact that |L|/|κ(M3)| ≤
1 + t−1. □

Lemma 6. Let Q ∈ H2 be a set of centers in H2, where J(Q) is a set of good t-clusters with a
type-1 matched swap set (Q,A′) ∈ M2. Define V = A′\{cj}, where cj is the center in A′ with
|Ψ−1(cj)| > 1. Let U ⊆ P be the set of data points with |U | = |V | such that U ∩ χ(P ∗

h ) ̸= ∅ holds
for each P ∗

h ∈ QT . Then, ∆(P,C\V ∪ U) ≤ (1− 1
100k )∆(P,C).

Proof Consider an arbitrary optimal cluster P ∗
h ∈ Q′

S . We know that ∆(P ∗
h , C) < 3∆(P ∗

h , {c∗h})
by the definition of Q′

S . Let sc∗h be the closest center in C to c∗h. We first argue that sc∗h is close to c∗h

with d(c∗h, sc∗h) ≤
8∆(P∗

h ,{c∗h})
|P∗

h | . For a data point p ∈ P ∗
h , let sp be its closest center in C. According

13



to the triangle inequality, we have

d(c∗h, sc∗h) ≤
∑

p∈P∗
h
d(c∗h, sp)

|P ∗
h |

≤ 1

|P ∗
h |
∑
p∈P∗

h

(1 + λ)d(c∗h, p) + (1 +
1

λ
)d(p, sp)

≤
(1 + λ)∆(P ∗

h , {c∗h}) + (1 + 1
λ )∆(P ∗

h , C)

|P ∗
h |

≤ 8∆(P ∗
h , {c∗h})
|P ∗

h |
,

where the last inequality follows from ∆(P ∗
h , C) < 3∆(P ∗

h , {c∗h}) and feeding λ =
√
3. By

assigning all the data points in P ∗
h to sc∗h , we have ∆(P ∗

h , {sc∗h}) ≤ 9∆(P ∗
h , {c∗h}) by Lemma 1.

Then, by swapping U with V , we have that

∆(P,C\V ∪ U) = ∆(P,C)− (∆(P,C)−∆(P,C\V ∪ U))

≤ ∆(P,C)− (∆(Z(J(Q)), C) + ∆(P\Z(J(Q)), C)−∆(Z(QT ), U)

−∆(Z(Q′
S), {sc∗h})−∆(P\Z(J(Q)), C\(V ∪ {sc∗h}))

≤ ∆(P,C)− (∆(Z(J(Q)), C)− 9∆(Z(J(Q)), C∗)− ζ(P,C,Q, V ))

≤ (1− 1

100k
)∆(P,C),

where the first inequality follows from the fact that sc∗h /∈ V for each P ∗
h ∈ Q′

S , the second inequality
follows from ∆(P ∗

h , {sc∗h}) ≤ 9∆(P ∗
h , {c∗h}) for each P ∗

h ∈ Q′
S , and the last inequality follows from

the definition of good t-clusters and V ∪ {sc∗h} = A′. □

Lemma 7. Given a set Q ∈ H2 of centers such that J(Q) is a set of good t-clusters, the probability
that step 4 of Algorithm 2 fails to sample a data point q from χ(P ∗

h ) for each P ∗
h ∈ Q′′

S in the
m(P ∗

h )-th iteration is at most (1 + 1
30000k )e

−∆(Z(Q′′
S),C)/(300∆(P,C)).

Proof We first consider an optimal cluster P ∗
h ∈ Q′′

S . Observe that ∆(P ∗
h , C) < 1

30000k2t−1∆(P,C)

by the definition of Q′′
S . Define phf as the failure probability of not sampling data points from χ(P ∗

h )

in the m(P ∗
h )-th iteration of step 4 in Algorithm 2. Then, we have that

phf = 1− ∆(χ(P ∗
h ), C)

∆(P,C)
≥ 1− ∆(P ∗

h , C)

∆(P,C))
≥ 1− 1

30000k2t−1
.

Let phs = 1− phf be the success probability. Then, we have

phs = 1− phf ≤ (
1

1− 1
30000k2t−1

− 1)phf ≤
1

30000

k2t−1 − 1
30000

phf ≤ 1

30000k(2t−1 − 1)
phf ,

where the last inequality follows from 1
30000 < k. Let pf (Q′′

S) denote the probability of not sampling
a data point from χ(P ∗

h ) for each P ∗
h ∈ Q′′

S in the m(P ∗
h )-th iteration of step 4 in Algorithm 2. For

each P ∗
h ∈ Q′′

S , define Xh = 1 if the m(P ∗
h )-th iteration of step 4 in Algorithm 2 samples a data

point q ∈ χ(P ∗
h ), and Xh = 0 if the m(P ∗

h )-th iteration fails to sample a data point q ∈ χ(P ∗
h ). Let

E1 be the event that Xh = 0 for each P ∗
h ∈ Q′′

S , and E2 be the event that there are at least two
clusters P ∗

h , P ∗
j ∈ Q′′

S such that Xh ∨Xj = 1 and Xh ∧Xj = 0. Observe that there are at most
2t − 2 subcases if event E2 happens. For each subcase s, let ν(s) = {P ∗

h : P ∗
h ∈ Q′′

S , Xh = 1}
and ν′(s) = {P ∗

h : P ∗
h ∈ Q′′

S , Xh = 0}, respectively. Define Pr(s) as the probability that subcase s
happens. Since the sampling iterations in step 4 of Algorithm 2 are mutually independent, we have
Pr(s) =

∏
P∗

h∈ν(s) p
h
s

∏
P∗

h∈ν′(s) p
h
f . By applying the inequality that phs ≤ 1

30000k(2t−1−1)p
h
f , we

have
Pr(s) ≤ (

1

30000k(2t−1 − 1)
)t

∏
P∗

h∈Q′′
S

phf ≤ 1

30000k(2t−1 − 1)

∏
P∗

h∈Q′′
S

phf

for each subcase s of E2, where the last inequality follows from 1
30000k(2t−1−1) < 1. Then, we have

Pr(E2) ≤ 1
30000k

∏
P∗

h∈Q′′
S
phf by taking a probability summation over all 2t − 2 subcases of event
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E2. Observe that the failure probability pf (Q
′′
S) = Pr(E1)+Pr(E2), where Pr(E1) =

∏
P∗

h∈Q′′
S
phf .

Thus, we can get that

pf (Q
′′
S) ≤ (1 +

1

30000k
)
∏

P∗
h∈Q′′

S

phf = (1 +
1

30000k
)
∏

P∗
h∈Q′′

S

(1− phs )

= (1 +
1

30000k
)
∏

P∗
h∈Q′′

S

(1− ∆(χ(P ∗
h ), C)

∆(P,C)
) ≤ (1 +

1

30000k
)
∏

P∗
h∈Q′′

S

(1− ∆(P ∗
h , C)

300∆(P,C)
)

≤ (1 +
1

30000k
)e−∆(Z(Q′′

S),C))/300∆(P,C),

where the second to last inequality follows from Lemma 3, and the last inequality follows from the
inequality 1− x ≤ e−x. □

Lemma 8. For the optimal clusters in HG, we have ∆(Z(HG), C) ≥ 1
100∆(P,C).

Proof Given any type-1 matched swap set (Q,V ), if J(Q) is a set of good t-clusters with a type-1
matched swap set (Q,V ) ∈ M2, according to the assumption of subcase (2), we know that each
optimal cluster P ∗

h in QL is a bad single cluster with a swap pair (c∗h, cl), where cl is a lonely center
in V . Since J(Q) is a set of good t-clusters, not all optimal clusters in J(Q) are bad single clusters.
Hence, for each optimal cluster P ∗

h ∈ QL, we can find a lonely center l(c∗h) ∈ V such that P ∗
h is a

bad single cluster with the swap pair (c∗h, l(c
∗
h)). By the definition of bad single cluster, we have

∆(P ∗
h , C) ≤ 1

100k
∆(P,C) + 9∆(P ∗

h , {c∗h}) + ζ(P,C, c∗h, l(c
∗
h)).

For each optimal cluster P ∗
h ∈ Q′

S , by the definition of Q′
S , it holds that ∆(P ∗

h , C) ≤ 3∆(P ∗
h , {c∗h}).

If J(Q) is a set of bad t-clusters, by the definition of bad t-clusters, we also have

∆(Z(J(Q)), C) ≤ 1

100k
∆(P,C) + 9∆(Z(J(Q)), C∗) + ζ(P,C,Q, V ).

Define H1
B = {c∗h ∈ H1 : P ∗

h is a bad single cluster with the swap pair (c∗h, cj) ∈ M1}, H2
B =

{Q ∈ H2 : J(Q) is a set of bad t-clusters with the swap set (Q,V ) ∈ M2} and H2
B′ = {Q′

S ∪QL :
Q ∈ H2, J(Q) is a set of good t-clusters with the swap set (Q,V ) ∈ M2}, respectively. Putting all
things together and taking a summation over all clusters in HB , we can get that

∆(Z(HB), C) =
∑

P∗
h∈HB

∆(P ∗
h , C)

=
∑

c∗h∈H1
B

∆(P ∗
h , C) +

∑
Q∈H2

B

∆(Z(J(Q)), C) +
∑

Q′∈H2
B′

∆(Z(Q′), C)

≤
∑

P∗
h∈HB

1

100k
∆(P,C) + 9∆(P ∗

h , {c∗h}) + 24∆(X(H ′
1), C

∗) +
1

5
∆(X(H ′

1), C)

+ 24∆(X(H ′
2), C

∗) +
1

5
∆(X(H ′

2), C)

≤ 1

100
∆(P,C) + 9∆(Z(HB), C

∗) + 24∆(X(H ′
1), C

∗) +
1

5
∆(X(H ′

1), C)

+ 24∆(X(H ′
2), C

∗) +
1

5
∆(X(H ′

2), C),
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where the first inequality follows from Lemma 3. Then, together with Lemma 5, we can get that

∆(Z(HG), C) ≥ ∆(P,C)−∆(Z(J(L)), C)−∆(Z(HB), C)

≥ ∆(P,C)− (1 +
1

t
)(9∆(Z(J(L)), C∗) + 24∆(X(L′), C∗) +

1

5
∆(X(L′), C)

+
1

100
∆(P,C) +

1

100
∆(P,C) + 9∆(Z(HB), C

∗) + 24∆(X(H ′
1), C

∗)

+
1

5
∆(X(H ′

1), C)) + 24∆(X(H ′
2), C

∗) +
1

5
∆(X(H ′

2), C))

≥ ∆(P,C)− (1 +
1

t
)(

1

50
∆(P,C) +

1

5
∆(P,C) + 33Opt)

≥ ∆(P,C)− 33

100
∆(P,C)− 33

50
∆(P,C)

≥ 1

100
∆(P,C),

where the second inequality follows from Lemma 5, the third inequality follows from the fact that
H ′

1 ∩H ′
2 ∩ L′ = ∅ and Z(HB) ∩ J(L) = ∅, and the fourth inequality follows from t ≥ 2 and the

assumption that ∆(P,C) ≥ 50(1 + 1
t )Opt. □

Theorem 2. In the i-th iteration of Algorithm 2, let C ′ be the set of centers obtained in step 7.
If the current clustering cost ∆(P,C) is larger than 50(1 + 1

t )Opt, then with probability at least
Ω(k−t), we have ∆(P,C ′) ≤ (1− 1

100k )∆(P,C). After O(kO(t) log(ϵ−1 log k)) iterations, we get
an approximate solution with ratio (50(1 + 1

t ) + ϵ) in expectation.

Proof Let T = δkt+1 log(24ϵ−1 log k), where δ is a sufficient large constant. Following the work in
[11], we define another random process X with initial clustering cost ∆(P,C ′) for a set C ′ returned
by the k-means++ algorithm such that for T iterations of sampling and swaps, it reduces the value of
∆(P,C ′) by at least (1− 1

100k ) with probability λk−t , and it increases the final value of ∆(P,C ′)

by 50(1 + 1
t )OPT , where λ is a constant with λ < δ

100 . It is easy to see that E[∆(P,C)] < E[X].
Then, we have

E[X] = 50(1 +
1

t
)Opt

+∆(P,C ′)

T∑
i=1

(
T

i

)
(

1

λkt
)i(1− 1

λkt
)T−i(1− 1

100k
)i

= ∆(P,C ′)(1− 1

100λkt+1
)T + 50(1 +

1

t
)Opt

≤ ϵ∆(P,C ′)

24 log k
+ 50(1 +

1

t
)Opt.

This implies that E[∆(P,C)|C ′] ≤ ϵ∆(P,C′)
24 log k + 50(1 + 1

t )Opt. Then, we can get that

E[∆(P,C)] =
∑
C′

E[∆(P,C)|C ′]Pr(C
′)

≤
∑
C′

Pr(C
′)(

ϵ∆(P,C ′)

24 log k
+ 50(1 +

1

t
)Opt)

≤ ϵE[∆(P,C ′)]

24 log k
+ 50(1 +

1

t
)Opt.

Since the k-means++ algorithm provides an approximation ratio of 8(log k + 2) in expectation by
Theorem 1, we have E[∆(P,C)] ≤ (50(1 + 1

t ) + ϵ)Opt. □

Running Time Analysis. By Theorem 2, in order to obtain a (50(1 + 1
t ) + ϵ)-approximate solution,

the iteration rounds for Algorithm 2 should be O(kt+1 log(ϵ−1 log k)). In each iteration, it takes
O(ndk) time to update the distances between data points to their closest centers. During the sampling
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process, t data points are sampled according to the D2-Sampling distribution to serve as the candidate
set of centers for swapping in, which takes time O(t) if the distances from data points to their centers
are already known. It takes O(kt) time to enumerate each subset with size at most t of the set of
current centers opened. It takes O(ndkt) time to recalculate the clustering cost after each swap if t
nearest centers of each data point are maintained during the whole process. Thus, the total running
time of Algorithm 2 is O(ndk2t+1 log(ϵ−1 log k)).

B Complementary Experiments

B.1 Experiments with Different Parameter Settings

In this section, we present the experiments on the performances of our proposed MLSP algorithm
with different parameters T , R′, ϵ and η. We also compare our MLS and MLSP algorithms with LS++
algorithm using different iteration rounds to show the parameter robustness of different algorithms.

Tables 3, 4 and 5 show the comparison results of different algorithms with varying iteration rounds on
dataset rds, KEGG and Urban_10, respectively. The results show that, our proposed MLSP algorithm
always achieves the best clustering cost compared with LS++ and MLS algorithms. It can be seen
that the number of iteration rounds has little impact on our MLSP algorithm. For MLS algorithm, it
performs better on clustering cost compared with LS++ algorithm for most cases, which indicates
that larger iteration rounds will not influence the performance of our algorithms.

Tables 6, 7, and 8 show the results of MLSP algorithm with varying number of failure upper bound
R′ for fixed ϵ = 0.5, η = 0.5 and T = 400 on dataset rds, KEGG and Urban_10, respectively. It can
be seen that a larger failure upper bound will lead to smaller deviation, and the running time becomes
higher. In general, the failure upper bound does not influence the performance of our proposed MLSP
algorithm. Tables 9, 10, and 11 show the results of MLSP algorithm with varying parameters ϵ and
η for fixed T = 400 and R′ = 5 on dataset rds, KEGG, and Urban_10, respectively. It can be seen
that smaller values of ϵ and η result in better performances on clustering costs with smaller deviation,
and the running time becomes higher. There is no significant difference between different choices
of parameters ϵ and η, which indicates that our proposed MLSP algorithm ensures the parameter
robustness.

Method Rounds Best Cost Average Cost Time(s) Method Rounds Best Cost Average Cost Time(s)

LS++
100

133.4074 139.6724±3.5172 2.56 LS++
200

133.1909 13582±2.0054 3.81
MLS 133.9806 139.6108±1.3052 1.12 MLS 132.5915 138.6551±2.3461 2.27

MLSP 131.7410 132.9932±0.9546 29.02 MLSP 131.7410 133.1258±2.2659 30.25

LS++
300

132.0117 137.2619±2.8543 5.49 LS++
400

132.1966 138.2526±2.0892 8.14
MLS 133.5915 138.6551±2.3461 3.55 MLS 131.8264 136.9465±3.1638 4.48

MLSP 131.7410 132.3278±0.8694 42.67 MLSP 131.7410 132.0323±0.4511 58.61

LS++
500

133.6918 140.7157±2.0026 12.26 LS++
600

131.7681 137.7633±3.0206 17.24
MLS 131.8298 138.3528±5.2943 5.57 MLS 131.8264 137.1135±3.6302 6.90

MLSP 131.7410 132.8539±1.7382 66.73 MLSP 131.7410 132.1285±0.5928 72.64

LS++
700

131.8519 137.8405±3.3180 22.83 LS++
800

131.8238 139.0674±2.5677 29.23
MLS 131.8493 136.1385±2.9510 7.66 MLS 131.7709 135.7753±4.0815 7.98

MLSP 131.7410 132.1379±0.8516 81.88 MLSP 131.7410 132.2103±0.7338 91.52

Table 3: Comparison results on dataset rds with varying iteration rounds
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Method Rounds Best Cost Average Cost Time(s) Method Rounds Best Cost Average Cost Time(s)

LS++
100

6.1871E+07 6.2712E+07±1.3E+06 2.13 LS++
200

6.1619E+07 6.3341E+07±1.8E+06 5.64
MLS 6.1587E+07 7.2593E+07±1.1E+07 2.11 MLS 6.1684E+07 6.4154E+07±2.2E+06 4.00

MLSP 6.1534E+07 6.1559E+07±4.9E+04 22.22 MLSP 6.1534E+07 6.1534E+07±0 36.08

LS++
300

6.1642E+07 6.2732E+07±1.7E+06 10.41 LS++
400

6.1547E+07 6.3276E+07±1.9E+06 16.58
MLS 6.1939E+07 6.5379E+07±7.2E+06 6.32 MLS 6.1547E+07 6.3255E+07±1.8E+06 7.98

MLSP 6.1534E+07 6.1559E+07±4.9E+04 46.18 MLSP 6.1534E+07 6.1546E+07±3.7E+04 57.13

LS++
500

6.1547E+07 6.2891E+07±1.6E+06 24.15 LS++
600

6.1547E+07 6.2878E+07±1.6E+06 32.97
MLS 6.1661E+07 6.3595E+07±1.7E+06 10.54 MLS 6.1534E+07 6.4042E+07±2.9E+06 12.95

MLSP 6.1534E+07 6.1559E+07±4.9E+04 63.61 MLSP 6.1534E+07 6.1572E+07±5.7E+04 77.49

LS++
700

6.1534E+07 6.2874E+07±1.3E+06 43.03 LS++
800

6.1547E+07 6.2261E+07±5.9E+05 54.28
MLS 6.1587E+07 6.5113E+07±3.4E+06 13.97 MLS 6.1953E+07 6.5383E+07+3.5E+06 16.22

MLSP 6.1534E+07 6.1547E+07±3.7E+04 86.74 MLSP 6.1534E+07 6.1559E+07±4.9E+04 96.73

Table 4: Comparison results on dataset KEGG with varying iteration rounds

Method Rounds Best Cost Average Cost Time(s) Method Rounds Best Cost Average Cost Time(s)

LS++
100

24659.3733 25255.4895±613.5016 3.08 LS++
200

24660.9511 25024.9944±356.9319 8.36
MLS 24787.2318 25022.6100±348.1652 1.88 MLS 24659.3393 25022.5701±332.6797 3.34

MLSP 24659.0733 24726.3142±134.6180 40.81 MLSP 24659.0733 24806.2115±158.9739 48.55

LS++
300

24659.3733 25594.2717±914.0252 15.99 LS++
400

24659.0733 25383.4974±577.4748 25.79
MLS 24659.3733 25107.5051±420.6469 4.85 MLS 24659.3732 25166.5432±526.5936 6.31

MLSP 24659.0733 24761.5254±176.6838 54.50 MLSP 24659.0733 24793.3057±239.687 58.74

LS++
500

24659.3732 25217.6713±463.9049 37.94 LS++
600

24659.0733 25282.5551±727.8617 52.35
MLS 24659.3732 24835.8816±211.3455 7.79 MLS 24659.3732 24797.6361±28.3684 9.18

MLSP 24659.0733 24762.4264±178.6638 73.87 MLSP 24659.0733 24742.3513±134.4212 76.58

LS++
700

24659.3733 24852.2682±446.1449 69.19 LS++
800

24659.0844 25611.1218±891.9473 88.15
MLS 24659.4008 25073.7242±295.8309 10.61 MLS 24659.5079 25001.2324±351.8913 12.01

MLSP 24659.0733 24784.8027±134.1987 81.40 MLSP 24659.0733 24818.3757±219.2623 88.92

Table 5: Comparison results on dataset Urban_10 with varying iteration rounds

Failure Best Cost Average Cost Time(s)

3 131.7408 133.8048±2.5306 39.49
4 131.7408 132.6853±1.5759 48.01
5 131.7408 132.8304±1.6403 59.41
6 131.7408 132.7752±1.1013 55.65
7 131.7408 132.2285±0.8758 60.03
8 131.7408 132.4954±0.6819 69.60
9 131.7408 132.3064±0.6889 72.11

10 131.7408 132.2246±0.6323 85.36

Table 6: Results of MLSP Algorithm on dataset rds with varying number of failure upper bound R′

Failure Best Cost Average Cost Time(s)

3 6.1534E+07 6.1559E+07±4.9E+04 44.52
4 6.1534E+07 6.1559E+07±4.9E+04 59.61
5 6.1534E+07 6.1559E+07±4.9E+04 64.45
6 6.1534E+07 6.1559E+07±4.9E+04 70.69
7 6.1534E+07 6.1534E+07±0 76.37
8 6.1534E+07 6.1534E+07±0 91.05
9 6.1534E+07 6.1534E+07±0 100.82

10 6.1534E+07 6.1534E+07±0 105.89

Table 7: Results of MLSP Algorithm on dataset KEGG with varying number of failure upper bound
R′
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Failure Best Cost Average Cost Time(s)

3 24659.0733 24824.3035±214.2367 41.44
4 24659.0733 24819.0528±238.5684 56.65
5 24659.0733 24755.9209±132.1597 59.97
6 24659.0733 24806.0814±158.7277 66.19
7 24659.0733 24829.4308±190.0205 80.24
8 24659.0733 24679.4947±58.5737 88.09
9 24659.0733 24703.7889±55.6132 92.57
10 24659.0733 24684.7586±51.1046 95.37

Table 8: Results of MLSP Algorithm on dataset Uran_10 with varying number of failure upper
bound R′

eta/epsilon Best Cost Average Cost Time(s)

0.25/0.25 131.7408 132.6835±1.9397 61.57
0.5/0.25 131.7408 133.5867±2.0429 58.97

0.75/0.25 131.7408 133.0508±1.7254 63.59
0.25/0.5 131.7408 132.3304±0.6313 50.81
0.5/0.5 131.7408 132.3244±1.5983 51.40
0.75/0.5 131.7408 132.6404±2.3554 50.50

0.25/0.75 131.7693 134.4831±2.2116 52.86
0.5/0.75 131.7408 132.3092±0.9371 61.99

0.75/0.75 131.7408 133.2093±2.1465 60.73

Table 9: Results of MLSP Algorithm on dataset rds with varying parameters ϵ and η

eta/epsilon Best Cost Average Cost Time(s)

0.25/0.25 6.1534E+07 6.1572E+07±5.7E+04 85.99
0.5/0.25 6.1534E+07 6.1546E+07±3.7E+04 78.57

0.75/0.25 6.1534E+07 6.1572E+07±5.7E+04 72.15
0.25/0.5 6.1534E+07 6.1572E+07±5.7E+04 68.67
0.5/0.5 6.1534E+07 6.1546E+07±3.7E+04 65.05

0.75/0.5 6.1534E+07 6.1559E+07±4.9E+04 62.09
0.25/0.75 6.1534E+07 6.1559E+07±4.9E+04 65.15
0.5/0.75 6.1534E+07 6.1546E+07±3.7E+04 63.55

0.75/0.75 6.1534E+07 6.1546E+07±3.7E+04 64.35

Table 10: Results of MLSP algorithm on dataset KEGG with varying parameters ϵ and η

eta/epsilon Best Cost Average Cost Time(s)

0.25/0.25 24659.0733 24681.3945±240.9711 66.64
0.5/0.25 24659.0733 24837.5858±203.3399 72.86
0.75/0.25 24659.0733 24786.8942±168.9089 59.95
0.25/0.5 24659.0733 24671.9425±38.3418 60.31
0.5/0.5 24659.0733 24756.0949±134.5952 63.27

0.75/0.5 24659.0733 24746.6868±146.2990 56.24
0.25/0.75 24659.0733 24719.8526±61.3117 57.11
0.5/0.75 24659.0733 24804.6754±173.0019 54.95
0.75/0.75 24659.0733 24753.6144±204.2255 56.56

Table 11: Results of MLSP algorithm on dataset Urban_10 with varying parameters ϵ and η
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B.2 Experiments on Small Datasets

In this section, we present the experiments of the performances of our proposed MLSP algorithm on
other datasets with sizes smaller than 50, 000 used in [15].

Table 12 and Table 13 show the results on 18 datasets with sizes smaller than 50, 000 using k = 10.
It can be seen that, on each dataset, the best clustering cost returned by our MLSP algorithm is
smaller than BB method (note that BB method already guarantees a gap smaller than 0.1% to the
optimal solutions on small datasets) and other local search methods. On each dataset, the average
clustering cost returned by our MLSP algorithm nearly matches the result of the BB method. As for
FLS, although the performance of FLS is better than that of LS++, our proposed MLSP algorithm
improves the performance of FLS on clustering cost with smaller deviation for most datasets. As
for running time, there is no significant difference on the running time among different local search
algorithms for small datasets.
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Method Size BB(Cost) Best Mean Time(s)

LS++

Iris(150*4) 29.79(735s)

30.01 30.45±0.53 0.04
FLS 29.79 29.91±0.14 0.15

LLOYD 30.32 30.90±0.4 0.01
MLSP 29.74 29.76±0.33 6.61
MLS 29.93 30.21±0.19 0.17

LS++

SEEDS(210*7) 218.49(448s)

216.36 219.43±2.84 0.37
FLS 214.52 216.68±2.83 1.78

LLOYD 215.65 219.99±2.93 0.12
MLSP 214.52 215.08±0.49 8.07
MLS 214.95 219.29±2.82 0.46

LS++

GLASS(214*9) 251.86(2566s)

251.86 254.17±1.71 0.37
FLS 251.86 252.05±0.56 1.61

LLOYD 253.25 259.94±3.94 0.11
MLSP 251.86 251.99±0.54 7.25
MLS 253.29 254.00±0.55 0.46

LS++

BM(249*6) 375974(1204s)

377753 392980±4437 0.37
FLS 375974 377496±1934 1.71

LLOYD 376590 384475±5560 0.07
MLSP 375974 376276±265 6.81
MLS 378649 384982±4131 0.37

LS++

UK(258*5) 29.28(4h)

29.57 30.16±0.29 0.38
FLS 29.27 29.38±0.15 1.73

LLOYD 29.94 30.33±0.26 0.08
MLSP 29.27 29.29±0.01 7.14
MLS 29.41 30.00±0.27 0.39

LS++

HF(299*12) 6.96E+10(4h)

6.96E+10 7.01E+10±5.7E+08 0.39
FLS 6.96E+10 7.06E+10±3.1E+09 1.77

LLOYD 6.96E+10 6.97E+10±2.3E+08 0.09
MLSP 6.96E+10 6.96E+10±0 8.56
MLS 6.96E+10 7.01E+10±4.3E+08 0.4

LS++

WHO(440*8) 3.40E+10(4h)

3.36E+10 3.45E+10±6.0E+08 0.4
FLS 3.36E+10 3.41E+10±4.5E+08 2.01

LLOYD 3.44E+10 3.49E+10±7.4E+08 0.11
MLSP 3.36E+10 3.37E+10±4.6E+07 9.17
MLS 3.42E+10 3.52E+10±5.6E+08 0.4
LS++

HCV(572*12) 1.1315E+06(4h)

1.1315E+06 1.1454E+06±8.7E+03 0.45
FLS 1.1312E+06 1.1412E+06±2.4E+04 1.81

LLOYD 1.1329E+06 1.1538E+06±2.9E+04 0.15
MLSP 1.1311E+06 1.1410E+06±2.2E+04 11.05
MLS 1.1505E+06 1.2135E+06±4.2E+04 0.9

LS++

Abs(740*21) 1.0786E+06(4h)

1.0786E+06 1.0983E+06±1.1E+04 0.51
FLS 1.0786E+06 1.0816E+06±5.3E+03 2.11

LLOYD 1.0824E+06 1.1209E+06±2.1E+04 0.12
MLSP 1.0786E+06 1.0786E+06±0 13.42
MLS 1.0789E+06 1.0979E+05±1.1E+04 0.47

Table 12: Comparison results on clustering costs and running time with k = 10 on datasets with
sizes ranging from 150 to 740
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Method Size BB(Cost) Best Mean Time(s)

LS++

TR(980*10) 772.47(4h)

776.04 793.74±7.3 0.51
FLS 762.16 766.38±4.9 2.14

LLOYD 770.72 776.48±5.0 0.12
MLSP 762.16 764.71±1.9 11.89
MLS 785.01 805.89±11.5 0.56

LS++

SGC(1000*21) 1.1742E+08(4h)

1.1734E+08 1.2124E+08±3.4E+05 0.58
FLS 1.1734E+08 1.2092E+08±3.9E+05 2.35

LLOYD 1.1734E+08 1.1749E+08±1.7E+05 0.09
MLSP 1.1734E+08 1.1752E+08±5.1E+04 13.45
MLS 1.1735E+08 1.1846E+08±9.6E+04 0.62

LS++

HEMI(1995*7) 2.7421E+06(4h)

2.7116E+06 2.7657E+06±4.4E+04 0.58
FLS 2.7073E+06 2.8519E+06±1.2E+04 2.51

LLOYD 2.7144E+06 2.7349E+06±6.7E+03 0.18
MLSP 2.7070E+06 2.7123E+06±6.7E+03 13.39
MLS 2.7292E+06 2.7886E+06±6.9E+04 0.59

LS++

pr2392(2392*2) 5.3578E+09(4h)

5.3689E+09 5.4772E+09±1.0E+08 0.58
FLS 5.3610E+09 5.4256E+09±5.6E+07 2.65

LLOYD 5.3599E+09 5.3624E+09±2.3E+07 0.14
MLSP 5.3578E+09 5.3668E+09±2.3E+07 10.76
MLS 5.3629E+09 5.4203E+09±6.2E+07 0.58
LS++

TRR(5456*24) 1.3796E+05(4h)

1.3902E+05 1.4155E+05±1.5E+03 0.62
FLS 1.3829E+05 1.4018E+05±1.1E+03 3.43

LLOYD 1.3868E+05 1.4177E+05±2.1E+03 0.18
MLSP 1.3796E+05 1.3829E+05±2.5E+02 25.48
MLS 1.4591E+05 1.4939E+05±2.0E+03 0.64

LS++

AC(7195*22) 1181.7(4h)

1167.6 1184.01±15.88 0.58
FLS 1163.7 1174.1±13.06 5.06

LLOYD 1169 1172.1±6.05 0.36
MLSP 1163.7 1168.2±9.01 22.32
MLS 1165.5 1181.7±12.8 0.64

LS++

rds_cnt(10000*4) 1.6119E+06(4h)

1.6104E+06 1.6508E+06±2.4E+05 0.24
FLS 1.6099E+06 1.6196E+06±7.3E+04 2.26

LLOYD 1.6009E+06 1.6247E+06±1.4E+05 0.11
MLSP 1.6009E+06 1.6105E+06±7.2E+02 18.67
MLS 1.6146E+06 1.6520E+06±2.5E+05 0.42

LS++

HTRU2(17898*8) 1.8723E+07(4h)

1.8286E+07 1.8421E+07±1.1E+04 0.28
FLS 1.8269E+07 1.8404E+07±1.3E+04 0.94

LLOYD 1.8266E+07 1.8380E+07±2.0E+05 0.15
MLSP 1.8266E+07 1.8312E+07±4.2E+03 24.43
MLS 1.8275E+07 1.8569E+07±1.7E+04 0.3

LS++

GT(36733*11) 8.9909E+06(4h)

9.0239E+06 9.1784E+06±9.3E+04 7.06
FLS 8.9904E+06 9.0384E+06±5.4E+04 19.87

LLOYD 9.0001E+06 9.1229E+06±7.7E+04 0.33
MLSP 8.9904E+06 9.0131E+06±3.6E+04 47.51
MLS 9.0239E+06 9.1784e+06±9.3E+04 6.29

Table 13: Comparison results on clustering costs and running time with k = 10 on datasets with
sizes ranging from 980 to 36733
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B.3 Experiments with Different Values of k

In this section, we present the experiments of the performances of our proposed MLSP and MLS
algorithms on different datasets with different values of k. Tables 14 and 15 present the performances
of different local search algorithms with k = 3 on small datasets. Table 18 presents the performances
of different local search algorithms with k = 3 on large datasets. Tables 16 and 17 present the
performances of different local search algorithms with k = 5 on small datasets. Table 19 presents the
performances of different local search algorithms with k = 5 on large datasets.

It can be seen that, compared with other local search methods, our proposed MLSP algorithm achieves
the best clustering performance on most datasets with different values of k. On each dataset, the best
clustering cost returned by our MLSP algorithm matches the clustering cost of BB method (note that
BB method already guarantees a gap of 0.1% to the optimal solution). On each dataset, the average
clustering cost returned by our MLSP algorithm nearly matches the result of the BB method. As for
running time, there is no significant difference on running time among all local search algorithms on
small datasets. However, as the data sizes grow, our proposed MLS algorithm becomes much faster
than other local search algorithms.
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Method Size BB(Cost) Best Mean Time(s)

LS++

Iris(150*4) 83.96(93s)

83.96 84.82±1.05 0.26
FLS 83.96 83.96±0 0.5

LLOYD 84.68 84.68±0 0.09
MLSP 83.96 83.96±0 3.46
MLS 83.96 84.52±0.73 0.43

LS++

SEEDS(210*7) 598.29(84s)

598.29 600.83±5.59 0.27
FLS 598.29 598.29±0 0.51

LLOYD 598.29 598.30±0.69 0..07
MLSP 598.29 598.29±0 3.34
MLS 598.29 600.70±5.63 0.67

LS++

GLASS(214*9) 692.02(107s)

629.02 629.51±0.73 0.27
FLS 629.02 629.02±0 0.62

LLOYD 629.02 629.02±0 0.05
MLSP 629.02 629.02±0 3.37
MLS 629.02 630.72±5.08 0.68

LS++

BM(249*6) 8.63E+05(86s)

8.63E+05 8.69E+05±6.4E+03 0.27
FLS 8.63E+05 8.63E+05±0 0.57

LLOYD 8.65E+05 8.65E+05±0 0.03
MLSP 8.63E+05 8.63E+05±0 3.69
MLS 8.63E+05 8.74E+05±7.3E+03 0.67

LS++

UK(258*5) 50.77(89s)

50.92 51.95±0.71 0.29
FLS 50.77 50.83±0.12 0.54

LLOYD 51.29 51.31±0.03 0.04
MLSP 50.77 50.77±0 3.67
MLS 50.77 51.78±0.81 0.67

LS++

HF(299*12) 7.83E+11(107s)

7.83E+11 7.90E+11±6.5E+10 0.27
FLS 7.83E+11 7.84E+11±2.0E+10 0.56

LLOYD 7.83E+11 7.83E+11±6.3E+07 0.05
MLSP 7.83E+11 7.83E+11±3.3E+07 4.02
MLS 7.83E+11 7.86E+11±3.4E+09 0.74

LS++

WHO(440*8) 8.33E+10(117s)

8.33E+10 8.43E+10±6.7E+08 0.29
FLS 8.33E+10 8.33E+10±0 0.58

LLOYD 8.40E+10 8.40E+10±0 0.06
MLSP 8.33E+10 8.33E+10±0 3.74
MLS 8.33E+10 8.46E+10±8.1E+08 0.71

LS++

HCV(572*12) 2.75E+06(215s)

2.75E+06 2.75E+06±0 0.32
FLS 2.75E+06 2.85E+06±1.8E+05 0.61

LLOYD 2.75E+06 2.79E+06±4.7E+04 0.08
MLSP 2.75E+06 2.75E+06±0 4.04
MLS 2.75E+06 2.79E+06±6.8E+04 0.78

LS++

Abs(740*21) 2.62E+06(119s)

2.63E+06 2.70E+06±5.8E+04 0.33
FLS 2.62E+06 2.62E+06±0 0.69

LLOYD 2.62E+06 2.62E+06±0 0.07
MLSP 2.62E+06 2.62E+06±0 5.4
MLS 2.62E+06 2.66E+06±2.1E+04 0.81

Table 14: Comparison results on clustering costs and running time with k = 3 on datasets with sizes
ranging from 150 to 740
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Method Size BB(Cost) Best Mean Time(s)

LS++

TR(980*10) 1134.45(126s)

1145.77 1159.73±10.48 0.33
FLS 1134.45 1134.45±0 0.56

LLOYD 1136.93 1138.09±0.94 0.09
MLSP 1134.45 1134.45±0 4.75
MLS 1134.45 1154.49±14.61 0.78

LS++

SGC(1000*21) 1.28E+09(140s)

1.28E+09 1.28E+09±1.79E+06 0.35
FLS 1.28E+09 1.28E+09±0 0.82

LLOYD 1.28E+09 1.28E+09±0 0.13
MLSP 1.28E+09 1.28E+09±0 5.18
MLS 1.28E+09 1.28E+09±1.1E+06 0.81

LS++

HEMI(1995*7) 9.91E+06(97s)

9.91E+06 9.91E+06±2.5E+03 0.53
FLS 9.91E+06 9.91E+06±0 0.92

LLOYD 9.91E+06 9.91E+06±0 0.09
MLSP 9.91E+06 9.91E+06±0 5.44
MLS 9.91E+06 9.91E+06±2.3E+03 0.79

LS++

pr2392(2392*2) 2.13E+09(123s)

2.13E+09 2.15E+09±1.7E+08 0.48
FLS 2.13E+09 2.14E+09±1.4E+08 0.89

LLOYD 2.13E+09 2.13E+09±0 0.09
MLSP 2.13E+09 2.13E+09±0 5.92
MLS 2.13E+09 2.15E+09±1.5E+08 0.76

LS++

TRR(5456*24) 1.96E+05(325s)

1.96E+05 1.98E+05±1.7E+03 0.49
FLS 1.96E+05 1.97E+05±6.8E+02 0.97

LLOYD 1.96E+05 2.00E+05±3.3E+03 0.09
MLSP 1.96E+05 1.96E+05±3.8E+02 6.06
MLS 1.96E+05 1.98E+05±1.7E+03 0.78

LS++

AC(7195*22) 2199.10(222s)

2199.1 2234.68±41.91 0.92
FLS 2199.1 2201.90±8.42 2.02

LLOYD 2227.18 2227.18±0 0.16
MLSP 2199.1 2205.75±19.95 6.43
MLS 2199.1 2212.69±26.49 1.06

LS++

rds_cnt(10000*4) 1.49E+07(203s)

1.49E+07 1.49E+07±269.4 1.1
FLS 1.49E+07 1.49E+07±0 1.91

LLOYD 1.49E+07 1.49E+07±331.2 0.03
MLSP 1.49E+07 1.49E+07±0 4.96
MLS 1.49E+07 1.49E+07±226.1 0.91
LS++

HTRU2(17898*8) 8.21E+07(1555s)

8.21E+07 8.22E+07±1.6E+05 1.65
FLS 8.21E+07 8.21E+07±0 3.71

LLOYD 8.21E+07 8.21E+07±7.9E+03 0.97
MLSP 8.21E+07 8.21E+07±0 8.44
MLS 8.21E+07 8.22E+07±2.0E+05 1.21

LS++

GT(36733*11) 1.95E+07(1936s)

1.95E+07 1.97E+07±4.9E+05 4.38
FLS 1.95E+07 1.95E+07±6.0E+04 7.28

LLOYD 1.95E+07 1.99E+07±5.4E+05 1.18
MLSP 1.95E+07 1.95E+07±7.3E+03 12.83
MLS 1.95E+07 1.97E+07±4.7E+05 3.82

Table 15: Comparison results on clustering costs and running time with k = 3 on datasets with sizes
ranging from 980 to 36733
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Method Size BB(Cost) Best Mean Time(s)

LS++

Iris(150*4) 50.92(355s)

50.97 52.75±1.74 0.37
FLS 50.97 51.70±1.10 0.78

LLOYD 51.19 51.19±0 0.1
MLSP 50.97 50.98±0.02 3.53
MLS 50.97 51.78±1.11 0.81

LS++

SEEDS(210*7) 401.21(376s)

401.21 404.58±3.30 0.3
FLS 401.21 402.46±1.25 0.81

LLOYD 401.21 406.69±2.23 0.11
MLSP 401.21 401.46±0.75 3.62
MLS 401.21 409.65±9.40 0.83

LS++

GLASS(214*9) 437.73(592s)

437.88 443.63±7.54 0.29
FLS 437.73 439.82±6.29 0.89

LLOYD 437.88 457.22±15.78 0.07
MLSP 437.73 437.73±0 3.43
MLS 437.73 439.37±2.49 0.86

LS++

BM(249*6) 6.0249E+05(389s)

6.0249E+05 6.0213E+05±1.8E+03 0.29
FLS 6.0249E+05 6.1293E+05±5.2E+03 0.83

LLOYD 6.0249E+05 6.1293E+05±4.9E+03 0.04
MLSP 6.0249E+05 6.0249E+05±0 3.71
MLS 6.0249E+05 6.2224E+05±2.0E+04 0.83

LS++

UK(258*5) 40.17(457s)

40.17 40.97±0.63 0.29
FLS 40.17 40.28±0.25 0.82

LLOYD 40.24 41.16±0.57 0.06
MLSP 40.17 40.25±0.25 3.72
MLS 40.34 41.55±0.85 0.83

LS++

HF(299*12) 3.0998E+11(1723s)

3.0998E+11 3.1257E+11±2.5E+10 0.31
FLS 3.0998E+11 3.1083E+11±1.1E+10 0.89

LLOYD 3.0998E+11 3.1001E+11±1.2E+08 0.06
MLSP 3.0998E+11 3.1021E+11±7.1E+08 4.65
MLS 3.0998E+11 3.1499E+11±5.6E+09 0.92

LS++

WHO(440*8) 5.5914E+10(1840s)

5.5982E+10 5.6642E+10±3.6E+08 0.33
FLS 5.5914E+10 5.6333E+10±2.1E+08 0.89

LLOYD 5.5914E+10 5.6219E+10±1.25E+08 0.09
MLSP 5.5914E+10 5.6034E+10±1.25E+08 4.84
MLS 5.5973E+10 5.6460E+10±3.5E+08 0.88

LS++

HCV(572*12) 1.9716E+06(12768s)

1.9716E+06 1.9722E+06±622.78 0.34
FLS 1.9716E+06 2.0044E+06±2.6E+04 0.91

LLOYD 1.9716E+06 1.9995E+06±3.3E+04 0.13
MLSP 1.9716E+06 1.9716E+06±0 5.02
MLS 1.9716E+06 2.0113E+06±3.1E+04 0.93

LS++

Abs(740*21) 1.7472E+06(410s)

1.7472E+06 1.7630E+06±3.8E+04 0.36
FLS 1.7472E+06 1.7472E+06±0 0.98

LLOYD 1.7472E+06 1.7502E+06±1.5E+03 0.09
MLSP 1.7472E+06 1.7472E+06±0 6.03
MLS 1.7472E+06 1.7676E+06±3.5E+04 1.16

Table 16: Comparison results on clustering costs and running time with k = 5 on datasets with sizes
ranging from 150 to 740
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Method Size BB(Cost) Best Mean Time(s)

LS++

TR(980*10) 953.39(824s)

966.64 990.43±14.69 0.35
FLS 953.39 956.16±3.43 1.13

LLOYD 965.74 969.10+5.65 0.14
MLSP 953.39 954.62±2.48 6.28
MLS 983.22 1000.86±10.34 0.93

LS++

SGC(1000*21) 4.6919E+08(3290s)

4.6926E+08 4.7268E+08±2.8E+06 0.39
FLS 4.6919E+08 4.7197E+08±2.1E+06 1.06

LLOYD 4.6919E+08 4.6949E+08±2.3E+05 0.09
MLSP 4.6919E+08 4.6973E+08±1.0E+06 7.7
MLS 4.7204E+08 4.7529E+08±2.7E+06 1.22

LS++

HEMI(1995*7) 5.3811E+06(930s)

5.3811E+06 5.4497E+06±5.6E+04 0.45
FLS 5.3811E+06 5.4090E+06±3.4E+04 1.24

LLOYD 5.3811E+06 5.4262E+06±1.5E+04 0.13
MLSP 5.3811E+06 5.3880E+06±2.1E+04 7.04
MLS 5.3811E+06 5.4781E+06±1.4E+04 0.86

LS++

pr2392(2392*2) 1.1619E+09(625s)

1.1621E+09 1.1700E+09±6.3E+07 0.44
FLS 1.1619E+09 1.1636E+09±2.3E+07 1.31

LLOYD 1.1620E+09 1.1620E+09±2.9E+05 0.14
MLSP 1.1619E+09 1.1619E+09±0 7.46
MLS 1.1627E+09 1.1759E+09±1.4E+07 0.81

LS++

TRR(5456*24) 1.6870E+05(3094s)

1.6920E+05 1.7055E+05±626.4 0.54
FLS 1.6894E+05 1.7012E+05±529.7 1.92

LLOYD 1.7086E+05 1.7250E+05±3.0E+03 0.15
MLSP 1.6870E+05 1.6903E+05±473.9 9.57
MLS 1.6914E+05 1.7027E+05±548.1 0.89

LS++

AC(7195*22) 1636.1(3552s)

1636.1 1636.93±0.99 0.67
FLS 1636.1 1636.14±0 2.6

LLOYD 1542.6 1642.56±0 0.24
MLSP 1636.1 1636.14±0 7.68
MLS 1636.1 1637.25±1.26 1.57

LS++

rds_cnt(10000*4) 5.3725E+06(7171s)

5.3728E+06 5.3747E+06±2.2E+03 1.29
FLS 5.3725E+06 5.3725E+06±103 3.11

LLOYD 5.3744E+06 5.3751E+06±987 0.05
MLSP 5.3725E+06 5.3728E+06±554 7.53
MLS 5.3728E+06 5.3742E+06±2.1E+03 1.58

LS++

HTRU2(17898*8) 4.2154E+07(4h)

4.2176E+07 4.2260E+07±4.6E+04 2.31
FLS 4.2152E+07 4.2160E+07±9.3E+03 5.03

LLOYD 4.2171E+07 4.2173E+07±2.9E+03 0.16
MLSP 4.2152E+07 4.2153E+07±2.9E+03 11.01
MLS 4.2268E+07 4.2413E+07±1.4E+04 1.56
LS++

GT(36733*11) 1.3351E+07(4h)

1.3351E+07 1.3643E+07±3.8E+05 5.34
FLS 1.3351E+07 1.3438E+07±2.6E+05 10.67

LLOYD 1.3351E+07 1.3530E+07±3.4E+05 0.19
MLSP 1.3351E+07 1.3351E+07±0 16.61
MLS 1.3358E+07 1.3673E+07±3.9E+05 4.93

Table 17: Comparison results on clustering costs and running time with k = 5 on datasets with sizes
ranging from 980 to 36733
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Method Size BB(Cost) Best Mean Time(s)

LS++

rds(50,000*3) 476.79(811s)

476.88 488.32±22.61 2.93
FLS 476.88 476.88±0 10.44

LLOYD 476.88 507.69±31.3 0.18
MLSP 476.79 476.8±0.07 15.52
MLS 476.88 482.77±16.93 2.26
LS++

KEGG(53,413*23) 4.9412E+08(3901s)

4.9412E+08 4.9412E+08±0 1.04
FLS 4.9412E+08 4.9412E+08±0 7.27

LLOYD 4.9412E+08 4.9412E+08±0 0.26
MLSP 4.9412E+08 4.9412E+08±0 12.89
MLS 4.9412E+08 4.9412E+08±0 1.97

LS++

Urban_10(100,000*2) 1.15E+05(6834s)

1.15E+05 1.16E+05±1.7E+03 3.26
FLS 1.15E+05 1.15E+05±229 14.73

LLOYD 1.15E+05 1.23E+05±1.1E+04 0.18
MLSP 1.15E+05 1.15E+05±72 26.14
MLS 1.15E+05 1.16E+05±1.6E+03 3.08
LS++

RNG_AGR(199,843*7) 1.64E+15(4h)

1.6396E+15 1.6398E+15±3.3E+11 8.27
FLS 1.6396E+15 1.6397E+15±1.3E+11 58.78

LLOYD 1.6396E+15 1.6398E+15±3.2E+11 0.42
MLSP 1.6396E+15 1.6396E+15±0 53.25
MLS 1.6396E+15 1.6398E+15±1.3E+11 7.73
LS++

Urban_GB(360,177*2) OOM

414253 417302±4629 9.86
FLS 414253 414733±956 50.11

LLOYD 414253 423509±12613 0.32
MLSP 414253 414642±314 71.46
MLS 414253 417063±6123 8.87
LS++

SPNET_3D(434,874*3) OOM

2.2779E+07 2.2781E+07±824 13.93
FLS 2.2779E+07 2.2780E+07±769 142.15

LLOYD 2.2781E+07 2.2782E+07±609 0.49
MLSP 2.2779E+07 2.2779E+07±0 121.03
MLS 2.2779E+07 2.2781E+07±1022 10.33
LS++

syn(1,000,000*2) OOM

3.8720E+06 3.8722E+06±108.8 37.1
FLS 3.8720E+06 3.8721E+06±44.1 338.19

LLOYD 3.8720E+06 3.8724E+06±236.4 0.69
MLSP 3.8720E+06 3.8721E+06±32.9 223.97
MLS 3.8720E+06 3.8722E+06±119.2 22.93
LS++

USC_1990(2,458,685*68) OOM

6.9094E+08 6.9094E+08±0 286.41
FLS 6.9094E+08 6.9094E+08±0 3244.76

LLOYD 6.9094E+08 6.9094E+08±0 18.57
MLSP 6.9094E+08 6.9094E+08±0 2443.28
MLS 6.9094E+08 6.9094E+08±0 227.59
LS++

SUSY(5,000,000*17) OOM

4.6299E+07 4.7891E+07±1.6E+06 305.27
FLS 4.6299E+07 4.8013E+07±1.5E+06 3894.45

LLOYD 4.6299E+07 4.8261E+07±1.3E+06 29.2
MLSP 4.6299E+07 4.7349E+07±7.7E+04 2610.89
MLS 4.6299E+07 4.7612E+07±1.6E+06 262.61
LS++

HIGGS(11,000,000*27) OOM

2.2614E+08 2.2726E+08±1.1E+06 614.07
FLS 2.2614E+08 2.2720E+08±9.2E+05 8728.13

LLOYD 2.2614E+08 2.2858E+08±2.6E+06 109.06
MLSP 2.2614E+08 2.2718E+08±8.8E+05 6492.59
MLS 2.2614E+08 2.2728E+08±1.2E+06 522.15
LS++

SIFT(100,000,000*128) OOM

1.5774E+13 1.6098E+13±1.6E+11 31994
FLS 1.5649E+13 1.5856E+13±1.1E+11 18306

LLOYD 1.5718E+13 1.5793E+13±1.5E+11 401
MLSP - - >48h
MLS 1.5718E+13 1.5848E+13±1.1E+11 12738

Table 18: Comparison results on clustering costs and running time with k = 3 on datasets with sizes
larger than 50, 000, where OOM is short for out of memory
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Method Size BB(Cost) Best Mean Time(s)

LS++

rds(50,000*3) 282.65(4h)

284.27 287.39±2.78 3.34
FLS 290.15 290.15±0 18.86

LLOYD 284.22 287.50±8.67 0.86
MLSP 283.13 283.27±0.21 58.61
MLS 284.21 287.23±2.72 2.97
LS++

KEGG(53,413*23) 1.92E+08(3901s)

1.9201E+08 1.9205E+08±2.1E+04 2.17
FLS 1.9201E+08 1.9205E+08±1.6E+04 10.92

LLOYD 1.9201E+08 1.9754E+08±1.6E+07 0.26
MLSP 1.9201E+08 1.9201E+08±0 24.83
MLS 1.9201E+08 1.9204E+08±2.3E+04 1.88
LS++

Urban_10(100,000*2) 56231(4h)

5.62E+04 56281±76 5.33
FLS 5.62E+04 56248±49 26.22

LLOYD 5.62E+04 57768±2762 0.14
MLSP 5.62E+04 56246±36 40.97
MLS 5.62E+04 56315±83 4.64
LS++

RNG_AGR(199,843*7) 5.0721E+14(4h)

5.0721E+14 5.0721E+14±3.3E+11 15.65
FLS 5.0721E+14 5.0739E+14±3.0E+11 122.09

LLOYD 5.0721E+14 5.0781E+14±3.2E+11 0.35
MLSP 5.0721E+14 5.0736E+14±3.1E+11 73.2
MLS 5.0721E+14 5.0759E+14±3.0E+11 14.24
LS++

Urban_GB(360,177*2) OOM

201878 202554±954 16.48
FLS 201878 201879±2.5 97.19

LLOYD 201878 204943±7816 0.53
MLSP 201873 201874±2.03 103.94
MLS 201878 202166±629 14.89
LS++

SPNET_3D(434,874*3) OOM

8.8280E+06 8.8309E+06±1.4E+03 26.85
FLS 8.8280E+06 8.8289E+06±1.1E+03 331.24

LLOYD 8.8280E+06 8.8315E+06±1.6E+03 0.83
MLSP 8.8273E+06 8.8273E+06±0.17 180.12
MLS 8.8277E+07 8.8313E+06±1.0E+03 22.94
LS++

syn(1,000,000*2) OOM

1.8662E+06 1.8696E+06±3.2E+03 66.78
FLS 1.8765E+06 1.8674E+06±1.8E+03 527.22

LLOYD 1.8661E+06 1.9579E+06±1.1E+03 0.85
MLSP 1.8652E+06 1.8659E+06±1.1E+03 391.86
MLS 1.8658E+06 1.8694E+06±3.1E+03 31.62
LS++

USC_1990(2,458,685*68) OOM

3.9017E+08 3.9375E+08±1.E+07 439.74
FLS 3.9017E+08 3.9017E+08±0 4802.6

LLOYD 3.9017E+08 3.9861E+08±3.6E+07 20.11
MLSP 3.9017E+08 3.9017E+08±0 3612.99
MLS 3.9017E+08 3.9732E+08±1.4E+07 324.97
LS++

SUSY(5,000,000*17) OOM

4.0623E+07 4.1035E+07±1.5E+06 451.28
FLS 3.9880E+07 4.0997E+07±4.5E+04 5329.33

LLOYD 3.9848E+07 4.0648E+07±6.4E+05 31.67
MLSP 3.8720E+07 3.9316E+07±1.4E+05 4137.19
MLS 3.9904E+07 4.0882E+07±3.6E+06 297.43
LS++

HIGGS(11,000,000*27) OOM

2.0829E+08 2.1016E+08±1.3E+06 1316.59
FLS 2.0829E+08 2.1012E+08±1.2E+06 18429.3

LLOYD 2.0829E+08 2.1046E+08±5.7E+06 114.18
MLSP 2.0829E+08 2.1010E+08±1.1E+06 12713.2
MLS 2.0829E+08 2.1018E+08±1.4E+06 1019.6
LS++

SIFT(100,000,000*128) OOM

1.5035E+13 1.5194E+13±8.8E+10 41376
FLS 1.4778E+13 1.4994E+13±9.1E+10 27908

LLOYD 1.4805E+13 1.5021E+13±8.0E+10 531
MLSP - - >48h
MLS 1.4778E+13 1.4992E+13±8.9E+10 12931

Table 19: Comparison results on clustering costs and running time with k = 5 on datasets with sizes
larger than 50, 000, where OOM is short for out of memory
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B.4 Experiments on Different Local Search Algorithms with Fixed Time Limits

In this section, we conduct some additional experiments on different datasets with fixed time limits.
The experimental results in Table 20 demonstrate that our proposed MLSP algorithm achieves the
best clustering quality with fixed time limits.

Dataset Method Time Point Cost Time Point Cost Time Point Cost Time Point Cost

rds

LS++

20s

137.96

40s

137.96

60s

137.93

80s

137.93
FLS 138.98 137.26 134.68 134.62

MLSP 133.62 132.29 132.28 132.14
MLS 140.19 138.23 137.63 137.63

KEGG

LS++

20s

62855194

40s

62855194

60s

62793065

80s

62793065
FLS 61633499 61633499 61633499 61608744

MLSP 61534479 61534479 61534479 61534479
MLS 63419827 63419827 63419827 63419827

Urban_10

LS++

20s

25011.62

40s

25011.62

60s

25011.62

80s

25011.62
FLS 25103.83 25066.53 25058.21 24973.42

MLSP 24767.85 24767.66 24751.62 24748.37
MLS 24920.38 24885.80 24885.80 24885.80

RNG_AGR

LS++

60s

1.3833E+14

120s

1.3833E+14

180

1.3833E+14

240s

1.3833E+14
FLS 1.3822E+14 1.3813E+14 1.3800E+14 1.3797E+14

MLSP 1.3743E+14 1.3703E+14 1.3690E+14 1.3689E+14
MLS 1.3826E+14 1.3826E+14 1.3826E+14 1.3826E+14

Urban_GB

LS++

60s

89234.23

120s

89234.23

180

89234.23

240s

89234.23
FLS 89691.46 89691.46 89688.77 89406.39

MLSP 89314.46 89311.78 88946.64 88407.99
MLS 88955.80 88955.80 88955.80 88955.80

SPNET_3D

LS++

200s

2576396

400s

2576396

600s

2575784

800s

2575784
FLS 2573606 2572637 2571369 2570776

MLSP 2570513 2570292 2570160 2569484
MLS 2574266 2574266 2574266 2574266

syn

LS++

300s

561444.2

600s

561444.2

900s

561444.2

1200s

561444.2
FLS 561914.9 561914.9 561914.9 561914.9

MLSP 560502.5 560502.4 560502.4 560502.4
MLS 562385.8 562385.8 562385.8 562385.8

USC_1990

LS++

2000s

270910366

4000s

270910366

6000s

270910366

8000s

270910366
FLS 270910366 270910366 270825616 270825616

MLSP 270735773 270735773 270735773 270735773
MLS 270825616 270825616 270825616 270825616

SUSY

LS++

2500s

32437956

5000s

32437956

7500s

32437956

10000s

32437956
FLS 31693128 31693128 31693128 31693128

MLSP 31756413 31650548 31650548 31629757
MLS 32548680 32548680 32548680 32548680

HIGGS

LS++

12000s

189640888.6

24000s

188373729.5

36000s

188373729.5

48000s

187098096.4
FLS 189186932.5 189186932.5 189186932.5 189186932.5

MLSP 184084129.5 184084129.5 184084129.5 184084129.5
MLS 186689935.5 186689935.5 186689935.5 186689935.5

SIFT

LS++

20000s

1.82E+13

40000s

1.77E+13

60000s

1.67E+13

80000s

1.58E+13
FLS 1.79E+13 1.59E+13 1.55E+13 1.52E+13

MLSP 1.85E+13 1.85E+13 1.85E+13 1.85E+13
MLS 1.38E+13 1.38E+13 1.38E+13 1.38E+13

Table 20: Comparison results on clustering costs with k = 10 and fixed time limits
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