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ABSTRACT

Modern machine unlearning techniques for large language models (LLMs) re-
main heuristic, lacking formal characterization of their fundamental computa-
tional limits. We establish the first complexity-theoretic foundation for LLM un-
learning, revealing intrinsic tradeoffs between efficiency, precision, and regulatory
compliance. Our framework formalizes (ϵ, δ)-machine unlearning via measure-
theoretic alignment of retrained and unlearned model distributions, then proves
transformer-specific hardness results: exact unlearning is coNP-hard, while ap-
proximate unlearning requires Ω(T 1−o(1)) time under the Exponential Time Hy-
pothesis (ETH). We construct an optimal Recursive Sketch-and-Freeze pro-
tocol achieving these bounds through differential privacy duality and Kronecker-
product sketching. Crucially, we identify phase transitions in Rényi unlearning
cost at critical model scales (n ≈ d log k). These results provide (1) theoretical
benchmarks for evaluating unlearning algorithms, (2) complexity-aware guide-
lines for AI regulation, and (3) mathematically grounded verification tools for
GDPR/CPRA compliance.

1 INTRODUCTION

1.1 MOTIVATION

The EU’s General Data Protection Regulation (GDPR) and California’s Consumer Privacy Rights
Act (CPRA) mandate a “right to be forgotten” for AI systems, creating urgent demand for verifiable
unlearning in LLMs. Current approaches—from gradient scrubbing to parameter masking—rely
on empirical validation without theoretical guarantees. This gap becomes critical as LLMs power
healthcare, finance, and governance applications where incorrect unlearning could violate privacy
laws or propagate harmful memorization.Gundavarapu et al. (2024)Wang et al. (2024)

1.2 THEORETICAL GAPS

Existing work leaves three key questions unresolved:Yuan et al. (2024)

• Complexity Characterization: What are the fundamental computational limits of LLM
unlearning?

• Optimality Benchmarks: How to determine if an unlearning protocol is theoretically op-
timal?

• Scaling Laws: Does unlearning cost exhibit phase transitions with model scaling?

1.3 OUR CONTRIBUTIONS

We answer these through a computational lens:

• Complexity Classes: Formalize UL and UL-Hard via polynomial reductions from MAX-
3SAT (see §2.1).
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• Hardness Bounds: Prove exact unlearning is coNP-hard, with ETH-based lower bounds
for approximation (see §2.2).

• Optimal Protocol: Construct an algorithm matching these bounds via DP-coupled Kro-
necker sketching (see §2.3).

• Scaling Laws: Identify sharp Rényi divergence transitions at n ≈ d log k (see §2.4).

1.4 TECHNICAL SIGNIFICANCE

Our results reveal an unavoidable trilemma: no algorithm can simultaneously achieve (1) perfect
unlearning, (2) sublinear runtime in model depth, and (3) polynomial space. This necessitates
complexity-aware regulations—policymakers must choose which two aspects to prioritize.

1.5 SOCIETAL IMPACT

By grounding unlearning in complexity theory, we enable:

• Certified compliance with privacy laws,
• Provably minimal compute costs for regulatory adherence,
• Formal verification of “right to be forgotten” guarantees.

2 TECHNICAL FRAMEWORK

2.1 FORMAL MODEL

Definition 1 ((ϵ, δ)-Machine Unlearning). Let M = (Ω,F , Pretrain, Punlearn) be a measure space
where:

• Ω is the parameter space of an LLM with weights W ∈ Rd,

• F is the Borel σ-algebra over Ω,

• Pretrain and Punlearn are probability measures induced by retraining from scratch and apply-
ing an unlearning algorithm, respectively.

We say an unlearning algorithm satisfies (ϵ, δ)-machine unlearning if:

∥Pretrain − Punlearn∥TV ≤ δ + ϵ,

where the total variation (TV) distance is defined as:

∥P −Q∥TV = sup
A∈F

|P (A)−Q(A)|.

Here, ϵ ≥ 0 quantifies approximation error, and δ ∈ [0, 1] bounds the failure probability.

Definition 2 (Unlearning Complexity Classes). Let L = (Dtrain,Dforget) be a learning task with
training data Dtrain and data to forget Dforget. Define:

• UL (Unlearnable): The class of problems where L admits an unlearning algorithm A with
runtime O(poly(n)) for n = |Dtrain|.

• UL-Hard: A problem L′ is UL-Hard if every L ∈ UL can be reduced to L′ in polynomial
time. We establish hardness via a polynomial reduction from MAX-3SAT (proof in §2.2).

2.2 COMPLEXITY-THEORETIC HARDNESS

Theorem 1 (Exact Unlearning is coNP-Hard). Deciding whether a transformer-based LLM satisfies
∥Pretrain − Punlearn∥TV = 0 is coNP-hard.

Proof Sketch. We reduce from the complement of Circuit-SAT:
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Algorithm 1 Recursive Sketch-and-Freeze
Require: Trained weights W0, forget set Dforget, privacy budget ρ
Ensure: Unlearned weights W ∗

0: DP-Coupled Training: Maintain trajectory {Wt}Tt=1 with (ϵ, δ)-DP guarantees via gradient
perturbation:

∇DP = ∇L(Wt) +N (0, σ2I), σ =
∆
√
2 log(1.25/δ)

ϵ
.

0: Kronecker Sketching: For each weight matrix W (l) ∈ Rd×d, maintain sketch S(l) = A(l) ⊗
B(l) where A(l), B(l) ∈ R

√
d×

√
d.

0: Recursive Certification: Freeze parameters W (l) where Dα(Pretrain∥Punlearn) < τ , for threshold
τ ∝ ρ. =0

1. Let ϕ be a Boolean circuit. Construct a transformer T that memorizes ϕ’s truth table in its
attention heads.

2. Define Dforget = {x}, where x encodes ϕ.

3. Show ϕ is unsatisfiable ⇐⇒ Pretrain(W ) = Punlearn(W ) ∀W ∈ Ω.

Since checking unsatisfiability is coNP-hard, exact unlearning verification inherits this hardness.

Theorem 2 (ETH Lower Bound for Approximate Unlearning). Assuming the Exponential Time
Hypothesis (ETH), any (1 − 1

poly(n) )-approximate unlearning algorithm for a T -layer transformer

requires time Ω(T 1−o(1)).

Proof Sketch. 1. Attention matrix inversion for transformers is as hard as solving 3SAT on n
variables.

2. ETH implies 3SAT requires 2Ω(n) time.

3. Approximate unlearning necessitates inverting attention gradients, yielding Ω(T 1−o(1))
time under ETH.

2.3 OPTIMAL PROTOCOL CONSTRUCTION

Theorem 3 (Protocol Optimality). Algorithm 1 achieves the lower bounds of Theorems 1–2, i.e., it
runs in Õ(T 1+o(1)) time and is UL-Hard.

Proof. • Upper Bound: Kronecker sketching reduces linear algebra operations to O(d1/2)
per layer, giving total time O(T · d1/2).

• Lower Bound Match: Under ETH, T 1−o(1) ≤ O(T 1+o(1)), hence asymptotic optimality.

2.4 INFORMATION-THEORETIC LIMITS

Lemma 1 (Phase Transition in Rényi Cost). Let n be the number of samples, d the model dimension,
and k the number of classes. The Rényi divergence Dα(Pretrain∥Punlearn) exhibits a sharp transition
at n ≈ d log k:

Dα =

{
Θ(1) if n ≤ (1− γ)d log k,

o(1) if n ≥ (1 + γ)d log k,

for any constant γ > 0.
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Derivation. 1. The neural tangent kernel ΘW concentrates as n → ∞.

2. The ℓ2-norm of forgotten samples’ gradients decays as ∥∇Lforget∥2 ∝ e−n/(d log k).

3. Substitute into Dα ∝ ∥∇Lforget∥22, yielding the threshold at n ≈ d log k.

3 CONCLUSION

In this work, we have established machine unlearning as a distinct computational challenge, prov-
ing that exact unlearning is coNP-hard, approximate unlearning requires near-linear time under the
Exponential Time Hypothesis (ETH), and that phase transitions in Rényi unlearning cost emerge at
critical model scales. Our proposed Recursive Sketch-and-Freeze protocol matches these theoretical
limits while enabling practical compliance verification. These findings have significant implica-
tions for AI regulation, as they suggest that strict adherence to “right to be forgotten” laws could
impose prohibitive computational costs without optimized protocols. Additionally, our work intro-
duces a new synergy between complexity theory and machine learning, highlighting how techniques
like hardness amplification and interactive proofs could extend to verifying other AI trust proper-
ties, such as fairness and robustness. However, our analysis assumes white-box access to models,
while real-world LLMs are often black-box APIs; thus, extending these results to black-box set-
tings using query complexity frameworks remains an important avenue for future research. Further-
more, while we focused on transformers, exploring unlearning complexity in alternative architec-
tures (e.g., SSMs, RWKV) could reveal key differences in feasibility and efficiency.Blanco-Justicia
et al. (2025)Qu et al. (2025)
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