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Abstract

Transformers with linearised attention (“linear Transformers”) have demonstrated
the practical scalability and effectiveness of outer product-based Fast Weight
Programmers (FWPs) from the ’90s. However, the original FWP formulation is
more general than the one of linear Transformers: a slow neural network (NN)
continually reprograms the weights of a fast NN with arbitrary architecture. In
existing linear Transformers, both NNs are feedforward and consist of a single
layer. Here we explore new variations by adding recurrence to the slow and fast
nets. We evaluate our novel recurrent FWPs (RFWPs) on two synthetic algorithmic
tasks (code execution and sequential ListOps), Wikitext-103 language models,
and on the Atari 2600 2D game environment. Our models exhibit properties of
Transformers and RNNs. In the reinforcement learning setting, we report large
improvements over LSTM in several Atari games. Our code is public.1

1 Introduction

The Transformer [1] has become one of the most popular neural networks (NNs) for processing
sequential data. Its success on neural machine translation quickly transferred to other problems in
natural language processing, such as language modelling [2, 3] or question answering [4]. Recently,
it has also been applied in other domains, including image processing [5, 6] or mathematical problem
solving [7, 8, 9].

Conceptually, the Transformer is a deep feedforward NN that processes all elements of a sequence in
parallel: unlike in recurrent NNs (RNNs), the computations of a layer for the entire sequence can be
packed into one big matrix multiplication. This scales well with the number of parallel processors.

Despite the benefits of parallelisation, a major drawback of Transformers is that their computational
complexity in time and space is quadratic in sequence length. Furthermore, in the auto-regressive
version [1, 2] — the focus of our work — the state size increases linearly with sequence length. This
makes Transformers infeasible for auto-regressive settings dealing with very long or potentially infi-
nite sequences, forcing practitioners to truncate temporal contexts and ignore long-term dependen-
cies beyond fixed-size time windows. Although recent work tries to address this issue [10, 11], this
limitation makes some applications of Transformers challenging, e.g., reinforcement learning (RL)
in partially observable environments [12, 13], which is still dominated by RNNs such as the Long
Short-Term Memory (LSTM; [14]) trained by policy gradients [15, 16, 17, 18].

To scale Transformers to longer sequences, recent works have proposed to linearise the softmax in
the self-attention computation and reorganise the latter in a sequential way [19]. Such models include
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Katharopoulos et al.’s Linear Transformer (LT) [19], Choromanski et al.’s Performer [20] and Peng
et al. [21]’s variant. They enjoy time and space complexities linear in sequence length with states
of constant size. While their performance on some tasks does not fully match the one of regular
Transformers [22], several improvements have already been proposed [21, 23] (see our review in
Sec. 2.2) which makes this Transformer family a promising alternative.

Here we go one step further in advancing linear Transformer variants as powerful auto-regressive
sequence processing models, adopting the perspective of “Fast Weight Programmers” (FWPs) [24, 25,
26]. Recent work emphasised that linearised Transformers are essentially equivalent to outer product-
based FWPs from the ’90s ([23]; reviewed in Sec. 2). Here we explore this connection further and
describe more powerful FWPs.

The original FWP [24] is a two-NN system: a slow and a fast net, each with arbitrary architectures.
The slow net learns to generate rapid context-dependent weight modifications for the fast net. In the
case of existing linear Transformer variants, the slow and fast nets are simple one layer feedforward
NNs. Here we augment them with recurrent connections to obtain recurrent FWPs (RFWPs).
Recurrence enhances the model’s theoretical power [27] and can help to solve tasks that naturally
require recurrence as a part of the solution.

Our experiments on the language modelling dataset Wikitext-103 [28] show that our RFWPs are
competitive compared to regular Transformers. We then study various properties of the proposed
models on two synthetic algorithmic tasks: code execution [29] and sequential ListOps [30]. Finally,
it is straightforward to apply our models to RL problems as a drop-in replacement for LSTMs. Here
our RFWPs obtain large improvements over LSTM baselines across many Atari 2600 2D game
environments [31]. Although LSTM still works better in a few environments, we show that our
RFWPs generally improve by scaling them up.

The main contribution of this work is twofold: (1) from the perspective of FWPs, we study novel
powerful FWPs for sequence processing, demonstrating that NNs can easily learn to control NNs
that are more complex than a single feedforward layer, and (2) from the perspective of Transformer
models, our RFWPs augment linear Transformers with recurrence, addressing general limitations of
existing auto-regressive Transformer models.

2 Background on Fast Weight Programmers (FWPs)

Here we review the general concept of FWPs, as well as two specific instances thereof: the linear
Transformer [19, 20] and the Delta Net [23].

2.1 General Formulation

We refresh the concept of fast weight controllers or FWPs [24, 25] using modern notation in a sequence
processing scenario. An FWP with trainable parameters θslow sequentially transforms an input
sequence {x(t)}Tt=1 with x(t) ∈ Rdin to an output sequence {y(t)}Tt=1 with y(t) ∈ Rdout of length T as

θ
(t)
fast, q

(t) = SlowNet
(
{x(j)}tj=1, {y(j)}t−1

j=0, {θ
(j)
fast}

t−1
j=0, {q

(j)}t−1
j=0;θslow

)
(1)

y(t) = FastNet({q(j)}tj=1, {y(j)}t−1
j=0;θ

(t)
fast) (2)

where y(0), θ(0)fast , and q(0) are initial variables. This is a system with two NNs called FastNet and
SlowNet in which the parameters θ(t)fast of FastNet are generated by SlowNet at each time step t. The
weights of the fast net are fast in the sense that they may rapidly change at every step of the sequence
while the weights of the slow net θslow are slow because they can only change through gradient descent
during training, remaining fixed afterwards2. Eq. 1 expresses a slow NN in its general form. The slow
net can generate fast weights conditioned on various variables, depending on architectural choices
for the slow and fast NNs. In addition to the fast weights θ(t)fast, the slow net also generates or invents
an input q(t) to be fed to the fast net (alternatively q(t) can simply be x(t)). While the architectures
of slow and fast nets are arbitrary, they are typically chosen to be differentiable such that the entire
FWP can be trained in an end-to-end manner using gradient descent. By interpreting the weights of

2The fast net could also contain some additional slow weights; we omit this possibility here.
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an NN as a program [32], the slow net effectively learns to control, or program, the fast NN. Thus,
the slow net is a neural programmer of fast weights, and its parameter set θslow embodies compressed
information used to produce potentially infinite variations of context-dependent fast weights.

In many settings, it makes sense to generate the fast weights θ(t)fast incrementally in an iterative fashion,
where the SlowNet is further decomposed into two sub-parts:

z(t), q(t) = SlowSubnet({x(j)}tj=1, {y(j)}t−1
j=0, {θ

(j)
fast}

t−1
j=0, {q

(j)}t−1
j=0, {z

(j)}t−1
j=0;θslow) (3)

θ
(t)
fast = UpdateRule(θ

(t−1)
fast , z(t)) (4)

where UpdateRule takes the fast weights θ(t−1)
fast from the previous iteration to produce the new

fast weights θ(t)fast conditioned on z(t). The update rule is essentially the differentiable elementary
programming instruction used by the FWP. In the next section we review concrete examples of recent
FWPs.

2.2 Linear Transformers as Fast Weight Programmers

In general, the dimension of the fast weights θ(t)fast is too large to be conveniently parameterised by an
NN. Instead, it was proposed in 1991 [24] to perform a rank-one update via the outer product of two
vectors generated by the slow net. Two recent models directly correspond to such outer product-based
FWPs: linear Transformers [19] and the Delta Net [23].

Linear Transformer. The “linear Transformer” [19] is a class of Transformers where the softmax in
the attention is linearised. This is achieved by replacing the softmax with a kernel function φ—then the
self-attention can be rewritten as a basic outer product-based FWP [24, 23]. Previous works focused
on different φmaps with properties such as increased capacity [23] or guaranteed approximation of the
softmax in the limit [20, 21]. For our purposes, the particular choice of φ is irrelevant and we simply
assume φ : Rdkey → Rdkey , simplifying our equations below by writing k, q instead of φ(k), φ(q).
Using otherwise the same notation as above, for each new input x(t), the output y(t) is obtained by:

k(t),v(t), q(t) = Wkx
(t),Wvx

(t),Wqx
(t) (5)

W (t) = W (t−1) + v(t) ⊗ k(t) (6)

y(t) = W (t)q(t) (7)

where the slow weight matrices Wk ∈ Rdkey×din and Wv ∈ Rdout×din are used to obtain the key
k(t) ∈ Rdkey and the value v(t) ∈ Rdout . The key and value vectors are used to generate new weights
via the outer product v(t) ⊗ k(t) ∈ Rdout×dkey . A further simplification in the equations above is the
omission of attention normalisation which has been experimentally shown to be unnecessary if the φ
function produces normalised key and query vectors [23].

In Eq. 6, the previous fast weight matrixW (t−1) ∈ Rdout×dkey is updated to yieldW (t) by adding the
update term v(t) ⊗ k(t). This corresponds to the sum update rule or purely additive programming
instruction. Here the fast NN is a simple linear transformation as in Eq. 7 which takes as input
the query vector q(t) ∈ Rdkey generated by the slow weights Wq ∈ Rdkey×din . Hence, in linear
Transformers, the previous Eq. 3 simplifies to: z(t), q(t) = SlowSubnet(x(t);θslow) with z(t) =
(k(t),v(t)).

Delta Net. The Delta Net [23] is obtained by replacing the purely additive programming instruction
(Eq. 6) in the linear Transformer with the one akin to the delta rule [33]:

W (t) = W (t−1) + β(t)(v(t) − v̄(t))⊗ k(t) (8)

where β(t) ∈ R is a fast parameter (learning rate) of the update rule generated by the slow net with
weightsWβ ∈ R1×din and the sigmoid function σ:

β(t) = σ(Wβx
(t)) (9)

and v̄(t) ∈ Rdout is generated as a function of the previous fast weightsW (t−1) and the key k(t)

v̄(t) = W (t−1)k(t). (10)
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This update rule was introduced to address a memory capacity problem affecting linear Trans-
formers with the purely additive update rule [23]. The corresponding Eq. 3 is: z(t), q(t) =
SlowSubnet(x(t),W (t−1);θslow) with z(t) = (k(t),v(t), β(t), v̄(t)). Thus, unlike linear Transform-
ers, the SlowNet in the Delta Net takes the previous fast weightsW (t−1) into account to generate
the new fast weight updates.

We typically use the multi-head version [1] of the computations above. After the projection (Eq. 5),
the vectors k(t), v(t), q(t) are split into equally sized H sub-vectors, and the rest of the operations
are conducted by H computational heads independently. The resulting output vectors from each head
are concatenated to form the final output.

Other approaches. While our focus here is on outer product-based weight generation, which is
an efficient method to handle high dimensional NN weights, there are also other approaches. For
example, instead of generating a new weight matrix, Hypernetworks [34] scale the rows of a slow
weight matrix with a generated vector of appropriate size. Weight compression to control fast weights
in a low dimensional compressed space has been also studied [35]. In the broad sense of context-
dependent weights [36, 37, 38], many concepts relate to FWPs: e.g. dynamic convolution [39, 40, 41],
LambdaNetworks [42], or dynamic plasticity [43, 44].

3 Fast Weight Programmers With Slow or Fast RNNs

The original formulation of FWPs reviewed in Sec. 2.1 is more general than existing models presented
in Sec. 2.2. In particular, both fast and slow networks in existing linear Transformers consist of a
single feedforward layer (Eqs. 5 and 7). Here we present FWPs with recurrent fast nets in Sec. 3.1
and FWPs with recurrent slow nets in Sec. 3.2.

3.1 Fast Network Extensions

In principle, any NN architecture can be made fast. Its fast weight version is obtained by replacing
the networks’ weights with fast weights parameterised by an additional slow network. For example,
consider a regular RNN layer with two weight matricesW andR:

h(t) = σ(Wx(t) +Rh(t−1)) (11)

A fast weight version can be obtained by replacing W and R with W (t) and R(t) which are
controlled as in Eq. 8 with all necessary variables generated by a separate slow net at each time step t.

While this view illustrates the generality of FWPs, the angle under which we approach these models
is slightly different: we introduce recurrence as a way of augmenting existing linear Transformers.

Delta RNN. We obtain a fast weight RNN called Delta RNN by adding an additional recurrent
term to the feedforward fast net of the linear Transformer (Eq. 7):

y(t) = W (t)q(t) +R(t)f(y(t−1)) (12)

whereR(t) ∈ Rdout×dout is an additional fast weight matrix which introduces recurrent connections.
It is also generated by the slow net using the delta update rule, similar to W (t) in Eq. 8 but with
additional slow weights. We apply an element-wise activation function f to the previous output of
the fast network y(t−1) to obtain the recurrent query. The choice of activation function is crucial
here because, to achieve stable model behaviour, the elements in key and query vectors should be
positive and sum up to one when the delta update rule is used [23]. We use the softmax function
(f = softmax in Eq. 12) to satisfy these conditions. An ablation study on the choice of using Eq. 12
instead of the one similar to Eq. 11 can be found in Appendix A.2.

Analogous to the Delta RNN, we also construct a Delta LSTM with six fast weight matrices. The
exact equations can be found in Appendix A.2.

Alternative Feedforward Fast Nets. While the focus of this work is on RNNs, there are also
interesting fast feedforward models to be used in Eq. 7 which might result in stronger feedforward
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baselines. For example, we can replace the single layer fast net of Eq. 7 by a K-layer deep network:

h
(t)
k = W

(t)
k f(h

(t)
k−1) for k ∈ [1..K] with h(t)

0 = q(t) (13)

y(t) = h
(t)
K (14)

where the slow network produces all K fast weights {W (t)
k }Kk=1 and query q(t) from a single

input x(t). In light of the capacity limitation in linear Transformers [23], this might introduce
additional capacity without the need of larger representations, analogous to the trade-off in a multilayer
perceptron (MLP) between narrow & deep versus shallow & wide. We refer to this class of models as
Delta MLPs. Again, for stable model behaviour with the delta rule, we apply the softmax activation
f to the vectors to be used as a query.

Another interesting approach is to use a Delta Net itself as a fast net, i.e., make the slow weights
in the Delta Net fast (thus obtaining a Delta Delta Net). Such a model could in principle learn to
adapt the way of generating fast weights depending on the context. While we plan to investigate the
potential of such hierarchical FWPs in future work, we also include preliminary results of such a
model in our language modelling experiments (Sec. 4.1). A discussion on the dimensionality of such
a model can also be found in Appendix A.3.

We experimentally demonstrate that (slow) NNs can learn to control the weights of these rather
complex fast networks (Sec. 4).

3.2 Slow Network Extensions

In linear Transformers, the slow network is purely feedforward (Eq. 5). It can be made recurrent at
two different levels: within the slow network (i.e. the slow network computes weight updates based
on its own previous outputs e.g., key, value, query vectors) or via the fast network by taking the fast
net’s previous output as an input. In our preliminary experiments, we found the former to be sub-
optimal (at least in language modelling experiments). So we focus on the latter approach: we make
the slow net in the Delta Net dependent on the previous output of the fast network. We refer to this
model as the Recurrent Delta Net (RDN).

Recurrent Delta Net. We obtain the RDN by modifying the generation of key, value, and query
vectors (Eq. 5) as well as the learning rate (Eq. 9) in the Delta Net. We add additional slow weights
(Rk,Rq ∈ Rdkey×dout ,Rv ∈ Rdout×dout , andRβ ∈ R1×dout ) for recurrent connections which connect
the previous output of the fast net y(t−1) (Eq. 7) to the new k(t), v(t), q(t), and β(t) as follows:

k(t) = Wkx
(t) +Rk tanh(y(t−1)) (15)

v(t) = Wvx
(t) +Rv tanh(y(t−1)) (16)

q(t) = Wqx
(t) +Rq tanh(y(t−1)) (17)

β(t) = σ(Wβx
(t) +Rβ tanh(y(t−1))) (18)

While the rest of the model remains as in the Delta Net, with these simple extra recurrent connections
the model becomes a proper RNN. The corresponding dependencies in Eq. 3 are: z(t), q(t) =
SlowSubnet(x(t),y(t−1),W (t−1);θslow) with z(t) = (k(t),v(t), β(t), v̄(t)).

3.3 Related Models

All the RFWP models presented in Sec. 3.1 and 3.2 can be seen as a type of memory augmented
recurrent neural networks [45, 46] in the sense that they maintain two-dimensional fast weight states
as a short-term memory, in addition to the standard one-dimensional RNN states.

There are also several previously proposed recurrent fast weight models. For example, Schmidhuber’s
recurrent FWP from 1993 [26] has been revisited by Ba et al. [47]. There, key and value vectors are
not generated within the same time step, unlike in our models or in linear Transformers. The Fast
Weight Memory (FWM) [48] is also a recurrent FWP: the slow net is an LSTM and the fast net is a
higher-order RNN. However, the FWM is a single pair of slow and fast nets, and a multi-layer version,
as in the linear Transformer family, was not explored. Similarly, the Metalearned Neural Memory
[49] uses an LSTM as its slow net and a 3-layer MLP as its fast net but again limited to one pair.
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Table 1: WikiText-103 language model perplexity results with the small setting [21, 23]. For each
model, its name, corresponding slow and fast networks, and weight update rule (Update) are specified.
All models are trained and evaluated on the span of 256 tokens except for the models in the last two
rows (+ full context) which are trained and evaluated without context truncation. Parameter count is
in millions. See Appendix A for further experimental details and results.

Name Slow net Update Fast net Valid Test #Prms

Transformer - - - 33.0 34.1 44.0
Linear Transformer Feedforward sum Linear 37.1 38.3 44.0
Delta Net delta 34.1 35.2 44.0

Delta MLP Feedforward delta Deep MLP 35.8 36.8 44.3
Delta Delta Net Delta Net 34.0 35.2 44.6
Delta RNN RNN 33.8 35.0 44.6
Delta LSTM LSTM 32.6 33.8 47.3
RDN Recurrent Linear 34.1 35.2 44.1

Delta RNN + full context 31.8 32.8 44.6
RDN 32.5 33.6 44.1

Others have investigated variants of RNNs with fast weights for toy synthetic retrieval tasks [50, 51].
In particular, Keller et al. [51] augment the LSTM with a fast weight matrix in the cell update. In
contrast, we make all weights in the LSTM fast and, importantly, our model specifications build upon
the successful deep Transformer architecture using residual connections [52, 53], layer-norm [54],
multiple attention heads and feed-forward blocks [1]. Essentially, we replace the self-attention layers
in the regular Transformers by the fast weight programmer operations described above.

4 Experiments

We conduct experiments in four different settings. We start by evaluating all models on a language
modelling task (Sec. 4.1) to obtain a performance overview and to discuss computational costs.
Language modelling is an excellent task to evaluate sequence models. However, to highlight their
different capabilities, we evaluate our models also on algorithmic tasks. In fact, it is well-known
that the actual capabilities of RNNs differ from one architecture to another [55]. We are interested
in discussing such differences. With that goal in mind, we conduct experiments on two synthetic
algorithmic tasks, code execution (Sec. 4.2) and sequential ListOps (Sec. 4.3), which are designed
to compare elementary sequence processing abilities of models. Finally, we apply our models to
reinforcement learning in 2D game environments (Sec. 4.4) as a replacement for LSTMs.

4.1 Language Modelling

We first evaluate all discussed models on the generic language modelling task. This allows for
obtaining a performance overview and reviewing the computational efficiency of different models. We
use the Wikitext-103 dataset [28] and follow the small model setting similar to what’s used in recent
works by Peng et al. [21] and Schlag et al. [23]. This allows for training and evaluating different
models with a reasonable amount of compute on this resource-demanding language modelling task.

Perplexity results. The results are shown in Table 1 which also serves as a tabular summary
recapitulating different models described in Sec. 2 and 3, with various architectures for slow and
fast nets, and two choices of update rule. The top block of Table 1 shows the performance of the
baseline Transformer, Katharopoulos et al. [19]’s Linear Transformer, and Schlag et al. [23]’s Delta
Net. The performance of models presented in Sec. 3 can be found in the middle block. First of all, the
Delta MLP performs worse than the baseline Delta Net despite a slight increase in parameter count
(44.3 vs. 44.0 M). This supports the intuition that it is better to make the slow network aware of the
outputs of intermediate layers to generate fast weights in a deep network, instead of generating fast
weights for all layers at a time. In all other models, the performance never degrades with the proposed
architectural augmentation. The Delta Delta Net yields limited improvements; we plan to study this
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model in depth in future work. With the same amount of parameters (44.6 M), the Delta RNN yields
greater improvements. Among the models presented here, the Delta LSTM variant exhibits the best
performance. This shows that the slow network successfully controls the rather complex fast LSTM
network, although it also requires more parameters (47.3 M) than other models. Finally, the benefits
of recurrent connections added to the baseline Delta Net do not directly translate into practical
improvements in language modelling as demonstrated by the performance of RDN compared to the
one of the baseline Delta Net. Importantly, given a constant memory size w.r.t. sequence length, it
is straight-forward to train and evaluate our RNNs without context truncation (while still limiting
the backpropagation span). Corresponding performances of Delta RNN and RDN are shown in the
bottom part of Table 1: they outperform the regular Transformer with a limited context (256 tokens).

While language modelling is useful as a sanity check (here for example, except for the Delta MLP, all
models achieve reasonable performance), the task is too generic to identify certain important aspects
of the models, such as real benefits of recurrence. Before we move on to trickier RL applications,
Sec. 4.2 and 4.3 will focus on studying such aspects using synthetic algorithmic tasks.

Computational efficiency. The modifications we proposed in Sec. 3 introduce additional computa-
tional costs to linear Transformers/FWPs. First of all, none of them affect the core complexity of
linear Transformers: they all have a constant space and linear time complexity w.r.t. sequence length.
However, the per-time-step computational costs differ a lot from one model to another, as quantified
here in terms of training speed using our implementation. All models are implemented using a custom
CUDA kernel except the baseline Transformer for which we use regular PyTorch code [56]. Training
speeds of LT and Delta Net in Table 1 are 66 K and 63 K words per second respectively (vs. 33 K for
the baseline Transformer). The most expensive model is the Delta LSTM. This fast weight LSTM
with tied input-forget gates has 6 weight matrices, and each of these are manipulated by separate delta
rules. The corresponding speed is 14 K words per second, too slow for scaling to more experiments.
In contrast, the speeds of Delta RNN and RDN remain reasonable: 41 K and 35 K words per second
respectively. Therefore, the remaining experiments will focus on these two recurrent architectures
which are promising and practical in terms of both performance and computational costs.

4.2 Code Execution Task: Learning to Maintain and Update Variable States

In code execution tasks [29], models are trained to sequentially read the input code provided as word-
level text, and to predict the results of the corresponding code execution. We adopt the task setting
from Fan et al. [57] with one conditional and three basic statements. We refer the readers to Appendix
B.1 for a precise description of the task. This code execution task requires models to maintain the
values of multiple variables, which has been shown to be difficult for relatively shallow Transformers
with only feedforward connections [57].

The left block of Table 2 shows the results. Following again Fan et al. [57], we control the task
difficulty by modifying the number of variables (3 or 5). The model architectures are fixed: the
LSTM has only one layer with 256 nodes and all Transformer variants have the same architecture
with 4 layers with a hidden size of 256 using 16 heads and an inner feedforward layer size of 1024.

We first note that the LSTM is the best performer for both difficulty levels, with the smallest
performance drops through increasing the number of variables. In contrast to prior claims [57], the
LSTM is clearly capable of storing the values of multiple variables in its hidden and cell state vectors.
With three variables, the regular Transformer already largely underperforms other models with a
mutable memory: Delta Net, Delta RNN, and RDN. Linear Transformers completely fail at this task,
likely due to the memory capacity problem pointed out by Schlag et al. [23] (see Appendix B.2 for
further discussion). By increasing the number of variables to five, the baseline Transformers, Delta
Net, and RDN become unstable as shown by high standard deviations w.r.t. the seed. The benefits
of recurrent connections introduced in our RDN compared to the baseline Delta Net become more
apparent (76.3 vs. 61.4%). In contrast, the Delta RNN remains stable and gives the best performance
(85.1%) among Transformer variants, which shows the benefits of recurrence and in particular the
regular RNN architecture in the fast net. To match the performance of LSTM on this task, however,
these models need more layers (see Appendix B.2 for more results).
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Table 2: Test accuracies (%) with standard deviations on code execution (Code Exec) and sequential
ListOps (Seq ListOps). The difficulty of the task is controlled by the maximum number of possible
variables (# variables) for code execution, and the list depth (10 or 15) for ListOps. For code execution
with 5 variables, we report means over six seeds. In all other cases, the results are computed with
three seeds. For more results, see Appendix B.2 (Code Exec) and B.4 (Seq ListOps).

Code Exec (# variables) Seq ListOps (depth)

3 5 10 15

LSTM 99.0 ± 0.1 93.2 ± 6.1 88.5 ± 2.9 24.4 ± 1.1
Transformer 71.8 ± 2.6 35.4 ± 28.2 79.1 ± 0.9 75.3 ± 0.4
Linear Transformer 0.0 ± 0.0 0.0 ± 0.0 64.0 ± 0.3 64.4 ± 0.4
Delta Net 90.7 ± 2.7 61.4 ± 20.0 85.7 ± 1.8 77.6 ± 1.4

Delta RNN 90.8 ± 1.7 85.1 ± 1.9 83.6 ± 1.2 78.0 ± 1.0
RDN 92.6 ± 2.2 76.3 ± 17.6 83.2 ± 0.9 79.2 ± 1.4

4.3 Sequential ListOps: Learning Hierarchical Structure and Computation

The ListOps task [30] is a typical test for hierarchical structure learning, which requires list operation
executions. We use a simple variant of ListOps whose detailed descriptions can be found in Appendix
B.4. For example, the list [MAX 6 1 [FIRST 2 3 ] 0 [MIN 4 7 1] ] is of depth two and the
expected output is 6. While early research comparing self-attention to RNNs [58] has shown
some advantages of recurrence in hierarchical structure learning, more recent work [59] reports
Transformers outperforming LSTMs on ListOps. According to Tay et al. [22], linear Transformer
variants (LT and Performers) underperform other Transformer variants by a large margin on ListOps.

The right block of Table 2 shows results for two different depths: 10 and 15. The model architectures
are identical to those used in the code execution task (Sec. 4.2). At depth 10, we find LSTM to perform
best, while mutable memory Transformer variants (Delta Net, Delta RNN, and RDN) outperform the
regular and linear Transformers. At depth 15, the LSTM’s performance drops drastically (to 24.4%),
while the differences between Transformer variants remain almost the same. We note that sequences
are longer for the depth 15 problem (mean length of 185 tokens) than for the depth 10 version (mean
length of 98 tokens). This turns out to be difficult for the small 256-dimensional LSTM; see Appendix
B.4 for the corresponding ablation study. The performance differences between the baseline Delta
Net and the proposed Delta RNN and RDN are rather small for this task. Importantly, our models
outperform both regular and linear Transformers on this task requiring hierarchical structure learning.

4.4 Reinforcement Learning in 2D Game Environments

We finally evaluate the performance of our models as a direct replacement for the LSTM in reinforce-
ment learning settings. In fact, only a limited number of prior works have investigated Transformers
for RL. Parisotto et al. [12] and Rae et al. [11] evaluate them on the DMLab-30 [60, 61]. Parisotto
et al. [12] also evaluate them on Atari but in a multi-task setting [62]. Others [57, 13] use toy maze
environments. In contrast to Parisotto et al. [12]’s work, which presents multi-task Atari as a side ex-
periment, we study the Transformer family of models on the standard Atari 2600 setting [31, 63, 64]
by training game-specific agents.

Settings. We train an expert agent on each game separately with the Importance Weighted Actor-
Learner Training Architecture (IMPALA) using the V-trace actor-critic setup [65] and entropy
regularization [66] implemented in Torchbeast [67]. Our model follows the large architecture of
Espeholt et al. [65] which consists of a 15-layer residual convolutional NN with one 256-node LSTM
layer which we replace by either the RDN (Sec. 3.2) or the Delta RNN (Sec. 3.1). In line with the
small LSTM used for Atari (only 1 layer with 256 hidden nodes) we also configure a small RDN: 2
layers with a hidden size of 128 using 4 heads, and a feedforward dimension of 512. We find this
small model to perform already surprisingly well. For the rest, we use the same hyperparameters as
Espeholt et al. [65] which can be found in Appendix C.
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Figure 1: Relative improvements in test
scores obtained by the Recurrent Delta
Net (RDN) compared to the Linear Trans-
former (LT) after 50 M env. steps.
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Figure 2: Relative improvements in test
scores obtained by the Recurrent Delta
Net (RDN) compared to the Linear Trans-
former (LT) after 200 M env. steps.

Main experiments. We evaluate our models in 20 environments. According to Mott et al. [68],
in about half of them, the LSTM outperforms the feedforward baselines—which we confirm in our
setting with 50 M steps (see Appendix C). We report results at 50 M and 200 M environmental steps
of training. Like Nair et al. [69], we run the trained agent for 30 test episodes. Here we repeat this
evaluation five times to report the average score with a standard deviation. The following analysis
focuses on the RDN (Sec. 3.2) compared to the regular linear Transformer and the LSTM. A similar
study of the Delta RNN, as well as comparisons to more baselines, and the exact scores achieved by
each model on each game can be found in Appendix C.

In all our experiments above, we have shown that the Linear Transformer, i.e., a Fast Weight
Programmer with a purely additive update rule, consistently underperforms other models based on
the delta rule. Here we confirm this trend once more. Figures 1 and 2 show the relative improvements
of scores obtained by Recurrent Delta Net over those achieved by the linear Transformer on each
game, respectively after 50 and 200 M interaction steps. The RDN matches or outperforms the Linear
Transformer on all games except for two out of 20 games at both stages of training.

Figure 3 shows relative improvements of RDN over LSTM after 50 M interactions. In 12 games,
the RDN yields improvements over LSTM, whereas in 3 games, the LSTM performs better. In the
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Figure 3: Relative improvements in test
scores obtained by 2-layer RDN compared to
LSTM after 50 M env. steps.
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remaining 5 games, both reach similar scores. Interestingly, this trend does not directly extrapolate
to the 200 M case, which is presented in Figure 4. With longer training, the LSTM surpasses the
performance of the RDN in Battlezone, Gopher, Seaquest and Zaxxon, while the RDN catches up in
Up’N Down and Kung-Fu Master. Overall, there are 6 games in which LSTM clearly outperforms
RDN at 200 M steps, whereas in 9 games the result is the opposite.

On a side note, some of the scores achieved by the RDN at 200 M step are excellent: a score of over
170 K and 980 K in Space Invader and Q*Bert respectively beats the state-of-the-art set by MuZero
[70] and Agent57 [62]. However, a direct comparison is not fair as we train game-specific agents.

Experiments with larger models. Given the results above, a natural question to ask is whether a
larger model size improves the RDN in games where the LSTM dominates. We focus on four such
games: Battlezone, Berzerk, Gopher, and Seaquest (See Fig. 4). We double the model size to 3.4 M
parameters by increasing the number of layers to 4 and the hidden size to 256, with 8 heads. As
shown in Table 3, larger RDN models reduce the gap to the LSTM (except in Berzerk). This indicates
that further scaling RDN might be as promising as scaling regular Transformers in other domains.

Table 3: Performance of a larger RDN in games where the LSTM dominates (200 M steps).

Battlezone Berzerk Gopher Seaquest

LSTM 24,873 ± 1,240 1,150 ± 92 124,914 ± 22,422 12,643 ± 1,627
RDN 10,980 ± 1,104 348 ± 17 86,008 ± 11,815 4,373 ± 504
RDN larger 28,273 ± 5,333 346 ± 9 118,273 ± 14,872 14,601 ± 712

5 Conclusion

Inspired by the formal equivalence of linear Transformers and certain traditional Fast Weight Pro-
grammers (FWPs) from the early ’90s, we propose various new linear Transformer variants with
recurrent connections. Our novel Recurrent FWPs (RFWPs) outperform previous linear and regular
Transformers on a code execution task and significantly improve over Transformers in a sequential
ListOps task. On Wikitext-103 in the “small” model setting, RFWPs compete well with the previous
best linear Transformer variants for truncated contexts, and with full contexts, beat regular Trans-
formers. Our RFWPs can also be used as drop-in replacements for problems where RNNs are still
dominant. In particular, we evaluate them in reinforcement learning settings on 20 Atari 2600 en-
vironments. They clearly outperform the regular Linear Transformer on almost all environments.
They also outperform the LSTM across many environments with a small model size and demonstrate
promising scaling properties for larger models. Given the increasing interest in deploying Transform-
ers in RL [71, 72], in particular in the framework of Upside-Down RL [73, 74], our RFWP models
are particularly relevant: as RNNs, they conveniently handle long contexts with a constant memory
size, while being powerful Transformer variants at the same time. Our work highlights the usefulness
of the FWP framework from the ’90s and its connection to modern architectures, opening promising
avenues for further research into new classes of recurrent Transformers.
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Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
et al. Hybrid computing using a neural network with dynamic external memory. Nature, 538
(7626):471–476, 2016.

[47] Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using
fast weights to attend to the recent past. In Proc. Advances in Neural Information Processing
Systems (NIPS), pages 4331–4339, Barcelona, Spain, December 2016.

[48] Imanol Schlag, Tsendsuren Munkhdalai, and Jürgen Schmidhuber. Learning associative infer-
ence using fast weight memory. In Int. Conf. on Learning Representations (ICLR), Virtual only,
May 2021.

[49] Tsendsuren Munkhdalai, Alessandro Sordoni, Tong Wang, and Adam Trischler. Metalearned
neural memory. In Proc. Advances in Neural Information Processing Systems (NeurIPS), pages
13310–13321, Vancouver, Canada, December 2019.

[50] Imanol Schlag and Jürgen Schmidhuber. Gated fast weights for on-the-fly neural program
generation. In NIPS Metalearning Workshop, Long Beach, CA, USA, December 2017.

[51] T Anderson Keller, Sharath Nittur Sridhar, and Xin Wang. Fast weight long short-term memory.
Preprint arXiv:1804.06511, 2018.

[52] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In Proc. European Conf. on Computer Vision (ECCV), pages 630–645, Amsterdam,
Netherlands, October 2016.

13



[53] Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. In the Deep
Learning workshop at Int. Conf. on Machine Learning (ICML), Lille, France, July 2015.

[54] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. Preprint
arXiv:1607.06450, 2016.

[55] Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of finite
precision rnns for language recognition. In Proc. Association for Computational Linguistics
(ACL), pages 740–745, Melbourne, Australia, July 2018.

[56] Adam Paszke et al. PyTorch: An imperative style, high-performance deep learning library.
In Proc. Advances in Neural Information Processing Systems (NeurIPS), pages 8026–8037,
Vancouver, Canada, December 2019.

[57] Angela Fan, Thibaut Lavril, Edouard Grave, Armand Joulin, and Sainbayar Sukhbaatar. Address-
ing some limitations of Transformers with feedback memory. Preprint arXiv:2002.09402, 2020.

[58] Ke Tran, Arianna Bisazza, and Christof Monz. The importance of being recurrent for modeling
hierarchical structure. In Proc. Conf. on Empirical Methods in Natural Language Processing
(EMNLP), pages 4731–4736, Brussels, Belgium, October 2018.

[59] Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch. Pretrained transformers as universal
computation engines. Preprint arXiv:2103.05247, 2021.

[60] Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich
Küttler, Andrew Lefrancq, Simon Green, Víctor Valdés, Amir Sadik, et al. Deepmind lab.
Preprint arXiv:1612.03801, 2016.

[61] Joel Z Leibo, Cyprien de Masson d’Autume, Daniel Zoran, David Amos, Charles Beattie,
Keith Anderson, Antonio García Castañeda, Manuel Sanchez, Simon Green, Audrunas Gruslys,
et al. Psychlab: a psychology laboratory for deep reinforcement learning agents. Preprint
arXiv:1801.08116, 2018.

[62] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the Atari human bench-
mark. In Proc. Int. Conf. on Machine Learning (ICML), pages 507–517, Virtual only, July 2020.

[63] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing Atari with deep reinforcement learning. In NIPS Deep
Learning Workshop, Lake Tahoe, NV, USA, December 2013.

[64] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[65] Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu.
IMPALA: scalable distributed deep-RL with importance weighted actor-learner architectures.
In Proc. Int. Conf. on Machine Learning (ICML), pages 1406–1415, Stockholm, Sweden, July
2018.

[66] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In Proc. Int. Conf. on Machine Learning (ICML), pages 1928–1937, New York
City, NY, USA, June 2016.

[67] Heinrich Küttler, Nantas Nardelli, Thibaut Lavril, Marco Selvatici, Viswanath Sivakumar, Tim
Rocktäschel, and Edward Grefenstette. Torchbeast: A PyTorch platform for distributed RL.
Preprint arXiv:1910.03552, 2019.

[68] Alexander Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra, and Danilo Jimenez Rezende.
Towards interpretable reinforcement learning using attention augmented agents. In Proc.
Advances in Neural Information Processing Systems (NeurIPS), pages 12329–12338, Vancouver,
Canada, December 2019.

14



[69] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro
De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen, et al.
Massively parallel methods for deep reinforcement learning. In Deep Learning Workshop,
International Conference on Machine Learning (ICML), Lille, France, July 2015.

[70] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Si-
mon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering
Atari, Go, Chess and Shogi by planning with a learned model. Nature, 588(7839):604–609,
2020.

[71] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision Transformer: Reinforcement learning
via sequence modeling. Preprint arXiv:2106.01345, 2021.

[72] Michael Janner, Qiyang Li, and Sergey Levine. Reinforcement learning as one big sequence
modeling problem. Preprint arXiv:2106.02039, 2021.

[73] Juergen Schmidhuber. Reinforcement learning upside down: Don’t predict rewards–just map
them to actions. Preprint arXiv:1912.02875, 2019.

[74] Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaśkowski, and Jürgen Schmid-
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