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Abstract—Locations are usually necessary for task allocation in spatial crowdsourcing, which may put individual privacy in jeopardy without
proper protection. Although existing studies have well explored the problem of location privacy protection in task allocation under geo-
indistinguishability, they potentially assume the workers could perform any tasks, which might not be practical in reality. Moreover, they
usually adopt planar laplacian mechanism to achieve geo-indistinguishability, which will introduce excessive noise due to its randomness
and boundlessness. To this end, we propose a task alloCAtioN approach via grOup-based noisE addition under Geo-l, referred to as CANOE.
Its main idea is that each worker uploads the noisy distances between his true location and the obfuscated locations of his preferred tasks
instead of uploading his obfuscated location. In particular, to alleviate the total noise when conducting grouping, we put forward an optimized
global grouping with adaptive local adjustment method OGAL with convergence guarantee. To collect the noisy distances which are required for
subsequent task allocation, we develop a utility-aware obfuscated distance collection method UODC with solid privacy and utility guarantees.
We further theoretically analyze the privacy, utility and complexity guarantees of CANOE. Extensive analyses and experiments over two real-

world datasets confirm the effectiveness of CANOE.

Index Terms—Spatial Crowdsourcing, Task Allocation, Privacy Protection, Geo-indistinguishability.

1 INTRODUCTION
Spatial crowdsourcing (SC) is a typical representative of crowd-
sourcing, which engages the crowds to accomplish spatial
tasks, e.g., giving out coupons and monitoring environmental
conditions, by physically moving to other locations [1]]. In SC,
due to the limitation of time or space, each worker can only
be assigned to do the limited tasks initiated by the initiator.
For example, an individual worker may only have time to do
nearby tasks that are near the places of work or residence.
The task that is far away from these locations should not be
assigned to him. Thus, how to assign a certain worker the task
that he can do objectively is a key issue. Task allocation [2],
[3], [4], which assigns a worker to his preferred task under
the constraint on minimizing average travel distance, is an
effective way to address this issue. In particular, average travel
distance denotes the average distance needed for the selected
workers to perform their assigned tasks. The smaller, the better.
For instance, in location-based services, such as personalized
product recommendation [5], [6]], the initiators of the spatial
crowdsourcing want different workers to be responsible for
product recommendation in different regions. Obviously, since
each worker has different familiarities with different regions,
to maximize the quality of recommendations, the problem can
be modeled as the task allocation problem while consider-
ing preferences. However, disclosing the naturally required
locations may pose a significant risk to the workers as the
uploaded locations might imply living habits or other sensitive
information. Without proper privacy protection, the workers
may be unwilling to participate in the SC system.
Geo-indistinguishability (Geo-I) [7] has been proposed as a
practical standard to address location privacy protection prob-
lem. Unlike the spatial cloaking technique [8], which replaces
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a worker’s location with a restricted region, the protection
level of Geo-I is independent of adversaries” prior knowledge.
Moreover, it does not assume a trusted server. Furthermore, it
can be achieved in a simple and efficient way using the planar
laplacian (PL) mechanism. Through PL, locations will be locally
perturbed before being sent to the server. Since exact locations
never leave from workers’ devices, it can protect both workers
and other adversaries, such as the server, against damages due
to potential privacy breaches. Recently, PL has been adopted
in many famous applications, including LP-Guardian [9], LP-
Doctor [10] and secure nearby-friends discovery system [11]].

In this paper, we systematically study the problem of task
allocation with preferred tasks while protecting workers’ loca-
tions under Geo-I. Specifically, each worker first excludes the
tasks he doesn’t want to do and lets the remaining tasks as his
preferred tasks or just chooses the tasks he wants to do. Then
the server assigns each task to a worker under the constraint on
minimizing average travel distance while guaranteeing Geo-
I for each worker’s location. Although existing studies [12],
[13], [14], [15], [16], [17] have well explored the problem of
location privacy protection for task allocation, they potentially
assume the workers could perform any tasks, which might not
be practical in reality. Moreover, due to the randomness and
boundlessness of PL [18], the injected noise may be excessive.

We note that in the real world, workers prefer to select
nearby tasks that are near the places of work or residence. It
leads to the aggregations of tasks’ locations in the correspond-
ing preference sets. Thus, if some tasks are close to each other
in terms of locations, they can be represented by one location.
This fact drives us to advocate the idea of group-based noise
addition. It is intended to strike a balance between location
privacy and location utility. Specifically, as an extreme example,
when multiple locations in a certain worker’s preference set
are the same, there is even no extra information loss except
for the added noise in the way of adding noise by using
a location in this preference set, and the noise needs to be
added only once. To improve the utility of task allocation
under Geo-I, we propose to add noise by group-based noise



addition on the basis of minimizing the overall noise. Note
that, in this way, we may need to split the privacy budget for
multiple grouping representative locations. Although directly
announcing the obfuscated workers’ locations with PL guar-
antees Geo-I and avoids the problem of splitting the privacy
budget, the obfuscated locations might deviate from the true
locations significantly, as the injected noise of adopting PL for
achieving Geo-I is unbounded, which will lead to excessive
noise of the calculated distances. In contrast, in the way of
group-based noise addition, since each generated obfuscated
location is limited to the range formed by the corresponding
tasks’ locations in the same group, desirable data utility can be
expected. Moreover, the privacy budget of each worker only
needs to be split just a few times in practice due to the existence
of the aggregations of the tasks’ locations in each preference
set. As such, we believe that CANOE can provide an acceptable
trade-off for real-world deployments.

To this end, we propose a task alloCAtioN approach via
grOup-based noisE addition under Geo-I, referred to as CA-
NOE. Its main idea is that each worker uploads the noisy
distances between his true location and the obfuscated loca-
tions of his preferred tasks instead of uploading his obfuscated
location. In particular, we use one location to represent a group
of geographically close locations. This indicates only one piece
of noise will be added to the above locations in the same group.

In CANOE, two kinds of noise are involved in obtaining
the appropriate groupings, which are the information loss
caused by representing multiple locations by one location
and the injected noise for privacy protection. We group the
locations in each worker’s preference set through the con-
straints deduced by minimizing the sum of the above two
types of noise, and put forward an optimized global grouping
with adaptive local adjustment method called OGAL based
on our noise analysis. In OGAL, the server first gives coarse-
grained global groupings and broadcasts the groupings to
each worker. Then, each worker refines the received groupings
locally. Specifically, to conduct grouping globally, we formulate
a mixed-integer nonlinear program (MINLP) problem with
a non-convex constraint. Due to the NP-hard characteristic,
based on benders decomposition (BD) and alternating direction
method of multipliers (ADMM) [19], we devise an alternate
optimization method with convergence guarantee. To refine
groupings locally, we formalize two optimization problems to
adaptively determine the grouping for each worker, including
the number of groups and the number of tasks in each group.

After obtaining the optimized grouping for each worker, he
adds noise for each group to collect and uploads the required
distances for subsequent task allocation. We note that we
should make the generated representative location for each
group be close to tasks’ locations in the same group and be
far away from tasks’ locations in other groups. In addition,
recall that the straight-forward adoption of PL may introduce
excessive noise. To this end, instead of adopting PL, we de-
velop a utility-aware obfuscated distance calculation method
called UODC. Its main idea is to let each generated obfuscated
location be limited to the range formed by tasks’ locations in
the same group. We theoretically prove it guarantees Geo-I and
show its utility superiority compared with PL. In UODC, we
first formalize an optimization problem to generate a grouping
representative location for each group by minimizing intra-
group distances and maximizing inter-group distances. Then,
we generate a noisy representative location by probability
sampling with each corresponding group. Finally, each worker
uploads the calculated noisy distances from his true location to
each noisy representative location to the server.
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The key contributions of this paper are summarized as
follows:

e We present CANOE for task allocation under Geo-I
based on group-based noise addition. Its main idea is
that each worker uploads the noisy distances between
his true location and the obfuscated locations of his
preferred tasks instead of uploading his obfuscated
location.

o To alleviate the total noise when conducting grouping,
we put forward an optimized global grouping with
adaptive local adjustment method OGAL based on our
noise analysis. We prove its convergence guarantee.

o To collect the noisy distances which are required for
subsequent task allocation, we develop a utility-aware
obfuscated distance collection method UODC. We for-
mally give its privacy and utility guarantees.

o We theoretically give the privacy, utility and complexity
guarantees of CANOE. Extensive analyses and experi-
ments over two real-world datasets confirm the effec-
tiveness of CANOE.

The rest of this paper is organized as follows. We discuss
related work in Section 2 We give the preliminaries in Sec-
tion B} The details of CANOE are presented in Section [4 The
experimental results are discussed and analyzed in Section
Finally, we summarize our work in Section E}

2 RELATED WORK
The related work falls into the following two aspects.

2.1 Privacy-preserving Task Allocation with Obfuscation
We briefly discuss existing privacy-preserving task allocation
approaches in spatial crowdsourcing while adopting obfusca-
tion technologies (e.g., geo-indistinguishability (Geo-I) [7] or
differential privacy [20]).

Zhang et al. [21] conduct task allocation based on a de-
signed differentially private geocoding method to preserve
workers’ locations. To et al. [12]] propose a differentially private
framework for protecting the privacy of workers’ locations.
They [13] further propose an analytical method to ensure the
high success rate of task allocation. To improve task allocation
utility, Wang et al. [14] integrate the phase of adding noise
and the phase of task allocation into an optimization problem
together while guaranteeing differential privacy. They [15] also
propose a method to maximize each mobile worker’s future
location coverage under a guaranteed location privacy protec-
tion scheme. Similar to [15], Qian et al. [22] focus on improving
the service quality using task allocation for vehicle networks.
In addition, they [23]] design a similar solution for mobile edge
cloud environment. To satisfy personalized demand for each
worker, Wang et al. [24] provide a personalized probabilistic
winner selection mechanism. However, the utility of [24] sig-
nificantly depends on the choice of hyper parameters, which
could not be automatically determined. For jointly protecting
the location privacy of workers and tasks, To et al. [16] pro-
pose a three-phase framework which quantifies the achievable
probabilities. Following [16], Tao et al. [17] make the first
attempt at differentially private task allocation while assuring
the competitive ratio. However, these two mainly [16], [17]
focus on task allocation aiming to ensure all tasks are assigned,
while we focus on minimize the expected travel distance of
selected workers.

Task allocation with obfuscation technologies has also been
studied whiling incorporating incentive. Shen et al. [25] aim to
optimize task acceptance rate using a leader-follower game by
introducing edge nodes. Gong et al. [26] propose a framework



to achieve high task coverage by estimating worker density.
Xu et al. [27] propose a differential privacy-based auction
mechanism in cloud and edge-cooperation systems. Zhang et
al. [28] design a game-theoretic-based task allocation approach
for social sensing-based edge computing systems. However,
since they work on the problems that are different from ours,
their approaches are not suitable for our problem.

In summary, although existing studies can prevent loca-
tion privacy leakage, they potentially assume the workers
could perform any tasks. Moreover, some focus on different
objectives or different scenarios from us. Furthermore, due
to the randomness and boundlessness of PL, the obfuscated
locations of the workers might deviate from the true locations
significantly. In this paper, we focus on the scenario when
workers have preferred tasks while designing a new noise-
adding mechanism to collect the information required for task
allocation instead of adopting PL. In particular, we present
group-based noise addition to add noise for the preferred tasks’
locations rather than workers’ locations, which can provide
desirable utility while keeping the same intensity of privacy
protection.

2.2 Location Privacy under Geo-indistinguishability
Large amounts of work have been done to protect the location
privacy, and many excellent surveys, such as, [29] and [30],
have conducted systematic studies on the classic methods of
location privacy protection. In particular, the notion of Geo-
I [7] has gained wide attention.

Bordenabe et al. [31] explore the possibility of constructing
a mechanism that minimizes the service quality loss, using
linear programming technique. Yu et al. [32] propose another
notion to supplement Geo-I. Oya et al. [33] present a new
method to maximize the conditional entropy utility. Pyrgelis
et al. [34] focus on releasing aggregated location time-series.
Chatzikokolakis et al. [35] aim to improve utility for continuous
and discrete scenarios. ElSalamouny et al. [36]] consider a more
realistic case in which the region to be protected is continuous
with a non-zero area. Takagi et al. [37] identify an extra privacy
loss for road networks. Oya et al. [38] provide an alternative
formulation of Geo-I.

Though existing studies may provide good utility for a
single location, they are no longer capable of obtaining reliable
results under our setting. On one hand, the obfuscated loca-
tions could be far from the true locations. On the other hand,
we cannot directly use PL for multiple locations as the privacy
budget could be very small, which will inevitably result in
poor performance. Besides, the performances of [33], [34] rely
heavily on the choice of hyper parameters, which may result
in the different results.

3 PRELIMINARIES

3.1 Geo-indistinguishability

Geo-indistinguishability (Geo-I) is the de facto for protecting
location privacy [7]. Let X and Z be the set of workers’ possible
locations and possible obfuscated locations respectively. It is
formally defined as follows:

Definition 1 (e-Geo-l). Given a privacy budget ¢, a randomized
algorithm achieves e-Geo-I, if and only if

P(*|ly) <e"P(I*]l2),
where 1y and ly are any two locations in X, and [* is an observed
obfuscated location in Z. In particular, r denotes the distance from
true location to the observed obfuscated location.

The way to guarantee Geo-I is adopting the planar laplacian
(PL). Specifically, given the privacy budget parameter ¢, the
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actual location ly € X, and any other location [ € Z, we can
generate a noisy location by:
l=1lp+ (r+cos(f),r=sin(0)).
In particular, 6 is sampled from [0, 27), and r is obtained

by:
1 _
()
€ e

where W_; is the Lambert function (the -1 branch) and p €
[0,1).

To support multiple computations under Geo-I, composite
properties are extensively used, including sequential compo-
sition property [20] and parallel composition property [39]. In
particular, we have:

Theorem 1. (Sequential Composition) Suppose Ay, ..., Ay are k
algorithms over database D, each provides €;-Geo-I. A sequence of
algorithms A; (D) yields (3 &;)-Geo-I.

3.2 Problem Statement
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Figure 1. The research problem

Fig. I} shows the problem investigated in this paper. Given
a crowd of active workers in the SC system, denoted by the
set W = {wy,we,ws, -+ ,wpr}. There exist N (N < M)
tasks published by the initiator to be accomplished, which
is represented as T = {t1,t2,¢3,--- ,tn}. Each task has its
location coordinate and corresponding identifier. Each worker
has his own location coordinate and preference set S; with
the size of p;, in which the elements are the identifiers of the
tasks a worker prefers to do. Additionally, we use d (w;, t;) to
denote the distance the i-th worker w; travels if he is selected
to perform the j-th task ¢;, which is in his preference set.

We assume that the size of the preference set for each
worker is the same, denoted by p, and each worker uses the
same privacy budget e. In addition, suppose that the true
location of each task is publicly available. Furthermore, we
assume that the initiator has recruited adequate workers to
evenly prefer each task through the existing Target Coverage-
based worker recruitment approaches [40], [41], [42], [43], [44],
[45], which is beyond the scope of this paper. How to jointly
model worker recruitment and task allocation [46], [47], [48],
under Geo-], is an interesting issue that will be studied in the
future. Once the server assigns a task to a worker, the worker
and the task are considered being unreachable. Specifically, our
problem is to identify a set of tuples with form < w, ¢ >, where
a spatial task ¢ is assigned to worker w, satisfying that ¢ is a
task in the preference set of w. It aims to minimize traveling
distance while completing all the tasks with the obfuscated
information provided by the workers under e-Geo-I.

Table [I| summarizes the notations that will be frequently
used in this paper.



TABLE 1: List of Frequently Used Notations

Notation Definition
w The set of workers
T The set of tasks
M The total number of workers
N The total number of tasks
w; The i-th worker
t; The j-th task
S; The preference set for w;

P The size of the preference set
) The travel distance

) The obfuscated distance

I The representative location for a group

w The representative location after adding noise
di; The obfuscated distance between w; and u;-
c The grouping set of a certain preference set
Eq The injected noise
Err The information loss
d(w;,t;) The distance travelled by w; for performing ¢;
D The noisy distance matrix

4 OVERVIEW OF CANOE

The intuitive scheme is that each worker adds noise using the
planar laplacian (PL) to obfuscate his true location, and then
calculates the distances between the corresponding obfuscated
location and his preferred tasks’ locations. After that, the noisy
distances are sent to the server for task allocation. Nevertheless,
due to the randomness and boundlessness of PL, it may imply
excessive noise to be added.

Actually, due to the fact that workers prefer to select nearby
tasks that are near the places of work or residence, there exist
the aggregations of tasks’ locations in each preference set. Thus,
if some tasks are close to each other in terms of locations,
they can be represented by one location. This fact drives us
to advocate the idea of group-based noise addition. Based on
this idea, we present CANOE, whose main idea is that each
worker uploads the noisy distances between his true location
and the obfuscated tasks’ locations in his preference set instead
of uploading his obfuscated location directly. In particular,
CANOE mainly consists of an optimized global grouping with
adaptive local adjustment method OGAL and a utility-aware
obfuscated distance collection method UODC. Fig. 2| depicts
the workflow of CANOE, in which the server and the workers
collaborate to assign the tasks in each worker’s preference
set in a geo-indistinguishable manner. In particular, CANOE
includes the following phases.

Phase 1. In this phase, the server first invokes OGAL to
group all the tasks globally according to their publicly available
locations by formulating a mixed-integer nonlinear program
MINLP problem with a non-convex constraint, and then broad-
casts the groupings to each worker. The details are given in
Subsection

Phase 2. In this phase, each worker first applies the group-
ings sent by the server to initially group the locations in his
preference set, and then invokes OGAL to adaptively refine his
grouping based on the formalized two optimization problems,
including the determination of the number of groups and the
number of tasks in each group. The details are discussed in
detail in Subsection

Phase 3. In this phase, after local adjustment, each worker
already gets his optimal grouping, which may be different
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from each other. He invokes UODC to calculate the noisy
distances that are used for task allocation, and uploads the
noisy distances to the server. UODC is clearly elaborated in
Section 6]

Phase 4. In this phase, based on the uploaded noisy dis-
tances, the server conducts task allocation to assign each task
to a certain worker according to the algorithm described in [2].

Besides, we give the privacy, utility and complexity guar-
antees of CANOE in Section [}

5 OPTIMIZED GLOBAL GROUPING WITH ADAPTIVE
LocAL ADJUSTMENT

Clearly, two kinds of noise are involved in obtaining the appro-
priate groupings. We denote the noise for privacy protection as
Injected Noise, and denote the reconstruction error caused by
representing a set of locations by one location as Information
Loss. Too many groups for a certain preference set will lead to
excessive Injected Noise, while too few groups will imply too
much Information Loss.

Thus, to strike a balance between location privacy and
location utility, we put forward an optimized global grouping
with adaptive local adjustment method OGAL to minimize
the total noise. The overflow of OGAL is shown in Fig. B In
OGAL, the server first gives the coarse-grained groupings and
broadcasts the groupings to each worker. Then, each worker
adjusts his own groupings locally.

In what follows, we first introduce the global grouping
method. Then, we present how to adjust groupings locally.
Before giving the details of the global grouping method, we
first quantify the total noise, which is defined by the sum of
the Injected Noise and Information Loss.

5.1 Optimized Global Grouping

5.1.1 Total Noise Quantification

The Injected Noise is the expectation of noise added for guaran-
teeing Geo-I.

Definition 2 (Injected Noise). Formally, for a certain group CY, the
noise added to the group center is
Eg (Cy) = [7°° [27 D (r,6) drdf

2

= f0+oc fo% rs-re”"drdf - 1)
2
€

Recall that Information Loss is the loss caused by represent-
ing all locations in a group with a location. It indicates the
absolute value of the difference between the distance from a
certain worker’s true location to a certain task’s obfuscated
location and the distance from this worker’s true location to
this task’s true location. We give the following example to make
it be more clearer.

Example 1. As show1/1 in Fig. 4] let py denote the group center for
the k-th group and p, denote the group center after adding noise.
For a certain task t; and the worker w;, if we do not adopt group-
based noise addition, the travel distance is d (w;, t;). After we adopt
group-based noise addition, the travel distance is d (w“ ,u;c) Thus,
Information Loss, which is measured by the distance variation, can

be quantified by ’d (wi, u%) —d(w, tj)‘.

Definition 3 (Information Loss). Formally, for a certain group Cl,
Information Loss is,

Erp(Co) =)

_— d(wi,u;€> —d(wi,tj)‘. )
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Specifically, from Fig.[d by triangular inequality, we have:
‘d (wzuk) —d(wi,t ')’ < d( jVIJ‘;c)

d (e 1) -+ (s t5) > d (1,11 ©

Thus, we have:
EIL (Ck) - theck d <wi7,u’k) - d(wzatj)’

< D [d ('uk"u/’“) +d<uk’tj>} . (4)
Cy
- q;l d (px,tq) +|Ck| d (uk,u%)

We consider the sum of the Injected Noise and Information
Loss as the total noise, which is shown in Lemma

Lemma 1. Let |C| denote the number of groups for a worker, the
total noise after grouping can be quantified as follows:

_2cP 2|0 |Cy|”
E(total) = T + chec <€ .

Proof. By summing up the Injected Noise and Information Loss,

we have:
E (total) = 3 ¢, ec [ ¢ (Cr) + Err (Ch)]
[Cr| ,
:ZCkEC (,uka )+ ‘Ck|d(u’kvﬂk>
ellel M 2
< . + chgc & + ﬁ]
C leiile 2
2|€| o (w)

Actually, we should make the total noise as small as possi-
ble, and give the following theorem.

Theorem 2. The number of tasks in each group should be as near
equal size as possible.

Proof. Let @) represent the number of groups. Following
Lemma (1} by the Cauchy-Buniakowsky-Schwarz inequality, we



have: ) )

2 2C||C

&+ Yoec <7‘ ! )
=2
: Q
2 (|01|2+|02|2+ s +|CQ\2) 1241240 412
2

> 2 4 2(|Cy| +|Col + -+ +[Cql)?

When |Cy|=|Cs|=---=|Cq|, the above inequality
achieves the minimum value. Thus, the size of each group
should be as evenly as possible. O

5.1.2 Global Grouping Determination

According to Theorem 2} we should assure the uniformity for
the size of each group. To this end, we design a balance-aware
grouping method BAG by formalizing a constrained optimiza-
tion problem. Specifically, suppose there are |C| groups and the
number of tasks in the k-th group is |Cj|. The number of tasks
in each group is |NQ in the case of balance. Thus, we should
minimize the following objective function

)

€l e o
=Z|Ck|—72|ck|+v~ ©)

:2|C|+'

Since |C| and N are constants, we should minimize

|
> |Ck |2. Thus, we have the following optimization problem
k=1

2

N |C| |C|
argmin 3 3 wed () + 3. (z k)
Uy b 1=1k=1 = =1

Uik = 0

c
douig=11=12---
k=1

I _ el
i, — 1k =argmax{ui;};_,
0 other

N 0]
s.t.

In Eq. [6 the first part of the objective function aims at
minimizing the intra-group distances, and the second part cor-
responds to balance constraint, where p;;, is the membership
function that indicates how mucthhe 1- th sample belongs to

IC]
the k-th group, and ) (Z alk) = Z |C’k| The first two
constraints, denotedkb}l/ Non-negative Constmmt and Normal-
izing Constraint respectively, represent that the memberships
are not negative and the sum of memberships is 1. These two
jointly indicate that each task belongs to one group in C. The
third constraint, denoted by Boolean constraint, represents that
each task belongs to only one group.

We note that, this formulated problem is a mixed-integer
non-linear program (MINLP) problem with a non-convex con-
straint, which is denoted by Boolean constraint with respect to
the membership u and grouping center p. It is NP-hard [49].
While existing non-linear optimization techniques can only
deal with convex objectives effectively. Thus, a specialized
solution is required to solve this non-convex MINLP [50].

Based on Benders Decomposition [51]], we devise an alternate
optimization method with convergence guarantee. Our overall
strategy is to decompose Eq. [f]into two modules. Each module
corresponds to optimize one variable while fixing the other.
Thus, we can iteratively solve the two modules until conver-
gence.
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At the beginning, we need to enforce the Boolean Constraint.
Motivated by the alternating direction multiplier method
(ADMM) [19], we introduce the auxiliary matrix X, where an
element in X is a;; in Eq. @ Thus, the objective function in
Eq.[f] can be converted to

N €]
argmin 33 uand (b, )
X1 k=1
Thus, we alternately optimize u, 1 and X.

u, --subproblem

When fixing X, the objective function of u, y-subproblem is
shown as follows:

+XTX. 7)

N [C]

argmin > Y wird (ti, ux) + XTX
wp o i=1k=1

Ui > 0 . 8)

C
SEY Y up=1,i=1,2---N

We deal with the Non-negative Constraint and the Normal-
izing Constraint jointly and transform them into a Exponential

Constraint:
IC|

S etk — i 1,2 N, ©)

Thus, we have
N [C]

arg min Z Z wird (ti, p) + XTX
u éT k=1 (10)
st Z e Uit =14¢=1,2---N

Obviously, such Exponential Constraint can replace the Non-
negative Constraint and the Normalizing Constraint together as
the output of the exponential function is non-negative. Accord-
ingly, we give the lagrangian of Eq.

N [C]
L(“?N? ) Z Zuzkd(27ﬂk)+XTX
1=1k=1
IC|
+ Z by Z e Wik — 1]
i=1 k=1

Let the first-order derivative of lagrangian with respect to
1, be 0, we can get:

M=

Uik - T,
= . (11)
Z Uik
i=1
Let the first-order derivative of lagrangian with respect to

Uk, be 0, with the Exponential constraint, we can get:
li — M
|

| :
> (i — k)
k=1

Hie =

U = — In (12)

X-subproblem
When fixing v and p, the objective function of X-
subproblem is shown as follows:
argmin X7 X
b'e
1 k= argmax {uij}‘ji‘l (13)
0 other

To deal with the Boolean Constraint, we introduce an aux-
iliary matrix Z, and the above objective function is further
transformed into:

s.t. a;p =

arg min X7 X

X .
st. X—-—2Z=0
Based on ADMM, the above equation is transformed into

(14)



Algorithm 1: Balance-aware Grouping

Input: |C|: the number of groups;

T the set of tasks;

7: the scaling factor;
Output: X: the groupings;
initialize v and p and U = 0;
initialize X according to u;
while not converge do

update ju;, using Eq.
update u;; using Eq.
update Z using Eq.
update X using Eq.
setU=U+71(X—
setT = 1.17;

O© NN Ul Rk W N =

10 return X;

an unconstrained optimization problem:
2

argmin Z7Z + = : (15)
ZU,r 2 F

where 7 > 0 is a scaling factor and U is the lagrange multiplier.
Let the first-order derivative of lagrangian with respect to

Z be 0, we can get:
Z=QI+7)" (rX +U), (16)
where every element in [ is 1 and I has the same scale with X.
When Z, U and 7 are fixed, the optimal solution of X is

equivalent to

1
X—-Z+-U
T

2

1
X=min|| X -2+ -U
T

F
Thus, we have:

Xik{

where V = 7 — %U.
The overall procedure is shown in Alg.

1 k= argmax {v;; }IJ.C=‘1

17
0 other (17)

5.1.3 Convergence Analysis
To prove the convergence of Alg. [I} we need to prove that the
above two subproblems are monotonically bounded.

Lemma 2. The objective function in Eq.[15]is non-increasing while
enlarging Z.

Proof. We only need to prove that the Hessian Matrix about Z
is positive definite. We have Hessian Matrix:

8%J(Z) 8%J(Z)
021107211 02110Z N c|
AT (Z) = : :
22J(2) 9*J(2)
OZN‘C‘BZH 62118211
2471 - 0
0 e 24T

Obviously, A2J (Z) > 0. Thus, Hessian Matrix is positive
definite.
This concludes the proof. O

Lemma 3. The objective function in Eq.|15|is bounded.

Proof. Obviously,
2

1
X-Z+-U| >0 18)

-
2 F

7

As for ZT Z, it is equivalent to the following optimization

problem:
el
argmin > xy,
T k=1

| (19)

s.t. Z Tk = N
k=1

By the Cauchy-Buniakowsky-Schwarz inequality, we have:
IC]

SNoud (24412 2 (e 4 aye)’ =N (0)
k=1
Thus, we have:

2D

Thus, the objective function in Eq. [15|is greater than N
. IC]
This concludes the proof.

Theorem 3. By Benders Decomposition and ADMM, the problem
in Eq.[6]can at least convergence to a local optimum.

Proof. As for u,pu-subproblem, since an arbitrary norm on
R is convex, non-negative summation and compound affine
mapping are convex-preserving operations, by the lagrange
multiplier approach, the problem shown in Eq. {10 can at least
convergence to a local optimum.

As for X-subproblem, according to Lemma[2land Lemma B}
the problem shown in Eq. [15| can also convergence to a local
optimum.

O

5.2 Adaptive Local Adjustment

Given the global groupings, we now design an adaptive local
adjustment method ALA. The underlying idea is to achieve
fine-grained partitions over dense groups and coarse-grained
partitions over sparse groups to minimize the total noise. In
this way, each worker can adaptively determine the optimal
grouping, including the number of tasks in each group and
the number of groups. Specifically, we first derive another
constraint. Then, based on the new derived constraint, as well
as the constraint in Theorem |2, we formalize two optimization
problems to enforce these two constraints jointly.

Actually, we should make the total noise of CANOE be less
than that of adding noise to each task’s location in a worker’s
preference set. To achieve this goal, suppose for a certain group,
the number of tasks is |Cj|. The privacy budget for each task
is ¢/ = ﬁ if we add noise independently. In this case, the
Information Loss is the change of travel distance only caused by
adding noise. Thus, the Information Loss for the k-th group is
|Ck| % To make our group-based noise addition be better than
the above method, we let the E;y, (Ci) < |Ck %, and get the
following theorem.

Theorem 4. Let p1 and |Cy,| denote the group center and the number
of tasks for the k-th group respectively. Additionally, let t, denote a
task in the group, and the sum of the inner distance of this group
should satisfy the following constraint,

[Ckl
2 -1

qg=1
Proof. Let Ery, (Ci) < |Cy| 2, we have:
‘Ckl Q‘Ck‘z ’

> dnty) < 225 |0l d (p. i)
q:

2

— 2|Ck|(ICk]-1)
g

9
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For convenience, we denote the constraint in Theorem ]|
by Balance Constraint, and denote the constraint in Theorem E]
by Intra-group Constraint. We need to meet them jointly as
much as possible. Since, obviously, the fewer elements in a
group, the Intra-group Constraint can be more likely satisfied,
and it is conducive to the realization of Balance Constraint.
Therefore, our overall strategy is presented as follows. First,
we deal with Intra-group Constraint and design a dynamic
programming based method by minimizing the maximum sum
within each group of a worker. Then, we design a migration-
based adjustment method to achieve Balance Constraint through
as few times as possible.

5.2.1 Achieving Intra-group Constraint

Obviously, if the maximal sum of distance within each group
satisfies the Intra-group Constraint, we can easily enforce the
Intra-group Constraint for each group of a worker. To this end,
we first formulate the following problem by determining the
minimized maximal Intra-group distance.

Problem 1. Given a non-negative structure set G. Every element

G, in G includes a group Cj, and two attributes G;.dy and G;.da,
[Cl

where the two attributes indicate 21 d (p,ty) and w

respectively. Each group in G has bee% sorted according to the relative
distance from the true location of each worker. We aim to merge
|G| groups into |C| non-empty continuous groups, and minimize
maximal d;.

We give the following example to illustrate the above
problem.

Example 2. Suppose we have 5 groups, which form an ordered array
[8,2,4,9,8]. Thus, we have |G| =5. Suppose |C|=2. The merged
groups are [8,2,4] and [9, 8] as the maximum sum is 17, which is
the smallest in all cases. Note that, [8,2,9] is not a valid group as
the elements 2 and 9 in the original ordered array are not adjacent.

To solve the above problem, we design a method to
Minimize the Maximum Sum based on dynamic program-
ming, called MMS. In particular, let f; denote the maximum
value when merging the first £ groups into r groups, the state
transfer equation is shown as follows:

k
fi=max | fi7', > Ggdy
q=j+1

It indicates that the maximum value of the Intra-group

distance from the first k& groups (k < |G|) when merged into

r (r < |C|) groups, is the larger of the value, when merging j

groups (j < k) into r — 1 groups and merging the j + 1-th to

k-th groups into only one group. Each worker traverses all k
and r, and returns

(22)

0 = fl‘gl‘. (23)

Alg. 2] shows the main steps of MMS. In MMS, with the
initial groupings set C, each worker first splits each group
into two groups, where a random location is taken out. Thus,
|G| = 2|C| (Line 1). Then, he sorts G and calculates corre-
sponding d; and ds. Specifically, for sorting, the group center
that is nearest to the worker’s true location is ranked first, and
the center of another one group who is nearest to the above
group center is ranked second. It follows the same manner
for the remaining group centers. In this way, the sorting can be
completed (Line 2). Next, each worker initializes every element
of f with positive infinity except for fJ = 0 (Line 3). After that,
he solves the problem in Eq.[22|and gets ¢ (Lines 4-8). Finally,

Algorithm 2: MMS

Input: C: the initial grouping for a worker;
Output: C' the adjusted grouping for a worker;
split C;
initialize and sort G;
initialize f;
fori =1to |G| do
for j =1to|C| do
fork=1tok <ido
set

fZJ :min{ Z-j,max< Zil, > qul) };
q=k+1

8 setd = f‘lgl‘;
9 merge G to C according to § and Intra-group Constraint;
10 return C;

g 6 U R W N =

he merges a group until d; > dy or d; > 6 (Line 9). It follows
the same manner for the remaining workers.

5.2.2 Achieving Balance Constraint
After tackling Intra-group Constraint by MMS, we now enforce
the Balance Constraint through determining the optimal number
of tasks in each group. According to Lemma I} when groupings
are relatively balanced, we need to keep the number of groups
as small as possible. Moreover, after MMS, there may be too
many locations in some groups and too less locations in other
groups. Thus, we migrate tasks among groups to adjust them,
and propose a Migration-based Grouping Adjustment method
MGA.

To reduce the cost, that is the number of migrations, when
conducting local adjustment, we first formalize the following
problem.

Problem 2. Given an array with non-negative integers

[C]
(1,20 20| (x; € ZT and Y x; = p), where p is the number

of elements in the preference set. I}\/elaim to find the minimum number
of migration required to make all elements of the array be equal as
much as possible. That is,
IC]
argminz |z — a4].
o=l
We then give the following theorem to tackle the above
problem.

Theorem 5. For Prob. 2} the optimal solution is its median.

Proof. Suppose z1 < x3... < x|¢|. Let h(x) and x* denote
the objective function and the corresponding optimal solution
respectively.

Ifh(z) = |z — 21| + |2 — 20|, 2 € [21,2/0)], 2* = 20

If hz) = |z —x2| + |2 — 2)0)1] 2 € [21, 3001, 2 =
T|C|—1-
Ifh(z)=|x— x|+ |z — 21|, 2 € [Tk, Tht1], 5 = Ta1.
According to the Mathematical Methods of Induction, since
[2k, 2rp1] € ... C [22,20-1] € [#1,2)¢)|, the optimal
solution is its median x4 1. Specifically, we have

* {CL‘]C,{,C}C+1} ‘C|:2k
r= { Tra1 IC| =2k +1 (24)
This concludes the proof. O

Alg. [3| shows the main steps of MGA. In MGA, by feeding
the grouping obtained by MMS, each worker first calculates



Algorithm 3: MGA
Input: C: the grouping obtained by MMS;
Output: C' the adjusted grouping for a worker;
calculate the number of elements in a group ;
calculate the median |C|*;
for each group (. in C do

if |Cx| < |C|” then

L merge the locations from the near group or

GoR W N =

groups;

6 return C;

the number of elements in a group (Line 1). Then, he calculates
the median |C|" according to Eq. 24| (Line 2). Next, for each
group C}, in C, a worker finds the nearest one or more groups
in which the number of elements is greater than |C|”, and
migrates elements from it or them. The migration stops once
satisfying the Intra-group Constraint or the number of elements
in the migrated groups is larger than |C|" (Lines 3-4). Finally,
he obtains C' (Line 5).

6 UTILITY-AWARE OBFUSCATED DISTANCE CoOL-

LECTION

After obtaining the optimized grouping for each worker, he
adds noise for each group to collect and uploads the required
distances for subsequent task allocation. Specifically, we first
obtain a representative location for each group, and then add
noise for this location. A straightforward approach is to regard
the average location within each group as the representative lo-
cation and calculate the distances from a worker’s true location
to the obfuscated representative location while adopting PL.
However, we note that each generated representative location
for a certain group should be close to tasks’ locations in the
same group and be far away from tasks’ locations in other
groups. In addition, the straight-forward adoption of PL may
introduce excessive noise due to the randomness and bound-
lessness of the laplacian distribution.

To this end, we propose a utility-aware obfuscated distance
collection method UODC with solid privacy and utility guaran-
tees by keeping each generated representative location within
the range formed by the tasks’ locations in the same group. It
mainly consists of two phases. In the first phase, we formalize
an optimization problem by minimizing intra-group distances
and maximizing inter-group distances. In the second phase, we
let each worker generate a noisy location for each representa-
tive location, and finally uploads the calculated noisy distance
from his true location to each noisy representative location to
the server for subsequent task allocation. We prove that UODC
satisfies Geo-I and show its utility superiority with solid utility
analysis.

In the following, we first present the details of the two
phases. Then, we give the privacy and utility guarantees of
uobDcC.

6.1 Design of UODC
In the first phase, to generate a representative location
for the group Cj, we formalize the following optimization

problem
2

[Chl
il | P
RS SIS Sl PSSt

HE  =1,t,€Ck h=1,h#k

(25

9

In Eq. the first part of the objective function indicates
that we make 1, be close to t;, which is also in the group Cj.
The second part indicates that 1, should stay as far away from
the tasks’ locations in other groups as possible, where |C| is
the number of groups for a worker. To minimize the objective
function in Eq. we should make the partial derivative be
equal to 0, we have

1C] [Chl [Ck|
ti— > b
h=1,h#k j=1,t;€Ch, i=1,t;€Cy

— 26
i CI— |Gl -1 )

In the second phase, we note that if a location is far away
from the true location, the probability that it is regarded as
the obfuscated location should be decreased. Thus, we let the
probability of sampling the obfuscated location 4, within Cj,
be negatively correlated with the distance between u;c and fug,.
Therefore, we generate ,u;f by Eq.

, c. eféd(uk,u;)
P (,Uk \Mk) TS e s (27)
z€Cy,
Algorithm 4: UODC
Input: Cy;: the grouping for the i-th worker;
l;: the location for the i-th worker;
M': the number of workers;
e: the privacy budget;
Output: D: the distance matrix;
1 while ¢ < M do
2 for each group C};, in Cj; do
3 computes £’ = ﬁ :
// determine the representative
location for each group
4 generate uy, by Eq.
// generate the noisy representative
location
5 sample le from C}, by Eq. @using e;
6 compute the distance between /; and ,u;c ;
7 record the distance in D;
s return D;

6.2 Analysis of UODC

6.2.1 Privacy Analysis

Theorem 6. For any worker with privacy budget ¢, UODC satisfies
e-Geo-1L.

Proof. By definition, to prove UODC satisfies e-Geo-I, we need

to prove
P(z|r)

< fd(zy)
P(zly)
i c.e” 5@:2) . . .
Since P (z[z) = W,by the triangular inequality,
E-€e ’
veV
we have )
—5d(y,v)
e 2
P(zlz) _ ge”54(@2) . ’U%:V
P(zly) ~ ce 593 3o Lo 5d@w)
veV

T eeddwa)—§d@.v)

< 5 (dy2)—d(@,2) , vEV

> co—5d@v)
VeV

< egd(m,y) . e%d(xfy)

< efd(z,y)

This concludes the proof. O



6.2.2 Utility Analysis
Theorem 7. The average error and maximum error of UODC are
both less than PL.

Proof. We adopt E to denote the average error of UODC, which
can be quantified by the weighted distance from each possible
obfuscated location to the true location. The weight can be
defined by the probability of reporting a possible obfuscated
location according to the true location. Additionally, suppose
there are n tasks in a group. Thus, we have:

Eld(u,1)] = ipmmd( )
ce™ 5 “d(pity) . (28)
= Z W ~d (p,ti)

Jj=1

For the computational purpose, we use the constant dy and
a secondary variable o; to represent d (u, t;), where dy denotes
the maximum distance between p and ¢;, and o; denotes the
contribution of ¢; for p. Moreover, since the larger o;, the
smaller d (u, t;). Thus, we set

Hence, we have:

n
Eld(u,t)] =d —“ oi)e 2
] = do 35 e

j=1

(1—0;) - do. (29)

dg (1707;)
. (30)

5d £d 5d
01€290°%1 40529092 4...40,e270°"
e390°1 1 ¢590°2 4 ... ;o 5d0on

— dy (1
According to the Taylor Expansion [52], we have e > z + 1.
Thus, we have

\M:

OZG% 2 ( d()oz + ]-) 0;
1 ) (31)
= 5do Z o7 + Z 0;
According to the Law of Lzzrge Numbers [53], we have
le—n E(z) and E (2?) = E? (z) + D (z), where E ()

and D (x) are the mean and variance respectively. Moreover,
since there is no any prior information, according to the Max-
imum Entropy Theory, we assume o is sampled from a uniform
distribution with range (0, 1). Thus, the mean and variance of
o are % and 1 respectively Therefore, we have:

K2

(32)

Moreover, to obtain Z e3%% we formulate the following
i=1
problem.
Problem 3. Given o ~ U (0, 1), what is the probability density
function of e240°?

To solve Prob. @ let an auxiliary variable h = e3%° Thus,
we have

PH<h)=P (eédﬂo < h)
_ 2lnh
B P2(1?h§ 0= m)
= fogdo 1-dO
_ 2Inh
- Edo
Since P’ (H <h)= ﬁ, we have

2 1< h<eidb
— doh ==
pdf () { E(ﬁ) otherwise
Thus, we have
2 (e%do — 1)

10

Therefore. we have
n(£do+%
Bld (0] < do (1-"2 )

_ _edon(§dot3) ) .
iy (1)

~ do (5= do)

Since the expected error of PL is Epy, = %, in what fol-
lows, we need to compare E [d (i1, t)] with Epy,. We construct
g(e,do) = E[d(p,t)] — Epr. If g(g,dp) < 0, we can claim
that the average error of UODC is less than PL. Specifically, we
have

g(e,do) =do (53—5do) — 2
=dy (3— ado) 1 (33)
=3dyg — = — 5d2

Since 12 + ed?2 > 2,/12- d% = 4v/3d,, we can claim
g (g,dp) < 0 for any € and dp.

As for the maximum error, the maximum error of UODC is
do, which is limited while the maximum error of PL is positive
infinity due to the boundlessness of the laplacian distribution.
Thus, the maximum error of UODC is also less than PL.

O

7 ANALYSIS OF CANOE

In this Section, we theoretically analyze the privacy, utility and
complexity of CANOE.

7.1 Privacy Guarantee

At beginning, we give Lemma [ to quantify the distance
between any two locations after adding noise based on our
group-based noise addition.

Lemma 4. For any two tasks” locations with the distance less than r
(d (l1,12) < r), the distance is still less than r after they are grouped.
For notation convenience, the grouping method is denoted by G. That

is, it holds d (G (11),G (o)) <r

Proof. Let x and y represent the longitude and latitude of a task
respectively. We have

sz Zyz
G()=|ZE—+r-cosh, =— 17 sind
m m
and .
ZxJ Zyj
G(lp) = = + 1 - cosf,? +7r-sinf
n n

where m and n represent how many locations the two groups
are formed from.

Obviously, we have

d(G (), 9 (l2))




Therefore, we have

d(G (h),G(l2))

2

S1 Smn
(T = 2j1) + -+ (Titmn) = Tj(mn))
- (mln)2 ty tmn 2
, we have

e

N 2 N
Since (Z al> Z
d(G (1),G (I2))
< \/W{mn[(s%+t%>+~--
< \/Wmn (mn - r2)
=r
This concludes the proof. O

+ (shn + 1)}

Based on Lemma [} we give a comprehensive analysis of
CANOE on privacy guarantee in Theorem [§]

Theorem 8. For any worker with privacy budget ¢, CANOE
satisfies e-Geo-1.

Proof. By definition, to prove our CANOE satisfies e-Geo-I, we
need to prove

PGML)=0r1h)
P(G(l2) =1*i2) —
Similar to Theorem [l we have P(G(l;)=10"]l) =

da(g(1),1*)
e

2ev ﬁe a1
PGL)=U1h) _  &a@n)ous)
P(G(l2) =1*[lz) —
According to Lemma @ for each task, we have
P (g (ll) = l* |l1) |C\d(l1’l2)
P(G(2)=1"[lz) —
According to sequential composition property in Theo-
rem [T} for each worker, we have

PG (L) =1"]l)

P(G (o) =1*[l2) —
This concludes the proof. O

e(‘:d(ll:l2) .

. Thus, we have

ecd(ln,l2)

7.2 Utility Guarantee
In what follows, we present the utility analysis to explain why
CANOE performs better in Theorem [9}

Theorem 9. If a worker is eventually assigned to a task, CANOE
makes he be more likely to be assigned to the optimal task, which
can make the average travel distance be smaller, than directly adding
noise to his true location.

Proof. Recall that we assume that the size of the preference set
for each worker is the same, denoted by p, and each worker
uses the same privacy budget . We introduce auxiliary vari-
ables p; and p» to denote the probabilities of being assigned
to the optimal task when directly adding noise to workers’
locations and adopting the proposed CANOE respectively.

Clearly, we have p; = %. For CANOE, we discuss py in two
cases.

Case 1: If there is only one group, we have ps =
we have py = p;.

Case 2: If there are more than two groups, we first introduce
auxiliary variable ay, as...a;...a;c|, where |C| is the number of
groups and a; is the number of elements in the i-th group.

%. Thus,

11

If the tasks in the preference set are evenly divided into |C|
groups, we have py = ﬁ . ﬁ. Thus, py = p1.

If the tasks in the preference set are not evenly divided into
|C'| groups, we have

1 (1 1 1 1 11 11>

pp=— | ==t ===
IC] \IC] a1 |C] a2 IC] a; IC| ag

(34)

where a1 + as + a; + a|C‘ = p and 1 < a; < p. Thus, we have
C pp=L+ 21+ s ,,+a‘1‘

a1+a2+a Jra\c\ ai+az+tai+ta|c|

+ ap

a1+u2+a +a\c\ a1+a2+az+a\0| (35)

+...

a;i-p . a|c|p
=1 K%+g—;)+(§—3+g—i)+}
Sincex+y22,/, foranyx,yzO,wehaveZ—-i+Z—;22.

Thus, we have
IC\‘(IQCI—I)

. 36
> % (36)
Therefore, we have ps > % Thus, p2 > p1.
In summary, we have py > p;.
O

7.3 Time Complexity
To show the efficiency of CANOE, we analyze the increased
computational cost compared with the non-private task allo-
cation approach on both the worker side and the server side.
Generally, the time for balancing privacy and utility trade-off
is increased while the time for striking utility and efficiency
trade-off is reduced. The reasons lie in that, we have increased
the extra time for conducting grouping and adjusting each
grouping, but have reduced the time for calculating the needed
distances due to the adoption of group-based noise addition.
Specifically, on the server side, the server participates in
Phase 1 and Phase 4. Since the approach in [2] need to be
performed both for non-private task allocation and CANOE
in Phase 4, the operations in Phase 4 are not included. We
only need to calculate the time consumption of invoking Alg.[|
in Phase 1. Specifically, in Alg. l 1} the server first initializes
u, t, U and X (Lines 1-2), leading to O (N -|C]), O (N - |C|),
O (1) and O (N - |C|), as there are |C| group centers and each
initialization involves NN tasks. Moreover, initialization with
0 usually can be completed in O (1). Then, similarly, in each
iteration, each of updates for g, u;;, Z, X and U also takes
O (N - |C|). Additionally, updating 7 takes O (1). Suppose the
number of iterations is n, the total time complexity on the
server side is
3-O(N-[C)+0(1)+n-[5-0(N-[CN+OM)] 4
—(5-n+3)-O(N-|C]) +(n+1)-0(1) - @D
On the worker side, there are four parts of computations
from Phase 2 and Phase 3. First, in Phase 2, each worker
applies the groupings sent by the server to initially group the
locations in his preference set, leading to O (p) for him. Then,
he invokes OGAL to adaptively refine his grouping based on
Alg. 2] and Alg. B In particular, for Alg. 2| a worker first
splits his grouping C, initializes and sorts the constructed
structure set G, taking O (1) and O (p) + O (|C|1og |C]), as
the sorting algorithm usually can be done in O (|C|log|C|).
Then, he obtains the minimized the maximum sum (Lines

4-7), consuming O (|C\2 -(IC) - 1)) Finally, he merges G
to C, using O (|C|). Since logz ~ x — 1 according to
the Taylor Expansion, the total time complexity of Alg. |2 is
O(|Cl+p) + O (|C\3 - |C2 + O (1) for each worker. For
Alg. B each worker first calculates the elements in a group



and obtains the median, taking O (p) and O (|C|) respectively.
Then, he merges each group, using |C| - O (1). Hence, the total
time complexity of Alg.[3|is |C|- O (1) + O (|C|) + O (p) for
each worker. At last, each worker conducts Alg. E] in Phase 3.
In particular, he first generates representative location using p
locations and samples an obfuscated location for each group,
leading to O (p) and O (|C|) respectively. Then, he computes
and uploads the obfuscated distances to the server, which can
be done in 2 - O (p). Hence, the total time complexity of Alg. [4]
is 3-0 (p) + O (|C]) for each worker. Therefore, the total time
complexity on the worker side is
M.[o(|0|3+2.|0|)+6-0(p)+(|0|+1).0(1)}. (38)
From Eq. B7] and Eq. we can see that the total time
complexity is linear w.r.t. the number of tasks N or workers
M. Moreover, the time consumptions of each worker and the
server largely depend on the number of groups |C/| except for
N and M. Furthermore, we have |C| < p, and we notice that
the size of the preference set p is normally not unreasonably
large due to crowdsourcing system overhead and economic
budget. Besides, in practice, it is reasonable to assume that
the server and each worker have strong computing power,
and making use of distributed computing can further improve
the runtime. As such, we believe that CANOE can provide
an acceptable utility and efficiency trade-off for real-world
deployments.

8 EXPERIMENTS

In this Section, we first present the experimental setup. We
then evaluate the performance of CANOE over two real-world
datasets by varying different parameters. Finally, we verify the
advantages of CANOE’ key building blocks.

Datasets. In our experiments, we use two real-world datasets
for evaluation, T-Drive [54] and Tokyo [55].

o T-Drive: It, TD for short, contains trajectories of more
than 9,019 taxis and hundreds of thousands of passen-
gers. Similar to [16], we assume that the drivers are SC
workers and the passengers are SC tasks. We randomly
sample 500 workers and 368 tasks.

o Tokyo: It, TKY for short, contains the locations of 325
subway stations and 503 offices in Tokyo. There are
about 573,708 check-ins. Similar to [24], we assume that
the office locations of users are the locations of workers
and the locations of subway stations are the locations of
tasks.

As for the preference set, as a common practice [56], we

choose the first p tasks closest to workers as the preferred tasks
of each worker. Meanwhile, we ensure that each task is within
at least one worker’s preference set.
Evaluation Metrics. We use the average travel distance
(ATD) [14] to evaluate the performance of CANOE. In partic-
ular, we compute the real total Euclidean distance (in km) of
the selected workers and their assigned tasks divided by the
number of allocated tasks

ATD = ) d(w,t)/|A,
(w,t)

where A is the set of final task allocation (worker, task) pairs,

and d(w,t) is the Euclidean distance between the selected

worker w and the assigned task ¢. The smaller, the better.

(39)

Competitors. For the competitors, as mentioned in related
work, existing studies are designed specifically with the as-
sumption that each worker can perform any tasks rather than
one of a set of preferred tasks. Thus, for a fair comparison,
we let all workers in the following competitors can only be
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assigned to one of a limited number of tasks and ensure that
all the tasks are assigned.

e NoPriv: To show the utility loss due to privacy pro-
tection, we include a non-private version of CANOE,
denoted by NoPriv. Both NoPriv and CANOE adopt the
approach in [2] for task allocation.

e DGO [14]: It is a differential geo-obfuscation approach,
which adds noise to each worker’s location, namely
differential geo-obfuscation.

o IBA [24]: It focuses on personalized privacy-preserving
task allocation while adopting the laplace mecha-
nism [20] with incentive that can allocate tasks effec-
tively, namely incentive based task allocation.

o PBA [16]: It is a probability-based algorithm to assign
tasks by adopting the laplacian mechanism, namely
probability-based task allocation.

e TBA [17]: It uses a tree-based privacy mechanism to
find the nearest reachable worker for each task, namely
tree based task allocation.

The benefits for task preference have well demonstrated
by the existing non-private task allocation approaches [3], [4],
[56] while we focus on the privacy issue under this scenario.
Therefore, we do not compare CANOE against the previous
methods without preference, which are all orthogonal to our
work.

8.1 Performance Comparison

TABLE 2: Parameters that will affect CANOE

Notation Values

0.1,0.3,0.5,0.8,1 Privacy budget

30, 40, 50, 60, 70 Number of preferred tasks
100, 200, 300, 400, 500 Number of workers

100, 150, 200, 250, 300 Number of tasks

10, 15, 20, 25,30 Number of groups

Description

QZibm

Five parameters will affect the performance of CANOE,
which are shown in Tab. 2, where the values marked by bold
font represent the corresponding default values.

Impact of ¢. Figs. and show ATD of each competitor
and CANOE when varying the privacy budget €. We can see
that CANOE outperforms all the competitors in all cases, and
the relative superiority of CANOE is more emphasized while €
enlarges. The reasons can be explained as follows. On the one
hand, for each group, by incorporating the tasks’ locations in
the same group to limit the range of the generated obfuscated
location, it leads to a high chance of the obfuscated location
falling into the nearby locations with its true location. On
the other hand, through group-based noise addition, a task is
more likely to be assigned to the optimal worker, which can
minimize the average travel distance according to Theorem [9}
These two jointly make CANOE be less sensitive to €. In
contrast, for DGO, the optimal worker assigned to each task
may not prefer it. In such a case, the task can only be assigned
to the nearest worker, resulting in larger ATD. For IBA, when
the server decides which worker should be assigned to a task
by judging the distance between this task and each worker, it
conducts multiple probability comparisons for a certain worker
in one iteration, which results in the calculated probability
contains large error. Thus, it may lead to the wrong judgment,
and unavoidably results in poor performance. For PBA, due
to the randomness of probability approximation when post-
processing the obfuscated locations generated by PL, they may
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Figure 5. Performance Comparison

be far away from the true locations. For TBA, it generates
obfuscated locations based on the prior locations’ scopes, while
different scopes will exhibit different results, which makes it
fail to be effectively applied for real-world deployments. More-
over, the locations’” scopes may not be available in advance in
practice.

Impact of p. Figs. and p(d)] show ATD when varying the
number of preferred tasks for each worker p, which denotes
the number of elements in the preference set. We can observe
that, with the increment of p, all the approach gets better
performance. This is because on the premise of a fixed number
of tasks, a larger p provides a higher possibility for each task
to be assigned to a well-matched worker.

Impact of M. Figs. and show ATD when varying the
number of workers M. We can observe that, with the increase
of M, all the approaches get a better performance. This is
because with more candidate workers, a task is more likely
to be assigned to a proper worker, who really is close to this
task. Thus, ATD will be smaller.

Impact of N. Figs. and p(h)] show ATD when varying the
number of tasks N. Generally, ATD becomes lower with the
increment of N. This is because with more tasks while the
number of workers remains unchanged, there are fewer choices
for each task.

Impact of |C|. Figs. and [5(j)| show ATD when varying the
number of groups |C|. In general, ATD remains stable when

varying |C|. This is because, with local adjustment, we can
adaptively determine the grouping for each worker, which
makes our solution be more robust.

8.2 Effectiveness of OGAL

We do three parts of experiments to make a comprehensive and
thorough evaluation on OGAL. We first verify the effectiveness
of OGAL on the whole. Then, we verify the effectiveness of the
building blocks BAG and ALA, which are used to conduct glob-
ally grouping and locally fine-tune each grouping respectively.

To verify the effectiveness of OGAL, we compare it with
three baselines, which are GG, LG and GL. For GG, the server
only groups the tasks, and each worker applies the grouping
sent by the server to group the tasks in his preference set. For
LG, each worker performs grouping locally. For GL, the server
first groups the tasks using the existing KMeans clustering
rather than our designed balance-aware clustering, and sends
the grouping to each worker. Then, each worker conducts
grouping locally using KMeans again instead of conducting
local adjustment, with the received grouping from the server
as the initialization.

Figs. and [6(b)| show the results. We have the following
observations. First, LG performs better than GG when ¢ grad-
ually enlarges. This is because the number of elements in the
preference set is far less than the total number of tasks. Thus,
GG will introduce too much information loss for a worker.
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Second, GL performs better than LG, which demonstrates the
effectiveness of group-based noise addition. Third, our OGAL
significantly outperforms the baselines. The reason lies in that,
we have better global grouping and local grouping, which can
make the total noise be minimized.

To verify the effectiveness of the building block BAG, we
design three baselines, which are NEC, NBA and NBC. For
NEC, it let u;, = 0 if u;, < 0 without our designed Exponential
Constraint. For NBA, it feeds random values for .S when solving
S-subproblem, which aims to verify our alternative optimization
scheme. For NBC, it conducts grouping without Balance Con-
straint, which aims to verify our noise analysis.

Figs. and show the results. We have the following
observations. First, NBA and NBC lead to poor performance.
This is because, without Balance Constraint, it may introduce too
much noise for NBC. In addition, the formalized optimization
problem may not converge for NBA. Second, NEC performs
better than NBA and NBC, and performs worse than BAG. This
verifies the effectiveness of minimizing noise and Exponential
Constraint, as without Exponential Constraint it will divide the
tasks that should be originally divided into multiple groups
into the same group, which will introduce too much informa-
tion loss. Third, BAG performs the best, as the total noise is
minimized with convergence guarantee.

To verify the effectiveness of the building block ALA, we
design five baselines, which are NDB, NIC, NDI, MMS, and
MGA. For NDB, it does not conduct the operations from
Theorem B} For NIC, it does not tackle the Intra-group Constraint
in Theorem 4 For NDI, it tackles the Intra-group Constraint
without dynamic programming. For MMS, it only conducts
MGA to determine the optimal number of tasks in each group.
For MGA, it only conducts MMS to determine the optimal
intra-group distances.
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Figs. and [6(f)] show the results. We have the following
observations. First, MMS performs better than MGA, and NDB
performs better than the others except for ALA. This is because
MMS paves the way for conducting MGA. Moreover, according
to Theorem @ the injected noise is less than PL. Since, the
Intra-group Constraint is close related to PL, we can still get a
better performance even without MMS to tackle the Intra-group
Constraint. Second, MMS and MGA perform the worst. This
demonstrates that we should tackle MMS and MGA jointly for
local adjustment. This is because only performing one method
cannot minimize the overall noise. Third, ALA performs the
best. This is because by the dynamic programming based
method MMS to get the optimal intra-group distances and the
median based method MGA to get the optimal number of tasks
in each group, we can minimize the total noise.

8.3 Effectiveness of UODC
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Figure 7. Effectiveness of UODC

To verify the effectiveness of UODC, we design five base-
lines. Recall that UODC contains two phases, which are de-
termining the representative location for each group and gen-
erating the obfuscated locations respectively. We design PLO,
PGO, PLV, PGV and PLN by changing the representative
location determination method and obfuscated location gen-
eration method. For PLO, we get the average representative
location in each group and adopt PL to add noise. For PGO,
we get the average representative location in each group and
adopt the designed noise addition method in Eq. 27| to add
noise. For PLV, we determine the representative location only
considering that it stays as far away from the tasks in other
groups as possible, and adopt PL to add noise. For PGV, the
only difference from PLV is that we adopt the noisy location
generation method in Eq. 27] to generate obfuscated locations.
For PLN, we adopt the representative location determination
method in Eq. 26] and PL to determine each representative
location and generate obfuscated locations respectively.

Fig. [7] shows the results. We have the following observa-
tions. First, PGO and PGV perform better than the others
except for UODC. This is because the designed obfuscated
location generation method contributes more to the accuracy
improvement. Second, PGV performs better than PGO, and
PLN performs better than PLV, which demonstrate the effec-
tiveness of the representative location determination method.
Third, UODC performs the best. This is because the designed
representative location determination method can make the
information loss be minimized, and the designed obfuscated
location generation method can make the injected noise be
minimized.

9 CONCLUSION

In this paper, we present a geo-indistinguishable task allocation
approach, called CANOE, which can provide desirable utility
while still achieving rigorous Geo-I guarantee. We theoretically
give its privacy, utility and complexity guarantees. In CANOE,
two methods, optimized global grouping with adaptive lo-



cal

adjustment method OGAL, and utility-aware obfuscated

distance collection method UODC, are proposed to reduce

the

negative effect of adding noise. Experimental results with

component-wise analyses validate the effectiveness of CANOE.
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