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ABSTRACT

Multimodal learning significantly benefits cancer survival prediction, especially
the integration of pathological images and genomic data. Despite advantages of
multimodal learning for cancer survival prediction, massive redundancy in mul-
timodal data prevents it from extracting discriminative and compact information:
(1) An extensive amount of intra-modal task-unrelated information blurs discrim-
inability, especially for gigapixel whole slide images (WSIs) with many patches
in pathology and thousands of pathways in genomic data, leading to an “intra-
modal redundancy” issue. (2) Duplicated information among modalities domi-
nates the representation of multimodal data, which makes modality-specific in-
formation prone to being ignored, resulting in an “inter-modal redundancy” is-
sue. To address these, we propose a new framework, Prototypical Information
Bottlenecking and Disentangling (PIBD), consisting of Prototypical Information
Bottleneck (PIB) module for intra-modal redundancy and Prototypical Informa-
tion Disentanglement (PID) module for inter-modal redundancy. Specifically, a
variant of information bottleneck, PIB, is proposed to model prototypes approx-
imating a bunch of instances for different risk levels, which can be used for se-
lection of discriminative instances within modality. PID module decouples entan-
gled multimodal data into compact distinct components: modality-common and
modality-specific knowledge, under the guidance of the joint prototypical distri-
bution. Extensive experiments on five cancer benchmark datasets demonstrated
our superiority over other methods. The code is released 1.

1 INTRODUCTION

Cancer survival analysis (Cox, 1975; Jenkins, 2005; Salerno & Li, 2023) aims to estimate the
death risk of patients for prognosis, in which multimodal learning by integrating both histological
information and genomic molecular profiles can benefit the prognosis of a majority of cancer
types (Chen et al., 2020; 2022b; 2021; Jaume et al., 2023; Xu & Chen, 2023). These modalities
offer diverse perspectives for patient stratification and informing therapeutic decision-making (Zuo
et al., 2022). For example, histological images give visual phenotypic information about tumor mi-
croenvironment, e.g., the organization of cells (Jackson et al., 2020), for different grading of cancer,
while genomics data provides global landscapes (Győrffy, 2021) for various molecular subtyping
of cancer. They collaboratively contribute to different survival outcomes. Nevertheless, a large
quantity of redundancy in mulitmodal data poses some significant challenges to effective fusion.

The primary question at hand is: How can we capture the discriminative information from single
modality by eliminating its redundancy, referred as “intra-modal redundancy” issue? The label for
a WSI consisting of numerous patches is typically provided at the WSI level, leading to weak su-
pervision for survival prediction. In the absence of precise annotations, such as patch-wise labeling
for cancerous regions in WSIs, both task-related and irrelevant information become intermingled
in the model’s input, resulting in information redundancy (Hosseini et al., 2023). Specifically,
the region of interest, e.g., the tumor cells highly related to risk assessment, only occupies a small

∗ Corresponding authors, † Equal contribution.
1https://github.com/zylbuaa/PIBD.git

1

https://github.com/zylbuaa/PIBD.git


Published as a conference paper at ICLR 2024

portion of gigapixel WSIs with high resolutions of about 100, 000 × 100, 000 pixels (Zhu et al.,
2017). For this fine-grained visual recognition, although certain multiple-instance learning (MIL)
(Ilse et al., 2018; Li et al., 2021; Yao et al., 2020) have provided some promising solutions, they do
not enforce constraints to remove redundant information, thus struggling to obtain discriminative
representations. A similar redundancy issue emerges in genomic modality. Research (Jaume
et al., 2023; Chen et al., 2021) indicates that biological pathway-based gene groups, characterized
by known interactions in unique cellular functions, offer more semantic correspondence with
pathology features. However, these pathways can yield hundreds to thousands of groups, and only
a few specific pathways exhibit a strong correlation with patient prognosis (e.g. immune-related
pathways are significant for bladder cancer prognosis prediction (Jiang et al., 2021a)).

Another concern is: How can we capture compact yet comprehensive knowledge from the dominant
overlapping information in multimodal data, referred as “inter-modal redundancy” issue? The
redundancy stemming from this duplicated information can complicate the knowledge extraction.
Therefore, extracting independent factors by disentangling can enhance the feature effectiveness
while discarding superfluous information. The knowledge (Liang et al., 2023) can be split into
distinct components: modality-specific knowledge and modality-common knowledge. The former
contains information unique to a single modality, while the latter encapsulates common information
and exhibits consistency across modalities. To obtain effective knowledge from multimodal
redundancy, existing efforts (Chen et al., 2021; Xu & Chen, 2023) focus on integrating common
information, emphasizing the inherent consistency through alignment. However, common informa-
tion often dominates aligning and integrating multimodal information, leading to the suppression of
modality-specific information, thereby disregarding the wealth of distinctive perspectives.

In this work, we propose a new multimodal survival prediction framework, Prototypical Information
Bottlenecking and Disentangling (PIBD), consisting of Prototypical Information Bottleneck (PIB)
module for “intra-modal redundancy” and Prototypical Information Disentanglement (PID) module
for “inter-modal redundancy”. First, Information Bottleneck (IB) provides a promising solution to
compress unnecessary redundancy from itself while maximizing discriminative information about
task targets. However, IB may suffer from the high-dimensional computational challenges posed
by massive patches of a gigapixel WSI and hundreds of pathways. Instead, we propose a new IB
variant, PIB, that models prototypes approximating a bunch of instances (e.g., patches of pathology
or pathways of genomics) for different risk levels, which can guide selection of discriminative
instances within a modality. Secondly, PID removes inter-modal redundancy by comprehensively
decomposing entangled multimodal features into ideally independent modality-common and
modality-specific knowledge. To do this, we reuse the joint prototypical distributions modeled by
aforementioned PIB to guide the extraction of common knowledge. Simultaneously, we enforce the
model to learn knowledge different from the joint prototypical distribution, which is considered as
guidance for capturing modality-specific knowledge as well.

It is worth noting that the proposed method can be extended into more multimodal problems with
modalities of bag structure. The contributions are as follows: (1) Inspired by information theory for
mitigating redundancy, we propose a new multimodal cancer survival framework, PIBD, addressing
both “intra-modal” and “inter-modal” redundancy challenges. (2) We design a new IB variant, PIB,
that models prototypes for selecting discriminative information to reduce intra-modal redundancy,
while PID addresses inter-modal redundancy by decoupling multimodal data into distinct compo-
nents with the guidance of joint prototypical distribution. (3) Extensive experiments on five cancer
benchmark datasets demonstrate the superiority of our approach over state-of-the-art methods.

2 RELATED WORKS

2.1 SURVIVAL PREDICTION FROM SINGLE MODALITY

Predicting survival risk is vital for understanding cancer progression. Recent advances in digital
pathology (Evans et al., 2018) and high-throughput sequencing (Christinat & Krek, 2015) technolo-
gies have led to vibrant research in single-modal survival prediction using WSIs and genomics data,
respectively. To handle gigapixel images, multiple-instance learning (MIL) defines a “bag” as a col-
lection of multiple instances (i.e., image patches) and provides effective ways to learn global repre-
sentations for WSIs. MIL methods focus on aggregations of instance-level predictions (Campanella
et al., 2019; Feng & Zhou, 2017; Hou et al., 2016) or features (Ilse et al., 2018). For the former,
bag predictions can be simply fused by pooling the probability values of instances. While the latter
employs various strategies for getting the global features, e.g., clustering embeddings (Yao et al.,
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2020), modeling patch correlations with graphs (Guan et al., 2022), assigning attention weights (Ilse
et al., 2018; Li et al., 2021), and learning long-range interactions by transformers (Shao et al., 2021).
Furthermore, genomics data provides crucial molecular information essential for survival prediction
as well. Typically represented as 1 × 1 measurements, genomic features can be extracted using
simple neural networks, e.g., MLP (Haykin, 1998) and SNN (Klambauer et al., 2017). Although
these single-modality-based methods achieved remarkable improvements in feature extraction, they
do not provide constraints on removing redundant information to capture the discriminative features.

2.2 SURVIVAL PREDICTION FROM MULTIPLE MODALITIES

In clinical practice, patients are usually collected with comprehensive multimodal data such as
genomics (Klambauer et al., 2017), pathology (Zhu et al., 2017; Liu et al., 2022; Chen et al.,
2022a), radiology (Jiang et al., 2021b; Yao et al., 2021), etc. for diagnosis and prognosis, thus
learning multimodal interactions (Zhang et al., 2023) becomes an important motivation for many
studies. These methods are broadly categorized into tensor-based and attention-based fusion tech-
niques (Zhang et al., 2020). Some tensor-based fusions, like concatenation (Mobadersany et al.,
2018) and weighted sum (Huang et al., 2020), are simple with few parameters. Alternatively, other
tensor-based fusion uses bilinear pooling to create a joint representation space by computing the
outer product of features, e.g., Kroncecker product (Wang et al., 2021), factorized bilinear pooling
(Li et al., 2022). However, these methods are typically used in early or late fusion stages, making
the inter-modal interactions (Chen et al., 2022b) prone to be neglected. Recently, attention-based
fusion methods focus on learning cross-modal correlations through co-attention mechanisms (Chen
et al., 2021; Zhou & Chen, 2023). For instance, MCAT (Chen et al., 2021) proposed a gene-guided
co-attention, HMCAT (Li et al., 2023b) designed a radiology-guided co-attention, MOTCat (Xu
& Chen, 2023) introduced the optimal transport (OT) to model the global structure consistency,
and SurvPath (Jaume et al., 2023) utilized the cross-attention to model dense interactions between
pathways and histologic patches. Although some approaches can partially achieve alleviating
redundancy by alignment, they are prone to lose modality-specific information.
2.3 MULTIMODAL LEARNING WITH INFORMATION THEORY.
Recently, information theory has attracted increasing attention within the multimodal learning com-
munity due to its ability to provide measures for quantifying information (Dai et al., 2023; Liang
et al., 2023; Hjelm et al., 2018). Specifically, approaches based on the information bottleneck (IB)
principle (Tishby et al., 2000; Alemi et al., 2016) have emerged as effective strategies for com-
pressing raw information while retaining task-relevant knowledge, which has found utility across
multi-view (Federici et al., 2020; Lee & Van der Schaar, 2021) and multi-modal learning (Mai
et al., 2022). Additionally, another kind of method centered on information disentanglement has
been harnessed to extract targeted knowledge (Sanchez et al., 2020; Cheng et al., 2022; Chen et al.,
2023), facilitating the learning of more compact representations. We introduce this direction into
multimodal cancer survival analysis for the first time, and inspired by information theory for mit-
igating redundancy, we propose a new framework PIBD that provides an information perspective
solution to address the massive redundancy issues in multimodal data.

3 METHOD

3.1 OVERALL FRAMEWORK AND PROBLEM FORMULATION

Given the i-th patient multimodal data including pathology data x(i)
h and genomic data x(i)

g , we aim
to predict patients’ survival outcome by estimating a hazard function f

(i)
hazard(t) that represents the

risk probability of death at the time point t. Figure 1 displays the overall framework of our PIBD.

We start with extracting unimodal representations for pathology and genomics data. Following the
common setting for pathological WSIs and genomic pathways in previous works (Chen et al., 2021;
Jaume et al., 2023), we formulate x

(i)
h and x

(i)
g as the “bag” of instances based on multiple instance

learning (MIL) for the i-th patient, denoted as x(i)
h = {x(i)

h,j ∈ Rd}Mh
j=1 and x(i)

g = {x(i)
g,j ∈ Rd}Mg

j=1,
respectively, where Mh is the patch numbers of a WSI and Mg is the number of biological pathways.

To address “intra-modal redundancy,” we propose Prototypical Information Bottleneck (PIB),
detailed in Section 3.2, to select discriminative instances for each modality. Subsequently, to
reduce “inter-modal redundancy”, we propose Prototypical Information Disentanglement (PID)
explained in Section 3.3. PID decomposes multimodal data into independent modality-common
representation C and modality-specific representations denoted as Sh and Sg for histological
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Figure 1: Framework of PIBD. Patient data from pathology and genomics are initially structured
into bags. The Prototypical Information Bottleneck (PIB) selects discriminative features to reduce
“intra-modal redundancy”. Subsequently, the Prototypical Information Disentanglement (PID) mod-
ule decouples the specific and common information to tackle “inter-modal redundancy”.
and genomic modalities, respectively. Finally, the decoupled compact representations will be
concatenated to get the final multimode features H , which are used for survival risk prediction.

Survival prediction estimates the risk probability of an outcome event before a specific time. How-
ever, the outcome is not always observed, resulting in right-censored data. We denote c ∈ {0, 1}
for censorship status (c = 0 means observed deaths, c = 1 means unknown outcomes), and discrete
survival time t ∈ {1, 2, ..., Nt} corresponding to a specific risk band. For a final multimodal feature
H(i) obtained from the pathology-genomics pairs (x(i)

h , x(i)
g , t(i), c(i)) of the i-th patient, we use

NLL loss (Zadeh & Schmid, 2020) as survival loss function for survival prediction, following
previous works (Chen et al., 2021; Xu & Chen, 2023):

Lsurv({H(i), t(i), ci}ND
i=1) = −

ND∑
i=1

c(i)log(f (i)
surv(t|H(i))) + (1− c(i))log(f (i)

surv(t− 1|H(i)))

+ (1− c(i))log(f
(i)
hazard(t|H

(i)))

(1)

where ND is the number of samples in the training sets, f (i)
hazard(y|H(i)) = P (T = t|T ≥ t,H(i))

is the hazard function representing the death probability, and f
(i)
surv(t|H(i)) =

∏t
k=1(1 −

f
(i)
hazard(k|H(i))) is the survival function viewed as survival probability up to time point t. To

simplify, we assume y represents patient labels (t, c), resulting in 2Nt labels.

3.2 PROTOTYPICAL INFORMATION BOTTLENECK

To tackle the “intra-modality redundancy”, we introduce the information bottleneck and propose a
new variant called Prototypical Information Bottleneck (PIB).

Preliminary of Information Bottleneck. The IB introduces a new representation variable Z that is
maximally expressive about the target Y , while compressing the original information from the input
X . Thus, the objective function to be maximized is given in (Tishby et al., 2000) as:

RIB = I(Z, Y )− βI(Z,X) (2)
where I(·, ·) represents the mutual information (MI) that measures the dependence between two
variables. The hyperparameter β ≥ 0 acts as a Lagrange multiplier, controlling the trade-off where
higher β values lead to more compressed representations. However, the computation of MI is in-
tractable, VIB (Alemi et al., 2016) transformed Eq.(2) into maximizing its approximation of a
variational lower bound. By inverting the objective function of the variational lower bound, it tries
to minimize the loss function (Derivation can be found in Appendix B.2.1.):

JIB =
1

N

N∑
n=1

Ez∼p(z|xn)[−logqθ(yn|z)] + βKL[p(z|xn), r(z)] (3)

where N denotes the sample size, qθ(y|z) is a variational approximation of the intractable likelihood
p(y|z), p(z|x) is the posterior distribution over z, and r(z) approximates of the prior probability
p(z). In practice, r(z) is commonly assumed as a spherical Gaussian (Alemi et al., 2016). And the
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posterior distribution p(z|x) can be variationally approximated as:
p(z|x) ≈ qθ(z|x) = N (z; fµ

E(x), f
Σ
E (x)) (4)

where fE is an MLP encoder that predicts both the mean µ and covariatnce matrix Σ.

Prototypical Information Bottleneck. IB seems to provide a hopeful solution to reduce intra-
modal redundancy. However, in our task, the modality data x is organized as a “bag” containing
numerous instances. To learn a compact bag via IB, one potential solution is to directly employ the
variational approximation qθ(z|x) of Eq.(4) in VIB to learn a representation for each instance x ∈ x
in the bag. However, the drawbacks of this solution are two-fold. First, it is challenging to derive the
overall distribution of the entire bag p(z|x) for a bag x based on such a large number of individual
instance distributions, leading to a high-dimensional computational challenge. That is, the posterior
distribution p(z|x) with respect to high-dimensional x of the second term in Eq.(3) is intractable.
Second, since the distribution of each instance is individually learned, it is difficult to capture bag-
level information for representing a compact bag. Therefore, we propose Prototypical Information
Bottleneck (PIB) to directly approximate bag-level distribution p(z|x) with a parametric distribution
p(ẑ) represented by a group of prototypes, denoted as P = {N (ẑ;µy,Σy)}2Nt

y=1 (including scenarios
with censored and uncensored data). To capture discriminative information about task target, each
prototype is supposed to represent a conditional probability distribution p(ẑ|y) = N (ẑ;µy,Σy) for
its corresponding risk band y. Then, instances z of a bag are expected to approach ẑ with the same
label y. Hence, the objective of variational approximation in Eq.( 4) should become:

p(z|x) = p(z|x, y) ≈ p(ẑ|y) (5)
To achieve this objective, we maximize the similarity between p(ẑ) and spatial distributions of latent
features z = fE(x) for a bunch of instances, where an MLP is utilized as a representation encoder
fE(·) to map the input x to latent features z. As a result, we just need to optimize the parametric
prototypes ẑ and fE(·) for a bag x, instead of modeling p(z|x) for each instance of the bag.

In detail, to align the distribution of latent features z and parametric prototypes ẑ, we first sample
some features from various prototypes via Monte Carlo sampling (to simplify the mathematical
notation, we assume sampling once from each prototype). Then, we attempt to maximize the
similarities between postive prototypes ẑ+ (with true label) and the most related instances, while
minimizing these instances with other negative prototypes ẑ−. For example, given the i-th patient
data, we have the bag features z(i) = fE(x

(i)) = {z(i)m }Mm=1 and the features ẑ(i) = {ẑ(i)n }2Nt
n=1

sampled from prototypes, where M is the number of instances in a bag x(i), 2Nt is the number of
prototypes. Then, we measure the similarity between each prototype ẑ

(i)
n and bag z(i) as:

Sim(ẑ(i)n , z(i)) =
1

M

M∑
m=1

d(ẑ(i)n , z(i)m ) (6)

where d(·) can be any similarity measure and we use cosine in our experiments. To eliminate
redundant instances unrelated to risk prediction, we select a portion of instances with higher
similarity scores in a bag, while the discarded instances do not contribute to the learning process.
During training, since we have access to the true label, the objective of approximating p(z|x, y)
with prototypes p(ẑ|y) in Eq.(5) can be achieved by gathering these most related instances closer to
positive (+) prototypes while pushing them away from negative (−) ones, formulated as:

Lpro =
1

ND

ND∑
i=1

−Sim(ẑ
(i)
+ , z̃

(i)
+ ) +

1

2Nt − 1

2Nt−1∑
n=1

Sim(ẑ
(i)
−,n, z̃

(i)
−,n) (7)

where z̃(i)n = {z(i)j : ∀1 ≤ j ≤ MIrr, d(ẑ
(i)
n , z

(i)
j ) ≥ d(ẑ(i)n , z

(i)
j+1)} represents the retained

instances containing task-related discriminative information with higher similarities. The retained
number MIrr is determined by the hyperparameter Irr, the information retention rate (Irr), which
controls the proportion of redundancy removal achieved by prototypes.

To review the objective of IB, we substitute the prototypes Ẑ into the IB objective function in
Eq.(2). After getting the approximation p(ẑ|y) for p(z|x, y) or p(z|x) in Eq.( 5), we can conduct a
similar derivation like from Eq.(2) to Eq.(3) (Details can be found in Appendix B.2.2), to obtain the
objective loss function of PIB to be minimized as follows:

JPIB =
1

2Nt

2Nt∑
n=1

Eẑ∼p(ẑ|yn)[−logqθ(yn|ẑ)] + βKL[p(ẑ|yn), r(z)] (8)

where the first term is a cross-entropy loss for learning discriminative features. Since we are dealing
with a survival prediction task with labels containing survival time and censoring status, we use the

5



Published as a conference paper at ICLR 2024

𝜇ℎ|𝛴 h

𝜇𝑔|𝛴 g
𝜇𝑐|𝛴 c

𝒑(𝑧|𝐱𝐡, 𝐱𝐠)

...
...

...
...

A

A

MLP
𝑸𝒄

𝑲𝒄

𝑽𝒄

𝑲𝒄 𝑲𝒉 𝑲𝒈

𝑽𝒄 𝑽𝒉 𝑽𝒈

M
u

lti-h
ea

d

C
ro

ss-

A
tten

tio
n

C

C

Sampling

C Concat

A Average

MI Estimation

Weight Sharing

Positive 

Prototype

Joint Prototypical Distribution 

𝑸𝒉

𝑲𝒉

𝑽𝒉

M
u

lti-h
ea

d

S
elf-

A
tten

tio
n

𝑸𝒈

𝑲𝒈

𝑽𝒈

M
u

lti-h
ea

d

S
elf-

A
tten

tio
n

MI Estimator

𝒎𝒊𝒏 𝑰(𝑺, 𝑪)

𝒎𝒊𝒏 𝑰(𝑺𝒉, 𝑺𝒈)
𝑺𝒉

𝑪

𝑺𝒈

MI Estimator

PoE

𝐳𝐠

𝐳𝒉

Figure 2: Disentangled Transformer. The self-attention is employed to model the intra-modal
interactions while a token sampled from the joint prototypical distribution is used to guide common
information extraction through cross-attention.

task-loss NLL in Eq.(1) as an alternative for the first term. Finally, combining the approximation
term Lpro, we obtain the total loss function for PIB to be minimized as follows:

LPIB =
1

2Nt

2Nt∑
n=1

{αLsurv(ẑ
(n), t(n), c(n)) + βKL[N (ẑ;µn,Σn), r(z)]}+ γLpro (9)

where N (ẑ;µn,Σn) = p(ẑ|yn), α, β, γ are the hyperparameters which control the impact of items.
As a result, the modeled PIB can guide the extraction of discriminative features and the removal of
redundant information for each modality organized as bags.
3.3 PROTOTYPICAL INFORMATION DISENTANGLEMENT

After eliminating redundancy from unimodal sources, we propose a Prototypical Information
Disentanglement (PID) module to decouple the shared and specific representations, addressing the
“inter-modal redundancy”. Suppose the instances selected by PIB are z̃

(i)
h and z̃

(i)
g , we hope to

decompose entangled multimodal data into ideally independent modality-common features C(i) and
modality-specific features S

(i)
h , S(i)

g . To achieve this, we reuse the joint prototypical distributions
modeled by PIB for extracting common knowledge. These common features can be further used
as guidance for learning modality-specific knowledge by enforcing specific knowledge independent
from these shared features. Thus, we minimize the mutual information (MI) between common
and specific factors to preserve modality-specific information. Consequently, our objective is to
ensure the independence of specific representations within each modality and also the independence
between common and specific features. The loss function of PID can be formally expressed as:

LPID = I(S,C) + I(Sh, Sg), where S = Cat(Sh, Sg) (10)
where, S denotes all specific representations obtained by concatenating Cat(·) the features Sh,Sg

from each modality. As MI is intractable, we introduce an upper bound CLUB (Cheng et al., 2020)
to accomplish MI minimization in Eq.(10) (Details about CLUB can be found in Appendix B.3).

To implement the above loss, we design a disentangled layer called disentangled transformer shown
in Figure 2. This transformer models various interactions within the inputs thereby obtaining the
features Sh, Sg and C required in Eq.(10). We initially extract the common information guided
by the joint prototypical distribution, denoted as the joint posterior distribution p = (z|xh,xg),
which is defined by the product-of-experts (PoE) (Cao & Fleet, 2014), an idea of combining
several distributions (“experts”) by multiplying them. Since we have previously obtained the
positive prototype in PIB, which approximates the distribution p(z|x) of the patient’s risk band, the
p = (z|xh,xg) can be formulated into:

p(z|xh,xg) ∝ p(z)p(z|xh)p(z|xg)

where p(z|xh) ≈ N (ẑ;µ+
h ,Σ

+
h ), p(z|xg) ≈ N (ẑ;µ+

g ,Σ
+
g )

(11)

where p(z) is the prior distribution and p(z|x) approximately equals to the distributions of the
positive prototypes N (ẑ;µ+,Σ+). We assume the prior distribution p(z) is a spherical Gaussian
N (z;µ0,Σ0), thus it can be shown that the product of Gaussian distributions is also a Gaussian
p(z|xh,xg) = N (z;µc,Σc):

Σc = (Σ−1
0 +

∑
i∈{h,g}

Σ−1
i )−1, µc = (µ0Σ

−1
0 +

∑
i∈{h,g}

µiΣ
−1
i )Σ−1

c (12)
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Hence, we sample from p(z|xh,xg) to obtain a guiding token for shared information extraction.
The modality-common representations C are then extracted by the cross-attention within the
disentangled transformer. Moreover, for the modality-specific information, self-attention encodes
pathway-to-pathway and patch-to-patch interactions, and their mean representation becomes Sh,
Sg . Thus, under the constraint of Eq. (10), we can simultaneously extract compact features that
contain both specific and common information.

Overall Loss. The final loss of PIBD is as follows, where Lh
PIB and Lg

PIB represent the PIB loss
formulated in Eq.(9) for pathology and genomics modalities, respectively:

L = Lsurv + Lh
PIB + Lg

PIB + λLPID (13)
where λ is the weight factor that controls the impact of loss item, as well as α, β, γ in Eq.(9). Note
that the proposed method can be extended to more multimodal data of the bag structure.

Inference. The inference process differs from the training mainly in how we find the positive proto-
types. During training, with known labels, we can directly obtain the joint prototypical distribution
for PID. However, in inference, we need to identify the positive one from the set of prototypes. To
achieve this, we first select instances with higher similarity scores calculated with all prototypes in
Eq. (7). These selected instances are considered as relevant instances. Among them, the prototype
with the highest proportion of relevant instances is considered positive. Hyperparameters such as
the number of samples and information retention rate remain consistent with the training process.

4 EXPERIMENT

4.1 DATASET AND IMPLEMENTATION DETAILS

We conduct extensive experiments over five public cancer datasets from TCGA2: Breast Invasive
Carcinoma (BRCA), Bladder Urothelial Carcinoma (BLCA), Colon and Rectum Adenocarcinoma
(COADREAD), Stomach Adenocarcinoma (STAD), and Head and Neck Squamous Cell Carcinoma
(HNSC). We follow the work (Jaume et al., 2023) to collect the biological pathways as genomics
data. 5-fold cross-validation for each dataset is employed. The models are evaluated using the
concordance index (C-index) (Harrell Jr et al., 1996) and its standard deviation (std) to quantify
the performance of correctly ranking the predicted patient risk sores. We also visualize the Kaplan-
Meier (KM) Kaplan & Meier (1958) curves that can show the survival probability of different risk
groups. The details of the dataset and experimental implementation can be found in Appendix C.1.

4.2 COMPARISONS WITH STATE-OF-THE-ARTS

We compare our method with three groups of SOTA methods: (1) Unimodal methods. For
pathways data, we adopt MLP (Haykin, 1998), SNN (Klambauer et al., 2017), and SNNTrans
(Klambauer et al., 2017; Shao et al., 2021) as the genomic baselines. For histology, we compare
with SOTA MIL methods ABMIL (Ilse et al., 2018), AMISL (Yao et al., 2020), TransMIL
(Shao et al., 2021) and CLAM (Lu et al., 2021). (2) Multimodal methods. Four SOTA methods
are compared in this group: Porpoise (Chen et al., 2022b), MCAT (Chen et al., 2021), MOTCat
(Xu & Chen, 2023), and SurvPath (Jaume et al., 2023), where we adopt two late-fusion approaches
including concatenation (Cat) and Kronecker product (KP) for both Porpoise and MCAT. Besides,
a prediction-level combination using a CoxPH (Cox, 1972) model of risk scores from the best-
performing methods of genomics and histology is also conducted. (3) Information theory-based
methods. As our work provides an information theory perspective on multimodal cancer survival
prediction, we also compare it with information theory-based methods in multi-view, multi-modal,
and task-specific fine-tuning domains, including CLAM-SB-FT (Li et al., 2023a), MIB (Federici
et al., 2020), DeepIMV (Lee & Van der Schaar, 2021), and L-MIB (Mai et al., 2022). Note
that although CLAM-SB-FT is an IB-based method for WSIs, it is designed within a fine-tuning
framework and not be studied in multimodal survival prediction.

Comparison. From the results in Table 1, we can observe that PIBD achieves the best overall
performance across five cancer datasets. Compared with unimodal methods†, most multimodal
methods‡ including ours show higher overall C-index, indicating that the information from both
modalities gives great perspectives and contributions to survival prediction. Note that among
multimodal methods, the proposed PIBD achieves superior performance in 4 out of 5 benchmarks
and outperforms the second-best method by 1.6% in overall C-index, revealing the importance of
addressing intra-modal and inter-modal redundancy. Then, from the comparison between IB-based

2https://portal.gdc.cancer.gov/
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Table 1: C-index (mean ± std) over five cancer datasets. g. and h. refer to genomic modality and
histological modality, respectively. The best results and the second-best results are highlighted in
bold and in underline. A method marked with the subscript † falls into the unimodal group, ‡ into
the multimodal group, and ⋆ into the information theory-based group.

Model Modality
BRCA

(N=869)
BLCA

(N=359)
COADREAD

(N=296)
HNSC

(N=392)
STAD

(N=317)
Overall

†MLP g. 0.622 ± 0.079 0.530 ± 0.077 0.712 ± 0.114 0.520 ± 0.064 0.497 ± 0.031 0.576
†SNN g. 0.621 ± 0.073 0.521 ± 0.070 0.711 ± 0.162 0.514 ± 0.076 0.485 ± 0.047 0.570

†SNNTrans g. 0.679 ± 0.053 0.583 ± 0.060 0.739 ± 0.124 0.570 ± 0.035 0.547 ± 0.041 0.622
†ABMIL h. 0.672 ± 0.051 0.624 ± 0.059 0.730 ± 0.151 0.624 ± 0.042 0.636 ± 0.043 0.657
†AMISL h. 0.681 ± 0.036 0.627 ± 0.032 0.710 ± 0.091 0.607 ± 0.048 0.553 ± 0.012 0.636

†TransMIL h. 0.663 ± 0.053 0.617 ± 0.045 0.747 ± 0.151 0.619 ± 0.062 0.660 ± 0.072 0.661
†CLAM-SB h. 0.675 ± 0.074 0.643 ± 0.044 0.717 ± 0.172 0.630 ± 0.048 0.616 ± 0.078 0.656
†CLAM-MB h. 0.696 ± 0.098 0.623 ± 0.045 0.721 ± 0.159 0.620 ± 0.034 0.648 ± 0.050 0.662

‡SNNTrans+CLAM-MB g.+h. 0.699 ± 0.064 0.625 ± 0.060 0.716 ± 0.160 0.638 ± 0.066 0.629 ± 0.065 0.661
‡Porpoise(Cat) g.+h. 0.668 ± 0.070 0.617 ± 0.056 0.738 ± 0.151 0.614 ± 0.058 0.660 ± 0.106 0.660
‡Porpoise(KP) g.+h. 0.691 ± 0.038 0.619 ± 0.055 0.721 ± 0.157 0.630 ± 0.040 0.661 ± 0.085 0.664
‡MCAT(Cat) g.+h. 0.685 ± 0.109 0.640 ± 0.076 0.724 ± 0.137 0.564 ± 0.840 0.625 ± 0.118 0.647
‡MCAT(KP) g.+h. 0.727 ± 0.027 0.644 ± 0.062 0.709 ± 0.162 0.618 ± 0.093 0.643 ± 0.075 0.668
‡MOTCat g.+h. 0.727 ± 0.027 0.659 ± 0.069 0.742 ± 0.124 0.656 ± 0.041 0.621 ± 0.065 0.681
‡SurvPath g.+h. 0.724 ± 0.094 0.660 ± 0.054 0.758 ± 0.143 0.606 ± 0.080 0.667 ± 0.035 0.683

⋆CLAM-SB-FT h. 0.606 ± 0.110 0.633 ± 0.065 0.725 ± 0.150 0.620 ± 0.084 0.654 ± 0.051 0.648
⋆MIB g.+h. 0.602 ± 0.112 0.573 ± 0.036 0.711 ± 0.182 0.555 ± 0.055 0.588 ± 0.057 0.606

⋆DeepIMV g.+h. 0.659 ± 0.089 0.638 ± 0.054 0.749 ± 0.145 0.604 ± 0.061 0.597 ± 0.047 0.649
⋆L-MIB g.+h. 0.687 ± 0.071 0.662 ± 0.093 0.720 ± 0.167 0.615 ± 0.085 0.634 ± 0.060 0.664
⋆,‡PIBD g.+h. 0.736 ± 0.072 0.667 ± 0.061 0.768 ± 0.124 0.640 ± 0.039 0.684 ± 0.035 0.699

BLCA
10.76(1.13)/33.74(6.00)

15.33(1.91)/22.82(4.72)

14.84(1.20)/23.10(5.25)

BRCA
15.77(1.64)/60.35(6.18)

25.12(3.48)/33.84(8.39)

24.33(3.97)/33.37(6.88)

COADREAD
14.02(1.36)/37.03(4.17)

22.77(2.95)/24.49(4.98)

20.15(3.26)/25.13(6.69)

HNSC
12.21(0.68)/41.18(10.55)

18.17(2.37)/23.05(1.78)

18.03(3.43)/24.55(4.28)

STAD
10.13(1.67)/26.37(6.53)

15.02(1.35)/20.63(1.40)

13.08(3.34)/18.95(3.53)

Figure 3: Kaplan-Meier curves of predicted high-risk (red) and low-risk (green) groups. A P-value <
0.05 indicates statistical significance, and the shaded regions represent the confident intervals. The
median survival months are reported in the format of “high-risk: mean(std)/low-risk: mean(std)”
methods, our method achieves superior performance on all cancer datasets, with 0.5%-4.9%
performance gains. PIBD, which fully considers the characteristics of bag structure under weak
supervision and is designed for multimodal cancer survival prediction, demonstrates its superiority.

Kaplan-Meier analysis We further evaluate our method using statistical analysis, and the
Kaplan-Meier curves are presented in Figure 3. Patients are separated into high-risk and low-risk
groups based on predicted risk scores, with the median value of each validation set serving as the
cut-off. Subsequently, we utilize the log-rank test to compute p-values, which assess the statistical
significance of differences between these groups, and the median survival months are also reported
for each group. Our approach demonstrates significantly improved discrimination between the two
groups when compared to the second-best method, SurvPath. This effect is particularly pronounced
in the BRCA, COADREAD, and HNSC datasets, with substantial margins of magnitude.
4.3 ABLATION STUDY

Component validation. In Table 2, we ablate the designs mentioned in Sections 3.2 and 3.3, which
are proposed for “inter-modal redundancy” and “intra-modal redundancy”. For ablating PIB, we es-
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Table 2: Ablation study assessing C-index (mean ± std).

Variants PIB PID BRCA BLCA COADREAD HNSC STAD Overall

AP 0.684 ± 0.044 0.619 ± 0.090 0.713 ± 0.161 0.567 ± 0.073 0.609 ± 0.048 0.638
PIB(AP) ✓ 0.705 ± 0.108 0.593 ± 0.038 0.753 ± 0.143 0.623 ± 0.107 0.613 ± 0.071 0.657
TransMIL 0.672 ± 0.088 0.636 ± 0.059 0.750 ± 0.133 0.591 ± 0.080 0.662 ± 0.090 0.662
PIB(TransMIL) ✓ 0.696 ± 0.069 0.648 ± 0.074 0.757 ± 0.176 0.615 ± 0.062 0.643 ± 0.074 0.672
PIBD ✓ ✓ 0.736 ± 0.072 0.667 ± 0.061 0.768 ± 0.124 0.640 ± 0.039 0.684 ± 0.035 0.699

Table 3: Interventions in PIB. We conduct interven-
tions by either removing the positive prototype or ran-
domly deleting one of the negative prototypes.

Intervention BLCA COADREAD STAD

Positive 0.401 ± 0.086 0.471 ± 0.196 0.384 ± 0.110
Negative 0.645 ± 0.067 0.731 ± 0.106 0.672 ± 0.055

w/o Intervention 0.667 ± 0.061 0.768 ± 0.124 0.684 ± 0.035 Figure 4: Visualization of prototypes.

tablished two baselines: one involves direct average pooling (AP) on original features, and the other
employs a non-disentangled TransMIL encoder as a strong baseline. We incorporate PIB into both
baselines to assess the effectiveness of the prototypical features selected by PIB. As shown in the first
four rows of Table 2, the addition of PIB outperforms the baselines in terms of higher C-index. This
suggests that learning multiple distinctive prototypes in PIB and employing them to filter task-related
features can effectively mitigate redundant features within each modality. For ablating PID, we con-
duct a comparison between our PIBD and the baseline using the non-disentangled TransMIL with
PIB. The last two rows demonstrate that disentangling shared and specific information from multi-
modal data effectively eliminates inter-modal redundancy, preventing the loss of modality-specific
information during the fusion process and significantly enhancing the model’s performance. More-
over, we conduct more quantitative studies about parameter settings presented in Appendix C.2.

Interpretability of PIB. To validate that the learned prototypes in PIB have modeled discriminative
underlying distributions for different risk bands, we conduct random sampling on each prototype
with a frequency of 2000. Subsequently, we reduce the obtained high-dimensional vectors to a
two-dimensional plane using t-SNE (Van der Maaten & Hinton, 2008). As illustrated in Figure 4,
the distributions exhibit excellent separability. Furthermore, inspired by the intervention in (Sarkar
et al., 2022), we conduct interventions during the inference process shown in Table 3 and the results
demonstrated a significant disparity. It can be seen that interventions in positive prototypes led
to a dramatic decrease in the C-Index (all below 0.5), signifying a complete loss of predictive
ability. Intervention in positive prototypes further results in passing a wrong guided signal to the
following disentanglement module PID with an incorrect prototypical distribution as well, leading
to worse performance. Conversely, when randomly removing a negative prototype, there was only
a slight decline in the C-Index, which further underscores the effective modeling of discriminative
risk-level distributions in PIB. Visualization of similarity scores for both modalities are presented
in Appendix D.
5 CONCLUSION
In this work, we explore multimodal cancer survival prediction inspired by information theory and
propose a new framework called PIBD aimed at addressing both “intra-model redundancy” and
“inter-model redundancy” challenges. First, we propose a Prototypical Information Bottleneck
(PIB) that reduces redundancy while preserving task-related information. PIB models prototypes
of various risk bands, allowing us to select discriminative features from massive instances and alle-
viating “intra-model redundancy”. Furthermore, to address “inter-modal redundancy”, we propose
a Prototypical Information Disentanglement (PID) to decouple independent modality-common
and modality-specific features with the guidance of the joint prototypical distribution. These
compact features offer distinct perspectives and knowledge, effectively enhancing the network’s
performance. Moreover, to handle the high-dimensional computational challenges inherent in our
task, the PIB models prototypes approximating a bunch of instances by maximizing the cosine
similarities within true labels. During this approximation, the choice of an appropriate similarity
metric can contribute to better aligning spatial distributions, which warrants further investigation in
future research endeavors.
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Balázs Győrffy. Survival analysis across the entire transcriptome identifies biomarkers with the
highest prognostic power in breast cancer. Computational and structural biotechnology journal,
19:4101–4109, 2021.

Wei Han, Hui Chen, and Soujanya Poria. Improving multimodal fusion with hierarchical mutual
information maximization for multimodal sentiment analysis. arXiv preprint arXiv:2109.00412,
2021.

Frank E Harrell Jr, Kerry L Lee, and Daniel B Mark. Multivariable prognostic models: issues in
developing models, evaluating assumptions and adequacy, and measuring and reducing errors.
Statistics in medicine, 15(4):361–387, 1996.

Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall PTR, 1998.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. arXiv preprint arXiv:1808.06670, 2018.

Mahdi S Hosseini, Babak Ehteshami Bejnordi, Vincent Quoc-Huy Trinh, Danial Hasan, Xing-
wen Li, Taehyo Kim, Haochen Zhang, Theodore Wu, Kajanan Chinniah, Sina Maghsoud-
lou, et al. Computational pathology: A survey review and the way forward. arXiv preprint
arXiv:2304.05482, 2023.

Le Hou, Dimitris Samaras, Tahsin M Kurc, Yi Gao, James E Davis, and Joel H Saltz. Patch-based
convolutional neural network for whole slide tissue image classification. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 2424–2433, 2016.

Shih-Cheng Huang, Anuj Pareek, Saeed Seyyedi, Imon Banerjee, and Matthew P Lungren. Fusion
of medical imaging and electronic health records using deep learning: a systematic review and
implementation guidelines. NPJ digital medicine, 3(1):136, 2020.

11



Published as a conference paper at ICLR 2024

Maximilian Ilse, Jakub Tomczak, and Max Welling. Attention-based deep multiple instance learn-
ing. In International conference on machine learning, pp. 2127–2136. PMLR, 2018.

Hartland W Jackson, Jana R Fischer, Vito RT Zanotelli, H Raza Ali, Robert Mechera, Savas D
Soysal, Holger Moch, Simone Muenst, Zsuzsanna Varga, Walter P Weber, et al. The single-cell
pathology landscape of breast cancer. Nature, 578(7796):615–620, 2020.

Alon Jacovi, Avi Caciularu, Omer Goldman, and Yoav Goldberg. Stop uploading test data in plain
text: Practical strategies for mitigating data contamination by evaluation benchmarks. arXiv
preprint arXiv:2305.10160, 2023.

Guillaume Jaume, Anurag Vaidya, Richard Chen, Drew Williamson, Paul Liang, and Faisal Mah-
mood. Modeling dense multimodal interactions between biological pathways and histology for
survival prediction. arXiv preprint arXiv:2304.06819, 2023.

Stephen P Jenkins. Survival analysis. Unpublished manuscript, Institute for Social and Economic
Research, University of Essex, Colchester, UK, 42:54–56, 2005.

Xuewen Jiang, Yangyang Xia, Hui Meng, Yaxiao Liu, Jianfeng Cui, Huangwei Huang, Gang Yin,
and Benkang Shi. Identification of a nuclear mitochondrial-related multi-genes signature to pre-
dict the prognosis of bladder cancer. Frontiers in Oncology, 11:746029, 2021a.

Yuming Jiang, Cheng Jin, Heng Yu, Jia Wu, Chuanli Chen, Qingyu Yuan, Weicai Huang, Yanfeng
Hu, Yikai Xu, Zhiwei Zhou, et al. Development and validation of a deep learning ct signature
to predict survival and chemotherapy benefit in gastric cancer: a multicenter, retrospective study.
Annals of surgery, 274(6):e1153–e1161, 2021b.

Edward L Kaplan and Paul Meier. Nonparametric estimation from incomplete observations. Journal
of the American statistical association, 53(282):457–481, 1958.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. Advances in neural information processing systems, 30, 2017.

Changhee Lee and Mihaela Van der Schaar. A variational information bottleneck approach to multi-
omics data integration. In International Conference on Artificial Intelligence and Statistics, pp.
1513–1521. PMLR, 2021.

Bin Li, Yin Li, and Kevin W Eliceiri. Dual-stream multiple instance learning network for whole slide
image classification with self-supervised contrastive learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 14318–14328, 2021.

Honglin Li, Chenglu Zhu, Yunlong Zhang, Yuxuan Sun, Zhongyi Shui, Wenwei Kuang, Sunyi
Zheng, and Lin Yang. Task-specific fine-tuning via variational information bottleneck for weakly-
supervised pathology whole slide image classification. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 7454–7463, 2023a.

Ruiqing Li, Xingqi Wu, Ao Li, and Minghui Wang. Hfbsurv: hierarchical multimodal fusion with
factorized bilinear models for cancer survival prediction. Bioinformatics, 38(9):2587–2594, 2022.

Zhe Li, Yuming Jiang, Mengkang Lu, Ruijiang Li, and Yong Xia. Survival prediction via hierar-
chical multimodal co-attention transformer: A computational histology-radiology solution. IEEE
Transactions on Medical Imaging, 2023b.

Paul Pu Liang, Yun Cheng, Xiang Fan, Chun Kai Ling, Suzanne Nie, Richard Chen, Zihao
Deng, Faisal Mahmood, Ruslan Salakhutdinov, and Louis-Philippe Morency. Quantifying
& modeling feature interactions: An information decomposition framework. arXiv preprint
arXiv:2302.12247, 2023.

Arthur Liberzon, Chet Birger, Helga Thorvaldsdóttir, Mahmoud Ghandi, Jill P Mesirov, and Pablo
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A OVERVIEW

In this supplement, we will first provide detailed formulations of the proposed PIBD in Appendix
B. Then, we provide implementation details, more quantitive studies about parameter settings, and
additional comparisons in Appendix C. Finally, we display the visualization results of similarity
scores for pathology and genomics modalities to further showcase our method’s interpretability in
Appendix D.

B DETAILED FORMULATIONS

B.1 BAG FORMULATION

The bag construction process of histology and genomic data are formulated into a weakly supervised
MIL task. Given a WSI, we slice it into non-overleap Mh patches and use a pre-trained visual
encoder to extract the features, aiming to get the patch-level d-dimensional embedding of each
instance denoted into x

(i)
h = {x(i)

h,j ∈ Rd}Mh
j=1. For genomic data, the bag formulation process is

similar. Following previous works (Jaume et al., 2023) that tokenize genes into pathways involved
in particular biological processes, we use multiple separated encoders to learn the pathway-level
embeddings. Then a bag of genomic data can be built as x(i)

g = {x(i)
g,j ∈ Rd}Mg

j=1, where Mg is the
total number of pathways.

B.2 DETAILED FORMULATION OF PROTOTYPICAL INFORMATION BOTTLENECK

B.2.1 VARIATIONAL INFORMATION BOTTLENECK (ALEMI ET AL., 2016)

The information bottleneck (IB) (Tishby et al., 2000) principle aims to find a better representation
Z by maximizing the mutual information (MI) between the latent representation Z and label Y , and
minimizing the MI between the Z and original input X . The objective function to be maximized in
IB can be formulated as follows:

RIB = I(Z, Y )− βI(Z,X) (14)

where I(·, ·) represents the mutual information, and β is the Lagrange multiplier. The IB principle
defines a better representation, in terms of the tradeoff between a concise representation and pre-
dictive power. However, the computation of MI is intractable, a variational information bottleneck
(VIB) (Alemi et al., 2016) is proposed to give a variational approximation solution of MI estimation,
which allows the use of the deep neural network for efficient training.

Given the joint distribution p(X,Y, Z) as follows:
p(X,Y, Z) = p(Z|X,Y )p(Y |X)P (X) = p(Z|X)p(Y |X)p(X) (15)

where assuming p(Z|X,Y ) = p(Z|X), corresponding to the Markov chain Y ↔ X ↔ Z

Then, the first part I(Z, Y ) can be derieved into:

I(Z, Y ) =

∫
dydzp(z, y)log

p(y, z)

p(y)p(z)

=

∫
dxdydzp(x)p(y|x)p(z|x)log p(y|z)

p(y)

(16)

Since p(y|z) above is intractable, a decoder qθ(y|z) is used to variational approximate the p(y|z).
Using the fact that the Kullback-Leibler divergence is always positive, we have:

KL[p(y|z), qθ(y|z)] =
∫

dyp(y|z)log p(y|z)
qθ(y|z)

=

∫
dyp(y|z)logp(y|z)−

∫
dyp(y|z)logqθ(y|z) ≥ 0

(17)
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Hence, the lower bound of I(Z, Y ) is as follows:

I(Z, Y ) =

∫
dxdydzp(x)p(y|x)p(z|x)log p(y|z)

p(y)

=

∫
dxdydzp(x)p(y|x)p(z|x)logp(y|z)−

∫
dyp(y)logp(y)

=

∫
dxdydzp(x)p(y|x)p(z|x)logp(y|z) +H(Y )

≥
∫

dxdydzp(x)p(y|x)p(z|x)logqθ(y|z) +H(Y )

(18)

where H(Y ) is the entropy of label Y , which is independent of the optimization procedure and can
therefore be ignored.

Similarly, the second part I(Z,X) can be formulated into its upper bound:

I(Z,X) =

∫
dadxp(x, z)log

p(z|x)
p(z)

=

∫
dxdzp(x)p(z|x)log p(z|x)r(z)

r(z)p(z)

=

∫
dxdzp(x)p(z|x)log p(z|x)

r(z)
−KL[p(z), r(z)]

≤
∫

dxdzp(x)p(z|x)log p(z|x)
r(z)

(19)

where p(z|x) is the posterior distribution over z and r(z) is a variational approximation of p(z), as
the computation of p(z) =

∫
dxp(z|x)p(x) might be difficult. To sum up, the IB objective function

can be seen to minimize:

JIB = −
∫

dxdydzp(x)p(y|x)p(z|x)logqθ(y|z) + β

∫
dxdzp(x)p(z|x)log p(z|x)

r(z)

=
1

N

N∑
n=1

Ez∼p(z|xn)[−logqθ(yn|z)] + βKL[p(z|xn), r(z)]

(20)

where N denotes the number of samples. r(z) can be assumed as a spherical Gaussian described in
Alemi et al. (2016) in practice. And the posterior distribution p(z|x) is variationally approximated
by an encoder:

p(z|x) ≈ qθ(z|x) = N (z; fµ
E(x), f

Σ
E (x)) (21)

where fE is an MLP that predicts both the mean µ and covariance matrix Σ.

B.2.2 PROTOTYPICAL INFORMATION BOTTLENECK

As mentioned in Section 3.2, we propose an IB variant called Prototypical Information Bottleneck
(PIB), which models the prototypes approximating a bunch of instances for different risk bands.

In our task, given that the input x is a “bag” structure containing numerous instances, the posterior
distribution p(z|x) is intractable. Therefore, we choose to approximate p(z|x) with a latent space
distribution p(ẑ) represented by a group of prototypes P = {N (ẑ;µy,Σy)}2Nt

y=1, where each proto-
type represents a conditional probability distribution p(ẑ|y) = N (ẑ;µy,Σy) under the label y. As a
result, we just need to optimize the parametric prototypes ẑ and fE(·) for a bag x, instead of directly
employing the modeling variational approximation qθ(z|x) of Eq.(21) in VIB to learn a compact
representation for each instance of a bag.

Thus we get the loss function for the approximation:

Lpro =
1

ND

ND∑
i=1

−Sim(ẑ
(i)
+ , z̃

(i)
+ ) +

1

2Nt − 1

2Nt−1∑
n=1

Sim(ẑ
(i)
−,n, z̃

(i)
−,n) (22)

Afterward, we substitute the prototypes into the IB objective function in Eq.(2) and examine each
item in turn. First, in our settings, since we aim to approximate p(z|x) = p(z|x, y) ≈ p(ẑ|y)
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by introducing the variable ẑ, we actually add a new chain Y ↔ Ẑ to the original Markov chain
Y ↔ X ↔ Z. Then, the objective function to be maximized of PIB can be formulated into:

RPIB = I(Ẑ, Y )− βI(Z,X) (23)

where Ẑ is enforced to approach Z.

For the first item I(Ẑ, Y ), we got the formulation based on Eq.(18):

I(Ẑ, Y ) =

∫
dydẑp(ẑ, y)log

p(y|ẑ)
p(y)

≥
∫

dydẑp(ẑ, y)logqθ(y|ẑ) +H(Y )

(24)

In our setting, hence p(ẑ) doesn’t directly depend on x. In this case, p(ẑ, y) can be formulated into:
p(ẑ, y) = p(ẑ|y)p(y) (25)

and that we will take p(y) = 1
2Nt

, so we can bond the first term into:

I(Ẑ, Y ) ≥
∫

dydẑp(ẑ, y)logqθ(y|ẑ)

=

∫
dydzp(y)p(ẑ|y)logqθ(y|ẑ)

=
1

2Nt

2Nt∑
n=1

Eẑ∼p(ẑ|yn)[logqθ(yn|ẑ)]

(26)

Then for the second item I(Z,X), we approximate p(z|x) with the latent space distribution repre-
sented by IB-based prototypes:

p(ẑ) =

∫
dyp(y)p(ẑ|y) = 1

2Nt

2Nt∑
n=1

p(ẑ|yn) (27)

Hence, we can directly replace p(z|x) with p(ẑ) in to the second item of Eq.(20), expressed as:

I(Z,X) ≤
∫

dxdzp(x)p(z|x)log p(z|x)
r(z)

=

∫
dxdydẑp(x)p(y)p(ẑ|y)log p(y)p(ẑ|y)

r(z)

=

∫
dyp(y)logp(y) +

∫
dydẑp(y)p(ẑ|y)log p(ẑ|y)

r(z)

= −H(Y ) +
1

2Nt

2Nt∑
n=1

KL[p(ẑ|yn), r(z)]

≤ 1

2Nt

2Nt∑
n=1

KL[p(ẑ|yn), r(z)]

(28)

So we obtain the objective loss function of PIB to be minimized as follows:

JPIB =
1

2Nt

2Nt∑
n=1

−Eẑ∼p(ẑ|yn)[logqθ(yn|ẑ)] + βKL[p(ẑ|yn), r(z)] (29)

where the first term is the task loss to learn discriminative features, we use the negative log-likelihood
(NLL) loss in Eq.(1) as an alternative for the first term. Finally, after combining the approximation
term Lpro, we obtain the total loss function for PIB as follows:

LPIB =
1

2Nt

2Nt∑
n=1

{αLsurv(ẑ
(n), t(n), c(n)) + βKL[N (ẑ;µn,Σn), r(z)]}+ γLpro (30)

17



Published as a conference paper at ICLR 2024

where N (ẑ;µn,Σn) = p(ẑ|yn), α, β, γ are the hyperparameters which control the impact of items.

B.3 DETAILED FORMULATION OF PROTOTYPICAL INFORMATION DISENTANGLEMENT

Since in Eq.(10), the computation of mutual information (MI) is intractable, we introduce an upper
bound called contrastive log-ratio upper bound (CLUB) (Cheng et al., 2020) as an MI estimator to
accomplish MI minimization, which can be used in more general scenarios. Given two variables a
and b, the ICLUB(a, b) is calculated as follows:

ICLUB(a, b) = Ep(a,b)[logp(b|a)]− Ep(a)Ep(b)[logp(b|a)]

=
1

N

N∑
i=1

logp(bi|ai)−
1

N2

N∑
i=1

N∑
j=1

logp(bj |ai)

=
1

N2

N∑
i=1

N∑
j=1

[logp(bi|ai)− logp(bj |ai)]

(31)

where logp(bi|ai) denotes the conditional log-likelihood of positive sample pair (bi, ai) while
logp(bj |ai) is the conditional log-likelihood of negative sample pair.

However, in our work, both the modality-specific features Sh and Sg , as well as the modality-
common features C, are simultaneously generated by disentangled transformer, the conditional
distribution p(b|a) in Eq.(31) is unknown. We employ an MLP qθ(b|a) to provide a variational
approximation of p(b|a), thus the variational CLUB (vCLUB), a CLUB variant, is defined:

IvCLUB(a, b) = Ep(a,b)[logqθ(b|a)]− Ep(a)Ep(b)[logqθ(b|a)]

=
1

N

N∑
i=1

logqθ(bi|ai)−
1

N2

N∑
i=1

N∑
j=1

logqθ(bj |ai)

=
1

N2

N∑
i=1

N∑
j=1

[logqθ(bi|ai)− logqθ(bj |ai)]

(32)

The variational approximation qθ(b|a) can be optimized by maximizing the log-likelihood:

Lestimator(b, a) =
1

N

N∑
i=1

logqθ(bi|ai) (33)

vCLUB still holds an upper bound on MI when the variational approximation qθ(b|a) is reliable.
Therefore, to train a good estimator for the conditional distribution q(b|a) is critical. In this context,
we choose to predict a lower dimensional distribution conditioned on a higher dimensional distribu-
tion (Han et al., 2021) to avoid mode collapse. Following this, our work predicted qθ(c|s) instead
of qθ(s|c) for estimating mutual information in Eq. (10) where s is modality-specific distribution
integrating two modalities with higher dimension, while c is modality-common distribution with
lower dimension. In conclusion, the proposed disentangle loss in Eq.(10) can be further defined as:

LPID = IvCLUB(S,C) + IvCLUB(Sh, Sg) + Lestimator(S,C) + Lestimator(Sh, Sg) (34)

where S = Cat(Sh, Sg).
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C MORE EXPERIMENTS

C.1 IMPLEMENTATION DETAILS

Dataset. We conduct extensive experiments over five public cancer datasets from TCGA3: Breast
Invasive Carcinoma (BRCA), Bladder Urothelial Carcinoma (BLCA), Colon and Rectum Adeno-
carcinoma (COADREAD), Stomach Adenocarcinoma (STAD), and Head and Neck Squamous Cell
Carcinoma (HNSC). We follow the work (Jaume et al., 2023) to predict disease-specific survival
(DSS), which is a more accurate representation of the patient’s disease status than overall survival.
For histological data, we collect all diagnosis WSIs used for primary diagnosis. For genomic data,
we get the raw transcriptomics from the Xena4 database along with DSS labels. The human biologi-
cal pathways (Qu et al., 2021), represented as transcriptomics sets with specific interactions among
molecules in cells, are collected from two resources by selecting where at least 90% of transcrip-
tomic accessible: the Human Molecular Signatures Database (MSigDB) - Hallmarks (Subramanian
et al., 2005; Liberzon et al., 2015) (50 pathways from 4,241 genes) and the Reactome (Gillespie
et al., 2022) (281 pathways from 1577 genes).

Evalution. We employ 5-fold cross-validation for each dataset. The models are evaluated using the
concordance index (C-index) (Harrell Jr et al., 1996) and its standard deviation (std) to quantify
the performance of correctly ranking the predicted patient risk sores. We also visualize the Kaplan-
Meier (KM) Kaplan & Meier (1958) curves that can show the survival probability of different risk
groups. The log-rank statistical significance test Mantel et al. (1966) is performed to determine if
the separation between these groups is statistically significant.

Bag constraction. We first segment the tissue from the images and extract non-overlapping 224 ×
224 patches at the 20× magnification. Then a Swin Transformer (CTransPath) (Wang et al., 2022),
which is pre-trained on more than 14 million pan-cancer histopathology patches via self-supervised
contrastive learning, is used as the feature extractor to get 768-dimensional embeddings. Meanwhile,
the feature extractors of pathways are SNNs following the settings in works (Jaume et al., 2023; Xu
& Chen, 2023; Chen et al., 2021).

Implementation. The proposed algorithm is implemented in Python with Pytorch library and runs
on a PC equipped with an NVIDIA A100 GPU. For the survival prediction task, we divide the overall
survival time into four intervals, resulting in eight different risk bands when considering censorship
status. Therefore, we set the number of prototypes in PIB to 8. We use an MLP with a 512-d hidden
layer as the latent vector encoder fE(·) to embed the bag features into a fixed dimension of 256. The
hyper-parameters α, β, γ, and λ are set to 0.1, 0.01, 1, and 0.1 respectively. We take the top 50% and
80% of the samples with the highest similarity to prototype as the retained features for histological
data and genomics data, respectively, to remove redundancy within the modalities. To increase the
variability during training, 4096 patches are randomly sampled from the WSI. We follow the idea
in (Xu & Chen, 2023) and split the WSI bag into sub-bags, each bag has 512 instances. We use
Adam (Kingma & Ba, 2014) as the optimizer with the learning rate of 5 × 10−4. All the networks
including compared methods are trained for 30 epochs and the batch size is set to 32. We report the
5-fold averaged C-index on validation sets.

C.2 MORE QUANTITIVE STUDIES

In this part, we reveal more experimental results about the parameter settings on three cancer
datasets, shown in Figure 5. We adopt a careful approach to address the potential risk of selection
bias in hyperparameter choices. To begin with, we defined the hyperparameter search space based
on the commonly used ranges in information bottleneck methods like VIB (Alemi et al., 2016) and
MIB (Federici et al., 2020). During the selection, we implement a grid search strategy. For each
hyperparameter, while keeping others fixed, we conducted a five-fold cross-validation, selecting the
hyperparameters that exhibited the best average performance across all validation sets. Furthermore,
to further mitigate selection bias, these hyperparameters were selected on multiple datasets.

Settings of Weight Factor for Loss Function. We conduct quantitive studies about the weight
factor of loss items in Eq.(13), shown in Figure 5 (a)-(d). Among these parameters, α, β, γ are

3https://portal.gdc.cancer.gov/
4https://xenabrowser.net/datapages/
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Figure 5: The effect of different parameter settings. We conduct a quantitative study on the weight
factors of loss items (a)-(d) and the information retention rate of PIB (e)-(f).

for LPIB , and λ is for LPID. In LPIB , a higher α implies that more label-related information
is retained, a higher β indicates more information is compressed original inputs, and a higher γ
means larger constraint on the approximation of the prototypes distributions. It can be seen that
as these parameters increase, LPID effectively removes redundant information by modeling better
prototypes for various risk bands, thus enhancing the model’s performance. However, when these
parameters are further increased, excessive information compression within modalities may discard
useful knowledge. Especially, when γ becomes larger, the over-separability of the prototypes may
reduce the generalization ability for samples deviating from the prototype’s central. Then in LPID,
the increase in λ exhibits different trends across datasets. This variation could be attributed to differ-
ences in multimodal redundancy levels, which in turn affects the optimal weighting for information
disentanglement. In the end, we set the α, β, γ, and λ to 0.1, 0.01, 1, and 0.1, respectively with
better performance.

Settings of Redundancy Removal in PIB. Irr controls the proportion of redundancy removal
of uni-modalities by prototypes in PIB. A lower Irr indicates that more irrelevant instances are
dropped by prototypes. We can see from Figure 5 (e)-(f), when Irr gradually decreases from 100%
(i.e., retaining all instances), the model’s performance improves, suggesting that removing intra-
modal redundancy can effectively extract discriminative information. On the contrary, when Irr is
set too low, the model’s performance deteriorates, which could indicate that task-related instances
are also being discarded, resulting in the loss of valuable information. For histological data, we
achieve comparable performance using only approximately 25% to 40% of the instances compared
to utilizing the entire bag, resulting in a reduction in data usage of approximately 60% to 75%.
Similarly, for genomic data, performance remains equivalent when utilizing approximately 55% to
70% of the dataset compared to employing all the pathways. In the end, here we set the value of Irr
for the pathology and genomics modalities to 50% and 80%, respectively. This allows PIB to remove
redundancy while retaining effective instances, ultimately improving the model’s performance.

Settings of Sampling. In our work, we adopt the commonly used Monte Carlo sampling method
following the information bottleneck-based approaches (Alemi et al., 2016; Federici et al., 2020;
Lee & Van der Schaar, 2021), leveraging the reparameterization trick and randomly sampling from
a standard Gaussian distribution. Moreover, the choice of the number of samples affects the models’
performances. Therefore, we gradually increase the number of samples from a small to a larger
number, as illustrated in the table below. The experiments demonstrate that as the number increases,

20



Published as a conference paper at ICLR 2024

Table 4: Settings of sample number. C-index (mean ± std).

Sample Number BLCA COADREAD STAD

1 0.614 ± 0.032 0.763 ± 0.129 0.634 ± 0.059
10 0.659 ± 0.074 0.804 ± 0.093 0.673 ± 0.082
50 0.667 ± 0.061 0.768 ± 0.124 0.684 ± 0.035

100 0.689 ± 0.064 0.811 ± 0.128 0.678 ± 0.060

the model’s performance gradually improves. Increasing the number of samples effectively aids in
learning prototypes. In the paper, we strive to balance performance and sampling complexity and
thus set the sample number uniformly to 50.

C.3 MORE COMPARISONS WITH STATE-OF-THE-ARTS

To mitigate the impact of potential biases that emerge from data contamination of self-supervised
models pretrained on TCGA (Guo et al., 2023; Jacovi et al., 2023), we also conduct additional
experiments with a ResNet50 (He et al., 2016) encoder pretrained only on ImageNet (Deng et al.,
2009) for histological modality. Here we select the top 2 well-performing methods in the unimodal
group and the multimodal group in Table 1, respectively. The results are shown in Table 5. It is
clearly demonstrated that even when employing a non-TCGA-pretrained encoder, PIBD exhibits
great improvement compared to the comparison methods, which further underscores the superiority
of our method.

Table 5: C-index (mean ± std) over five cancer datasets by using ResNet50 encoder (ImagaeNet
transfer). g. and h. refer to genomic modality and histological modality, respectively. The best
results and the second-best results are highlighted in bold and in underline. A method marked with
the subscript † falls into the unimodal group, ‡ into the multimodal group

Model Modality
BRCA

(N=869)
BLCA

(N=359)
COADREAD

(N=296)
HNSC

(N=392)
STAD

(N=317)
Overall

TransMIL † h. 0.617 ± 0.127 0.588 ± 0.072 0.699 ± 0.170 0.633 ± 0.023 0.592 ± 0.095 0.626
CLAM-MB † h. 0.626 ± 0.109 0.584 ± 0.058 0.622 ± 0.170 0.606 ± 0.031 0.576 ± 0.070 0.603

MOTCat ‡ g.+h. 0.639 ± 0.090 0.591 ± 0.028 0.705 ± 0.168 0.589 ± 0.067 0.598 ± 0.113 0.624
SurvPath ‡ g.+h. 0.685 ± 0.067 0.570 ± 0.052 0.749 ± 0.100 0.640 ± 0.059 0.624 ± 0.057 0.653

PIBD ‡ g.+h. 0.697 ± 0.092 0.595 ± 0.061 0.784 ± 0.124 0.637 ± 0.047 0.644 ± 0.063 0.671

D VISUALIZATION OF SIMILARITY SCORES

To show the interpretability, we have visualized similarity scores of instances to each prototype of
risk level and presented top-3 relevant patches and biological pathways, as well as top-3 irrelevant
biological pathways for the local interpretability of individual patients. Results from one high-risk
case and one low-risk case are shown in Figure 6 and Figure 7, respectively. The visualizations
clearly demonstrate that prototypes representing different risk intervals focus on distinct regions
within the WSIs, enabling the extraction of discriminative instances. Conversely, instances with
lower attention are considered redundant and discarded. This further elucidates how the model ben-
efits from the redundancy removal mechanism introduced in our proposed PIB. Through analyzing
these instances, we may discover biomarkers of various risk levels. This is because prototypes are
designed to be discriminative, which enforces selecting instances that are most distinctive for each
risk level, potentially corresponding to biomarkers for different risk levels.
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High LowSimilarity Scores of Histology

Whole Slide Image Prototype (t=0,c=0) Prototype (t=1,c=0)

Prototype (t=2,c=0) Prototype (t=3,c=0) Prototype (t=0,c=1)

Prototype (t=1,c=1) Prototype (t=2,c=1) Prototype (t=3,c=1)

Similarity Scores of Pathways

TCGA-AR-A1AR

Survival Time: 17.47 months

Label: t=0,c=0

High Risk

Figure 6: Visualizations of similarity scores for a high-risk case in BRCA, along with the patches
displaying the highest similarities and the biological pathways showing both the lowest and highest
similarities.

22



Published as a conference paper at ICLR 2024

High LowSimilarity Scores of Histology

Whole Slide Image Prototype (t=0,c=0) Prototype (t=1,c=0)

TCGA-CQ-6223

Similarity Scores of Pathways

Survival Time: 47.60 months

Label: t=3,c=1

Low Risk

Prototype (t=2,c=0) Prototype (t=3,c=0) Prototype (t=0,c=1)

Prototype (t=1,c=1) Prototype (t=2,c=1) Prototype (t=3,c=1)

Figure 7: Visualizations of similarity scores for a low-risk case in HNSC, along with the patches
displaying the highest similarities and the biological pathways showing both the lowest and highest
similarities.
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