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ABSTRACT

In this study, we identify subsets of model pretraining data that contribute to the
math reasoning ability of language models and evaluate it on several mathemati-
cal tasks (e.g., addition, multiplication). We find that training on math-only data
improves simple arithmetic but doesn’t fully account for complex reasoning abil-
ities, such as chain-of-thought reasoning. We also find that code data contributes
to chain-of-thought reasoning while reducing arithmetic performance.

1 INTRODUCTION

A standout capability of foundational models is their proficiency in tackling mathematical problems
(Kojima et al., 2022; Wei et al., 2022) only with in-context learning or chain-of-thought prompting.
In this work, we aim to identify the source of such math reasoning capabilities within the pretraining
data of language models (LM), which allows them to obtain such capabilities. We investigate which
specific parts of the pretraining data contribute to LM’s mathematical reasoning abilities. Identifying
the pivotal parts of pretraining data that contribute to mathematical reasoning can help to design new
LM’s pretraining data mixtures more effectively. This is of particular importance as we enter an era
where data availability and quality become critical bottlenecks in advancing model’s capabilities.

Our underlying hypothesis for identifying pivotal pretraining data subsets is straightforward: if a
subset elevates benchmark performance beyond what a random subset achieves, we infer that this
subset contributes to the capabilities measured by that benchmark. Since all data subsets we test are
within the pretraining data, continued pretraining serves as a rough approximation of up-weighting
the data points within our chosen subsets. We propose some methods for identifying relevant subsets
based on rules (e.g., math subsets) or similarity (e.g., cosine similarity-based) methods. We employ
multiple mathematical reasoning evaluation tasks to distinguish between levels of mathematical rea-
soning capabilities. Our analysis shows that specific subsets, such as school math segments, en-
hance simple arithmetic skills in language models (e.g., resulting in more than 20% improvement
on addition questions). However, they are less effective in enhancing more advanced mathemati-
cal skills, such as developing mathematical reasoning via sequential, chain-of-thought explanations.
Our findings highlights that training on code-specific subsets improves chain-of-thought mathemat-
ical reasoning. Our proposed method sets the stage for future exploration into the impact of tailored
pretraining data subsets on model’s capabilities.

2 METHODOLOGY

Our objective is to identify and trace subsets of pretraining data responsible for enhancing language
models with math reasoning capabilities. We do this by first identifying the data subsets, and then
continuing model pretraining on these subsets. We then evaluate these models and compare their
performance to the original model. Since this data was already included in the initial pretraining
phase, extending the training of the language model on these specific subsets emphasizes their con-
tribution without introducing additional information to the model. Consequently, if our evaluations
show improved math abilities, we attribute the math proficiency of the language model to these spe-
cific subsets. We also use a baseline model, further trained on a random data subset, to maintain
consistent training steps. Our assumption is that if training on a pretraining data subset results in im-
proved performance in comparison to our random baseline, this subset contributes to the capability
of the model tested by the benchmark. We illustrate our methodology in Figure 1 in the appendix.
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Table 1: Performance on evaluation tasks after training on different subsets for 2,000 steps. * we
trained on the similarity and GSM8K sets for 50 steps only since the GSM8K train set is small.

Training Subset add-2d add-3d mul-2d asdiv-COT
Baseline (no training) 62.0% 4.0% 1.0% 13.9%

Random Subset 62.5% 4.5% 2.0% 12.8%
DM-Math 89.0% 44.5% 4.0% 0.0 %
Code (w comment) 41.5% 5.0% 1.5% 15.8%
Code (wo comment) 43.0% 9.5% 3.0% 14.7%

Similarity Subset* 74.5% 21.0% 5.5% 13.8 %
GSM8k Train Set* (upper bound) 81.0% 24.0% 9.5% 28.0%

We choose a number of different subsets that could be intuitively considered as ‘important’. This in-
cludes: (1) DM-Math, which is the sole segment dedicated entirely to mathematical content among
the subsets of classified data in the Pile; (2) Code (with and without comments), which is a sub-
section from GitHub motivated by prior work (Wei et al., 2022) demonstrating that models trained
on code significantly outperform non-code models in evaluations of mathematical performance that
involve chain-of-thought prompting; (3) Similarity Subset, which we curate by computing the co-
sine similarity metric between GSM8K-training data (Cobbe et al., 2021) (as it is similar to our test
datasets) and a subset of the Pile, and choosing the highest-ranked sections of the Pile.

3 EVALUATION AND CONCLUSION

We evaluate on multiple tasks, covering both simple arithmetic (a common test for measuring the nu-
merical reasoning of language models Gao et al. (2021)) and elementary-level math word problems:
(1) add-2d: Addition of two-digit numbers, (2) add-3d: Addition of three-digit numbers, (3) mul-
2d: Multiplication of two-digit numbers, (4) asdiv-COT, elementary-level math word problems,
which are known to showcase improved accuracy when models employ chain-of-thought reasoning
(Wei et al., 2022). We use the pythia 2.8B model (Biderman et al., 2023) as the pretraining data,
checkpoints, and code for this model are publicly available (Gao et al., 2020).

Our results are presented in Table 1. We first evaluate the original performance of the model on
tasks without any further training (no training). This serves as our initial reference point. We
then continue the training of our model on a random subset of the original training data. The
performance after this phase will act as our second baseline. We find that: Continued pretraining
on a random subset does not dramatically change model performance. A comparison between
the model trained on a random subset to the original model, as seen in Table 1, reveals a negligible
performance difference of less than 1% across all evaluation datasets. This observation validates our
hypothesis that the continued pretraining itself does not significantly alter model behavior.

Results from Table 1 show that training on DM-Math, focused on math question-answer pairs, boosts
simple arithmetic but drops asdiv-COT performance to 0.0, likely due to memorization or overfitting.
Upon manually inspecting model generations, we observe that the model’s natural language gener-
ation abilities, crucial for chain-of-thought reasoning, deteriorate. Moreover, code data improves
chain-of-thought reasoning, but not simple arithmetic reasoning. Models trained on code, both with
and without comments, perform largely similarly. Both subsets (especially with comments) appear
to moderately improve chain-of-thought performance by increasing the asdiv-COT performance by
about 3% compared to the random trained model (with 12.8% accuracy) while maintaining or de-
grading simple arithmetic reasoning performance.

In conclusion, our study reveals the utility of math and code subsets for mathematical and chain-
of-thought reasoning, respectively, showing promise for future work applying this to larger models
and data subsets. Our findings, especially the trends we observe with code-based model training,
highlight the need for thorough research on how different data mixtures, including code, affect model
reasoning.
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Nicholas Joseph, Sam McCandlish, Jared Kaplan, and Samuel R. Bowman. Studying large lan-
guage model generalization with influence functions, 2023.

Han Guo, Nazneen Rajani, Peter Hase, Mohit Bansal, and Caiming Xiong. FastIF: Scalable in-
fluence functions for efficient model interpretation and debugging. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, pp. 10333–10350, Online
and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.emnlp-main.808. URL https://aclanthology.org/2021.
emnlp-main.808.

3

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.5281/zenodo.5760077
https://doi.org/10.5281/zenodo.5760077
https://proceedings.neurips.cc/paper_files/paper/2020/file/1e14bfe2714193e7af5abc64ecbd6b46-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1e14bfe2714193e7af5abc64ecbd6b46-Paper.pdf
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://aclanthology.org/2021.emnlp-main.808
https://aclanthology.org/2021.emnlp-main.808


Under review as a Tiny Paper at ICLR 2024

Zayd Hammoudeh and Daniel Lowd. Training data influence analysis and estimation: A survey,
2023.

Xiaochuang Han, Byron C. Wallace, and Yulia Tsvetkov. Explaining black box predictions and
unveiling data artifacts through influence functions. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pp. 5553–5563, Online, July 2020. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.492. URL https:
//aclanthology.org/2020.acl-main.492.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Ruoxi Jia, Fan Wu, Xuehui Sun, Jiacen Xu, David Dao, Bhavya Kailkhura, Ce Zhang, Bo Li, and
Dawn Song. Scalability vs. utility: Do we have to sacrifice one for the other in data importance
quantification? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 8239–8247, June 2021.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Maxwell Nye, Anders Andreassen, Guy Gur-Ari, Henryk Witold Michalewski, Jacob Austin, David
Bieber, David Martin Dohan, Aitor Lewkowycz, Maarten Paul Bosma, David Luan, Charles Sut-
ton, and Augustus Odena. Show your work: Scratchpads for intermediate computation with
language models, 2021. https://arxiv.org/abs/2112.00114.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. Impact of pretraining
term frequencies on few-shot numerical reasoning. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2022, pp. 840–854, Abu Dhabi, United Arab Emirates, Decem-
ber 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.59.
URL https://aclanthology.org/2022.findings-emnlp.59.

Subhro Roy and Dan Roth. Mapping to declarative knowledge for word problem solving. Trans-
actions of the Association for Computational Linguistics, 6:159–172, 2018. doi: 10.1162/
tacl a 00012. URL https://aclanthology.org/Q18-1012.

Y. SOMDA. Guesslang. https://github.com/yoeo/guesslang, 2021.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

A APPENDIX

A.1 LIMITATIONS AND FUTURE WORK

We note that there are several limitations to our approach. First, our similarity search was confined
to small sections of the pretraining data because of lack of resources. We anticipate discovering
more substantial and influential parts if we extend our search across a broader dataset. We hope that
future work will utilize our similarity search method on a larger scale, applying it not only to math
reasoning but also to other evaluations of large language models.

Additionally, our method involves comparing evaluations of models further trained on subsets of
relevant data to those trained on a random subset. Consequently, we cannot identify contributing
subsets of the pretraining data that do not yield improved performance. This situation may arise,
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Figure 1: Overview of our approach to identify pretraining subsets contributing to model perfor-
mance. Initially, we select subsets of the pretraining data for continued model training. Then, the
evaluation results – in this case, evaluating on asdiv dataset with chain-of-thought prompting – are
compared between the model further trained on these subsets and a model trained on a random
subset.

for example, if the subset contributes only when combined with other data, or only has a minor
impact on our evaluation settings. Furthermore, we did not examine multiple models in this work,
and our results may not be applicable to larger models or models trained on significantly different
datasets. For future work, it would be beneficial to investigate the effects of combining different data
subsets, particularly in understanding how synergistic combinations influence model performance.
Additionally, exploring a wider range of models, including larger and more diverse ones, could offer
deeper insights into the generalizability of our findings.

A.2 TRAINING DETAILS

We train most models (except the GSM8k and similarity-based ones) for 2,000 steps, continuing
the pretraining process using the same hyperparameters as Biderman et al. (2023), but keeping the
learning rate constant (as opposed to continuing the learning rate decay) at 1.6 ×10−5.

We load the model checkpoint with optimizer states1 included, and train all models using the same
GPT-NeoX codebase2 originally used to pretrain. We use a batch size of 131,072 tokens (i.e., 64
sequences of length 2,048), smaller than the original pretraining batch size of 2,097,152, due to
computational and dataset size constraints. All other hyperparameters are matched to those in Table
6 of Biderman et al. (2023). This includes training in fp16 with mixed precision, weight decay of
0.1, no dropout, and clipping gradient norms over 1.0.

We train the GSM8k and similarity-based models for 50 steps due to the small size of GSM8k - the
train split comprises of 1,132,169 tokens, and so training for 50 steps corresponds to training for
roughly 5.8 epochs. In initial experiments, we also found that performance tended to plateau at this
point. We also limit the amount of training steps performed when training over the similarity search
subset to match the GSM8k setting.

All models were trained on 4 80GB A100s, with a per-GPU batch size of 16.

A.3 COMMENT STRIPPING

We remove comments using cloc (Danial, 2021) and guesslang (SOMDA, 2021). We pass each
document through guesslang, which uses an MLP trained on existing source code to determine
which programming language the document contains. We then use cloc’s --strip-comments
command to strip comments. Notably, this removes block comments but keeps inline comments.

A.4 EVALUATION DETAILS

In the case of simple arithmetic tasks (add-2, add-3d, mul-2d), we evaluate 200 randomly generated
instances. The arithmetic task evaluations are for assessing the model’s simple math capabilities. We
also employ the asdiv dataset, utilizing chain-of-thought prompting, to evaluate the models’ step-by-

1Available at https://huggingface.co/EleutherAI/neox-ckpts-pythia-2.8b
2https://github.com/EleutherAI/gpt-neox
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“Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After
they are done, there will be 21 trees. How many trees did the grove workers plant today?
A: There are 15 trees originally. Then there were 21 trees after some more were planted. So
there must have been 21 - 15 = 6. The answer is 6.
Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking
lot?
A: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.
Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have
left in total?
A: Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74.
After eating 35, they had 74 - 35 = 39. The answer is 39.
Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How
many lollipops did Jason give to Denny?
A: Jason started with 20 lollipops. Then he had 12 after giving some to Denny. So he gave
Denny 20 - 12 = 8. The answer is 8.
Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How
many toys does he have now?
A: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4 more
toys. 5 + 4 = 9. The answer is 9.
Q: There were nine computers in the server room. Five more computers were installed each
day, from monday to thursday. How many computers are now in the server room?
A: There were originally 9 computers. For each of 4 days, 5 more computers were added. So
5 * 4 = 20 computers were added. 9 + 20 is 29. The answer is 29.
Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more.
How many golf balls did he have at the end of wednesday?
A: Michael started with 58 golf balls. After losing 23 on tuesday, he had 58 - 23 = 35. After
losing 2 more, he had 35 - 2 = 33 golf balls. The answer is 33.
Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
A: Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars. So she has 23 -
15 dollars left. 23 - 15 is 8. The answer is 8.”

Figure 2: 8-shot chain of thought prompt used for evaluation on asdiv.

step mathematical reasoning through natural language explanations. For asdiv, we use the existing
test split of 2,305 examples. In both cases, we evaluate using 8-shot in-context learning, following
the evaluation setting of prior work (Wei et al., 2022), in order to be able to extract answers from non-
finetuned language models reliably. We use the prompt seen in Figure 2 when evaluating on asdiv,
following Wei et al. (2022). Importantly, we check for exact matches between our evaluation sets
and training data segments to mitigate the potential impact of model memorization on our results.
We remove any evaluation examples we found from our training data. For example, we find 247
evaluation examples in the DM-Math train set.

A.5 DATA SUBSET STATISTICS

We show the number of documents in each data subset we examine in Table 2. Note that we do not
train for a single epoch for the majority of these subsets.

A.6 EXAMPLES OF SUBSETS

The example of the dm math subset of the Pile and the similarity search subsets are presented in
Figures 3 and 4.
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Table 2: Number of documents in each of the data subsets we examine.
Subset Name # Documents
Random 1999980
DM-Math 9223022
Code (w comments) 28512522
Code (wo. comments) 13938984
Similarity Search 3000

“...Let g be m(16). Suppose 5*x - 6299997 = 3*v, g*x + 0*v - 3779998 = 2*v. Round x to the
nearest 100000. 1300000 Let w = -1.37 - -1.21584. Round w to three decimal places. -0.154
Let p(w) = -268*w + 3. Suppose 2*g + 12 = -g. Let m be p(g). Suppose -1895 - m = -3*q.
What is q rounded to the nearest one hundred? 1000 Let p = -19981 - -13485. Let l = 6426.47
+ p. Let q = l - -69. Round q to 1 decimal place. -0.5 Let m = 53 + -26. Let n = 27.0512 - m.
What is n rounded to three decimal places? 0.051 Let l = -24 + 23.1. Let r = l + -18.1. Let g
= r + 18.48. Round g to one decimal place. -0.5 Let w = -0.084 - -0.22. Let c = -3.38 + 3.1.
Let z = w + c. What is z rounded to 2 decimal places? -0.14 Suppose 3*o = 7*o - 2*p, 2*p =
-5*o + 18. Suppose -o*s + 44205 = 12205. Suppose -s = -m - 5*j, -m + 5*j + 64000 = 3*m.
What is m rounded to the nearest 1000? 16000 Let l = -19505445 + 19505446.5667497. Let d
= -1.96675038 + l. Let z = d + 0.4. What is z rounded to 7 decimal places? -0.0000007 Let u
= 455.015 - 455. Round u to 3 decimal places. 0.015 Let q = -9.93149 + -43.00517. Let o = q
+ 9.93882. Let r = 43 + o. What is r rounded to 4 dps? 0.0022 Let i = 11.05 + -11.0502842.
Round i to 5 decimal places. -0.00028 Suppose 3*m = 8*m. Suppose -p +q(19)? 5 Let x(z) =
-z - 1. Let w be x(5)....”

Figure 3: Example of text in The Pile for the DM-Math subsection

“...the first group bought 8 slices of pizza and 6 soft drinks for $41.14. The second group bought
5 slices of pizza and 6 soft drinks for $30.10. How much does one slice of pizza cost? Let x =
the price of a slice of pizza Let y = the price of a soft drink 8 slices of pizza and 6 soft drinks
cost $41.14 8x+ 6y = 41.14. 5 slices of pizza and 6 soft drinks for $30.10. 5x+ 6y = 30.10.
A slice of pizza costs $3.68 and a soft drink costs $1.95. * * * 1. A collection of dimes and
nickels is made up of 16 coins and is worth $1.25. How many nickels are in the collection?...”

Figure 4: Example of text in The Pile found by similarity search method
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A.7 RELATED WORK

Tracing model abilities to data Numerous previous studies have examined tracing model abilities
to data (Hammoudeh & Lowd, 2023), with work on language models typically focused on the influ-
ence of finetuning data (Han et al., 2020; Guo et al., 2021), rather than data seen during pretraining.
These techniques can broadly be classified as either retraining-based or gradient-based (Hammoudeh
& Lowd, 2023), the former examining model capabilities after (re)training on data subsets, and the
latter examining gradients to calculate the influence of training data points. Due to the extreme com-
putational costs of the latter (Grosse et al., 2023), we take a retraining-based approach, continuing
the pretraining of a model on carefully chosen data subsets. However, unlike prior retraining-based
work (Jia et al., 2021; Feldman & Zhang, 2020), we do not entirely retrain multiple models from
scratch, but rather just continue model pretraining, which is considerably computationally cheaper.
However, it comes at the cost of being unable to estimate pointwise influence (since we require mul-
tiple datapoints to continue pretraining without the model achieving zero loss trivially). As such, our
approach allows us to identify and validate the effect of pretraining data subsets (e.g., data from the
same domain), similar to prior studies studying the impact of various higher-level pretraining data
statistics (e.g. presence of numbers) on model behavior (Elazar et al., 2023; Razeghi et al., 2022).

Mathematical & reasoning capabilities of LMs Solving mathematical problems, especially
when expressed in natural language, has been studied as a way to evaluate language models abilities
in problem-solving and reasoning abilities (Hendrycks et al., 2021; Roy & Roth, 2018). Recent work
has found that large pretrained language models struggle with these problems without the addition
of various inference-time techniques, such as providing in-context examples (Brown et al., 2020),
prompting a model to explain its reasoning (Wei et al., 2022; Nye et al., 2021), or exploring multiple
potential generations (Wang et al., 2023). Curiously, such abilities often require well-trained or large
‘enough’ models to make use of them (Wei et al., 2022). Given this, we study mathematical prob-
lems to gain insights on the more general reasoning capabilities of language models, and due to the
need for models equipped with certain capabilities (such as the ability to perform chain-of-thought)
to achieve strong performance.
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