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Abstract

According to the principle of compositional
generalization, the meaning of a complex ex-
pression can be understood as a function of the
meaning of its parts and of how they are com-
bined. This principle is crucial for human lan-
guage processing and also, arguably, for NLP
models in the face of out-of-distribution data.
However, many neural network models, includ-
ing Transformers, have shown to struggle with
compositional generalization. In this paper, we
hypothesize that learning to in-context learn
can provide the right inductive bias to promote
compositional generalization. We do this by
implementing a meta-learning approach that
teaches a causal Transformer to utilize earlier
examples to generalize to later ones: We con-
struct a task distribution using different order-
ings of the training dataset and possibly shuf-
fling the labels, which corresponds to training
the model on all possible few-shot learning
problems attainable from the dataset. At eval-
uation, we retain the zero-shot prediction set-
ting by providing randomly sampled training
examples for the model to in-context learn. Ex-
periments on the SCAN and COGS datasets
show that our method improves compositional
generalization, indicating the usefulness of in-
context learning problems as inductive bias for
generalization.

1 Introduction

As humans, we have the ability to combine atomic
parts in reoccurring structures in novel manners
(Fodor and Pylyshyn, 1988). This ability, known
as compositional generalization, is an important
aspect of human language processing, affording
us with an "infinite use of finite means" (Chom-
sky, 1965). For example, when we understand the
meaning of a predicate dax from sentences such as
“I dax” and “dax twice”, we can also understand
novel sentences as “dax voluntarily” or “must dax”.

In contrast, many modern deep neural architec-
tures struggle with compositional generalization

(Baroni, 2020; Lake and Baroni, 2017; Hupkes
et al., 2020; Kim and Linzen, 2020; Keysers et al.,
2020). While they excel at making predictions
for test sets similarly distributed to the train (i.e.,
in-distribution), their performance significantly de-
creases when generalizing to test distributions that
are differently structured (i.e. out-of-distribution)
even if they contain the same set of atoms.

We believe that standard models lack an induc-
tive bias towards acquiring compositional represen-
tation, which arises from the independent parallel
processing of examples in mini-batches. In most
mini-batches, the models do not have explicit ac-
cess to a sufficient number of instances of the atoms
to make it worthwhile to learn compositionally gen-
eralizable representations for the atoms. Contrast
this with symbolic accounts of compositional gen-
eralization, e.g., in the shape of case-based rea-
soning (Leake, 1996), where prediction can always
rely on the availability of a sufficient number of
relevant examples in memory. Along these lines,
the ability to understand “dax thrice” from "dax
twice" can be thought of as a generalization of rel-
evant past uses of "thrice" in memory, such as “eat
thrice”, combined with the use of "dax" in "dax
twice".

Our hypothesis is that compositional general-
ization can be induced in models by forcing them
to in-context learn (Brown et al., 2020; Chowdh-
ery et al., 2022). In-context learning (ICL) refers
to the ability to generalize to new examples con-
ditioned on a few demonstrations of input-output
mappings provided in the model’s context (or mem-
ory) without parameter updates. Hence, learning
to in-context learn forces the model to compute in
the forward pass how the past examples provided
the context can be utilized in a novel manner for
the later examples. We observe that it is the same
mechanism that supports the learning of composi-
tionally generalizable input-output mappings.

The intuition for our hypothesis is aligned with



theoretical studies that explain in-context learning
(Ortega et al., 2019; Xie et al., 2022) as an implicit
Bayesian inference, where the model learns to ap-
proximate the latent parameters. However, it is yet
unclear empirically how compositional generaliza-
tion and in-context learning are related. On one
hand, the reported improvement in compositional
generalization for the large Transformer-based lan-
guage models (LLMs) (Zhou et al., 2023; Hosseini
et al., 2022) with emergent in-context learning abil-
ity seem to point to an underlying relationship. On
the other, the uncontrolled training data in these
studies and uncertainty regarding how much of the
inductive biases implicit in the prompting methods
contribute to the improvement clouds our under-
standing. Indeed, Hosseini et al. (2022) reported
that only some in-context learning LLMs can com-
positionally generalize and only as they scale up.

As implementation, we propose a novel meta-
learning (Schmidhuber et al., 1996; Bengio et al.,
1991; Hochreiter et al., 2001; Duan et al., 2017; Or-
tega et al., 2019) regime to explicitly incentivize in-
context learning for a causal Transformer (Vaswani
et al., 2017; Radford et al., 2019) with the language
modelling objective, training from scratch. Each
task of our meta-task distribution is one possible
linear ordering of input-output pairs of the training
dataset formed into a single sequence via concate-
nation. This trains the model on all possible few-
shot in-context learning problems attainable from
the dataset. In order to discourage the model from
relying on memorization, we also shuffle the labels.
At prediction time, we condition the inference on
the test examples on randomly sampled training
mappings, maintaining the zero-shot prediction set-
ting. We evaluate our approach on two widely used
datasets targeting specifically compositional gener-
alization, namely SCAN (Lake and Baroni, 2017)
and COGS (Kim and Linzen, 2020).

Our main contributions are as follows:

1. We empirically study the relationship between
in-context learning and compositional general-
ization through a novel meta-learning training
regime for sequence to sequence datasets that
incentivizes in-context learning and a corre-
sponding evaluation regime that maintains a
zero-shot prediction setting.

2. We show that our Transformer trained through
meta-in-context learning shows a significant
improvement in performance on composi-
tional generalization across the datasets com-

pared to the baseline without meta-learning.
3. We demonstrate how exactly the ability to in-
context learn is related to compositional gen-
eralization through ablations. We show that 1)
the performance of the model increases when
it is trained on more diverse range of few-
shot in-context learning problems 2) the effect
of the providing more demonstrations leads
to improved compositional generalization 3)
they are able to learn from new distributions.
The paper is organized as follows. §2 introduces
important background concepts and reviews no-
table related works. §3 presents our meta-learning
regime in detail. §4 provides information on ex-
perimental setup, followed by the results in §5. §6
concludes the paper along with future directions.

2 Related Works

2.1 Compositional Generalization

Difficulties of neural networks to compositionally
generalize have been identified by many studies.’.
Notable text-to-text benchmarks include SCAN
(Lake and Baroni, 2017), PCFG (Hupkes et al.,
2020), COGS (Kim and Linzen, 2020), and CFQ
(Keysers et al., 2020). These datasets are split into
train and test systematically that requires a compo-
sitional solution to be successful.

Many studies have proposed different inductive
biases to promote compositionality. They include
new deep learning architectures structurally con-
straining how the inputs are processed and repre-
sented (L1 et al., 2019; Russin et al., 2019; Gor-
don et al., 2020; Bergen et al., 2021), providing
additional supervisory signals (Jiang and Bansal,
2021), data augmentation (Andreas, 2020; Guo
et al., 2020b; Akyiirek et al., 2021; Qiu et al., 2022),
and hybrid symbolic reasoning approaches (Nye
et al., 2020; Liu et al., 2020b; Guo et al., 2020a).
These approaches have shown to improve composi-
tional generalization. However, they often require
prior knowledge of the dataset, and their scalability
to bigger and more general datasets is uncertain.

Following these concerns, some studies have
constrained their investigations to the most popular
neural sequences model such as the Transformer
(Ontanon et al., 2022; Csordas et al., 2021), find-
ing that their compositional generalization capacity
can be improved with the available variants (e.g.
relative positional encoding (Dai et al., 2019) or
tying the layers (Dehghani et al., 2019). Patel et al.

'We focus on studies on unimodal language data.



(2022) showed that popular architectures including
the Transformer can be improved by increasing di-
versity in the data distribution. Finally, Herzig et al.
(2021) showed that better formatting of tasks using
bespoke representation can lead to improvement.

2.2 Meta-learning

Meta-learning (Bengio et al., 1991; Schmidhuber
et al., 1996) aims at enabling machine learning
models to learn how to learn by exposing them
to a distribution of tasks where one can improve
from past experience. The tasks are selected to be
similarly structured but differ in details such that
it is profitable for the model to find a generaliz-
able solution rather than memorize examples. Our
work follows the line of work known as memory-
based meta-learning or meta-in-context learning
(Hochreiter et al., 2001; Santoro et al., 2016; Duan
etal., 2017; Wang et al., 2017; Ortega et al., 2019),
which incentivizes the model to learn to in-context
learn by training on a task distribution of sequences
of input-output mappings.

Meta-learning was applied to various applica-
tion tasks in language processing such as cross-
lingual transfer (Gu et al., 2018), question answer-
ing (Nooralahzadeh et al., 2020), and domain adap-
tion (Qian and Yu, 2019). However, it has rarely
found application in semantic processing. The chal-
lenge arises from the difficulty of not knowing be-
forehand the relevance of specific examples, which
makes it difficult to construct the task distribution
with the right inductive bias for compositional gen-
eralization. Lake (2019) evaded this problem by
using the ground truth grammar of the data distri-
bution. This allowed them to permute only the
input-output mappings of the primitives, which
was shown to improve compositional generaliza-
tion. Conklin et al. (2021) used MAML (Finn et al.,
2016) as an auxiliary loss for supervised learning
which alleviated the problem of selecting support
examples, but still relied on ground truth structural
knowledge. We discuss how we overcome these
challenges in the next section.

2.3 In-context Learning

There is a long line of work attempting to under-
stand the property of in-context learning, espe-
cially related to their ability to generalize to out-
of-distribution. A number of studies has shown
that in-context learning in LLMs can be utilized for
compositional generalization using specific prompt-
ing methods (Zhou et al., 2023; Wei et al., 2022; Fu

et al., 2023), especially when the model is scaled
up (Hosseini et al., 2022). As explained above, the
in-context learning ability in these models was also
analyzed theoretically, and the driving force was
found to be latent text properties that heavily affect
token distributions (Xie et al., 2022).

Our work is closest to previous studies that train
Transformers from scratch using meta-learning in-
stead of looking at LLLMs. Chan et al. (2022)
showed that the emergence of in-context learning
to depend on the informativeness of the contexts.
Garg et al. (2022) showed that Transformers are
able to in-context learn simple functions and gen-
eralize to out-of-distribution samples, and Kirsch
et al. (2022) extended for learning to in-context
learn arbitrary image-label mappings.

3 Methods

We now introduce a meta-learning regime that can
be generally applied to a sequence to sequence
dataset consisting of input-output sequence pairs.
The main goal is how to construct a meta task-
distribution with the right inductive bias for compo-
sitional generalization. The key idea is the induc-
tive bias created by the online learning of the entire
dataset: The model observes each example in the
dataset only once and sequentially one after the
other. This means that the model cannot memorize
when learning on such a linear ordering of exam-
ples (i.e., trajectory) and needs to successfully store
and represent the past examples for generalization
for the future examples.

Since there is no inherent order between the ex-
amples in a sequence to sequence dataset, a differ-
ent linear ordering of the dataset poses a different
generalization problem for the model. However,
no matter which ordering we choose, the structure
behind each trajectory remains invariant as it is gov-
erned by the same latent parameters. Hence, when
meta-learning on such a distribution, the model has
a chance of approximating the underlying structure
of the dataset. Note that this way of constructing
the task distribution do not require any prior knowl-
edge of the dataset, in contrast to earlier approaches
(Lake and Baroni, 2017; Conklin et al., 2021).

3.1 Meta-training

Given a sequence to sequence dataset D =
{(x®, y@)1N | with a vocabulary V, we form the
task distribution P(7) for meta-learning, where
each task 7 is one possible linear ordering of
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Figure 1: Illustration of our meta-in-context learning framework. (Left) We build our meta-task distribution by
sampling a random linear ordering of a sequence to sequence dataset and concatenating the input-output mappings
(i.e. (x4, y;)). We possibly shuffle the labels to eliminate memorization and keep only M examples. Then a causal
Transformer (%y) is trained with these concatenated results for next-token prediction, only predicting for the outputs.
¢ refers to the pad-token. (Right) At inference, we freeze the weights and randomly sample k£ < M train examples

to condition the prediction of a test query example Zgyery-

the dataset (x(1), y(1), .. (x(N) y(N)) We feed
this to the model as a concatenation 7 =
[xW;y @ x(V): (V)] using two delimiter to-
kens, one to distinguish the inputs from the outputs
and another to separate the sequence elements. We
assume a uniform distribution for P(7).

However, one limitation of this approach is the
possibility of memorization as each example oc-
curs only once within each trajectory, but many
times across different trajectories. Hence, a model
might learn to ignore the context and memorize
the examples, which is especially true for small
datasets. To counteract this danger, we randomly
shuffle the labels of the vocabulary V. For ex-
ample, given a dataset {(a b, A B), (a d, A D)},
we can create an alternate version of the dataset
{(ab,B A),(ad, B D)} by the shuffling.

Formally, we train the model My given a possi-
ble linear ordering sequence 7 to predict the next
token f(7[i]) = 7[i + 1] if the i-th token belongs
to the output and a pad token f(7[i]) = ¢ if it
belongs to the input or the first output of the se-
quence. Hence, the model is trained to minimize
the expected loss over all possible orderings of the
dataset, possibly extended with label shuffling:

|7l 1
min ;- p(r) D M (rla]), f(r )] (D

=gy

where £(-, -) is the cross-entropy loss function. Fig-
ure 1 (left half) illustrates the training procedure.
This objective can be interpreted as training the
model on all possible few-shot learning problems
attainable from the dataset. Hence, the strength of
the inductive bias for compositional generalization
is limited to the kinds of generalization problem

inherent in each dataset. A final practical problem
is that most datasets do not fit entirely into memory.
Hence, we fix a certain roll-out length M < N to
limit each sequence 7 to consist of M input-output
pairs. Note that as we make M smaller, the number
of distinct tasks in the task distribution decreases.
We investigate the choice of M in Exp. 2 below.

Underlying Neural Network. This meta-
training can be applied to any neural network
model with memory. However, the use of an
autoregressive model is very advantageous: In
such a model, a single trajectory consisting of
N concatenated input-output mappings can be
provided with a causal masking to encompass k — 1
few-shot learning problems. In a bidirectional
model, in contrast, one needs to provide k£ — 1
different problems separately to the model. Hence,
we adopt the causal Transformer (Vaswani et al.,
2017; Radford et al., 2019) in our work.

3.2 Inference

Compositional generalization datasets are designed
to be a zero-shot generalization task. This means
that the model is required to generalize to the test
examples only by using the train examples. Since
we do not assume any prior knowledge to deter-
mine the possible relevance between examples, we
randomly sample a training trajectory of length
k < M to condition the inference for each test
input x,. Note that though we cannot guarantee
the relevance of all the samples, the model can still
choose among these samples through the attention
mechanism, analogously to case-based reasoning
(Leake, 1996). See Figure 1 (right half) for the il-
lustration of our inference method. We investigate



the implications of the choice of k£ in Exp. 3 below.

4 Experimental Setup

4.1 Datasets

SCAN (Lake and Baroni, 2017) consists of nat-
ural language commands that needs to be mapped
to a sequence of actions (e.g. jump twice — JUMP
JUMP). The commands were generated using a
phrase structure grammar without recursion and
mapped to the actions using semantic interpretation
rules. Among various compositional generalization
splits of SCAN, we use the Maximum Compound
Divergence (MCD) splits introduced by Keysers
et al. (2020). These splits capture the notion of
compositional generalization by maximizing the
divergence between the compounds while main-
taining the closeness of the atom frequency distri-
bution. There are three SCAN-MCD splits with
increasing difficulty (i.e. MCD1 being the easiest),
each with 8365 train and 1045 test examples.

COGS (Kim and Linzen, 2020) is a semantic
parsing dataset with diverse natural language sen-
tences. The compositional generalization test set
was constructed based on different kinds of lin-
guistic generalizations that humans are able to
make (e.g. generalizing subject role — object role).
The training set consists of 24155 examples while
21000 examples make up the test.

Preprocessing. For both datasets, we preprocess
the output sequences to reduce their lengths in or-
der to be able to fit longer trajectories (i.e. higher
M). For SCAN, we represent the action sequences
in Python syntax as it was done in (Zhou et al.,
2023) for evaluating LLMs. For example, "LOOK
LOOK" is represented as LOOK * 2. For COGS,
we simply omit the brackets and represent the vari-
ables x,, as n. Both are intermediate representa-
tions that can be mapped fully back to the original
form. See Appendix C for more details.

4.2 Model Configuration and Training Details

We use an 8-layer 8-head causal Transformer with
model dimension of 512 and feedforward dimen-
sion of 2048 with absolute sinusoidal positional
encoding (Vaswani et al., 2017), using the basic
implementation available in PyTorch (Paszke et al.,
2019). We do not use any pre-trained weights, and
initialize the model and the word embeddings from
scratch. Appendices A and B provide details on
hyperparameters and checkpoint selection.

For SCAN, we apply shuffling of output labels
to completely eliminate the effect of memorization,
as its relatively small vocabulary (|V| = 30) af-
fords us the full coverage of all the words with a
few samples. Since COGS has a much bigger vo-
cabulary (|V| = 871), we do not apply shuffling
here.

4.3 Evaluation

For evaluation, we report on sequence-level accu-
racy, where a sequence is only deemed correct if
it is predicted entirely correctly. For each accu-
racy result, we also report the number of randomly
sampled training examples k used for testing. If
not mentioned, we set k£ to be one less than the
maximum roll-out length M. All results report av-
erages over five training runs for SCAN and three
for COGS (for computational reasons).

4.4 Baselines and Points of Comparison

Herzig et al. (2021) showed that intermediate rep-
resentations can lead to an improved compositional
generalization. This especially applies to SCAN.
Hence, we additionally train a 3-layer encoder-
decoder Transformer (Vaswani et al., 2017) and
Universal Transformer (Dehghani et al., 2019) with
absolute positional encoding for SCAN. On the
other hand, the impact of preprocessing on COGS
is minimal and is different from the format found
to be useful, which converted the task to sequence
tagging (Ontafidén et al., 2022). Hence, we use
Transformer and Universal-Transformer results re-
ported in literature for COGS.

For both datasets, we also report on a causal
Transformer baseline trained using standard su-
pervised learning, which is equivalent to training
with the roll-out length of 1 (i.e. M = 1,k = 0).
Finally, we compare our approach with the prior
meta-learning work: the MAML-augmented Trans-
former with Tree-based search for COGS and
string-based for SCAN (Conklin et al., 2021). See
Appendices A and B for all further details.

S Experiments and Results

We now present the results of four experiments
to evaluate our approach and to better understand
the relationship between in-context learning and
compositional generalization: (1) We compare the
performance of our models with the baselines using
k = M — 1 for evaluation. (2) We test the effect
of training the model with longer trajectories (i.e.



Method o ;a: SCAN COGS

o

= 3  MCDI MCD2 MCD3
Transformer (lit.) + - 0.4+ 0411] 1.8+ 041[1] 0.5+0.11[11 35+61[2]
Transformer (ours) + + 41.7+47 20.3 £56 17.1 +6.1 80 +0.0[3]
Universal Transformer (ours) + + 364490 34.1+6.6 25.5+104 78 £0.0[3]
Transformer + MAML (lit.) + - 26+06[4 56+16[4 6.7+18[4] 66.7 £44[4]
Causal Transformer (ours) -+ 21.8+37 25.6 £2.6 19.7 +£2.1 51.9+43
Causal Transformer + meta-ICL. - + 71.24+73 74.8 £9.7 38.7 £83 75.7+19

Table 1: Exp. 1: Mean sequence-level accuracies and standard deviations across runs. For our meta-ICL causal
Transformer, we use M = 25, k = M — 1. "Bidir" stands for bidirectional (vs. causal). "IntRep" indicates the use
of the optimized intermediate representation for SCAN. Best model on each dataset boldfaced. References: [1]
Furrer et al. (2021), [2] Kim and Linzen (2020), [3] Csordas et al. (2021), [4] Conklin et al. (2021).

bigger M) which results in training with a bigger
and more diverse task distribution. (3) We test the
effect of varying the number of support training ex-
amples used during evaluation (i.e. varying k). (4)
We test the ability of the resulting models to learn
from a new distribution by providing the model
with test examples.

5.1 Exp. 1: Main results

Table 1 summarizes the main results of a causal
Transformer trained from scratch using our meta-
training method, along with the baselines.

We first make the observation that our inter-
mediate representation for SCAN leads to an im-
provement in compositional generalization (com-
pare rows 1 and 2). Although the improvement
is substantial, the datasets still remain difficult for
the models and the relative difference of difficulty
between the MCD splits are retained (see the de-
creasing performance for SCAN in columns 3-5).
We also note that our causal Transformer baseline
(row 5) performs worse than the encoder-decoder
counterparts, probably due to its unidirectionality.

For all three MCD splits, our causal Transformer
trained with meta-in-context learning (row 6) sub-
stantially outperforms all other approaches. For
COGS, it is not able to beat the Transformer model
of Csords et al. (2021), but it is able to outperform
others. This result provides a positive evidence
for our hypothesis that the in-context learning abil-
ity of Transformers encompasses compositional
generalization. This is especially interesting for
COGS as no shuffling of labels was used, hence
the improvement gain compared to its causal base-
line came simply from how the data was being
presented to the model. We believe that training

on linear orderings of examples resulted in a form
of regularization, where the pressure to learn repre-
sentations not only for predictions but also for their
use in the future contributed to the improvement.

5.2 Exp. 2: Training on Longer Trajectories

Setup. Next, we investigate how the performance
of the model changes when training on trajecto-
ries of different lengths. This is interesting because
constructing the task distribution with longer trajec-
tories affords us with more unique few-shot learn-
ing problems, which might lead to better composi-
tional generalization. However, longer trajectories
could also lead to a higher chance of overfitting,
as the model needs to extrapolate less when given
more support samples. Hence, we train three dif-
ferent values of M = {10, 25,50} for SCAN and
{5,10, 25} for COGS, evaluating with k = M — 1.
Result. The results in Figure 2 show an improve-
ment for MCD1 and MCD2 of SCAN from increas-
ing the trajectory length from 10 to 25, but we
see signs of overfitting as we increase further. For
MCD3, we see a monotonic improvement as we
increase the trajectory length. For COGS, we see
a similar trend with increasing performance as the
length of the trajectories are increased.

This confirms our hypothesis that training on big-
ger and more diverse meta task distribution can lead
to an improvement. The gain diminishes after a cer-
tain point because the task becomes easier for the
model. Where this turning point occurs is depen-
dent on the available few-shot learning problems
implicit in each dataset, but this could be tuned us-
ing a standard hyperparameter search. Thus, the in-
context learning ability of Transformers is sensitive
to the kinds of few-shot generalization problems
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Figure 2: Exp. 2: Results for models trained on different
lengths of trajectories (i.e. M), withk = M —1. M =1
is equivalent to the causal Transformer baseline.

that it is exposed to during training.

5.3 Exp. 3: Fewer vs. More Support Examples

Setup. So far, we have only used K = M — 1
number of support examples for evaluation. We
also need to investigate how the model general-
izes for different number of support examples —
e.g., to rule out that the improvement that we saw
in the previous experiment was simply due to the
models with higher M having access to more sup-
port examples during evaluation. A setup that
avoids this confound compares generalization per-
formance of the models trained with different tra-
jectory lengths using the same k. To do so, we
evaluate the SCAN-MCD models using different
values of k = {1,3,5,9,12, 16,24, 49} using the
full test set. For COGS, we take 20% of the test
set and vary k = {1,4,9,24}?. Note that we only
evaluate when k does not exceed the maximum
roll-out length for each given model (i.e. £ < M).
Result. Figure 3 shows the result. For SCAN, all
models improve as it receives more and more sup-
port examples, though it starts to plateau around
nine examples. The result also confirms the conclu-
sion drawn in Exp. 2: For all MCD splits of SCAN,
even when the model is given the same number of

This was done as the test set of COGS is 21 times larger
than SCAN. However, we found this to be representative of
evaluating on the entire test set.
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Figure 3: Exp. 3: Results for models evaluated with
different number of support examples (i.e. k). M is
maximum roll-out length of meta-training trajectories.

support examples, the best model performs better
than the others (i.e. 25 for MCD1 and MCD2 and
50 for MCD3), suggesting that these models did
learn more generalizable in-context learning.

For COGS, however, we do not see such a clear
trend, except for M = 25. This can be attributed to
two factors: memorization and the informativeness
of support examples. Since no shuffling was ap-
plied, the model memorized the examples, though
it was being regularized in doing so. Also, it is
much less likely for the support example to be in-
formative as the dataset is much diverse compared
to SCAN. We assume this is why we only see such
a trend for the model trained with the large value of
M (i.e. M = 25) where the likelihood of informa-
tive examples in the context becomes higher, which
allows the model to retrieve relevant examples.

5.4 Exp. 4: Ability to Learn from New
Distribution

Setup. Finally, we test how general the ability of
our models to in-context learn by testing whether
they can learn from new distribution. For the
SCAN splits, we hold out 49 examples from the test
set to sample our support examples during evalua-
tion. We chose the value 49 as this is the maximum
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Figure 4: Exp. 4: Results for models evaluated with
different number of support examples (i.e. k) sam-
pled from the held-out portion of the fest set. Rela-
tive improvement (RI) is calculated using this formula:
%_d"ld % 100. For all models, £ = 1 leads to a signifi-
cant positive RI (omitted for clarity).

value of k£ for any model. We then evaluate our
models on the rest of the test set by sampling from
the held out test examples to form the context. We
repeat Exp. 3 and report on the relative improve-
ment (RI), 2€2=0ld » 100.

Result. As Figure 4 shows, for all models, there
exists a value of k where the model shows an im-
proved performance. This suggests that the in-
context learning ability is general to a degree, being
able to learn from fest examples. This is especially
true for MCD2 and MCD?3, where the model im-
proves for most (MCD2) and all (MCD 3) values
of k. This is interesting, because these are the more
difficult splits of SCAN, where the fest support
examples can be much more informative. How-
ever, we see that for MCD1 and MCD2 models, the
model catastrophically fails when the maximum
number of test examples are provided in its context.
Upon qualitative inspection, we observe that all
fail to predict the end-of-sequence token properly,
after which the whole sequence prediction counts
as wrong (cf. Section 4.3). This is probably due to
the model having to predict in positions far exceed-
ing the maximum value of position seen during
training, which has been known to be difficult for
neural sequence models including Transformers

(Newman et al., 2020; Csordas et al., 2021).

6 Conclusion

In this paper, we have studied the emergence of
compositional generalization from a meta-learning
regime which forces a sequence-to-sequence model
to learn to ’in-context learn’. We have investi-
gated performance on two difficult datasets: the
MCD splits of SCAN and COGS. Our main re-
sults showed that the meta-trained models show
substantially better compositional generalization
than the baselines in SCAN and closely matching
in COGS. Different from related prior work such
as Conklin et al. (2021), we completely eliminate
the possibility of memorization through label shuf-
fling to better understand the impact of in-context
learning on compositional generalization without
any knowledge about the structure of the datasets.
Furthermore, we sample from the training set for
the model to also in-context learn for inferencing.

Our results provide positive evidence that in-
context learning can induce compositional gener-
alization. We confirm this relationship through
various ablative studies, illustrating the effect of
changing the task distribution and providing dif-
ferent number and type of support examples for
the model to in-context learn. In this way, our
study represents one step towards to a deeper un-
derstanding of in-context learning. This can ar-
guably improve our handling of out-of-distribution
generalization, which is a fundamental challenge
for effective machine learning (Ye et al., 2023), as
well as making our learning models more plausi-
ble on the cognitive side, given the very limited
memorization capabilities of humans (Fodor and
Pylyshyn, 1988).

In future work, we plan to investigate the effect
of using relative positional encoding (Dai et al.,
2019) which are widely applied in recent LLMs
(Chowdhery et al., 2022) as it has been shown
to improve compositional generalization (Ontafién
et al., 2022). Second, we believe that it would be
worthwhile to investigate the effect of equipping
the model with retrieval method to better choose
the support examples in the future.

Ethics Statement

Our work is concerned with foundational questions
of learning generalizable models. It does not in-
troduce new risks, nor does it involve sensitive
applications. We do not use any pre-trained mod-



els, and the used datasets are publicly available.
Computational costs for the required training are
relatively cheap. In sum, we do not believe there to
be substantive ethical concerns regarding our work.
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A Hyperparameters and Computing
Resource

Causal Transformer We use the PyTorch (Paszke
et al., 2019) implementation of RAdam (Liu et al.,
2020a) as our choice of optimizer with the learning
rate of 1 x 10~* and 8 = (0.9, 0.99) for all of our
experiments. For stable training, we apply linear
warm-up for 500 steps for SCAN and 5000 for
COGS. We clip the gradient whenever the norm ex-
ceeds 5. We apply dropout rate of 0.1, ReLU activa-
tion, and batch-size of 5. Low batch size was used
due to the limited available computing resource. As
parameters are initialized according to the default
initialization method of PyTorch along with word
embeddings. This means that the word embeddings
are initialized by drawing from a standard normal.
The embeddings have the same dimension as the
model. We use the variant where the LayerNorm
(Baet al., 2016) is applied before each sub-block
for SCAN and a normal configuration for COGS.
The resulting model size is 25.2 million parame-
ters for both datasets. For the causal baseline (i.e.
M = 1), the use of low batch-size leads to unsta-
ble training, hence we increase the batch-size to
256. Finally, we note that we did not perform any
systematic hyperparameter tuning and most of the
used hyperparameters were initial guesses.

Transformer and Universal Transformer Both
Transformer and Universal Transformer baselines
are a 3-layer encoder-decoder architecture, and it
is adapted from the code release of Csordés et al.
(2021). We use the same learning rate 1 x 10~4 and
B = (0.9,0.99) using Adam optimizer (Kingma
and Ba, 2014) and not the default learning rate
value of PyTorch as we saw the results to be more
stable. The dimension of 128 is used for both
model state and word embeddings with 8 heads
and 256 for feed-forward dimension. We use the
dropout rate of 0.1 and batch size of 256.

Computing Resources We used a single
GeForce RTX 2080 Ti 11G for our SCAN experi-
ments and a single GeForce GTX TITAN X 12G
for our COGS experiments.

B Checkpoint Selection for Evaluation

For SCAN, we follow the checkpoint selection
method of Conklin et al. (2021) and use the avail-
able development set to pick the checkpoint for
testing by training for 20k steps evaluating every
1000 steps. Usually, each model with meta-training
takes around 10k steps to converge. The causal
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baseline, Transformer, and Universal Transformer
all take much less time to converge, hence we only
train for 10k steps.

For COGS, we simply train the models for 150k
steps and take the last checkpoint for evaluation.
This was similarly done in Conklin et al. (2021),
but they use 10% of the test set to tune their hy-
perparameters. There is a validation set associated
with the training set in COGS, but it is a widely
known that tuning on this set does not work well
Csordas et al. (2021) as the model continues to
improve on the test even when the model scores
perfectly on the train and validation.

C Datasets and Preprocessing

SCAN The preprocessing decreases the average
output length of the dataset from 14.3 to 12.2 and
the maximum sequence length from 48 to 17. In the
new format, the overall vocabulary size of SCAN
is 30 with 11 output words, 4 special symbols and
15 input words. Table 2 shows a few examples of
results.

COGS The resulting preprocessing is illustrated
in Table 3. Before preprocessing, the average
length is 51.07 and maximum of 175 which be-
comes 28.01 and 96 respectively after preprocess-
ing. The resulting vocabulary size is 871.
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Command (Input) Before (Output) After (Output)
run twice RUN RUN RUN * 2

jump after run RUN JUMP RUN + JUMP

jump around right RTURN JUMP RTURN JUMP (RTURN JUMP ) * 4
RTURN JUMP RTURN JUMP
jump around right and walk RTURN JUMP RTURN JUMP ( RTURN JUMP ) * 4 + WALK
twice RTURN JUMP RTURN JUMP *2
WALK WALK

Table 2: Example SCAN action sequences (outputs) before and after preprocessing.

Sentence (Input) Before (Output)

After (Output)

A rose was helped by a dog .

Wit ) AND dOg(CL‘G)

rose (1 ) AND help . theme (
z3, 21 ) AND help . agent ( x3,

rose 1 AND help . theme 3 1
AND help . agent 3 6 AND dog
6

Charlie loaned the cake in a
house to the girl . . agent ( x1 , Charlie ) AND

loan . theme (21 , z3 ) AND

loan . recipient ( x1 , xg9 ) AND

cake . nmod . in ( z3, x¢ )
AND house ( zg )

* cake (x3); * girl (xg ) ; loan

* cake 3 ; * girl 9 ; loan . agent

1 Charlie AND loan . theme 1 3

AND loan . recipient 1 9 AND

cake . nmod . in 3 6 AND house
6

Table 3: Example COGS semantic parsing results before and after preprocessing.
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