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Abstract

According to the principle of compositional001
generalization, the meaning of a complex ex-002
pression can be understood as a function of the003
meaning of its parts and of how they are com-004
bined. This principle is crucial for human lan-005
guage processing and also, arguably, for NLP006
models in the face of out-of-distribution data.007
However, many neural network models, includ-008
ing Transformers, have shown to struggle with009
compositional generalization. In this paper, we010
hypothesize that learning to in-context learn011
can provide the right inductive bias to promote012
compositional generalization. We do this by013
implementing a meta-learning approach that014
teaches a causal Transformer to utilize earlier015
examples to generalize to later ones: We con-016
struct a task distribution using different order-017
ings of the training dataset and possibly shuf-018
fling the labels, which corresponds to training019
the model on all possible few-shot learning020
problems attainable from the dataset. At eval-021
uation, we retain the zero-shot prediction set-022
ting by providing randomly sampled training023
examples for the model to in-context learn. Ex-024
periments on the SCAN and COGS datasets025
show that our method improves compositional026
generalization, indicating the usefulness of in-027
context learning problems as inductive bias for028
generalization.029

1 Introduction030

As humans, we have the ability to combine atomic031

parts in reoccurring structures in novel manners032

(Fodor and Pylyshyn, 1988). This ability, known033

as compositional generalization, is an important034

aspect of human language processing, affording035

us with an "infinite use of finite means" (Chom-036

sky, 1965). For example, when we understand the037

meaning of a predicate dax from sentences such as038

“I dax” and “dax twice”, we can also understand039

novel sentences as “dax voluntarily” or “must dax”.040

In contrast, many modern deep neural architec-041

tures struggle with compositional generalization042

(Baroni, 2020; Lake and Baroni, 2017; Hupkes 043

et al., 2020; Kim and Linzen, 2020; Keysers et al., 044

2020). While they excel at making predictions 045

for test sets similarly distributed to the train (i.e., 046

in-distribution), their performance significantly de- 047

creases when generalizing to test distributions that 048

are differently structured (i.e. out-of-distribution) 049

even if they contain the same set of atoms. 050

We believe that standard models lack an induc- 051

tive bias towards acquiring compositional represen- 052

tation, which arises from the independent parallel 053

processing of examples in mini-batches. In most 054

mini-batches, the models do not have explicit ac- 055

cess to a sufficient number of instances of the atoms 056

to make it worthwhile to learn compositionally gen- 057

eralizable representations for the atoms. Contrast 058

this with symbolic accounts of compositional gen- 059

eralization, e.g., in the shape of case-based rea- 060

soning (Leake, 1996), where prediction can always 061

rely on the availability of a sufficient number of 062

relevant examples in memory. Along these lines, 063

the ability to understand “dax thrice” from "dax 064

twice" can be thought of as a generalization of rel- 065

evant past uses of "thrice" in memory, such as “eat 066

thrice”, combined with the use of "dax" in "dax 067

twice". 068

Our hypothesis is that compositional general- 069

ization can be induced in models by forcing them 070

to in-context learn (Brown et al., 2020; Chowdh- 071

ery et al., 2022). In-context learning (ICL) refers 072

to the ability to generalize to new examples con- 073

ditioned on a few demonstrations of input-output 074

mappings provided in the model’s context (or mem- 075

ory) without parameter updates. Hence, learning 076

to in-context learn forces the model to compute in 077

the forward pass how the past examples provided 078

the context can be utilized in a novel manner for 079

the later examples. We observe that it is the same 080

mechanism that supports the learning of composi- 081

tionally generalizable input-output mappings. 082

The intuition for our hypothesis is aligned with 083
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theoretical studies that explain in-context learning084

(Ortega et al., 2019; Xie et al., 2022) as an implicit085

Bayesian inference, where the model learns to ap-086

proximate the latent parameters. However, it is yet087

unclear empirically how compositional generaliza-088

tion and in-context learning are related. On one089

hand, the reported improvement in compositional090

generalization for the large Transformer-based lan-091

guage models (LLMs) (Zhou et al., 2023; Hosseini092

et al., 2022) with emergent in-context learning abil-093

ity seem to point to an underlying relationship. On094

the other, the uncontrolled training data in these095

studies and uncertainty regarding how much of the096

inductive biases implicit in the prompting methods097

contribute to the improvement clouds our under-098

standing. Indeed, Hosseini et al. (2022) reported099

that only some in-context learning LLMs can com-100

positionally generalize and only as they scale up.101

As implementation, we propose a novel meta-102

learning (Schmidhuber et al., 1996; Bengio et al.,103

1991; Hochreiter et al., 2001; Duan et al., 2017; Or-104

tega et al., 2019) regime to explicitly incentivize in-105

context learning for a causal Transformer (Vaswani106

et al., 2017; Radford et al., 2019) with the language107

modelling objective, training from scratch. Each108

task of our meta-task distribution is one possible109

linear ordering of input-output pairs of the training110

dataset formed into a single sequence via concate-111

nation. This trains the model on all possible few-112

shot in-context learning problems attainable from113

the dataset. In order to discourage the model from114

relying on memorization, we also shuffle the labels.115

At prediction time, we condition the inference on116

the test examples on randomly sampled training117

mappings, maintaining the zero-shot prediction set-118

ting. We evaluate our approach on two widely used119

datasets targeting specifically compositional gener-120

alization, namely SCAN (Lake and Baroni, 2017)121

and COGS (Kim and Linzen, 2020).122

Our main contributions are as follows:123

1. We empirically study the relationship between124

in-context learning and compositional general-125

ization through a novel meta-learning training126

regime for sequence to sequence datasets that127

incentivizes in-context learning and a corre-128

sponding evaluation regime that maintains a129

zero-shot prediction setting.130

2. We show that our Transformer trained through131

meta-in-context learning shows a significant132

improvement in performance on composi-133

tional generalization across the datasets com-134

pared to the baseline without meta-learning. 135

3. We demonstrate how exactly the ability to in- 136

context learn is related to compositional gen- 137

eralization through ablations. We show that 1) 138

the performance of the model increases when 139

it is trained on more diverse range of few- 140

shot in-context learning problems 2) the effect 141

of the providing more demonstrations leads 142

to improved compositional generalization 3) 143

they are able to learn from new distributions. 144

The paper is organized as follows. §2 introduces 145

important background concepts and reviews no- 146

table related works. §3 presents our meta-learning 147

regime in detail. §4 provides information on ex- 148

perimental setup, followed by the results in §5. §6 149

concludes the paper along with future directions. 150

2 Related Works 151

2.1 Compositional Generalization 152

Difficulties of neural networks to compositionally 153

generalize have been identified by many studies.1. 154

Notable text-to-text benchmarks include SCAN 155

(Lake and Baroni, 2017), PCFG (Hupkes et al., 156

2020), COGS (Kim and Linzen, 2020), and CFQ 157

(Keysers et al., 2020). These datasets are split into 158

train and test systematically that requires a compo- 159

sitional solution to be successful. 160

Many studies have proposed different inductive 161

biases to promote compositionality. They include 162

new deep learning architectures structurally con- 163

straining how the inputs are processed and repre- 164

sented (Li et al., 2019; Russin et al., 2019; Gor- 165

don et al., 2020; Bergen et al., 2021), providing 166

additional supervisory signals (Jiang and Bansal, 167

2021), data augmentation (Andreas, 2020; Guo 168

et al., 2020b; Akyürek et al., 2021; Qiu et al., 2022), 169

and hybrid symbolic reasoning approaches (Nye 170

et al., 2020; Liu et al., 2020b; Guo et al., 2020a). 171

These approaches have shown to improve composi- 172

tional generalization. However, they often require 173

prior knowledge of the dataset, and their scalability 174

to bigger and more general datasets is uncertain. 175

Following these concerns, some studies have 176

constrained their investigations to the most popular 177

neural sequences model such as the Transformer 178

(Ontanon et al., 2022; Csordás et al., 2021), find- 179

ing that their compositional generalization capacity 180

can be improved with the available variants (e.g. 181

relative positional encoding (Dai et al., 2019) or 182

tying the layers (Dehghani et al., 2019). Patel et al. 183

1We focus on studies on unimodal language data.
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(2022) showed that popular architectures including184

the Transformer can be improved by increasing di-185

versity in the data distribution. Finally, Herzig et al.186

(2021) showed that better formatting of tasks using187

bespoke representation can lead to improvement.188

2.2 Meta-learning189

Meta-learning (Bengio et al., 1991; Schmidhuber190

et al., 1996) aims at enabling machine learning191

models to learn how to learn by exposing them192

to a distribution of tasks where one can improve193

from past experience. The tasks are selected to be194

similarly structured but differ in details such that195

it is profitable for the model to find a generaliz-196

able solution rather than memorize examples. Our197

work follows the line of work known as memory-198

based meta-learning or meta-in-context learning199

(Hochreiter et al., 2001; Santoro et al., 2016; Duan200

et al., 2017; Wang et al., 2017; Ortega et al., 2019),201

which incentivizes the model to learn to in-context202

learn by training on a task distribution of sequences203

of input-output mappings.204

Meta-learning was applied to various applica-205

tion tasks in language processing such as cross-206

lingual transfer (Gu et al., 2018), question answer-207

ing (Nooralahzadeh et al., 2020), and domain adap-208

tion (Qian and Yu, 2019). However, it has rarely209

found application in semantic processing. The chal-210

lenge arises from the difficulty of not knowing be-211

forehand the relevance of specific examples, which212

makes it difficult to construct the task distribution213

with the right inductive bias for compositional gen-214

eralization. Lake (2019) evaded this problem by215

using the ground truth grammar of the data distri-216

bution. This allowed them to permute only the217

input-output mappings of the primitives, which218

was shown to improve compositional generaliza-219

tion. Conklin et al. (2021) used MAML (Finn et al.,220

2016) as an auxiliary loss for supervised learning221

which alleviated the problem of selecting support222

examples, but still relied on ground truth structural223

knowledge. We discuss how we overcome these224

challenges in the next section.225

2.3 In-context Learning226

There is a long line of work attempting to under-227

stand the property of in-context learning, espe-228

cially related to their ability to generalize to out-229

of-distribution. A number of studies has shown230

that in-context learning in LLMs can be utilized for231

compositional generalization using specific prompt-232

ing methods (Zhou et al., 2023; Wei et al., 2022; Fu233

et al., 2023), especially when the model is scaled 234

up (Hosseini et al., 2022). As explained above, the 235

in-context learning ability in these models was also 236

analyzed theoretically, and the driving force was 237

found to be latent text properties that heavily affect 238

token distributions (Xie et al., 2022). 239

Our work is closest to previous studies that train 240

Transformers from scratch using meta-learning in- 241

stead of looking at LLMs. Chan et al. (2022) 242

showed that the emergence of in-context learning 243

to depend on the informativeness of the contexts. 244

Garg et al. (2022) showed that Transformers are 245

able to in-context learn simple functions and gen- 246

eralize to out-of-distribution samples, and Kirsch 247

et al. (2022) extended for learning to in-context 248

learn arbitrary image-label mappings. 249

3 Methods 250

We now introduce a meta-learning regime that can 251

be generally applied to a sequence to sequence 252

dataset consisting of input-output sequence pairs. 253

The main goal is how to construct a meta task- 254

distribution with the right inductive bias for compo- 255

sitional generalization. The key idea is the induc- 256

tive bias created by the online learning of the entire 257

dataset: The model observes each example in the 258

dataset only once and sequentially one after the 259

other. This means that the model cannot memorize 260

when learning on such a linear ordering of exam- 261

ples (i.e., trajectory) and needs to successfully store 262

and represent the past examples for generalization 263

for the future examples. 264

Since there is no inherent order between the ex- 265

amples in a sequence to sequence dataset, a differ- 266

ent linear ordering of the dataset poses a different 267

generalization problem for the model. However, 268

no matter which ordering we choose, the structure 269

behind each trajectory remains invariant as it is gov- 270

erned by the same latent parameters. Hence, when 271

meta-learning on such a distribution, the model has 272

a chance of approximating the underlying structure 273

of the dataset. Note that this way of constructing 274

the task distribution do not require any prior knowl- 275

edge of the dataset, in contrast to earlier approaches 276

(Lake and Baroni, 2017; Conklin et al., 2021). 277

3.1 Meta-training 278

Given a sequence to sequence dataset D = 279

{(x(i),y(i))}Ni=1 with a vocabulary V, we form the 280

task distribution P (τ) for meta-learning, where 281

each task τ is one possible linear ordering of 282
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Causal Transformer (tθ)

x1 y1 ; x2 y2 ;          …      ; xM-1 yM-1 ; xM yM

ø ø ; ø tθ(y2) ;     …  ; ø tθ(yM-1) ; ø tθ(yM)

Meta-Train

Causal Transformer (tθ)

x1 y1 ;  … ; xk-1 yk-1 ; xk yk 

Inference

xquery

tθ(xquery)

(x1,y1)
(x2,y2)
(x3,y3)
…

(xN-2,yN-2)
(xN-1,yN-1)
(xN,yN)

Random 
Ordering 

+ 
Shuffling of 

Labels
Random 
Ordering

Dataset

Training Objective: 
next-token prediction

weights not frozen weights frozen

Figure 1: Illustration of our meta-in-context learning framework. (Left) We build our meta-task distribution by
sampling a random linear ordering of a sequence to sequence dataset and concatenating the input-output mappings
(i.e. (xi, yi)). We possibly shuffle the labels to eliminate memorization and keep only M examples. Then a causal
Transformer (tθ) is trained with these concatenated results for next-token prediction, only predicting for the outputs.
ϕ refers to the pad-token. (Right) At inference, we freeze the weights and randomly sample k < M train examples
to condition the prediction of a test query example xquery.

the dataset (x(1),y(1)), . . . (x(N),y(N)). We feed283

this to the model as a concatenation τ =284

[x(1);y(1); . . . ;x(N);y(N)] using two delimiter to-285

kens, one to distinguish the inputs from the outputs286

and another to separate the sequence elements. We287

assume a uniform distribution for P (τ).288

However, one limitation of this approach is the289

possibility of memorization as each example oc-290

curs only once within each trajectory, but many291

times across different trajectories. Hence, a model292

might learn to ignore the context and memorize293

the examples, which is especially true for small294

datasets. To counteract this danger, we randomly295

shuffle the labels of the vocabulary V. For ex-296

ample, given a dataset {(a b,A B), (a d,A D)},297

we can create an alternate version of the dataset298

{(a b,B A), (a d,B D)} by the shuffling.299

Formally, we train the model Mθ given a possi-300

ble linear ordering sequence τ to predict the next301

token f(τ [i]) = τ [i+ 1] if the i-th token belongs302

to the output and a pad token f(τ [i]) = ϕ if it303

belongs to the input or the first output of the se-304

quence. Hence, the model is trained to minimize305

the expected loss over all possible orderings of the306

dataset, possibly extended with label shuffling:307

min
θ

Eτ∼P (τ)[

|τ |∑
i=1

1

|τ |
ℓ(Mθ(τ [i]), f(τ [i]))] (1)308

where ℓ(·, ·) is the cross-entropy loss function. Fig-309

ure 1 (left half) illustrates the training procedure.310

This objective can be interpreted as training the311

model on all possible few-shot learning problems312

attainable from the dataset. Hence, the strength of313

the inductive bias for compositional generalization314

is limited to the kinds of generalization problem315

inherent in each dataset. A final practical problem 316

is that most datasets do not fit entirely into memory. 317

Hence, we fix a certain roll-out length M < N to 318

limit each sequence τ to consist of M input-output 319

pairs. Note that as we make M smaller, the number 320

of distinct tasks in the task distribution decreases. 321

We investigate the choice of M in Exp. 2 below. 322

Underlying Neural Network. This meta- 323

training can be applied to any neural network 324

model with memory. However, the use of an 325

autoregressive model is very advantageous: In 326

such a model, a single trajectory consisting of 327

N concatenated input-output mappings can be 328

provided with a causal masking to encompass k−1 329

few-shot learning problems. In a bidirectional 330

model, in contrast, one needs to provide k − 1 331

different problems separately to the model. Hence, 332

we adopt the causal Transformer (Vaswani et al., 333

2017; Radford et al., 2019) in our work. 334

3.2 Inference 335

Compositional generalization datasets are designed 336

to be a zero-shot generalization task. This means 337

that the model is required to generalize to the test 338

examples only by using the train examples. Since 339

we do not assume any prior knowledge to deter- 340

mine the possible relevance between examples, we 341

randomly sample a training trajectory of length 342

k < M to condition the inference for each test 343

input xq. Note that though we cannot guarantee 344

the relevance of all the samples, the model can still 345

choose among these samples through the attention 346

mechanism, analogously to case-based reasoning 347

(Leake, 1996). See Figure 1 (right half) for the il- 348

lustration of our inference method. We investigate 349
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the implications of the choice of k in Exp. 3 below.350

4 Experimental Setup351

4.1 Datasets352

SCAN (Lake and Baroni, 2017) consists of nat-353

ural language commands that needs to be mapped354

to a sequence of actions (e.g. jump twice → JUMP355

JUMP). The commands were generated using a356

phrase structure grammar without recursion and357

mapped to the actions using semantic interpretation358

rules. Among various compositional generalization359

splits of SCAN, we use the Maximum Compound360

Divergence (MCD) splits introduced by Keysers361

et al. (2020). These splits capture the notion of362

compositional generalization by maximizing the363

divergence between the compounds while main-364

taining the closeness of the atom frequency distri-365

bution. There are three SCAN-MCD splits with366

increasing difficulty (i.e. MCD1 being the easiest),367

each with 8365 train and 1045 test examples.368

COGS (Kim and Linzen, 2020) is a semantic369

parsing dataset with diverse natural language sen-370

tences. The compositional generalization test set371

was constructed based on different kinds of lin-372

guistic generalizations that humans are able to373

make (e.g. generalizing subject role → object role).374

The training set consists of 24155 examples while375

21000 examples make up the test.376

Preprocessing. For both datasets, we preprocess377

the output sequences to reduce their lengths in or-378

der to be able to fit longer trajectories (i.e. higher379

M ). For SCAN, we represent the action sequences380

in Python syntax as it was done in (Zhou et al.,381

2023) for evaluating LLMs. For example, "LOOK382

LOOK" is represented as LOOK * 2. For COGS,383

we simply omit the brackets and represent the vari-384

ables xn as n. Both are intermediate representa-385

tions that can be mapped fully back to the original386

form. See Appendix C for more details.387

4.2 Model Configuration and Training Details388

We use an 8-layer 8-head causal Transformer with389

model dimension of 512 and feedforward dimen-390

sion of 2048 with absolute sinusoidal positional391

encoding (Vaswani et al., 2017), using the basic392

implementation available in PyTorch (Paszke et al.,393

2019). We do not use any pre-trained weights, and394

initialize the model and the word embeddings from395

scratch. Appendices A and B provide details on396

hyperparameters and checkpoint selection.397

For SCAN, we apply shuffling of output labels 398

to completely eliminate the effect of memorization, 399

as its relatively small vocabulary (|V| = 30) af- 400

fords us the full coverage of all the words with a 401

few samples. Since COGS has a much bigger vo- 402

cabulary (|V| = 871), we do not apply shuffling 403

here. 404

4.3 Evaluation 405

For evaluation, we report on sequence-level accu- 406

racy, where a sequence is only deemed correct if 407

it is predicted entirely correctly. For each accu- 408

racy result, we also report the number of randomly 409

sampled training examples k used for testing. If 410

not mentioned, we set k to be one less than the 411

maximum roll-out length M . All results report av- 412

erages over five training runs for SCAN and three 413

for COGS (for computational reasons). 414

4.4 Baselines and Points of Comparison 415

Herzig et al. (2021) showed that intermediate rep- 416

resentations can lead to an improved compositional 417

generalization. This especially applies to SCAN. 418

Hence, we additionally train a 3-layer encoder- 419

decoder Transformer (Vaswani et al., 2017) and 420

Universal Transformer (Dehghani et al., 2019) with 421

absolute positional encoding for SCAN. On the 422

other hand, the impact of preprocessing on COGS 423

is minimal and is different from the format found 424

to be useful, which converted the task to sequence 425

tagging (Ontañón et al., 2022). Hence, we use 426

Transformer and Universal-Transformer results re- 427

ported in literature for COGS. 428

For both datasets, we also report on a causal 429

Transformer baseline trained using standard su- 430

pervised learning, which is equivalent to training 431

with the roll-out length of 1 (i.e. M = 1, k = 0). 432

Finally, we compare our approach with the prior 433

meta-learning work: the MAML-augmented Trans- 434

former with Tree-based search for COGS and 435

string-based for SCAN (Conklin et al., 2021). See 436

Appendices A and B for all further details. 437

5 Experiments and Results 438

We now present the results of four experiments 439

to evaluate our approach and to better understand 440

the relationship between in-context learning and 441

compositional generalization: (1) We compare the 442

performance of our models with the baselines using 443

k = M − 1 for evaluation. (2) We test the effect 444

of training the model with longer trajectories (i.e. 445
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Method

B
idir

IntR
ep

SCAN COGS

MCD1 MCD2 MCD3

Transformer (lit.) + - 0.4± 0.4 [1] 1.8± 0.4 [1] 0.5± 0.1 [1] 35 ± 6 [2]

Transformer (ours) + + 41.7 ± 4.7 20.3 ± 5.6 17.1 ± 6.1 80 ± 0.0 [3]

Universal Transformer (ours) + + 36.4 ± 9.0 34.1 ± 6.6 25.5 ± 10.4 78 ± 0.0 [3]

Transformer + MAML (lit.) + - 2.6 ± 0.6 [4] 5.6 ± 1.6 [4] 6.7 ± 1.8 [4] 66.7 ± 4.4 [4]

Causal Transformer (ours) - + 21.8 ± 3.7 25.6 ± 2.6 19.7 ± 2.1 51.9 ± 4.3

Causal Transformer + meta-ICL - + 71.2 ± 7.3 74.8 ± 9.7 38.7 ± 8.3 75.7 ± 1.9

Table 1: Exp. 1: Mean sequence-level accuracies and standard deviations across runs. For our meta-ICL causal
Transformer, we use M = 25, k = M − 1. "Bidir" stands for bidirectional (vs. causal). "IntRep" indicates the use
of the optimized intermediate representation for SCAN. Best model on each dataset boldfaced. References: [1]
Furrer et al. (2021), [2] Kim and Linzen (2020), [3] Csordás et al. (2021), [4] Conklin et al. (2021).

bigger M ) which results in training with a bigger446

and more diverse task distribution. (3) We test the447

effect of varying the number of support training ex-448

amples used during evaluation (i.e. varying k). (4)449

We test the ability of the resulting models to learn450

from a new distribution by providing the model451

with test examples.452

5.1 Exp. 1: Main results453

Table 1 summarizes the main results of a causal454

Transformer trained from scratch using our meta-455

training method, along with the baselines.456

We first make the observation that our inter-457

mediate representation for SCAN leads to an im-458

provement in compositional generalization (com-459

pare rows 1 and 2). Although the improvement460

is substantial, the datasets still remain difficult for461

the models and the relative difference of difficulty462

between the MCD splits are retained (see the de-463

creasing performance for SCAN in columns 3-5).464

We also note that our causal Transformer baseline465

(row 5) performs worse than the encoder-decoder466

counterparts, probably due to its unidirectionality.467

For all three MCD splits, our causal Transformer468

trained with meta-in-context learning (row 6) sub-469

stantially outperforms all other approaches. For470

COGS, it is not able to beat the Transformer model471

of Csordás et al. (2021), but it is able to outperform472

others. This result provides a positive evidence473

for our hypothesis that the in-context learning abil-474

ity of Transformers encompasses compositional475

generalization. This is especially interesting for476

COGS as no shuffling of labels was used, hence477

the improvement gain compared to its causal base-478

line came simply from how the data was being479

presented to the model. We believe that training480

on linear orderings of examples resulted in a form 481

of regularization, where the pressure to learn repre- 482

sentations not only for predictions but also for their 483

use in the future contributed to the improvement. 484

5.2 Exp. 2: Training on Longer Trajectories 485

Setup. Next, we investigate how the performance 486

of the model changes when training on trajecto- 487

ries of different lengths. This is interesting because 488

constructing the task distribution with longer trajec- 489

tories affords us with more unique few-shot learn- 490

ing problems, which might lead to better composi- 491

tional generalization. However, longer trajectories 492

could also lead to a higher chance of overfitting, 493

as the model needs to extrapolate less when given 494

more support samples. Hence, we train three dif- 495

ferent values of M = {10, 25, 50} for SCAN and 496

{5, 10, 25} for COGS, evaluating with k = M − 1. 497

Result. The results in Figure 2 show an improve- 498

ment for MCD1 and MCD2 of SCAN from increas- 499

ing the trajectory length from 10 to 25, but we 500

see signs of overfitting as we increase further. For 501

MCD3, we see a monotonic improvement as we 502

increase the trajectory length. For COGS, we see 503

a similar trend with increasing performance as the 504

length of the trajectories are increased. 505

This confirms our hypothesis that training on big- 506

ger and more diverse meta task distribution can lead 507

to an improvement. The gain diminishes after a cer- 508

tain point because the task becomes easier for the 509

model. Where this turning point occurs is depen- 510

dent on the available few-shot learning problems 511

implicit in each dataset, but this could be tuned us- 512

ing a standard hyperparameter search. Thus, the in- 513

context learning ability of Transformers is sensitive 514

to the kinds of few-shot generalization problems 515
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Figure 2: Exp. 2: Results for models trained on different
lengths of trajectories (i.e. M ), with k = M−1. M = 1
is equivalent to the causal Transformer baseline.

that it is exposed to during training.516

5.3 Exp. 3: Fewer vs. More Support Examples517

Setup. So far, we have only used k = M − 1518

number of support examples for evaluation. We519

also need to investigate how the model general-520

izes for different number of support examples –521

e.g., to rule out that the improvement that we saw522

in the previous experiment was simply due to the523

models with higher M having access to more sup-524

port examples during evaluation. A setup that525

avoids this confound compares generalization per-526

formance of the models trained with different tra-527

jectory lengths using the same k. To do so, we528

evaluate the SCAN-MCD models using different529

values of k = {1, 3, 5, 9, 12, 16, 24, 49} using the530

full test set. For COGS, we take 20% of the test531

set and vary k = {1, 4, 9, 24}2. Note that we only532

evaluate when k does not exceed the maximum533

roll-out length for each given model (i.e. k < M ).534

Result. Figure 3 shows the result. For SCAN, all535

models improve as it receives more and more sup-536

port examples, though it starts to plateau around537

nine examples. The result also confirms the conclu-538

sion drawn in Exp. 2: For all MCD splits of SCAN,539

even when the model is given the same number of540

2This was done as the test set of COGS is 21 times larger
than SCAN. However, we found this to be representative of
evaluating on the entire test set.

Figure 3: Exp. 3: Results for models evaluated with
different number of support examples (i.e. k). M is
maximum roll-out length of meta-training trajectories.

support examples, the best model performs better 541

than the others (i.e. 25 for MCD1 and MCD2 and 542

50 for MCD3), suggesting that these models did 543

learn more generalizable in-context learning. 544

For COGS, however, we do not see such a clear 545

trend, except for M = 25. This can be attributed to 546

two factors: memorization and the informativeness 547

of support examples. Since no shuffling was ap- 548

plied, the model memorized the examples, though 549

it was being regularized in doing so. Also, it is 550

much less likely for the support example to be in- 551

formative as the dataset is much diverse compared 552

to SCAN. We assume this is why we only see such 553

a trend for the model trained with the large value of 554

M (i.e. M = 25) where the likelihood of informa- 555

tive examples in the context becomes higher, which 556

allows the model to retrieve relevant examples. 557

5.4 Exp. 4: Ability to Learn from New 558

Distribution 559

Setup. Finally, we test how general the ability of 560

our models to in-context learn by testing whether 561

they can learn from new distribution. For the 562

SCAN splits, we hold out 49 examples from the test 563

set to sample our support examples during evalua- 564

tion. We chose the value 49 as this is the maximum 565

7



Figure 4: Exp. 4: Results for models evaluated with
different number of support examples (i.e. k) sam-
pled from the held-out portion of the test set. Rela-
tive improvement (RI) is calculated using this formula:
new−old

old × 100. For all models, k = 1 leads to a signifi-
cant positive RI (omitted for clarity).

value of k for any model. We then evaluate our566

models on the rest of the test set by sampling from567

the held out test examples to form the context. We568

repeat Exp. 3 and report on the relative improve-569

ment (RI), new−old
old × 100.570

Result. As Figure 4 shows, for all models, there571

exists a value of k where the model shows an im-572

proved performance. This suggests that the in-573

context learning ability is general to a degree, being574

able to learn from test examples. This is especially575

true for MCD2 and MCD3, where the model im-576

proves for most (MCD2) and all (MCD 3) values577

of k. This is interesting, because these are the more578

difficult splits of SCAN, where the test support579

examples can be much more informative. How-580

ever, we see that for MCD1 and MCD2 models, the581

model catastrophically fails when the maximum582

number of test examples are provided in its context.583

Upon qualitative inspection, we observe that all584

fail to predict the end-of-sequence token properly,585

after which the whole sequence prediction counts586

as wrong (cf. Section 4.3). This is probably due to587

the model having to predict in positions far exceed-588

ing the maximum value of position seen during589

training, which has been known to be difficult for590

neural sequence models including Transformers591

(Newman et al., 2020; Csordás et al., 2021). 592

6 Conclusion 593

In this paper, we have studied the emergence of 594

compositional generalization from a meta-learning 595

regime which forces a sequence-to-sequence model 596

to learn to ’in-context learn’. We have investi- 597

gated performance on two difficult datasets: the 598

MCD splits of SCAN and COGS. Our main re- 599

sults showed that the meta-trained models show 600

substantially better compositional generalization 601

than the baselines in SCAN and closely matching 602

in COGS. Different from related prior work such 603

as Conklin et al. (2021), we completely eliminate 604

the possibility of memorization through label shuf- 605

fling to better understand the impact of in-context 606

learning on compositional generalization without 607

any knowledge about the structure of the datasets. 608

Furthermore, we sample from the training set for 609

the model to also in-context learn for inferencing. 610

Our results provide positive evidence that in- 611

context learning can induce compositional gener- 612

alization. We confirm this relationship through 613

various ablative studies, illustrating the effect of 614

changing the task distribution and providing dif- 615

ferent number and type of support examples for 616

the model to in-context learn. In this way, our 617

study represents one step towards to a deeper un- 618

derstanding of in-context learning. This can ar- 619

guably improve our handling of out-of-distribution 620

generalization, which is a fundamental challenge 621

for effective machine learning (Ye et al., 2023), as 622

well as making our learning models more plausi- 623

ble on the cognitive side, given the very limited 624

memorization capabilities of humans (Fodor and 625

Pylyshyn, 1988). 626

In future work, we plan to investigate the effect 627

of using relative positional encoding (Dai et al., 628

2019) which are widely applied in recent LLMs 629

(Chowdhery et al., 2022) as it has been shown 630

to improve compositional generalization (Ontañón 631

et al., 2022). Second, we believe that it would be 632

worthwhile to investigate the effect of equipping 633

the model with retrieval method to better choose 634

the support examples in the future. 635

Ethics Statement 636

Our work is concerned with foundational questions 637

of learning generalizable models. It does not in- 638

troduce new risks, nor does it involve sensitive 639

applications. We do not use any pre-trained mod- 640

8



els, and the used datasets are publicly available.641

Computational costs for the required training are642

relatively cheap. In sum, we do not believe there to643

be substantive ethical concerns regarding our work.644
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Chi. 2023. Least-to-most prompting enables complex977
reasoning in large language models. In Proceedings978
of ICLR.979

A Hyperparameters and Computing 980

Resource 981

Causal Transformer We use the PyTorch (Paszke 982

et al., 2019) implementation of RAdam (Liu et al., 983

2020a) as our choice of optimizer with the learning 984

rate of 1× 10−4 and β = (0.9, 0.99) for all of our 985

experiments. For stable training, we apply linear 986

warm-up for 500 steps for SCAN and 5000 for 987

COGS. We clip the gradient whenever the norm ex- 988

ceeds 5. We apply dropout rate of 0.1, ReLU activa- 989

tion, and batch-size of 5. Low batch size was used 990

due to the limited available computing resource. As 991

parameters are initialized according to the default 992

initialization method of PyTorch along with word 993

embeddings. This means that the word embeddings 994

are initialized by drawing from a standard normal. 995

The embeddings have the same dimension as the 996

model. We use the variant where the LayerNorm 997

(Ba et al., 2016) is applied before each sub-block 998

for SCAN and a normal configuration for COGS. 999

The resulting model size is 25.2 million parame- 1000

ters for both datasets. For the causal baseline (i.e. 1001

M = 1), the use of low batch-size leads to unsta- 1002

ble training, hence we increase the batch-size to 1003

256. Finally, we note that we did not perform any 1004

systematic hyperparameter tuning and most of the 1005

used hyperparameters were initial guesses. 1006

Transformer and Universal Transformer Both 1007

Transformer and Universal Transformer baselines 1008

are a 3-layer encoder-decoder architecture, and it 1009

is adapted from the code release of Csordás et al. 1010

(2021). We use the same learning rate 1×10−4 and 1011

β = (0.9, 0.99) using Adam optimizer (Kingma 1012

and Ba, 2014) and not the default learning rate 1013

value of PyTorch as we saw the results to be more 1014

stable. The dimension of 128 is used for both 1015

model state and word embeddings with 8 heads 1016

and 256 for feed-forward dimension. We use the 1017

dropout rate of 0.1 and batch size of 256. 1018

Computing Resources We used a single 1019

GeForce RTX 2080 Ti 11G for our SCAN experi- 1020

ments and a single GeForce GTX TITAN X 12G 1021

for our COGS experiments. 1022

B Checkpoint Selection for Evaluation 1023

For SCAN, we follow the checkpoint selection 1024

method of Conklin et al. (2021) and use the avail- 1025

able development set to pick the checkpoint for 1026

testing by training for 20k steps evaluating every 1027

1000 steps. Usually, each model with meta-training 1028

takes around 10k steps to converge. The causal 1029
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baseline, Transformer, and Universal Transformer1030

all take much less time to converge, hence we only1031

train for 10k steps.1032

For COGS, we simply train the models for 150k1033

steps and take the last checkpoint for evaluation.1034

This was similarly done in Conklin et al. (2021),1035

but they use 10% of the test set to tune their hy-1036

perparameters. There is a validation set associated1037

with the training set in COGS, but it is a widely1038

known that tuning on this set does not work well1039

Csordás et al. (2021) as the model continues to1040

improve on the test even when the model scores1041

perfectly on the train and validation.1042

C Datasets and Preprocessing1043

SCAN The preprocessing decreases the average1044

output length of the dataset from 14.3 to 12.2 and1045

the maximum sequence length from 48 to 17. In the1046

new format, the overall vocabulary size of SCAN1047

is 30 with 11 output words, 4 special symbols and1048

15 input words. Table 2 shows a few examples of1049

results.1050

COGS The resulting preprocessing is illustrated1051

in Table 3. Before preprocessing, the average1052

length is 51.07 and maximum of 175 which be-1053

comes 28.01 and 96 respectively after preprocess-1054

ing. The resulting vocabulary size is 871.1055
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Command (Input) Before (Output) After (Output)
run twice RUN RUN RUN * 2

jump after run RUN JUMP RUN + JUMP
jump around right RTURN JUMP RTURN JUMP

RTURN JUMP RTURN JUMP
( RTURN JUMP ) * 4

jump around right and walk
twice

RTURN JUMP RTURN JUMP
RTURN JUMP RTURN JUMP

WALK WALK

( RTURN JUMP ) * 4 + WALK
* 2

Table 2: Example SCAN action sequences (outputs) before and after preprocessing.

Sentence (Input) Before (Output) After (Output)
A rose was helped by a dog . rose ( x1 ) AND help . theme (

x3 , x1 ) AND help . agent ( x3 ,
x6 ) AND dog ( x6 )

rose 1 AND help . theme 3 1
AND help . agent 3 6 AND dog

6
Charlie loaned the cake in a

house to the girl .
* cake ( x3 ) ; * girl ( x9 ) ; loan

. agent ( x1 , Charlie ) AND
loan . theme ( x1 , x3 ) AND

loan . recipient ( x1 , x9 ) AND
cake . nmod . in ( x3 , x6 )

AND house ( x6 )

* cake 3 ; * girl 9 ; loan . agent
1 Charlie AND loan . theme 1 3
AND loan . recipient 1 9 AND
cake . nmod . in 3 6 AND house

6

Table 3: Example COGS semantic parsing results before and after preprocessing.
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