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Abstract

In the era of noisy intermediate-scale quan-
tum (NISQ) computing, Quantum Neural Net-
works (QNNs) have emerged as a promising
approach for various applications, yet their
training is often hindered by barren plateaus
(BPs), where gradient variance vanishes expo-
nentially as the model size increases. To ad-
dress this challenge, we propose a new Large
Language Model (LLM)-driven search frame-
work, AdaInit, that iteratively searches for opti-
mal initial parameters of QNNs to maximize gra-
dient variance and therefore mitigate BPs. Un-
like conventional one-time initialization meth-
ods, AdaInit dynamically refines QNN’s initial-
ization using LLMs with adaptive prompting.
Theoretical analysis of the Expected Improve-
ment (EI) proves a supremum for the search,
ensuring this process can eventually identify
the optimal initial parameter of the QNN. Ex-
tensive experiments across four public datasets
demonstrate that AdaInit significantly enhances
QNN’s trainability compared to classic initial-
ization methods, validating its effectiveness in
mitigating BPs.

1 Introduction

In recent years, there have been significant advance-
ments in quantum computing, particularly with the
advent of noisy intermediate-scale quantum (NISQ)
devices (Preskill, 2018). Within this research land-
scape, quantum neural networks (QNNs), which
integrate quantum circuits with classical deep-
learning layers, have been widely applied in var-
ious domains, such as quantum machine learn-
ing (Zhang et al., 2024), quantum physics (Chen
et al., 2017, 2022), and quantum hardware archi-
tecture (Zhan and Gupta, 2023; Zhan et al., 2023).
However, recent studies reveal that the performance
of QNNs may be hindered due to gradient issues,
such as barren plateaus (BPs) (McClean et al.,
2018), referring to a kind of gradient issue that
the initialization of QNNs might be trapped on a

flattened landscape at the beginning of training.
McClean et al. (2018) first systematically inves-
tigate BPs and affirm that the gradient variance
will exponentially decrease as the model size in-
creases when the QNNs satisfy the assumption of
the 2-design Haar distribution. Under this circum-
stance, most gradient-based approaches would fail.
To better illustrate the BPs’ mitigation process, we
present an example in Fig. 1.

Figure 1: Example of BPs’ mitigation process. A flat-
tened loss landscape (1st image), a.k.a. BPs, could be
gradually recovered to the normal case (3rd image) by
applying mitigation methods.

Numerous studies have been devoted to mitigat-
ing the barren plateau issues, whereas within these
studies, initialization-based strategies have proven
to be very effective by initializing QNNs’ parame-
ters with well-designed distributions (Sack et al.,
2022). However, most initialization-based strate-
gies aim to mitigate BPs by one-time initialization
with a well-designed data distribution, which may
not be generalized to common data distribution.
Initializing QNNs’ parameters using deep-learning
generative models could be a feasible solution since
they can adaptively model data distribution on vari-
ous datasets (Friedrich and Maziero, 2022). Within
the category of generative models, large language
models (LLMs) have demonstrated their superior
performance in recent years (Achiam et al., 2023;
Dubey et al., 2024). Nonetheless, until now, lever-
aging the superior generative performance of LLMs
to alleviate BPs is still under-explored.

To fill this research gap, we propose a new
LLM-driven framework, namely AdaInit, that can
Adaptively generate Initial model parameters θ0



for QNNs. After iterative generation, our frame-
work obtains such an initial model parameter that
can maximize the gradient variance for QNNs’ train-
ing. Specifically, for each iteration, we estimate
the posterior of θ0 using a generative model, such
as a LLM, given an adaptively improved prompt
and a prior distribution as inputs. After posterior
estimation, we train a QNN initialized with the gen-
erated θ0 and compute the gradient variance. We
then evaluate the gradient variance by expected im-
provement (EI) and update the prompts if the EI
is improved. Besides updating prompts, we store
the corresponding θ0 and return the optimal one
at the end. In this study, we theoretically analyze
the submartingale property of EI and rigorously
prove that the iterative search can eventually reach
a supremum, which indicates that our framework
can ultimately identify the optimal initial model pa-
rameters that maximize the gradient variance. Be-
sides, we conduct extensive experiments to demon-
strate the effectiveness of our proposed framework
across four public datasets. The results reveal that
our framework can maintain higher gradient vari-
ances against three classic initialization methods
and two popular initialization-based strategies for
mitigating BPs. Overall, we summarized our main
primary contributions as follows:

• We propose a new LLM-driven framework,
AdaInit, for mitigating BPs. To the best of our
knowledge, we first leverage LLMs to model
QNNs’ initial parameters for adaptively miti-
gating BPs.

• We theoretically analyze the submartingale
property of expected improvement (EI) and
rigorously prove the supremum of iterative
search, providing theoretical validation for our
search framework.

• Extensive experiments across four public
datasets demonstrate that as the model size
of QNNs increases, our framework can main-
tain higher gradient variances against classic
initialization methods.

2 Methodology

In this section, we first introduce the preliminary
background and formally state the problem we aim
to address in this study. Besides, we present our
proposed framework in detail and conduct a theo-
retical analysis of the expected improvement (EI).

2.1 Preliminary Background
Variational Quantum Circuits (VQCs) play a core
role in quantum neural networks (QNNs). Typical
VQCs consist of a finite sequence of unitary gates
U(θ) parameterized by θ ∈ RLNR, where L, N ,
and R denote the number of layers, qubits, and
rotation gates. U(θ) can be formulated as:

U(θ) = U(θ1, ..., θL) =
L∏
l=1

Ul(θl), (1)

where Ul(θl) = e−iθlVl .
QNNs, which are built by wrapping neural net-

work layers with VQCs, can be optimized using
gradient-based methods. To optimize QNNs, we
first define the loss function E(θ) of U(θ) as the
expectation over Hermitian operator H:

E(θ) = ⟨0|U(θ)†HU(θ)|0⟩. (2)

Given the loss function E(θ), we can further
compute its gradient by the following formula:

∂kE ≡ ∂E(θ)

∂θk
= i⟨0|U †

−

[
Vk, U

†
+HU+

]
U−|0⟩,

(3)
where we denote U− ≡

∏k−1
l=0 Ul(θl)Wl and U+ ≡∏L

l=k Ul(θl)Wl. Also, U(θ) is sufficiently random
s.t. both U− and U+ (or either one) are independent
and match the Haar distribution up to the second
moment.
Barren Plateaus (BPs) are first investigated
by (McClean et al., 2018), who demonstrate that
the gradient variance Var[∂E] of QNNs will ex-
ponentially decrease as the number of qubits N
increases when the random QNNs match 2-design
Haar distribution. This exponential pattern can be
approximated as:

Var[∂E] ∝ 2−2N . (4)

The Eq. 4 indicates that Var[∂E] will approximate
zero when the number of qubits N is very large,
i.e., most gradient-based approaches will fail to
train QNNs in this case.

Based on the above description, we formally
state the problem that we aim to solve as follows:
Problem 1. By leveraging a generative AI (GenAI)
model, such as an LLM, as a Bayesian posterior
estimator with adaptive prompting, we aim to iter-
atively identify the optimal QNN’s parameter θ∗

0 ,
where a given QNN is initialized with θ∗

0 , which
can maximize gradient variance Var[∂E] during
training, thereby mitigating barren plateaus (BPs).



2.2 Our Proposed Framework

In this study, we introduce a new framework,
AdaInit, designed to mitigate BP issues in QNNs by
leveraging generative AI (GenAI) models, particu-
larly LLMs. Our key innovations can be described
as follows. (i) First, unlike conventional one-time
initialization strategies, we propose a generative
approach that iteratively searches the optimal ini-
tial model parameters θ∗

0 ∈ RLNR that maximize
the gradient variance Var[∂E] of QNNs, thereby
mitigating BPs and improving QNNs’ trainability.
In each search iteration, we employ an LLM as a
Bayesian estimator to refine the posterior (candi-
date initial model parameters θ0) through adaptive
prompting. After posterior estimation, we train
the QNN initialized with the generated θ0 and fur-
ther compute its Var[∂E]. The benefit of using
LLM as a posterior estimator is that the LLM can
incorporate diverse textual instructions via prompts
and adaptively update the prompts based on feed-
back from the previous iteration. This adaptive
refinement allows our framework to dynamically
optimize the generation process. (ii) To validate
the generation quality, we employ Expected Im-
provement (EI), ∆(t), as a guiding metric for our
search. Furthermore, we rigorously prove that the
EI and its cumulative sum satisfy the properties
of submartingale. Consequently, we theoretically
establish their boundedness, thereby demonstrating
that our proposed search framework will ultimately
find the optimal initial model parameters for QNNs.

Algorithm 1 Search for optimal initial model pa-
rameters for QNNs.
Require: A GenAI model f(·), prompts xp, a QNN g(·), the

number of search iterations T .
1: Initialize prompts xp and the GenAI model, f(·);
2: Create an empty list Θ∗

0 ← ∅ to collect optimal candi-
dates of initial model parameters for the QNN, g(·);

3: for t = 1 to T do
4: P (θ

(t)
0 |x

(t)
p )← f(x

(t)
p |θ(t)

0 )P (θ
(t)
0 );

5: Var[∂E(t)]← g(θ
(t)
0 );

6: ∆(t) ← max(Var[∂E(t)]− S(t−1), 0);
7: if ∆(t) > 1

poly(N,L)T
then

8: x
(t+1)
p

θ
(t)
0 , Var[∂E(t)], S(t−1)

←−−−−−−−−−−−−−−− x
(t)
p ;

9: S(t) ← Var[∂E(t)];
10: Θ∗

0 ← Θ∗
0 ⊕ [θ

(t)
0 ];

11: end if
12: end for
13: return Θ∗

0;

We present our framework workflow in Fig. 2
and further introduce details in Algo. 1. Given a
GenAI model f(·), prompts xp for the f(·), a QNN
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Figure 2: Our proposed framework follows an iterative
search process over T iterations (gray area). In t-th
iteration, we perform four sequential steps: (i) Gen-
erate θ

(t)
0 using a Gen AI model, f(·), (ii) Compute

Var[∂E(t)] after QNN’s training, (iii) Calculate EI, ∆(t),
and (iv) Update prompts x

(t+1)
p , historical maximum

gradient variance S(t), and optimal candidates θ∗
0 for

next iteration. Dashed arrows indicate data flow and
corresponding outputs in each step.

g(·), and the number of search iterations T , we
first initializes f(·), xp (line 1) and also creates an
empty list ∅ for Θ∗

0 to collect optimal candidates
of QNN’s initial model parameters (line 2). After
initialization, we conduct T iterations for searching
(line 3). In each iteration, let’s say in the t-th itera-
tion, we first employ f(·) with prompts x(t)p and a
prior distribution P (θ

(t)
0 ) to estimate the posterior

distribution P (θ
(t)
0 |x(t)p ), which is the generated

initial model parameter θ(t)
0 for the QNN (line 4).

After generation, we train the QNN g(θ
(t)
0 ) with

certain training epochs and compute the gradient
variance Var[∂E(t)], whose gradient is abbreviated
from ∂E(θ(t))

∂θ(t) , where θ(t) denotes the QNN’s model
parameter in the t-th iteration (line 5). After com-
puting the variance, we evaluate the improvement
using the Expected Improvement (EI) metric, com-
paring the current gradient variance Var[∂E(t)] to
the historical maximum gradient variance, which
is the cumulative sum of EI when EI meets the fol-
lowing conditions (line 6). If the current EI, ∆(t),
is effectively improved, i.e., ∆(t) > 1

poly(N,L)T ,
where 1

poly(N,L)T denotes a strictly positive lower
bound on the gradient variance of an N -qubit, L-
layer QNN for each search, in the absence of BPs
(line 7), then we update the prompts for next itera-
tion based on the current initial model parameters



θ
(t)
0 , the current gradient variance Var[∂E(t)], and

the historical maximum gradient variance S(t−1)

(line 8). After updating prompts, we update the his-
torical maximum S(t) for the next iteration, where
S(t) = S(t−1) + ∆(t) = Var[∂E(t)] (line 9) and
further concatenate θ

(t)
0 to the optimal candidate

list Θ∗
0 (line 10), which will be returned at the end

(line 13). If so, the optimal initial model parameter
θ∗
0 will be the last element in the candidate list.

Analysis of time and space complexity. The
search runs T iterations. In each iteration, pos-
terior estimation, which is linearly related to the
output size of θ0, takes O(|θ0|) for a fixed-size
QNN. Besides, training g(θ0) with Ttr epochs may
take O(Ttr · |θ0|), where Ttr denotes the number of
training epochs for QNN. Combining θ0 ∈ RLNR,
the total time complexity is O(T ·(L ·N ·R+Ttr ·
L ·N ·R)) ≈ O(T ·Ttr ·L ·N ·R). The space com-
plexity primarily depends on the storage require-
ments. Θ∗

0 at most stores T number of θ0, which
consumes O(T · |θ0|). The output of posterior esti-
mation takes O(|θ0|) space. Gradient variance and
EI are scalars, which cost O(1) space. The prompts
xp are iteratively updated and thus occupy O(|xp|)
space. Considering the size of θ0, the total space
complexity is O(T ·L ·N ·R+L ·N ·R+ |xp|) ≈
O(T · L ·N ·R+ |xp|).

2.3 Theoretical Analysis of Expected
Improvement (EI).

Before presenting the details of all necessary theo-
retical analysis, we would like to discuss how we
can interpret these results. First, we formally de-
fine the Expected Improvement (EI) at each search
iteration t as ∆(t) and its accumulative sum in the
past iterations as S(t−1) in Def. 1. Besides, we as-
sume that the maximum possible gradient ∂Emax

during QNN’s training is bounded by a positive
constant B∂E , which is practical in real-world sim-
ulation. Next, we establish an upper bound for
EI through Lem. 1 and Lem. 2. These results in-
dicate that S(t) is L1-bounded and integrable for
each t. Building upon these lemmas, we investigate
the submartingale property of ∆(t) and rigorously
prove in Lem. 3 that S(t) is submartingale. This
insight is crucial as it provides a theoretical basis
to analyze the convergence of our proposed search
framework. Finally, leveraging the convergence of
submartingales and the monotonicity of S(t), we es-
tablish in Lem. 4 that S(t) has a supremum, which
indicates that our proposed search framework can

eventually identify the optimal initial model param-
eters that maximize the gradient variance of QNNs
in optimization. Due to the page limit, we provide
rigorous proof in the Appendix.
Definition 1 (Expected Improvement). For ∀ t ∈
Z+, the Expected Improvement (EI) in the t-th
search iteration is defined as:

∆(t) = max(Var[∂E(t)]− S(t−1), 0),

where Var[∂E(t)] denotes the gradient variance
in the t-th search iteration, and S(t−1) =∑t−1

ti=1∆
(ti) · I(ti) denotes the maximum observed

gradient variance in the past iterations, where
I(ti) represents an indicator function 1

(
∆(ti) >

1
poly(N,L)T

)
given a condition inside.

Assumption 1 (Bounded Maximum Gradient). We
assume there exists a positive constant B∂E > 0,
s.t. the maximum possible gradient ∂Emax during
QNN’s training satisfies:∣∣∂Emax

∣∣ ≤ B∂E .

Without loss of generality, let’s say ∂Emax ∈
[−B∂E

2 , B∂E
2 ].

Lemma 1 (Boundedness of Gradient Variance).
Given a certain-size quantum neural network
(QNN), the variance of its gradient during train-
ing, Var[∂E], is bounded by:

Var[∂E] ≤ (∂Emax − ∂Emin)
2,

where ∂Emax and ∂Emin denote the maximum and
minimum values of the gradient ∂E, respectively.
Lemma 2 (Boundedness of EI). From Def. 1 and
Lem. 1, during the search of initial model parame-
ters θ0 for a certain-size QNN, for ∀ t ∈ Z+, there
exist a bound for the expected improvement (EI) s.t.

∆(t) ≤ (∂Emax − ∂Emin)
2.

Lemma 3 (Submartingale Property of EI). Let
{∆(t)}t≥1 be an i.i.d. sequence of random vari-
ables on a probability space (Ω,F , P ) s.t.{

P
(
∆(t) > 1

poly(N,L)T

)
= p,

P
(
∆(t) ≤ 1

poly(N,L)T

)
= 1− p,

for a probability p ∈ [0, 1]. We define natural fil-
tration F (t) = σ

(
∆(1),∆(2), . . . ,∆(t)

)
, and the

selective accumulation of ∆(t) for the past t iter-
ation as a stochastic process {S(t)}t≥1 according
to Def. 1. Then, {S(t)}t≥1 is a submartingale with
respect to the filtration {F (t)}t≥1.
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Figure 3: Analysis of gradient variance trends in the first element of QNNs’ model parameters across varying qubit
and layer settings for three classic initialization distributions, uniform, normal, and beta. “Classic” denotes that we
initialize the model parameters with a classic distribution. “Ours” denotes that we use our framework to search the
initial model parameters.

Lemma 4 (Boundedness of Submartingale). Let
{S(t)}t≥1 be a submartingale w.r.t. a {F (t)}t≥1

s.t. supt E[|S(t)|] < ∞. Then, {S(t)}t≥1 is almost
surely bounded by a finite constant BS s.t.

S(t) ≤ BS , a.s., ∀t ∈ Z+.

Table 1: Statistics of datasets. |D|, |F |, and |C| denote
the original number of instances, features, and classes,
respectively. “Split” denotes the split instances for the
train, validation, and test data.

Dataset |D| |F | |C| Splits

Iris 150 4 3 60:20:20
Wine 178 13 3 80:20:30

Titanic 891 11 2 320:80:179
MNIST 60,000 784 10 320:80:400

3 Experiment

In this section, we first introduce the experimental
settings and further present our results in detail.

Dataset. We evaluate our proposed method
across four public datasets. Iris is a classic
machine-learning benchmark that measures var-
ious attributes of three-species iris flowers. Wine
is a well-known dataset that includes 13 attributes
of chemical composition in wines. Titanic con-
tains historical data about passengers aboard the
Titanic and is typically used to predict the survival.
MNIST is a widely used small benchmark in com-
puter vision. This benchmark consists of 28×28

gray-scale images of handwritten digits from 0 to
9. We follow the settings of BeInit (Kulshrestha
and Safro, 2022) and conduct experiments in bi-
nary classification. Specifically, we sub-sample
instances from the first two classes of each dataset
to create a new subset. After sub-sampling, we
adjust the feature dimensions to ensure they do not
exceed the number of available qubits. The statis-
tics of the original datasets, along with the data
splits for training, validation, and testing, are pre-
sented in Table 1. Importantly, the total number of
sub-sampled instances corresponds to the sum of
the split datasets. For instance, in the Iris dataset,
the total number of sub-sampled instances is 100.

Experimental settings. In the experiment, we
analyze the trend of gradient variance by varying
the number of qubits ranging from 2 to 20 in in-
crements of 2 (fixed 2 layers) and the number of
layers spanning from 4 to 40 in steps of 4 (fixed
2 qubits). To obtain reliable results, we repeat the
experiments five times and present them as curves
(mean) with their bandwidth (standard deviation).
During the search, our framework can identify the
optimal model parameters within 50 iterations. In
each search iteration, we employ the Adam opti-
mizer with a learning rate of 0.01 and a batch size
of 20 to train a QNN with 30 epochs and compute
the gradient variance. After training, we compute
the expected improvement (EI) and compare it with
an assumed lower bound, 1

poly(N,L)T , in each iter-
ation. We compute the lower bound by [22NT ]−1,
which is originally designed for uniform distribu-
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Figure 4: Analysis of prompts’ impact, i.e., investigate whether data description (desc.) and gradient feedback
(feedback) affect the gradient variance in the first element of QNNs’ model parameters across different model
structures, considering variations in the number of qubits and layers.

tion. We empirically apply it for all cases as we
observe in Fig. 3 that the magnitude of gradient
variance is comparable across all datasets.

Evaluation. We measure the QNN’s training by
its gradient variance. A higher gradient variance
in training indicates a lower likelihood of being
trapped on the barren plateau landscape.

Uniform Normal Beta

Figure 5: Example of three classic distributions com-
monly for initialization. In the figure, the red dots repre-
sent the initial values of the model parameters.

Searching initial model parameters of QNNs via
large language models can help alleviate barren
plateaus. We analyze gradient variance trends in
the first element of QNNs’ model parameters across
varying qubit and layer settings for three classic
initialization distributions, uniform, normal, and
beta distributions, which are presented in Fig. 5
as examples. For each initialization with classic
distribution, we compare it (“Classic”) with our
proposed methods (“Ours”). As presented in Fig. 3,
we observe that in the case of using classic initial-
ization, the gradient variance of QNNs will signifi-
cantly decrease as the number of qubits or layers
increases. Compared with it, our method can main-
tain higher variances, indicating that our framework
can mitigate barren plateaus better.

Investigation of prompts. We further examine
whether the content of prompts influences search
performance. In the experiments, we tested four
prompting scenarios: (i) Including both data de-
scription and gradient feedback in prompts (Both
desc. and feedback), (ii) Including gradient feed-
back only (No desc.), (iii) Including data descrip-
tion only (No feedback), (iv) Including neither data
description nor gradient feedback (Neither desc.
nor feedback). As the results presented in Fig. 4,
we observe that suppressing either dataset descrip-
tion or gradient feedback in the prompts leads to a
reduction in the gradient variance of QNNs. No-
tably, the reduction is more significant in most
cases when gradient feedback is muted compared to
the dataset description, suggesting that both factors
play a crucial role in mitigating BPs, with gradient
feedback contributing significantly more.

LLMs Acc. Max i/o

GPT 4o 100% 128K/4K
GPT 4o mini 85% 128K/16K

Gemini 1.5 flash 75% 1M/8K
Gemini 1.5 pro 90% 2M/8K

Claude 3.5 sonnet 100% 200K/8K

Table 2: Comparison of initial model parameters’ gener-
ation by accuracy (Acc.) using LLMs, GPT (Hurst et al.,
2024), Gemini (Team et al., 2024), and Claude (An-
thropic, 2024). We measure the generation under dif-
ferent numbers of qubits and layers (20 combinations
in total). We also present the maximum number of in-
put/output tokens in the third column.

Comparison of generative performance using
LLMs. In our proposed framework, the initial



model parameters of QNNs are generated by LLMs.
In this experiment, we compare the generative per-
formance under varying QNN structures, such as
different numbers of qubits or layers. Specifically,
we primarily evaluate whether the correct size of
model parameters can be generated by testing 20
combinations in accuracy, fixing either 2 layers
while varying qubits from 2 to 20 or 2 qubits while
varying layers from 4 to 40. As shown in Tab. 2, the
results indicate that both GPT-4o and Claude 3.5
Sonnet can achieve 100% accuracy in generating
the correct shapes of model parameters. Consid-
ering that 4K output tokens are sufficient for our
settings, in this study, we mainly use GPT 4o as
the backbone LLMs.
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Figure 6: Comparison between two initialization-based
strategies, GaInit and BeInit, and our framework, which
is initialized with corresponding data distribution for a
fair comparison.

Comparison with initialization-based strategies.
We compare our framework with two popular
initialization-based strategies, GaInit (Zhang et al.,
2022) and BeInit (Kulshrestha and Safro, 2022).
For a fair comparison, we initialize the QNNs with
corresponding distribution, normal and beta distri-
butions. We present the results on Iris in Fig. 6
as an example. The results demonstrate that our
framework can identify the initial model parame-
ters of QNNs that achieve higher gradient variance
during training as the model size increases, indicat-
ing better mitigation for BPs.

Sensitivity analysis of hyperparameters. We
analyze the sensitivity of hyperparameters, includ-
ing Temperature and Top P, for LLMs. Temperature
controls the randomness of predictions, with higher
values generating more diverse outputs, while Top
P affects the probabilities of token selections, en-
suring a more focused yet flexible generation. To
identify the optimal settings, we first narrowed
down the hyperparameter ranges through manual
tuning and then applied grid search to determine the
best combinations (Temperature, Top P) for each
dataset: Iris (0.5, 0.9), Wine (0.1, 0.45), Titanic
(0.8, 0.75), and MNIST (0.8, 0.8), as presented
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Figure 7: Analysis of the sensitivity of hyperparameters,
including Temperature and Top P. The grid with the
darkest color indicates the optimal combination.

in Fig. 7. During tuning, we initialize QNNs with
a uniform distribution. The combinations of the
above hyperparameters were subsequently used in
this study.

Analysis of the expected improvement. We ana-
lyze the patterns on the expected improvement (EI)
and the corresponding gradient variance across var-
ious QNN structures (initialized with uniform dis-
tribution) as search iterations progress. Representa-
tive experiments conducted on Iris are illustrated
in Fig. 8 as an example. Our findings show that as
the model size grows, more search iterations are
required to obtain optimal initial parameters that
enable QNNs to maintain higher gradient variance
during training. This is expected, as larger mod-
els expand the search space, demanding greater
computational resources to explore effectively.

4 Related Work

McClean et al. (2018) first investigated barren
plateau (BP) phenomenons and demonstrated that
under the assumption of the 2-design Haar distribu-
tion, gradient variance in QNNs will exponentially
decrease to zero during training as the model size
increases. In recent years, enormous studies have
been devoted to mitigating BP issues in QNNs (Qi
et al., 2023). Cunningham and Zhuang (2024) cate-
gorize most existing studies into the following five
groups. (i) Initialization-based strategies initialize
model parameters with various well-designed distri-
butions in the initialization stage (Grant et al., 2019;
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(a) The number of qubits ranges from 2 to 20.
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(b) The number of layers ranges from 4 to 40.

Figure 8: We analyze the patterns of expected improvement and the corresponding gradient variance and present the
results in two columns: the left column illustrates the trends w.r.t. the number of qubits, while the right column
captures the effects of increasing the number of layers.

Sack et al., 2022; Mele et al., 2022; Grimsley et al.,
2023; Liu et al., 2023; Park and Killoran, 2024).
(ii) Optimization-based strategies address BP is-
sues and further enhance trainability during opti-
mization (Ostaszewski et al., 2021; Suzuki et al.,
2021; Heyraud et al., 2023; Liu et al., 2024; Sannia
et al., 2024). (iii) Model-based strategies attempt
to mitigate BPs by proposing new model archi-
tectures (Li et al., 2021; Bharti and Haug, 2021;
Du et al., 2022; Selvarajan et al., 2023; Tüysüz
et al., 2023; Kashif and Al-Kuwari, 2024). (iv)
To address both BPs and saddle points, Zhuang
et al. (2024) regularize QNNs’ model parameters via
Bayesian approaches. (v) Rappaport et al. (2023)
measure BP phenomenon via various informative
metrics.

5 Conclusion

In this study, we proposed a new LLM-driven frame-
work, AdaInit, designed to mitigate barren plateaus
(BPs) in QNN’s training. By iteratively refining
QNN’s initialization through adaptive prompting
and posterior estimation, AdaInit can maximize
gradient variance, improving QNN’s trainability
against BPs. Our theoretical analysis establishes
the submartingale property of expected improve-
ment (EI), ensuring the iterative search can eventu-
ally identify optimal initial model parameters for
QNN. Through extensive experiments across four
public datasets, we demonstrated that AdaInit out-
performs conventional classic initialization meth-
ods in maintaining higher gradient variance as
QNN’s sizes increase. Overall, this study paves
a new way to explore how LLMs help mitigate BPs
in QNN’s training.



Limitations & future work. First, in our the-
oretical analysis, we assume that the maximum
gradient of QNNs is bounded by a positive constant,
i.e., the gradient doesn’t explode during training.
This assumption is practical in most cases. Be-
sides, we rigorously prove that the submartingale
has a supremum in our settings. In the future, we
plan to prove that convergence of submartingale is
guaranteed in a finite number of search iterations.
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A APPENDIX

In the appendix, we present the architecture of the
quantum circuit and hardware/software. Besides,
we display the prompt designs in this study.

Model architecture of the quantum circuit. In
this study, we examine our proposed framework
using a backbone QNN, which concatenates the fol-
lowing quantum circuit with a fully connected layer.
The circuit architecture is described in Figure 9.
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Figure 9: Architecture of our backbone quantum circuit.

Hardware and software. The experiment is con-
ducted on a server with the following settings:

• Operating System: Ubuntu 22.04.3 LTS
• CPU: Intel Xeon w5-3433 @ 4.20 GHz
• GPU: NVIDIA RTX A6000 48GB
• Software: Python 3.11, PyTorch 2.1, Penny-

lane 0.31.1.

Prompt designs. Before presenting the prompts,
we first introduce the notation for the hyperpa-
rameter in prompts. ‘nlayers’, ‘nqubits’, ‘nrot’,
‘nclasses’ denote the number of layers, qubits, ro-
tation gates, and classes for the QNN, respectively.
‘init’ denotes the initial data distribution for the
QNN. ‘data_desc’ denotes the data description.
‘feedback’ denotes the gradient feedback from the
previous iteration during the search.

Proof of Lemmas. We provide a rigorous proof
of the following lemmas.

Lem. 1. We denote a sequence of gradient ∂E =
{∂E(t)}Ttr

t=0, where Ttr represents the number of
training epochs for a QNN. Within this sequence,



Prompts

Role: data generator.
Goal: Generate a dictionary iteratively with the following shape:

{
'l0': a list, shape=(nlayers, nqubits, nrot),
'l1': a list, shape=(out_dim, nqubits),
'l2': a list, shape=(out_dim)

}

Requirements:

• Data shape: nlayers={nlayers}, nqubits={nqubits}, nrot={nrot}, out_dim={nclasses}.

• Data type: float rounded to four decimals.

• Data distribution: numerical numbers in each list are sampled from standard {init} distribu-
tions, which may be modeled from the following dataset.

• Dataset description: {data_desc}

• Adjust the sampling based on feedback from the previous searches: {feedback}

• Crucially, ensure that the length of ‘l0’ = ‘nlayers’ and the length of ‘l1’ = ‘out_dim’.

• Print out a dictionary [only] (Don’t show Python code OR include ‘[“‘python\n]’, ‘[“‘json\n]’,
‘[“‘]’).

we denote ∂Emax, ∂Emin, and ∂E as the maxi-
mum, minimum, and mean values of the gradient.
For ∀ t ∈ Z+, we have:

∂E(t), ∂E ∈ [∂Emin, ∂Emax],

then the gap between ∂E(t) and ∂E will not exceed
the range of [∂Emin, ∂Emax]:

|∂E(t) − ∂E| ≤ ∂Emax − ∂Emin.

Thus, we have:

Var[∂E] =
1

Ttr

Ttr∑
t=1

(∂E(t) − ∂E)2

≤ 1

Ttr

Ttr∑
t=1

(∂Emax − ∂Emin)
2

= (∂Emax − ∂Emin)
2.

Thus, the gradient variance Var[∂E] satisfies the
bound Var[∂E] ≤ (∂Emax − ∂Emin)

2.

Lem. 2. From Def. 1, for ∀ t ∈ Z+, in the t-th
search iteration, we have:

∆(t) = max(Var[∂E(t)]− S(t−1), 0).

Combining with Lem. 1, for ∀ t ∈ Z+, we have:

Var[∂E(t)], S(t−1) ≤ (∂Emax − ∂Emin)
2.

The above equation holds true as S(t−1) denotes
the historical maximum gradient variance in the
past iterations. Thus, we have:

Var[∂E(t)]− S(t−1) ≤ (∂Emax − ∂Emin)
2,

which indicates that:

∆(t) ≤ (∂Emax − ∂Emin)
2.

Lem. 3. A process S(t) is submartingale relative to
(Ω,F , P ) if the following three conditions, Adapt-
edness, Integrability, and Submartingale condition,
hold true (Williams, 1991).

Adaptedness. We first aim to verify that S(t) is
determined based on the information available up
to past t iterations. By Def. 1, S(t) =

∑t
ti=1∆

(ti) ·
I(ti) is a finite sum of random variables that are
measurable w.r.t. σ

(
∆(1),∆(2), . . . ,∆(t)

)
. Thus,

S(t) is also measurable w.r.t. F (t), ensuring the
adaptedness.



Integrability. In Lem. 2, ∆(t) ≤ (∂Emax −
∂Emin)

2 for ∀ t ∈ Z+. Thus,

E[|S(t)|] = E
[∣∣∣ t∑

ti=1

∆(ti) · I(ti)
∣∣∣]

≤ E
[∣∣∣ t∑

ti=1

(∂Emax − ∂Emin)
2 · I(ti)

∣∣∣]
< ∞,

which ensures E[|S(t)|] is integrable for each t.

Submartingale condition. We observe that

S(t) = S(t−1) +∆(t).

Thus, given F (t−1), we have

E
[
S(t)

∣∣F (t−1)
]
= E

[
S(t−1) +∆(t)

∣∣F (t−1)
]
,

Since S(t−1) is F (t−1)-measurable and {∆(t)}t≥1

is i.i.d., thus,

E
[
S(t)

∣∣F (t−1)
]
= E

[
S(t−1) +∆(t)

∣∣F (t−1)
]

= S(t−1) + E[∆(t)]

= S(t−1) +
(
δp+ 0(1− p)

)
≥ S(t−1),

where δ denotes a positive increment when ∆(t) >
1

poly(N,L)T .
Thus, the submartingale condition holds true for

∀ t ≥ 1 s.t.

E
[
S(t)

∣∣F (t−1)
]
≥ S(t−1), ∀t ≥ 1,

Lem. 4. Since the process {S(t)}t≥1 is a L1-
bounded submartingale s.t. supt E[|S(t)|] < ∞,
we apply Doob’s Forward Convergence Theo-
rem (Williams, 1991), which guarantees the almost
sure existence of a finite random variable S(∞) s.t.
S(∞)=limt→∞ S(t). This implies that the process
{S(t)} has a well-defined almost sure limit.

Furthermore, if {S(t)} is monotone increasing,
i.e., S(t) ≤ S(t+1), a.s., ∀ t ∈ Z+, then the limit
S(∞) serves as a supremum for the entire process.
By Defining BS := supt S

(t) = S(∞), we obtain a
desired bound S(t) ≤ BS , a.s., ∀ t ∈ Z+.

Computational budgets. Based on the above
computing infrastructure and settings, computa-
tional budgets in our experiments are described as
follows. Our search framework can be reproduced
within one hour given that the number of qubits
is less than 18. The total experiments take around
600 hours to complete.

Ethical and broader impacts. We confirm that
we fulfill the author’s responsibilities and address
the potential ethical issues. This work paves a novel
way to explore how generative models, such as
LLMs, help improve the trainability of QNNs, which
could benefit the community of natural language
processing and quantum machine learning.
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tional resources.

Disclaimer regarding human subjects results.
NA


