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Abstract

Large-scale generative models are shown to be useful for sampling mean-
ingful candidate solutions, yet they often overlook task constraints and user
preferences. Their full power is better harnessed when the models are cou-
pled with external verifiers and the final solutions are derived iteratively
or progressively according to the verification feedback. In the context of
embodied AI, verification often solely involves assessing whether goal con-
ditions specified in the instructions have been met. Nonetheless, for these
agents to be seamlessly integrated into daily life, it is crucial to account for
a broader range of constraints and preferences beyond bare task success
(e.g., a robot should grasp bread with care to avoid significant deforma-
tions). However, given the unbounded scope of robot tasks, it is infeasible
to construct scripted verifiers akin to those used for explicit-knowledge
tasks like the game of Go and theorem proving. This begs the question:
when no sound verifier is available, can we use large vision and language
models (VLMs), which are approximately omniscient, as scalable Behavior
Critics to help catch undesirable robot behaviors in videos? To answer this,
we first construct a benchmark that contains diverse cases of goal-reaching
yet undesirable robot policies. Then, we comprehensively evaluate VLM
critics to gain a deeper understanding of their strengths and failure modes.
Based on the evaluation, we provide guidelines on how to effectively utilize
VLM critiques and showcase a practical way to integrate the feedback into
an iterative process of policy refinement. The dataset and codebase are
released at: https://guansuns.github.io/pages/vlm-critic.

1 Introduction

Large-scale pre-trained generative models, such as large language models (LLMs), exhibit
impressive capabilities across a broad spectrum of tasks, including language modeling and
code generation. However, despite their success in numerous applications, it has been
observed that they often fail to produce desired outputs in a single attempt. For example, in
AI-based mathematics problem solving, the state-of-the-art performance (Romera-Paredes
et al., 2023; Trinh et al., 2024) is achieved by repeatedly (re-)prompting LLMs with ver-
ification feedback from program executors and scripted evaluator. Likewise, in several
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Figure 1: Examples of GPT-4V critic accurately catching undesirable behaviors. Failure
cases can be found in Fig. 3.

LLM-driven task planning frameworks (Kambhampati et al., 2024; Valmeekam et al., 2023;
Guan et al., 2023), candidate plans sampled from LLMs are validated by external critics
and verifiers, e.g., to see if there is any unfulfilled precondition at each step. Overall, while
large-scale generative models are capable of generating plausible candidate solutions, they
tend to consistently overlook task constraints and user preferences. To fully harness their
power or even to fine-tune them, it has become common practice to couple them with
external critics or verifiers (e.g., humans or programs) such that the models can iteratively
refine their outputs according to the critiques or verification feedback. A more detailed
discussion on the necessity of forming a generation-verification loop is presented in a recent
LLM-centered task and motion planning framework called LLM-Modulo (Kambhampati
et al., 2024).

Motivated by the success of large pre-trained models in other domains, robotics and embod-
ied AI communities have initiated efforts in building general-purpose language-conditioned
policy models (Padalkar et al., 2023; Team et al., 2023; Nair et al., 2022). Although the
versatility and reliability of state-of-the-art policy models are not yet on par with models like
LLMs, their capabilities continue to grow as researchers enrich robot-specific datasets (Zhao
et al., 2023) and devise methodologies that can leverage internet-scale embodiment-agnostic
data (Yang et al., 2023; Du et al., 2023a). Nevertheless, even if data sparsity is addressed,
we envision that large policy models would still face the same limitations as we observe in
LLMs development — the models may not produce desired policies in one shot. Several
factors can result in such inaccuracies:

1. The intrinsic stochasticity of large parametric models.

2. The inevitable noise in large-scale datasets, especially in collective data sources like
the internet.

3. The adoption of fully goal-driven policy optimization mechanisms. In other words,
the current literature typically only verifies (or defines task rewards based on) the
satisfaction of goal conditions specified in symbolic or natural-language instructions
(e.g., by ensuring high CLIP-style similarity between image observations and the
language instructions (Ma et al., 2022; Cui et al., 2022; Nair et al., 2022; Rocamonde
et al., 2023)).

However, since language instructions (or any abstracted representation of the world) tend
to be an incomplete specification of goal conditions and user preferences (Guan et al.,
2022a), a fully goal-driven learning mechanism would encourage “shortcuts” and overlook
undesirability in the agent’s behaviors (Fig. 1). For example, when instructed to “hand a
pair of scissors to a person,” the robot might hold the pointy end of the scissors towards the
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person. In another example, the robot forcefully opens a cabinet door, potentially causing
damage to the door hinge, even if the damage is not immediately noticeable.

Therefore, in the context of embodied AI, to form a loop of policy (re-)generation and
verification (Fig. 2), it is necessary to account for both goal reachability and a broader range
of common constraints and preferences. However, unlike explicit-knowledge tasks (e.g.,
the game of Go and theorem proving) wherein it is feasible to list out all the rules and
constraints, given the unbounded scope of robot tasks, it is intractable to anticipate and
exhaustively articulate the considerations and undesirability. In these scenarios, involving
a human in the loop can ensure overall “correctness,” but it would impose a significant
cognitive burden on humans. This raises a question: in the absence of a sound automated
verifier, can we use large vision and language models (VLMs) like GPT-4V (Achiam et al.,
2023), with their approximate omniscience, as scalable Behavior Critics to catch, at least to a
significant extent, the undesirability presented in videos of robot behaviors? Furthermore,
given VLMs may exhibit inaccuracies in any use case, understanding the pattern of their
outputs becomes crucial prior to their integration into any policy generation or improvement
system.

Figure 2: Positioning of this work. This figure also
illustrates a loop of policy (re-)generation and “verifi-
cation.”

It is important to clarify that this
work does not assert that LLMs
can serve as a universal verifier
for all aspects of a planning prob-
lem, including plan correctness
(e.g., goal reachability in the nar-
row sense) and preference satis-
faction. We acknowledge that
empirical studies have demon-
strated that LLMs are not ca-
pable of self-verifying their out-
puts in reasoning-intensive tasks
(Stechly et al., 2024; Huang et al.,
2023). Drawing from a recent com-
pound planning framework LLM-
Modulo (Kambhampati et al.,
2024), the scope of this study is to
show that while LLMs cannot be
reliably used to verify plan correct-
ness, they can serve as an exten-
sive knowledge source for defin-
ing soft “style” constraints. Here,

these “style” constraints encompass common human preferences, the violation of which
may not necessarily result in execution failure. Interestingly, it is the style verification that
has proven to be a stumbling block for classical methods – leading to various approaches
for capturing style as a set of rules (as in HTN planning (Ghallab et al., 2004)). LLMs are
actually better at capturing style even though they have hard time verifying correctness.
This presents an interesting complementarity – with correctness verification done with
external verifiers, while style criticism is left to LLMs; something that is elaborated in the
LLM-Modulo architecture.

In this work, we conduct the first comprehensive study on leveraging VLMs (i.e., GPT-
4V and Gemini Pro in this work) as behavior critics to freely comment on undesirable
behaviors presented in videos. We first collect real-world videos that encompass diverse
robot behaviors which are goal-reaching but undesirable (Fig. 1). Then we use the videos as
a benchmark to investigate the feasibility of VLM critics, with an emphasis on testing how
many of the undesirable behaviors are covered by the critiques (i.e., recall rate) and how
many of the critiques are valid (i.e., precision rate). In addition to scalar metrics, we also
manually examine each critique and develop a taxonomy to characterize the failure modes.
Our evaluation indicates that GPT-4V can identify a significant portion of undesirable robot
behaviors (with a recall rate of 69%). However, it also generates critiques that contain
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a considerable amount of hallucinated information (resulting in a precision rate of 62%),
mainly due to limited visual-grounding capability.

Based on these findings, we discuss how to effectively utilize VLM critiques. We demon-
strate that, in an ideal case, by providing GPT-4V with grounding feedback that verifies
the occurrences of events mentioned in the critiques, it can “refine” its outputs and achieve
a precision rate of over 98% (with a minor impact on the recall). Lastly, while this work
does not take a strong stance on how the critiques should be integrated into closed-loop
policy-generation systems, we do present a candidate framework using a real robot in five
household scenarios, wherein a Code-as-Policies agent (Liang et al., 2023) iteratively refines
the policy according to VLM critiques on the rollouts.

2 Related Work

Coupling generative models with verifiers. Generative models, like LLMs, are generalists
that can serve as powerful heuristics for numerous problems. However, to effectively
explore the solution space and select a working solution with guaranteed correctness, it
is necessary to couple these models with external sound verifiers. Such generator-verifier
paradigms are widely adopted (Kambhampati et al., 2024; Valmeekam et al., 2023; Guan
et al., 2023; Romera-Paredes et al., 2023; Trinh et al., 2024).

The use of AI critiques and feedback. It may be infeasible to construct formal verifiers
for tasks that are tacit or have a wide scope. As a workaround, people have explored the
option of using AI models to criticize the outputs (without correctness guarantees), either
generated by themselves or by other models (Bai et al., 2022; Lee et al., 2023; Wang et al.,
2023; Yuan et al., 2024; Ahn et al., 2024; Klissarov et al., 2024). Different from existing
works that employ AI models to assess how well each output conforms to a predefined
“constitution,” this study focuses on utilizing AI models to identify overlooked aspects of
undesirability (e.g., to complete the constitution).

LLMs and VLMs for decision making. LLMs and VLMs have been used in various aspects
of decision-making, such as generating heuristic plans (Ahn et al., 2022; Du et al., 2023b;
2024), modeling domains (Guan et al., 2023; Wong et al., 2023), constructing reward functions
(Xie et al., 2023; Ma et al., 2023; Yu et al., 2023), automating task design (Ahn et al., 2024),
and explaining execution failures (Liu et al., 2023). More comprehensive surveys can be
found in (Firoozi et al., 2023; Zeng et al., 2023). Among all the use cases, reward construction
and failure explanation are most relevant to this work. LLM-based reward construction also
elaborates on desirability and undesirability in a reward function. However, its focus is on
how to create an easily-optimizable dense reward function by adjusting the relative weights
of a pre-defined set of features or by modifying the logic of a Python reward program.
Differently, behavior critics emphasize knowledge acquisition by proposing new factors that
are overlooked in the current behavior. These factors may be used to expand the feature set
and be incorporated into a refined reward function. In failure explanation frameworks like
REFLECT (Liu et al., 2023) and reflexion (Shinn et al., 2023), the goal is to identify the causes
of errors that result in termination of plan execution and prevent the agent from reaching
goal states. Instead, our work argues that there can still be undesirability in goal-reaching
behaviors especially given that human instructions often under-specify common constraints
and human preferences. The positioning of our work is illustrated in Fig. 2.

Robotic foundation models. Robotic foundation models, such as the RT series (Zitkovich
et al., 2023; Padalkar et al., 2023) and Octo (Team et al., 2023), are typically waypoint-
based policy models that connect semantic task specifications to low-level motion. Critics,
including our behavior critics, and a continuously-improved policy model can complement
each other in the sense that a desired behavior can be more efficiently derived from the
policy within a guided generation framework.
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3 Problem Setting

We consider a setting where an agent (e.g., a motion planner) tries to solve a task specified
with a language instruction i. The task is represented as a finite-horizon discounted MDP
M = ⟨S, A, R, T, S0, γ⟩, where S is the state space comprising features that encapsulate
necessary information about the environment, the agent, and, optionally, the history; A
is the set of actions; T : S × A × S → [0, 1] is the world dynamic model; S0 is the set of
possible initial states; R is the reward function; and γ is the discounted factor. Instruction
i corresponds to a symbolic specification of goal conditions, which characterizes a set of
absorbing goal states Sg ⊂ S. Without loss of generality, R can be constructed as 1(s ∈ Sg)
for s ∈ S, which encourages the agent to reach a goal state with the least time steps if γ < 1.
Let S∗

g ⊂ Sg denote the set of states that satisfy all the conditions in i as well as common
human preferences P . Due to the potential incompleteness of symbolic representations,
instruction i may allow for undesirable goal-satisfying states S−

g = Sg \ S∗
g. Considering the

unbounded or tacit nature of P , our primary objective is to investigate how well VLMs can
approximate P and determine if any state s is in S−

g . The problem may also be formalized
with Constrained Markov Decision Processes (Altman, 1999), but the discussions to be
presented remain largely unaffected by the choice of formalism.

4 Methodology

We begin by describing the prompt used to obtain behavior critiques from VLMs. Next,
as the core contribution of this paper, we will explain how we collect and construct our
benchmark which consists of video clips demonstrating suboptimal yet goal-reaching
policies in diverse household tasks. Accordingly, we introduce the metrics and taxonomy
for characterizing the strengths and failure modes of VLM critics. Finally, we conclude this
section with a discussion on practical ways to utilize and integrate VLM critiques.

4.1 Obtaining behavior critiques from VLMs

Fig. 9 in Appendix shows the prompt template for instructing VLMs to generate critiques
over undesirable behaviors. It has four key components: (a) a brief description of the task
of being a behavior critic; (b) two textual examples that demonstrate the expected output
format for cases where there are and are not undesirable behaviors in a video; (c) frames
from the video to be criticized; and (d) a short note explaining that the selected frames
maintain the same relative ordering as in the original video and that there may be zero
or multiple undesirable behaviors presented in a video. Each ⟨framei⟩ tag in the prompt
template corresponds to an image. In our benchmark, each video showcases a policy for
a short-horizon manipulation task, and we find that 30 frames adequately capture the
essence of each policy. Hence, each input contains a maximum of 30 frames, and each frame
undergoes preprocessing to ensure that its longest side does not exceed 512 pixels. A more
detailed description of the prompt can be found in Appx. A.5.

In addition to having a behavior critic comment on individual videos separately, we also
experiment with having a critic compare pairs of trajectories and provide preferences with
justification. Pairwise preferences can complement verbal critiques when the undesirability
involves subtle and tacit components. For example, when selecting a trajectory that opens
a door less “forcefully” from a set of virtual rollouts, it would be easier to use preference
labels. However, we do note that verbal critiques still play a central role in this study as
they provide the most informative signal to guide an agent toward desirable behaviors. For
more details on preference elicitation, see Appx. A.1.

4.2 Benchmarking VLM behavior critics

Data collection. In our benchmark, a video of suboptimal policy may feature one or
more negative events. These negative events are based on undesirability observed in
public robot videos (e.g., on homepages of relevant academic projects) and demonstration
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datasets (Padalkar et al., 2023) as well as our own experience of testing robot policies (with
both public and proprietary models). All task setups take place in real-world household
environments.

To facilitate and ensure the safety of data collection, the majority of videos were recorded by
reproducing robot trajectories with a human-controlled grabber tool (Fig. 1). The grabber
tool closely resembles a robot gripper in appearance. A similar setup has also been employed
in visual imitation (Young et al., 2021; Pari et al., 2021).

Benchmark structure. We collected 175 videos with 51 different tasks (i.e., instructions),
forming 114 test cases. Each test case has all of the following components: (a) a negative
video that features the undesirable behaviors; (b) another negative video that exhibits the
same undesirable behavior; (c) a positive video that demonstrates a satisfactory policy – the
inclusion of positive examples aims to assess the frequency of VLM critics producing false
alarms; (d) a language instruction that specifies the task – policy shown in a positive video
is supposed to satisfy the goal conditions given in the corresponding instruction; (e) a list
of human-annotated undesirable behaviors that are presented in the respective negative
videos; and (f) a narrative description of the negative video, covering key actions that
perform the task as anticipated and those that result in undesirable outcomes (see examples
in App. A.4). The inclusion of narration is to examine whether the text backbones of existing
multi-modal models have sufficient knowledge to differentiate between undesirable and
aligned agent behaviors. Note that one positive video may be reused for multiple negative
videos in the 114 test cases.

Evaluation metrics. Recall and precision are fundamental metrics in assessing behavior
critics on videos that showcase suboptimal behaviors. Recall measures the proportion of the most
critical negative events, as annotated by humans, that the VLM critics successfully identify.
Precision, on the other hand, quantifies the fraction of the critiques that accurately reflect the
actual undesirability within the videos. Note that the calculation of precision rate involves
manual assessment because, by definition, “precision” should permit the critics to expand
the set of human-annotated negative events. Furthermore, in order to gain deeper insights
that scalar metrics alone cannot provide, we also conducted a thorough examination of
individual critiques based on the properties they exhibit. We adhere to a taxonomy that
allows us to delineate the success cases and failure modes. While our taxonomy may not be
exhaustive, we find it adequately captures patterns of VLM critiques that we observed in
our evaluations. The dimensions we take into account include:

Figure 3: Failure cases of GPT-4V critic. More
examples can be found in Fig. 6 in Appendix.

(a) Critique operationalizability: a critique
is expected to identify negative events in a
sense that the event itself, not supplemen-
tary information such as the underlying
causes, is precisely described. However, an
intriguing question arises as to whether a
critique can extend beyond mere descrip-
tion to provide an operationalizable expla-
nation for the cause. Here, an operationaliz-
able explanation refers to an explanation
that can be directly implemented by an
agent to rectify the suboptimal policy, with-
out requiring extra human-like reasoning
about the cause. An example of an unop-
erationalizable critique is “the robot lifted
the bag without securing the contents, leading
to the carrots falling onto the table,” which
does not pinpoint the root cause, i.e., the
robot’s failure to securely hold or seal the
bag’s opening. Another example (Fig. 3) is
“the robot caused pasta sauce to drip onto the
counter while transferring the spoon from the

jar to the bowl,” which does not identify that the core issue lies in the robot not waiting for the
remnants to drip back to the jar before moving the spoon. Note that in some circumstances,
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an operationalizable explanation is inherently part of the description, for example, “the
robot gripper made contact with the plate while trying to grasp the carrot.”

(b) Visual grounding errors: visual grounding errors are instances where a critic refers
to events that are not presented in the video. This is also known as hallucination in the
context of perception and video understanding. Note that perception errors can occur either
throughout the entire critique – critiquing behavior not depicted in the video – or within
fragments of a critique, for instance, fabricating a behavior to explain the cause of a negative
event.

(c) Causal understanding errors: this type of error pertains to cases where a critic miscon-
strues the cause of negative events (if an explanation is provided as part of the critique).
Such errors may arise when the critic erroneously links two independent events or when
the critic attributes a nonexistent event as the cause.

(d) Incomplete understanding of the problem: in this type of inaccuracy, the critic carelessly
judges an event as negative while it may not be undesirable under certain conditions. This
is a relatively rare error type. In the case of GPT-4V, only two critiques fell into this category.
One instance criticizes the robot for “releasing the scissors above the table when handing
them to a person, potentially causing them to fall and injure the person or damage the table”.
However, in the video, the person comfortably and firmly received the scissors from the
robot’s gripper. Therefore, releasing the scissors above the table did not necessarily exhibit
risky behavior, considering the person’s reaction.

In addition to the aforementioned error types, we also investigated whether the behavior
critic provides incorrect “advice” that leads the agent away from an optimal policy. An
example scenario could be when the critique hinders a robot from reaching an object,
contradicting the task requirement of delivering the object to a person. Fortunately, GPT-4V
never exhibited such errors in our evaluation, and as a result, this particular category is
deliberately excluded from our taxonomy and future analysis to avoid potential confusion.

4.3 Utilizing behavior critiques

The primary objective of our benchmark is to shed light on the output patterns of VLM
critics and provide guidelines on how to utilize them. As we will see in Sec. 5.1, critiques
from GPT-4V exhibit the following characteristics: (a) GPT-4V can identify a significant
portion of undesirable events, but it also produces inaccurate critiques, as reflected in its
relatively low precision rate; and (b) visual grounding errors are common and contribute to
the majority of inaccuracies, meaning that GPT-4V frequently criticizes events that never
occurred. Therefore, from the perspective of critique-taking agents, while attempting to
address these “hallucinated” critiques may not necessarily make an agent deviate from
optimal behaviors, it could be a waste of time. Additionally, since VLM critics may criticize
optimal behaviors based on hallucinated events, a system involving such critics will fail to
provide a clear notion of convergence, i.e., determining whether a desirable behavior has
been achieved. The remainder of this section will discuss how to address these challenges.

Augmenting VLM critics with grounding feedback. When it comes to tasks like identifying
potential negative events and their causes, currently there may not be more performant
models than state-of-the-art VLMs. However, this does not hold true for visual grounding.
For one, as noted in the OpenAI official document and several empirical studies (Chen et al.,
2024), GPT-4V may not match the performance of specialized vision models in specific types
of visual grounding tasks (Zhang et al., 2022; Kirillov et al., 2023). Moreover, accurately
grounding certain events may require additional information from modalities other than
images. For example, depth maps can provide more direct information about spatial
relationships between objects, such as collisions, distances, or relative positions. Similarly,
audio and robot sensory readings can be more informative about the contact that the robot’s
gripper exerts on other objects.

Based on the above analysis, we propose a practical pipeline to leverage VLM critics by
incorporating grounding feedback from a suite of specialized grounding modules. Firstly,
events in the critiques are extracted and sent to the most suitable specialized model(s)
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to check their existence in the robot’s behavior. The process of model selection could be
automated with an LLM (Zeng et al., 2022; Wu et al., 2023). Next, the grounding feedback,
which typically provides one bit of extra information (i.e., whether an event is present), is
returned to the VLM critic to continue the critique-extraction dialogue. As we will see in Sec.
5.3, when the grounding feedback is perfect, a precision rate of over 98% can be achieved.
In essence, this augmented pipeline shares the same principles as tool-augmented LLMs
(Parisi et al., 2022; Schick et al., 2023) and retrieval-augmented generation (Guu et al., 2020),
wherein LLMs and VLMs serve as a hub to manipulate information from more accurate
sources (Zeng et al., 2022; Chen et al., 2024). In this work, VLM critics initially suggest
potential negative events by retrieving approximately from its vast internal knowledge
and then refine the outputs with more precise grounding tools (which are not necessarily
generative models).

Integrating critiques into a closed-loop system. The development of general-purpose
policy models that can accept verbal instructions and corrective feedback is an ongoing area
of research. Some works have been able to utilize verbal feedback in specific problem setups
(Sharma et al., 2022; Cui et al., 2023; Bucker et al., 2023; Zha et al., 2023; Miyaoka et al.,
2023; Yow et al., 2024). For instance, RBAs (Guan et al., 2022b) and AlignDiff (Dong et al.,
2023) learn conditional reward or policy models that can implement relative concepts like
“take bigger stride.” However, there is currently no robot policy model that demonstrates
the same level of generality and flexibility as models in other domains, such as LLMs. An
additional discussion on the integration of critiques can be found in Appx. A.6.

Metrics Acc.

Positive Negative

GPT-4V 6.14% 92.98%

GPT-4V-Augmented 98.24% 78.07%

Table 1: Accuracy of GPT-4V critic on positive and
negative samples. GPT-4V-Augmented refers to
the experiment of augmenting GPT-4V with perfect
grounding feedback (Sec. 5.3).

In this work, we remain neutral on the
choice of underlying models to drive the
agent, as our main focus is on verbal cri-
tiques. Nevertheless, we present a vi-
able closed-loop system wherein Code-as-
Policies (Liang et al., 2023) is employed to
control the robot. In Code-as-Policies (CaP),
an LLM “programs” the robot’s motion by
invoking and adjusting input parameters
of a predefined library of control primitive
APIs. With this setup, a closed-loop system
can be constructed by repeating these steps:

(a) CaP synthesizes a control program as policy; (b) the robot executes the program in the
environment or, ideally, a faithful simulator; (c) a video recording of the rollout is collected
and sent to the VLM critic for review; and (d) the process terminates if no undesirable
behavior is detected; otherwise, the CaP agent is informed of the negative events.

5 Empirical Evaluation

This section will elaborate on the evaluation results, focusing particularly on results obtained
with GPT-4V as of January 2024. Alongside, an evaluation of Gemini has been conducted
but is limited because Gemini 1.0 Pro Vision was restricted to a maximum of 16 images per
conversation at the time of this work. For clarity, Gemini’s results are presented in Appx.
A.2. It is important to note that the objective of this study is to investigate the feasibility
of using state-of-the-art VLMs as behavior critics, rather than establishing comparisons
between different models.

5.1 Recall and precision

Table 2 presents the recall and precision rates of GPT-4V critic. These results are based
on the direct output from GPT-4V prior to any post-filtering. In terms of recall, GPT-4V
achieves a rate of 69.42%. We note that given the extensive pool of potential negative events
within household tasks, a recall rate of 69.42% already signifies a decent performance and a
high value in saving human efforts to eliminate undesirability. Nonetheless, this number
also suggests room for improvement, such as fine-tuning the model with a collective set
of undesirable events. Compared to recall, the precision rate of 62.21% highlights more
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practical challenges. A significant portion of the critiques do not accurately cover any
undesirable events in the videos, emphasizing the need for post-filtering (Sec. 4.3 and Sec.
5.3).

Metrics On negative samples

Recall Precision

GPT-4V 69.42% 62.21%

GPT-4V-Augmented 62.80% 98.02%

Table 2: Precision and recall of GPT-4V critic on
negative samples. GPT-4V-Augmented refers to
the experiment of augmenting GPT-4V with perfect
grounding feedback (Sec. 5.3).

Note that the recall-precision evaluation is
conducted solely with videos containing
negative events (hereafter referred to as
“negative samples”). It is also important to
examine how GPT-4V comments on videos
showcasing preferable behaviors (hereafter
referred to as “positive samples”). Table 1
shows GPT-4V’s accuracy in identifying the
presence of undesirable events among both
negative and positive samples. The results
clearly illustrate that GPT-4V always pro-
vides criticism, irrespective of the presence

or absence of undesirable behaviors. Upon reviewing the “critiques” on positive samples,
we find that almost all of them are invalid as they criticize “hallucinated” negative events.
This result further confirms that GPT-4V suffers from limited visual grounding capability,
and its critiques should not be directly used as an indication of “optimality”.

5.2 Insights into the distribution of error types

Figure 4: Distributions of error types. GPT-4V-
Augmented refers to the experiment of aug-
menting GPT-4V with perfect grounding feed-
back (Sec. 5.3).

Sec. 4.2 outlines the taxonomy of errors that
is used here to analyze the output patterns
of GPT-4V critic (on negative samples). Fig.
4 displays the number of errors per category.
Notably, within 262 critiques, we find 116
instances of visual-grounding errors, high-
lighting a major limitation of GPT-4V in un-
derstanding videos. Visual grounding er-
rors also occur significantly more frequently
compared to other error types. However,
we would interpret this as a positive find-
ing since grounding-related errors are more
manageable to address than others (see dis-
cussions in Sec. 4.3). Additionally, we find
that only 69.05% of the critiques capturing

undesirability can accurately identify both the negative events and their causes (by provid-
ing operationalizable explanations). Hence, at present, it is more reliable to consider the
critique as a means of detecting undesirability rather than providing actionable advice.

5.3 Augmenting VLM critics with grounding feedback

Most analyses so far suggest the need to augment VLMs with improved grounding capa-
bilities (more discussions in Sec. 4.3). As a preliminary study, we assess whether GPT-4V
critic can refine its output when perfect grounding feedback is provided (by human par-
ticipants for experimental purposes). To achieve this, we continue the critique-elicitation
conversation with feedback messages mentioning that “A perfect perception model has
been used to verify the existence of events in the critiques.” Each grounding feedback is
provided in the format of “The following event is not detected: ⟨event description⟩.” Results
are shown in Table 1, Table 2, and Fig. 4. With perfect grounding feedback, the precision
rate increases significantly to over 98%, although there is a slight decrease in recall. Upon
manual examination, we find that this is because GPT-4V tends to simply delete critiques
that contain “hallucinated” information instead of refining them (e.g., by generating a better
guess of causes). Moreover, grounding feedback also substantially reduces the occurrence
of false alarms on positive samples (evidenced by the accuracy of 98.24% in determining the
presence of undesirability.).
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5.4 Additional evaluations

This subsection focuses on three additional experiments. The first experiment aims to
assess the feasibility of complementing verbal critiques with preference labels (see Sec. 4.1).
Our results show that (a) when contrasting a negative sample with a positive sample, in
95.61% of time, GPT-4V manages to prefer the positive one; (b) when comparing pairs of
negative samples or pairs of positive samples, GPT-4V always establishes invalid rankings
within the pairs by “hallucinating” that one sample is perfect and one is flawed, as seen
in its justifications. The positive aspect is that GPT-4V can accurately select near-optimal
behaviors over suboptimal ones even though it tends to establish unnecessary orderings in
other cases. More details of this experiment are explained in Appx. A.1.

Scissor
Handover

Bread
Grasping

Snack
Picking

Initial
Policy

Updated
Policy

Figure 5: Illustrations of the initial policies
and the updated policies in response to verbal
critiques. A more detailed visualization can
be found in Fig. 7 in Appendix.

In the second experiment, instead of feed-
ing videos into GPT-4V, we provide a nar-
ration of the video (see Sec. 4.2 and Appx.
A.2) and ask GPT-4 to identify which steps
contain undesirable behaviors. The goal of
this study is to verify that (a) the text back-
bone of GPT-4V has good understanding
of what constitutes undesirable and well-
aligned behaviors, and (b) the primary ob-
stacle lies within visual grounding. Out of
114 test cases, GPT-4 accurately locates and
explains the undesirable behavior in 110
cases. We note that although this may not
be a rigorous evaluation as human-written
narrations already provide strong informa-
tion filtering, it does shed some light on the

current bottleneck of VLMs.

Lastly, we demonstrate a closed-loop system with CaP in five table-top manipulation tasks.
Details of our real-robot experiment are presented in Appx. A.3. Overall, a GPT-4V critic
manages to catch various undesirability in motion plans given by a CaP agent. Yet, there
are instances where CaP fails to reach a preferable behavior. In a scenario where the robot
is tasked with taking a spoon out of a jar, the CaP agent neglects the step of waiting for
the sauce residue to drip back into the jar before repositioning the spoon. Upon receiving
an unoperationalizable critique “the robot caused pasta sauce to drip onto the counter while
transferring the spoon from the jar to the bowl”, the CaP agent continues to move the spoon
immediately after extracting it, albeit via an alternative path. This reveals the overall
performance may also be limited by the planner’s capability to infer the causes of negative
events.

6 Conclusion

We conducted a thorough investigation into the feasibility of using VLMs as behavior critics
to identify common undesirability in videos of robot behaviors or to express preferences
over video pairs. We evaluated GPT-4V on our benchmark that covers diverse cases of
undesirability. Our findings not only demonstrate the feasibility but also comprehensively
characterize the strengths and limitations of GPT-4V critic, which provide practical guide-
lines for effectively utilizing the critiques.

Going forward, it would be beneficial to explore the practical implementation of VLM
behavior critics. While we have shown that the issue of low precision can be mitigated with
perfect grounding feedback, further research is needed to determine the optimal choice
of external grounding modules and to develop mechanisms for managing noisy feedback.
Also, the integration of verbal critiques into the policy generator (i.e., CaP) is performed
in a relatively simple way in this work. Additionally, it would be meaningful to test if we
can turn the critic into a stronger “universal” human-preference critic by fine-tuning a VLM
with undesirability data collected through collaborative efforts from the community.
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A Appendix

Figure 6: Additional failure cases of GPT-4V critic.

A.1 Preference elicitation

Fig. 8 shows the prompt template for instructing VLMs to provide preferences over trajectory
pairs. It follows a similar structure as the prompt for critique elicitation, with the addition
of frames from one extra video. Similar to critique elicitation (Sec. 4.1), the examples used
to illustrate the output format are fixed across all test cases. There are three examples
corresponding to the following conditions: (a) one of the trajectories is preferable to the
other; (b) neither trajectory is desirable; and (c) both trajectories are desirable.

As mentioned in Sec. 4.2, for each task, we have one positive sample along with two negative
samples that exhibit the same undesirable behavior(s). Accordingly, in the evaluation, we
test whether GPT-4V can give accurate preference labels in the following cases: (a) when
pairs of positive and negative samples (denoted as positive-negative) are given; (b) pairs
of negative samples (denoted as negative-negative) are given; and (c) pairs of positive
samples (denoted as positive-positive) are given. Note that, to create positive-positive pairs,
we simply horizontally flip each frame of a positive sample. Also note that for negative-
negative samples, we expect GPT-4V to not establish any ordering within the pairs unless
valid justifications are provided. For positive-positive samples, given how the pairs are
formed, we expect GPT-4V to state both videos are equally preferred.

Table 4 summarizes the evaluation results (i.e., accuracy scores of preference labels). Results
suggest that GPT-4V can select the positive samples from positive-negative pairs with high
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Time

Scissor
Handover GPT-4V Critic: The robot is handing over the scissors with the points facing towards the human, which could potentially cause injury. 

GPT-4V Critic: The candies spilled out from an already present opening in the bag. 
Snack

Grasping

GPT-4V Critic: The robot's gripper appears to compress the bread too much, potentially deforming it. 
Bread

Grasping

GPT-4V Critic: The robot's gripper is positioned with the sharp edge of the knife facing upwards during the release, which is not the 
safest orientation for placing a knife onto a surface. 

Knife
Putting Down

Updated
Policy
Iter 2

GPT-4V Critic: The robot's gripper releases the knife from a height that could cause the knife to bounce or change position on the 
cutting board, potentially posing a safety risk. 

Updated
Policy
Iter 1

Initial
Policy

Updated
Policy

Initial
Policy

Initial
Policy

Updated
Policy

Initial
Policy

Updated
Policy

Figure 7: Visualization of the tasks and policies.

Recall Precision

GPT-4V (Preference) 65.29% 60.65%

Table 3: Recall rate and precision rate of critiques when GPT-4V contrasts positive samples with
negative samples

positive-negative positive-positive negative-negative

GPT-4V (Preference) 95.61% 3.7% 0%

Table 4: Accuracy scores of preference labels generated by GPT-4V
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Figure 8: Preference-elicitation prompt.

Figure 9: Critique-elicitation prompt.

accuracy. However, in two other conditions, GPT-4V shows subpar performance. GPT-4V
always establishes invalid rankings within negative-negative and positive-positive pairs
by “hallucinating” that one sample is perfect and one is flawed, as seen in its justifications.
Along with accuracy scores, we also report the recall and precision rates (Table 3), and
the error types within the justifications (Fig. 10) generated when contrasting negative
samples with positive samples. The results resemble those obtained when GPT-4V criticizes
individual videos, indicating that the ways of extracting critiques do not significantly alter
the output pattern.

Metrics Acc. Recall Precision
Positive Negative

Gemini Pro 71.92% 42.98% 18.18% 44.9%

Table 5: Evaluation results of Gemini Pro critic.
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Figure 10: Distributions of error types within preference justifications.

A.2 Results of Gemini 1.0 Pro Vision

Table 5 shows the performance of Gemini critic in terms of critique accuracy, recall, and
precision. The evaluation setup is identical to that of GPT-4V (Sec. 5.1). Compared to GPT-
4V, Gemini tends to be “over-optimistic” about the video, meaning that it more frequently
states there is no undesirability presented. However, this over-optimism also leads to a
significantly lower recall rate, as many undesirable events are not captured. Overall, the
results indicate that there is still a performance gap between the Pro version of Gemini and
GPT-4V, suggesting that GPT-4V currently is a better choice for behavior critics. We did not
evaluate Gemini Pro for preference elicitation due to the restriction on the number of frames
per conversion.

A.3 Robot experiment details

We use a UR5 robot and Robotiq-85 gripper with operational space control. Accordingly, the
CaP agent is provided with APIs that can control the robot to translate freely on xyz, rotate
regarding a specified axis, and adjust the gripper (see details in the second paragraph). We
consider the following tasks within table-top setups: (a) scissor handover; (b) lifting an
opened bag; (c) bread grasping; (d) knife placing; and (e) spoon picking. In scissor handover,
the CaP agent occasionally generates policies that point the sharp end of the scissors at a
human. After receiving one critique, the agent manages to rotate the end-effector by 180
degrees. In lifting an opened bag, the agent occasionally makes the mistake of gripping the
bottom of the bag, leading to spills. After a few attempts (3 in avg.) to grasp different edges
of the bag, the agent manages to hold the opening. In bread grasping, the agent initially
applies excessive force, resulting in significant deformation of the bread. After ∼5 iterations,
the agent manages to reduce the force to a minimal value. Likewise, in knife placing, the
agent starts with a policy that causes forceful contact between the knife tip and the cutting
board. After 2 iterations, the agent successfully lowers its gripper and rotates the gripper by
90 degrees, ensuring a gentle placement of the knife and preventing contact between the tip
and the cutting board.

We provide the following primitive control APIs to CaP agent:

• get xy(object), which queries a top-down camera and pre-trained vision-language
models to get the location of an object on the table.

• move gripper to(x, y, z), which moves the robot end-effector to the desired x, y, z in
the space.

• control gripper(force, position), which controls the gripper and close it to indicated
position with specified force.

• rotate(degree), which rotates the end-effector according to the input degrees.
• pause(second), which does nothing and hold the robot for indicated seconds.

We strictly follow the prompt structure outlined in the Code-as-Policies paper. When it
comes to code examples in prompts, we use examples drawn from a pool of policies for tasks
within the same category. For instance, for bread grasping and spoon picking, examples may
come from tasks such as picking up a Coke can, picking up a bag of chips, and picking up
bread packaged in different ways. Similarly, for scissor handover, the example tasks include
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handing over a tomato, handing over a cup of water, and handing over a pair of scissors
from different initial positions. For knife putting down, the examples are putting-related
ones, such as putting down a banana onto a book, putting down an apple, and putting
down a knife held in diverse ways by the robot initially.

A.4 Examples of human-written narrations

Instruction: pick up the ceramic bowl and put in the small box for storing ceramic
household items

• t=0: The robot’s gripper reaches toward the ceramic bowl

• t=1: The robot’s gripper closes its gripper on the rim of the ceramic bowl, securely
grasping it

• t=2: The robot lifts the bowl to a few inches above the top of the container; the robot
twists its gripper such that the bottom of the bowl faces to the right

• t=3: The robot drops the bowl into the container; it lands on its side, bounces, and
then lands upright in the container

• t=4: The robot’s gripper exits the frame

Instruction: use the spatula to stir-fry the food thoroughly

• t=0: The robot’s gripper grasps a spatula and prepares to stir-fry food in a pan; the
sound of the gas-powered flame fills the otherwise silent room

• t=1: The robot begins to stir-fry the food; a yellow vegetable jumps out of the pan and
lands on the grating

• t=2: The robot continues to stir-fry the food; the vegetables turn and flip over inside
the pan

Instruction: move the turner and place it at the left edge of the table

• t=0: the robot’s gripper approaches the spatula and hovers over its handle

• t=1: the robot closes its gripper and securely grasps the spatula

• t=2: the robot lifts the gripper and bumps into the pot with eggs in it, moving it a few
inches closer to the edge of the table

• t=3: the robot, still gripping the spatula, moves around the pot and places the spatula
on the other side of the pot

• t=4: the robot withdraws its gripper from the frame

Instruction: put the facial cleanser onto the white tray

• t=0: The robot’s gripper approaches a bottle of lotion which sits by itself on a tray

• t=1: The robot’s gripper pumps lotion; the lotion falls partially onto the bottle and also
onto the tray

• t=2: The robot’s gripper adjusts itself to securely grasp the bottle of lotion

• t=3: The robot lifts the bottle of lotion and places it into the white tray with all the
other lotions

Instruction: pour some orange juice into the guest’s glass

• t=0: the robot’s gripper is firmly grasping a glass of orange juice

• t=1: the robot, while approaching the cup, spills some orange juice onto the table

• t=2: the robot’s gripper tilts the glass to pour the juice into the cup

• t=3: the robot pours all the orange juice from the glass into the cup

• t=4: the robot’s gripper tilts the glass back to right side up and lifts the glass out of
frame
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A.5 A detailed description of the critique-elicitation prompt

Each ⟨framei⟩ tag in the prompt template (Fig. 9) corresponds to an image. In our bench-
mark, each video showcases a policy for a short-horizon manipulation task, and we find
that 30 frames adequately capture the essence of each policy. Hence, each input contains a
maximum of 30 frames, and each frame undergoes preprocessing to ensure that its longest
side does not exceed 512 pixels. Also, adjustments may need to be made based on the VLM
being used. For example, Gemini Pro currently only supports 16 frames per conversation.

Moreover, the examples used to illustrate the output format are fixed across all test cases.
We acknowledge the possibility of marginally improving overall performance by retrieving
more contextually relevant examples from a pool of pre-recorded undesirable behaviors.
However, it is important to remember that the main reason for using VLMs as behavior
critics is the wide scope of potential undesirability. Therefore, it is crucial to assess the
performance of behavior critics under an “unforeseeable” setting.

A.6 Additional discussion on integrating critiques into closed-loop systems

Apart from directly taking verbal critiques, one may also discard the textual description of
the undesirable behaviors and convert the critiques into scalar training signals like binary
preference labels, e.g., by assuming a trajectory with fewer undesirable events is preferred
over others. The preference labels can then be used within frameworks like preference-
based RL (Christiano et al., 2017; Zhang et al., 2019; Hejna et al., 2023). Here, we choose
not to dig into this direction because the inability to accept explicit verbal guidance is a
fundamental cause of high sample complexity in preference-based policy learning, especially
in hard-exploration problems like continuous control (Kambhampati, 2021).

In our experiment, we showcase a candidate closed-loop system with Code-as-Policies
as the planner. We would reiterate that we do not restrict the selection of policy models,
and the main reason for employing CaP is the underlying LLM’s strong ability to adapt in
response to verbal critiques, even though CaP may be less expressive compared to other
waypoint-based approaches (Padalkar et al., 2023; Team et al., 2023).
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