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Abstract
In this paper, we address the challenge of de-
termining the layer-wise sparsity rates of large
language models (LLMs) through a theoretical
perspective. Specifically, we identify a critical
issue of “reconstruction error explosion” in ex-
isting LLMs sparsification methods. This refers
to the cumulative effect of reconstruction errors
throughout the sparsification process, where er-
rors from earlier layers propagate and amplify in
subsequent layers. As a result, the overall recon-
struction error increases significantly, leading to
a substantial degradation in model performance.
Through theoretical analysis, we derive a simple
yet effective approach to layer-wise sparsity allo-
cation that mitigates this issue. Our method uses
a monotonically increasing arithmetic progres-
sion, reducing the process of determining sparsity
rates for multiple layers to the determination of
a single common difference hyperparameter. Re-
markably, this allows for the optimal layer-wise
sparsity rates to be identified with just a few trials.
Both our theoretical analysis and experimental
results demonstrate that this sparsity allocation
scheme is near optimal. Extensive experiments
show that our method significantly improves the
performance of sparse LLMs across various ar-
chitectures, outperforming existing layer-wise
sparsity methods. Furthermore, it enhances the
performance of various compression techniques
and is applicable to vision and multimodal mod-
els. Notably, our method achieves a reduction of
52.10 in perplexity for the 70% sparse LLaMA2-
7B model obtained via Wanda, improves aver-
age zero-shot accuracy by 10.50%, and deliv-
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ers speedups of 2.63× and 2.23× on CPU and
GPU, respectively. Code is available at https:
//github.com/wzhuang-xmu/ATP.

1. Introduction
Large Language Models (LLMs) have demonstrated out-
standing capabilities in various natural language processing
tasks (Meta, 2024; Yang et al., 2024; Liu et al., 2024a).
However, their vast number of parameters and high com-
putational demands present significant challenges to model
deployment, impeding further applications (Zhu et al., 2024;
Wang et al., 2024). Network sparsity (Rao et al., 2021;
Paul et al., 2022; Huang et al., 2025b) methods remove less
important parameters from LLMs, enabling model compres-
sion without sacrificing performance. This can reduce the
model’s memory footprint and computational complexity
(Li et al., 2024a; An et al., 2024). Existing sparsity methods
for LLMs, such as SparseGPT (Frantar & Alistarh, 2023)
and Wanda (Sun et al., 2023), adopt a post-training approach
which prune all weights in one-shot and can obtain sparse
LLMs without the need for additional fine-tuning.

However, these sparsity methods set a uniform layer-wise
sparsity rate for different layers, without considering the
varying importance of each layer, which harms the accuracy
of sparse LLMs. To address the above issue, many studies
have proposed various methods to determine the layer-wise
sparsity rate of LLMs. Based on their methodological de-
signs, we categorize these methods into two main groups:

Metric based methods. These methods determine the im-
portance of each layer of LLMs through hand-crafted met-
rics, thereby obtaining the sparsity rate of each layer. For ex-
ample, OWL (Yin et al., 2023) proposes an outlier weighted
layer importance metric. By setting the sparsity rate to be
inversely proportional to the outlier ratio, it effectively pro-
tects the layers with a higher ratio of outliers. AlphaPruning
(Lu et al., 2024) utilizes the heavy-tailed self- regularization
theory (Martin & Mahoney, 2019), especially the shape of
the empirical spectral density (Martin et al., 2021) of the
weight matrix, to determine the importance of each layer of
LLMs. ALS (Li et al., 2024c) proposes an importance met-
ric based on mutual information (Tschannen et al., 2019),
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Figure 1. (Left) shows the comparison of reconstruction error among different layer-wise sparsity methods. All methods face the problem
of “reconstruction error explosion”; however, our method achieves lower reconstruction error compared to other methods. (Right)
presents a comparison between our method and other layer-wise sparsity methods. The metric-based method calculates the importance
of each layer to obtain the sparsity rate. However, this method is heuristically designed by human experts and is not optimal. And
the search-based method requires a large number of iterative searches, which is time-consuming. In contrast, we analyze the causes
of “reconstruction error explosion” from a theoretical perspective, and deduce theoretically that using a monotonically increasing
arithmetic progression to determine the layer-wise sparsity rate can alleviate the problem of “reconstruction error explosion”.

and sets a higher sparsity rate for layers with higher mutual
information. Although these metrics have proven their effec-
tiveness experimentally, manually designing metric requires
extensive validation and complex calculations are needed
to obtain the sparsity rate of each layer. Most importantly,
most of these methods lack theoretical analysis, making it
impossible to ensure that the solutions obtained are optimal.

Search based methods. In addition to these heuristics
designed by humans, recently, there have also been some
methods that adopt a search-based approach to determine
the layer-wise sparsity rate of LLMs. For example, DSA (Li
et al., 2024b) develops an expression discovery framework
to explore potential sparsity rate allocation strategies and
obtains layer-wise sparsity allocation function by search-
ing. However, the evolutionary search method employed
by DSA requires 2000 iterations. For large-scale LLMs
with a vast number of parameters, this demands a search
process lasting several days, which incurs a significant cost.
In addition, in order to obtain the final allocation function,
DSA designs a complex search space and process, which
means the effectiveness of the method heavily depends on
the experience of human experts.

In this paper, we rethink the approach of determining the
layer-wise sparsity rate of LLMs, and derive the layer-wise
sparsity rate of LLMs from reconstruction error perspective.
Specifically, we first prove that increasing the sparsity rate
leads to an increase in the reconstruction error of the cor-
responding layer. Additionally, we show that an increase
in the reconstruction error of one layer causes an increase
in the reconstruction error of subsequent layers. This im-
plies that increasing the sparsity rate of earlier layers not
only increases the reconstruction error of the corresponding

layer, but also leads to an increase in the reconstruction
errors of all subsequent layers. As the network propagates
forward, the reconstruction errors accumulate, causing the
total reconstruction error to grow significantly, thus causing
“reconstruction error explosion” (See the left in Figure 1).

Through the above theoretical analysis, we provide a simple
yet effective rule for determining the layer-wise sparsity
rates of LLMs: the sparsity rate should be lower in ear-
lier layers, and the layer-wise sparsity rates should follow
a increasing pattern. This approach effectively alleviates
the issue of “reconstruction error explosion”, resulting
in a well-performing sparse LLM. To achieve this, we use
a monotonically increasing arithmetic progression to deter-
mine the sparsity rates for all layers of LLMs and employ
grid search to find the common difference of the arithmetic
progression. Since the range of valid values for the com-
mon difference is narrow, our search is highly efficient, and
after only a few attempts, we can determine the common
difference that yields the best accuracy.

Furthermore, we prove that the total reconstruction error
obtained from the monotonically increasing sparsity scheme
is less than that of any non-monotonically increasing spar-
sity scheme. This indicates that our method is theoretically
close to the optimal solution. Additionally, we compare
our sparsity rate scheme with the optimal solution obtained
through Bayesian search, we find that our scheme is close
to the optimal solution found by search. This indicates that
our method is empirically close to the optimal solution.

To evaluate the effectiveness of our ATP 1 method, we con-
1Determining layer-wise sparsity for LLMs through A

Theoretical Perspective (ATP).
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duct extensive experiments on LLMs of various architec-
tures, with parameter counts ranging from 6.7 billion to 70
billion. Our evaluation metrics include perplexity, average
accuracy across seven zero-shot datasets, and performance
on arithmetic and knowledge reasoning tasks. Our ATP
method demonstrate substantial improvements over existing
post-training sparsity techniques, significantly surpassing
other layer-wise sparsity methods. Notably, ATP reduce
the perplexity of the 70% sparse LLaMA2-7B pruned using
Wanda (Sun et al., 2023) by 52.10 and increase average zero-
shot accuracy by 10.50%, outperforming the state-of-the-art
AlphaPruning method (Lu et al., 2024) by 6.71 and 2.46%,
respectively. Additionally, ATP achieved 2.63× and 2.23×
speedups on CPU and GPU, respectively, and require only
18 minutes to compute layer-wise sparsity rates. Further-
more, we evaluate ATP’s enhancements on various compres-
sion techniques, including N:M sparsity, structured pruning,
and network quantization, as well as its benefits for sparse
multimodal and sparse vision models. These experimental
results clearly demonstrate that ATP provides substantial
performance improvements for compressed models.

2. Related Work
LLMs Sparsity. Before the advent of LLM, a variety of
sparsity techniques had been developed to compress models
such as ResNet (Yu et al., 2022b; Zhang et al., 2024) , BERT
(Xia et al., 2022; Li et al., 2023), and ViT (Yu et al., 2022a;
He et al., 2024). Meanwhile, researchers have developed
several post-training sparsity methods specifically for LLMs.
For example, SparseGPT (Frantar & Alistarh, 2023) uses the
inverse of the Hessian matrix for pruning and pruned weight
updates. Wanda (Sun et al., 2023) uses a metric that com-
bines weight magnitude and input activation to prune LLMs,
while Pruner-zero (Dong et al., 2024) searches for symbolic
pruning metric using genetic programming. Additionally,
ALPS (Meng et al., 2024) uses an Alternating Direction
Method of Multiplier (ADMM) (Boyd et al., 2011)-based
approach to prune LLMs in one-shot. The above methods
focus on determining the mask within the layer of LLMs
and setting a uniform layer-wise sparsity rate. Our work
study the layer-wise sparsity allocation problem in sparse
LLMs from the perspective of reconstruction error, thereby
effectively improving the accuracy of above methods.

Layer-wise Sparsity. Layer-wise sparsity rate determines
the number of weights to be retained in each layer of the
network (Lee et al., 2020; Frankle et al., 2020; Liu et al.,
2022a; Huang et al., 2025a). To determine the layer-wise
sparsity rate in LLMs, OWL(Yin et al., 2023) proposes an
outlier-weighted metric, Alphapruning (Lu et al., 2024) uses
heavy-tailed self-regularization theory (Martin & Mahoney,
2019), ALS (Li et al., 2024c) proposes a layer redundancy
metric based on mutual information (Kraskov et al., 2004),

DSA (Li et al., 2024b) develops an expression discovery
algorithm to explore potential sparsity allocation. However,
the above metric and search based methods all lack theoreti-
cal proof of effectiveness and require complex calculations
or search to obtain layer-wise sparsity rate. In comparison,
our method directly derives the layer-wise sparsity rates
based on a monotonically increasing arithmetic progres-
sion from the perspective of reconstruction error, requiring
only the determination of the common difference to quickly
obtain the sparsity rate for each layer. More importantly,
we have validated the effectiveness of the above method
through rigorous proof.

Reconstruction Error. Reconstruction error is a metric
for measuring the difference between the output of a com-
pressed network and that of the original network. A smaller
reconstruction error generally implies that the compressed
network can better preserve the performance of the original
network (Yun & Wong, 2021; Hubara et al., 2021; Ma et al.,
2023b). In order to minimize the reconstruction error of
sparse LLMs, SparseGPT (Frantar & Alistarh, 2023) pro-
poses a mask selection and weight update algorithm based
on Hessian inverse and DSnoT (Zhang et al., 2023) proposes
a training-free dynamic weight pruning and growing algo-
rithm. In this paper, we explore the “reconstruction error
explosion” problem in sparse LLMs. Specifically, the re-
construction error accumulates and magnifies across layers,
leading to an extremely large overall reconstruction error,
which undermines the model’s accuracy. Therefore, we pro-
pose our layer-wise sparsity allocation method to alleviate
the above “reconstruction error explosion” problem.

3. Methodology
Notation. In this paper, we use bold typeface indicates
matrices (e.g.,W,X) and calligraphic font represents loss
functions or models (e.g.,L,M).

3.1. Preliminaries

Without loss of generality, we take each layer in the LLMs
as the basic unit of analysis. These layers contain modules
such as Attention (Vaswani et al., 2017), MLP (Popescu
et al., 2009), LayerNorm (Lei Ba et al., 2016), and residual
connections (He et al., 2016), etc. We represent a layer’s
computation as WX , where W is the layer’s weight and
X is the input. Consider an LLM composed of L layers,
we define the reconstruction error of the i-th layer (i =
1, 2, · · · , L) as follows:

L(W i,Xi) =
∥∥∥W iXi − W̃ iX̃i

∥∥∥2
F

(1)

where W i ∈ Rcout×cin and Xi ∈ Rcin×d are the weights
and input of the i-th layer respectively. W̃ i and X̃i are the
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corresponding sparse versions, where cin and cout represent
the number of input and output feature dimensions, d is the
hidden dimension, and ∥·∥F is Frobenius norm.

Existing post-training sparsity methods all attempt to
minimize the reconstruction error of sparse LLMs (e.g.,
SparseGPT and Wanda) and a large amount of experimental
evidence in the these papers indicates that a sparse LLM
with good accuracy often has a low reconstruction error.

In the next section, we reveal that the existing post-training
sparsity methods all have the problem of “reconstruction
error explosion”.

3.2. “Reconstruction Error Explosion” in Sparse LLMs

First, we analyze the relationship between the sparsity rate
and the reconstruction error. Briefly, a higher sparsity rate
leads to a higher reconstruction error. Formally, we propose
Theorem 3.1.
Theorem 3.1 (Effect of increased sparsity on reconstruc-
tion error). When the input is the same, increasing the
sparsity of the weights in the i-th layer will lead to an in-
crease in the reconstruction error of this layer.

Proof of Theorem 3.1. We only consider the effect of sparse
weights on the reconstruction error, and we ignore the error
caused by the input at this time. Therefore, we consider
the impact of the sparse weights of the i-th layer on the
reconstruction error when the input is the same. That is,
X̃i = Xi. Then, the reconstruction error of the i-th layer
is expressed as:

L =
∥∥∥W iXi − W̃ iXi

∥∥∥2
F

(2)

Consider two weights W̃
(1)

i and W̃
(2)

i of different sparsity,

such that W̃
(1)

i has lower sparsity (i.e., has fewer zero ele-
ments). The difference in reconstruction error correspond-
ing to these two sparse weights is:

L(1) − L(2) =

∥∥∥∥W iXi − W̃
(1)

i Xi

∥∥∥∥2
F

−
∥∥∥∥W iXi − W̃

(2)

i Xi

∥∥∥∥2
F

=

∥∥∥∥W iXi − W̃
(1)

i Xi

∥∥∥∥2
F

−
∥∥∥∥(W iXi − W̃

(1)

i Xi) + (W̃
(1)

i Xi − W̃
(2)

i Xi)

∥∥∥∥2
F

= −2⟨(W i − W̃
(1)

i )Xi, (W̃
(1)

i − W̃
(2)

i )Xi⟩F

−
∥∥∥∥W̃ (1)

i Xi − W̃
(2)

i Xi

∥∥∥∥2
F

(3)

The first term of the inner product, (W i − W̃
(1)

i )Xi,
represents the error introduced by sparsifying the orig-

inal weight matrix W i to obtain a less sparse version

W̃
(1)

i . The second term, (W̃
(1)

i − W̃
(2)

i )Xi, quantifies

the additional error resulting from further sparsifying W̃
(1)

i

to derive an even sparser matrix W̃
(2)

i . Since both er-

rors (W i − W̃
(1)

i )Xi and (W̃
(1)

i − W̃
(2)

i )Xi are gen-
erated through the same sparsification method, they point
in similar directions within the vector space. This align-
ment ensures that their Frobenius inner product satisfies

⟨(W i − W̃
(1)

i )Xi, (W̃
(1)

i − W̃
(2)

i )Xi⟩F > 0. And since∥∥∥∥W̃ (1)

i Xi − W̃
(2)

i Xi

∥∥∥∥2
F

> 0, therefore:

L(1) − L(2) < 0 (4)

Therefore, the reconstruction error L(1) for lower sparsity
is smaller than L(2) for higher sparsity. In other words,
increasing the sparsity will lead to an increase in the re-
construction error of this layer. So, we have completed the
proof of the above theorem.

On the other hand, we find that there is an cumulative effect
of reconstruction error during the sparsification process. It
is manifested as the reconstruction error in LLMs showing
an increasing trend due to the influence of previous sparse
layers. In other words, if the reconstruction error of the
previous layer increases, the reconstruction error of the
subsequent layers will also increase accordingly. Formally,
we propose Theorem 3.2.

Theorem 3.2 (The cumulative effect of reconstruction
error). When the reconstruction error of the i-th layer
increases, it leads to an increase in the lower bound of the
reconstruction error for the (i+ 1)-th layer.

To prove Theorem 3.2, we need to define the following
lemma:

Lemma 3.3. Let A ∈ Rm×n and B ∈ Rn×p be arbitrary
matrices. Then, it holds that ∥AB∥2F ≥ σ2

min(A) ∥B∥2F ,
where σmin(A) denotes the smallest non-zero singular
value of A.

The proof of the Lemma 3.3 can be found in Appendix B.
Now we formally prove Theorem 3.2.

Proof of Theorem 3.2. The reconstruction error for the (i+
1)-th layer can be expressed as:

L(W i+1,Xi+1) =
∥∥∥W i+1Xi+1 − W̃ i+1X̃i+1

∥∥∥2
F

=
∥∥∥(W i+1 − W̃ i+1)Xi+1 + W̃ i+1(Xi+1 − X̃i+1)

∥∥∥2
F
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=
∥∥∥(W i+1 − W̃ i+1)Xi+1

∥∥∥2
F

+
∥∥∥W̃ i+1(Xi+1 − X̃i+1)

∥∥∥2
F

+ 2tr((W i+1 − W̃ i+1)Xi+1)
⊤(W̃ i+1(Xi+1 − X̃i+1))

(5)
Since the third term is the trace of the product of two matri-
ces, the first and second term is the square of the Frobenius
norm, and considering that the weights and inputs in LLMs
are matrices with large dimensions, the magnitude of the
first and second term is much greater than the third term, so
we ignore the third term and get:

L(W i+1,Xi+1) ≈
∥∥∥(W i+1 − W̃ i+1)Xi+1

∥∥∥2
F

+
∥∥∥W̃ i+1(Xi+1 − X̃i+1)

∥∥∥2
F

(6)

Since
∥∥∥(W i+1 − W̃ i+1)Xi+1

∥∥∥2
F
> 0. Therefore:

L(W i+1,Xi+1) >
∥∥∥W̃ i+1(Xi+1 − X̃i+1)

∥∥∥2
F

(7)

According to Lemma 3.3, we get:

L(W i+1,Xi+1) > σ2
min(W̃ i+1)

∥∥∥(Xi+1 − X̃i+1)
∥∥∥2
F

= σ2
min(W̃ i+1)

∥∥∥(W iXi − W̃ iX̃i)
∥∥∥2
F

= σ2
min(W̃ i+1)L(W i,Xi)

(8)
Since σ2

min(W̃ i+1) > 0, we have proven that the increase
of the reconstruction error of the i-th layer will lead to the
increase of the lower bound of the reconstruction error of
the (i+ 1)-th layer.

Theorem 3.2 shows that an increase in the reconstruction
error of the previous layer in a sparse LLM usually leads to a
further increase in the lower bound of the reconstruction er-
ror of the subsequent layer. In practice, this often means that
an increase in the reconstruction error of the previous layer
will lead to an increase in the reconstruction error of the sub-
sequent layer. We have also observed this phenomenon in
the left of Figure 1. We can see that when the reconstruction
error of the earlier layers is smaller, the reconstruction error
of the subsequent layers is also smaller. Conversely, when
the reconstruction error of the earlier layers is larger, the
reconstruction error of the subsequent layers is also larger.

According to Theorems 3.1 and 3.2, we can easily get the
following Theorem 3.4:
Theorem 3.4 (Impact of the sparsity of the previous layer
on the reconstruction error of the next layer.). Increasing
the sparsity of the i-th layer will lead to an increase in the
lower bound of the reconstruction error of the (i + 1)-th
layer.

Proof of Theorem 3.4. According to Theorems 3.1 and 3.2,
we have the following relationship:

sparsity of layer i ↑=⇒ L(W i,Xi) ↑

=⇒ L(W i+1,Xi+1) > σ2
min(W̃ i+1)L(W i,Xi) ↑ .

(9)
Therefore, we complete the proof of Theorem 3.4.

To summarize all the above, we can get the following logical
chain of our paper: sparsity rate of 1-st layer ∝ reconstruc-
tion error of 1-st layer ∝ reconstruction error of L-th layer
∝ total error ∝ accuracy loss. That is, when the sparsity
rate of the 1-st layer increases, it will lead to an increase
in the reconstruction error of this layer. As the reconstruc-
tion error accumulates continuously from the 1-st layer to
the L-th layer, the reconstruction error of the L-th layer
also increases accordingly. Then, the reconstruction errors
of all layers of the model will exhibit an explosion phe-
nomenon, resulting in a serious decline in the accuracy of
the sparse model. We refer to the above phenomenon as the
“reconstruction error explosion”. This phenomenon can
be observed on the left side of Figure 1.

From the above theoretical analysis, we understand that
the earlier layers are more important than the later layers.
Setting a lower sparsity rate for the previous layers helps
alleviate the problem of “reconstruction error explosion”.
In the next section, we will introduce our method of deter-
mining the layer-wise sparsity rate in detail.

3.3. Discussion about the Rationality of Theoretical
Modeling

In Sec. 3.1, we represent a Transformer layer’s computa-
tion as WX . The Transformer layer includes components
such as Attention, MLP, nonlinearities, and layer normal-
ization. Due to the more complex nonlinear calculations
in a Transformer layer, there are differences between theo-
retical analysis based on WX and the actual architecture.
However, our analysis remains reasonable for the following
reasons:

1. The theoretical modeling of WX is sufficient to an-
alyze the layer’s reconstruction error. Our method
sparsifies the linear layers in Attention and MLP mod-
ules, while other components remain unaffected. These
linear layers account for the majority of the parameter
count and significantly influence the computation re-
sults of the layer. The sparsified linear layers dominate
the computation of the reconstruction error for each
layer. Although various nonlinear operations exist in
the actual architecture, they typically do not fundamen-
tally alter the reconstruction error of each layer and
have minimal impact on theoretical analysis. There-
fore, modeling the primary computation of a layer as
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WX is sufficient for analyzing the reconstruction er-
ror of that layer. This is also sufficient for us to analyze
how reconstruction errors accumulate and propagate
across the network.

2. Transformer’s linear modeling is supported by ex-
isting research. Razzhigaev et al. (Razzhigaev et al.,
2024) employs Procrustes similarity analysis to dis-
cover that the embedding transformations between se-
quential layers in LLMs such as GPT, LLaMA, OPT,
and BLOOM exhibit a near-perfect linear relationship,
with linear score is 0.99. This indicates that despite
the non-linear operations within Transformer layers,
the mapping between adjacent layers can still be ap-
proximated as a linear transformation. Therefore, it
reasonable and natural to model Transformer layer
computations using WX .

3. Modeling the computation of modules as WX is a
common practice in many works. AdaRound (Nagel
et al., 2020) and MRECG (Ma et al., 2023b) simplify
the computation of the CONV+BatchNorm+RELU
modules in quantized convolutional neural networks
as WX when analyzing reconstruction error. This
approach of ignoring unnecessary computations and fo-
cusing on the core computations is a common practice,
which facilitates the derivation of theoretical results.

3.4. Determining Layer-wise Sparsity Rates for LLMs

According to the theorem in Sec. 3.2, the reconstruction er-
ror in sparse LLMs have “reconstruction error explosion”
problem. Specifically, the error from the earlier layers will
cause an increase in the error of the later layers. When the
error from all earlier layers are accumulated, it will lead to
a sharp increase in the error of the later layers. Meanwhile,
this can lead to an increase in the total reconstruction er-
ror of sparse LLMs, thereby damaging the final accuracy
of the sparse LLMs. Therefore, in order to mitigate the
negative impact of the “reconstruction error explosion”
of reconstruction errors on sparse LLMs, we can set the
earlier layers to have lower sparsity and the later layers to
have higher sparsity. Therefore, we propose to determine
the sparsity rate of each layer in LLMs according to the
following monotonically increasing arithmetic progression:

si = S− β(L− 1)

2
+β× (i− 1), i = 1, 2, . . . , L (10)

where si is the sparsity rate (fraction of zero entries) of the
i-th layer, L is the total layer number of LLMs, and S is
the average sparsity rate of all layers. β is a hyperparameter
that controls the degree of difference in the sparsity rate of
each layer of LLMs. The above formula means that we only
need to determine the hyperparameter β to get the sparsity
rate of each layer of LLMs.

We use grid search (Jiménez et al., 2008) to determine β
for sparse LLMs. Specifically, since 0 ≤ s0, sL ≤ 1 and
considering the relatively low sparsity rate set for the ear-
lier layers, the arithmetic progression should be increasing.
Therefore, we can deduce that the possible range of values
for β is 0 < β ≤ min( 2S

L−1 ,
2(1−S)
L−1 ). This is a small range

for a sparse LLMs. For example, for a LLaMA3-8B (Meta,
2024) model with 32 layers and the average sparsity rate
is S = 0.7, then the range is 0 < β ≤ 0.019. In order
to find the optimal value of β within the above range, we
adopt an grid search method with a step size of 0.002. The
goal is to find the value of β that minimizes perplexity of
the sparse LLMs on the WikiText-2 (Merity et al., 2016)
dataset. Since the reasonable range of β is very small, this
ensures that we can find the optimal β very quickly. For ex-
ample, for 0 < β ≤ 0.019, we only need to make 9 attempts.
Even for the largest 70B model, the reasonable range of β
is 0 < β ≤ 0.0075, and only 3 attempts are required in this
case. We present our ATP approach in Algorithm 1.

Algorithm 1 Using ATP method to obtain sparse LLMs
Input: Dense LLMs Mdense, average sparsity rate S
Output: Sparse LLMs Msparse

Use grid search to get β in Eq. 10;
Determine layer-wise sparsity rate according to Eq. 10;
Combine with post-training sparsity method (e.g.,

SpaeseGPT or Wanda) to obtain sparsity mask W;
Apply W to Mdense yields Msparse.

Although the above method of determining the layer-wise
sparsity rate of LLMs by a monotonically increasing arith-
metic progression is very simple, our theoretical analysis
in Sec. 3.5 fully proves its rationality, and we have fully
demonstrated through a large number of experiments in
Sec. 4 that our method can effectively improve the accuracy
of existing post-training sparsity methods and significantly
outperforms current layer-wise sparsity methods.

3.5. Analysis of the Proposed Determining Sparsity
Method

We propose the following theorem to prove that the method
for determining the layer-wise sparsity rate proposed in Eq.
10 is theoretically close to the optimal solution:

Theorem 3.5. The total reconstruction error obtained from
the monotonically increasing sparsity scheme proposed in
Eq. 10 is strictly less than that obtained from any non-
monotonically increasing sparsity scheme.

The proof of the above theorem is detailed in Appendix C.

In addition, we compare the layer-wise sparsity rates deter-
mined by Eq. 10 with those obtained by Bayesian search in
Sec. 4.6. The experimental results show that our method is
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Table 1. Comparison of the average zero-shot accuracy across 7 tasks for 70% sparse LLMs obtained using various sparsity methods.

LLaMA LLaMA2 LLaMA3Method Layerwise
sparsity 7B 13B 30B 65B 7B 13B 70B 8B

Dense - 61.74 63.84 67.41 68.57 61.88 65.00 69.14 65.62

Uniform 37.45 40.79 53.35 57.76 35.33 38.88 58.48 35.42
OWL 44.19 48.18 55.88 59.79 41.75 47.19 59.26 35.42
DSA 43.72 48.64 55.21 58.24 36.55 43.36 58.25 37.85

AlphaPruning 44.99 49.81 56.67 61.05 43.37 49.11 59.44 35.61
Wanda

ATP 47.03 51.60 57.69 61.92 45.83 52.11 60.91 41.28

Uniform 43.60 48.00 53.64 60.18 43.07 47.38 60.84 43.02
OWL 46.57 50.01 55.73 59.47 46.55 49.90 60.83 46.06

AlphaPruning 46.58 50.63 56.42 60.32 46.20 50.86 61.03 45.27
SparseGPT

ATP 47.37 52.12 57.55 61.31 48.63 52.46 62.25 47.79

close to the optimal solution obtained by Bayesian search.
Moreover, since our method doesn’t require a long time
search, it is highly efficient compared to Bayesian search.

All in all, the above theoretical analysis and experimental
validation demonstrate the superiority of our method, indi-
cating that the sparsity allocation scheme proposed in Eq.
10 is near-optimal both theoretically and empirically.

4. Experiments
4.1. Experimental Setup

Models. We evaluate ATP across a diverse range of
widely-used LLMs, including LLaMA-1 (7B, 13B, 30B
and 65B) (Touvron et al., 2023a), LLaMA-2 (7B, 13B
and 70B) (Touvron et al., 2023b), LLaMA-3-8B (Meta,
2024), LLaMA-3.1-8B (Meta, 2024), LLaMA-3.2-1B and
3B (Meta, 2024), OPT-13B (Zhang et al., 2022), Vicuna-
13B (Chiang et al., 2023), Qwen2.5-7B (Yang et al., 2024),
and Mistral-7B (Jiang et al., 2023) and Mixtral-8x7B (Jiang
et al., 2024).

Evaluation. Our evaluation protocol aligns with estab-
lished sparsification methods for LLMs (e.g.,, SparseGPT
(Frantar & Alistarh, 2023) and Wanda (Sun et al., 2023)),
encompassing both zero-shot learning and language model-
ing capabilities. Specifically, we assess the perplexity of the
models on the validation set of WikiText-2 (Merity et al.,
2016) and evaluate zero-shot performance on seven down-
stream tasks: BoolQ (Clark et al., 2019), ARC Easy and
Challenge (Clark et al., 2018), HellaSwag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., 2021), OpenbookQA
(Mihaylov et al., 2018), and PIQA (Bisk et al., 2020). Addi-
tionally, we measure performance on arithmetic and knowl-
edge reasoning benchmarks, including 8-shot accuracy on
the GSM8K dataset (Cobbe et al., 2021) and 5-shot accuracy
on the MMLU dataset (Hendrycks et al., 2020).

Baselines. We apply the layer-wise sparsity rates deter-
mined by ATP to several state-of-the-art post-training sparsi-
fication methods, including SparseGPT (Frantar & Alistarh,
2023), Wanda (Sun et al., 2023), DSnoT (Zhang et al., 2023),
Pruner-zero (Dong et al., 2024), and ALPS (Meng et al.,
2024). Furthermore, we compare ATP with recent methods
for determining layer-wise sparsity rates in LLMs, such as
OWL (Yin et al., 2023), AlphaPruning (Lu et al., 2024),
DSA (Li et al., 2024b), and ALS (Li et al., 2024c).

More Models, Evaluations and Baselines. In Sec. F, we
present additional experimental results, including the appli-
cation of ATP to multimodal and vision models, integration
with other compression techniques, LoRA fine-tuning and
sparsity-preserving PEFT methods, and comparisons with
an expanded set of layer-wise sparsity baselines.

Implementation Details. Our pruning implementation
builds upon the methods used by SparseGPT and Wanda,
with the primary modification being the integration of layer-
wise sparsity rates generated by ATP.

4.2. Zero-shot Tasks

Quantitative Evaluation. We report the average perfor-
mance of 70% sparse LLMs across seven zero-shot tasks in
Table 1. The results demonstrate that our ATP method con-
sistently improves accuracy compared to the uniform spar-
sity baseline and significantly outperforms other state-of-
the-art layer-wise sparsity methods. For instance, with the
LLaMA3-8B model pruned using the Wanda method, ATP
achieves a 3.43% higher accuracy than the best-performing
DSA method, highlighting the effectiveness and superiority
of ATP in enhancing sparse LLM performance.

Varying Sparsity Rates. We also evaluate the perfor-
mance of sparse LLMs under reduced sparsity constraints.
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Specifically, Table 2 presents the zero-shot accuracy of
LLMs pruned using the Wanda method at a 50% sparsity
rate. Even under this lower sparsity setting, ATP demon-
strates substantial improvements in accuracy across all mod-
els, maintaining its performance advantage over existing
layer-wise sparsity methods. This indicates that ATP is
robust and effective in optimizing LLM accuracy under
varying sparsity rates.

Table 2. Average zero-shot accuracy of sparse LLaMA2-7B/13B
models pruned using the Wanda method at 50% sparsity rate.

Method 1-7B 1-13B 2-7B 2-13B

Dense 66.09 68.18 66.69 69.25

Uniform 60.06 65.22 63.03 65.73
OWL 61.92 65.91 63.88 68.02
DSA 61.90 65.40 63.89 67.65
ALS 61.59 65.05 64.12 67.11
AlphaPruning 61.91 66.19 64.20 67.80
ATP 62.72 66.39 64.49 68.18

* The zero-shot evaluation setting used here fol-
lows the configuration outlined in the ALS paper.
For more details, refer to Sec. D.

4.3. Language Modeling

We present the perplexity of 50% to 80% sparse LLaMA-7B
and LLaMA2-7B models pruned using the Wanda method
on the WikiText-2 dataset in Table 3. The results show
that our ATP method achieves lower perplexity compared
to other layer-wise sparsity methods. Furthermore, this ad-
vantage becomes increasingly significant at higher sparsity
rates.

Table 3. WikiText-2 perplexity of sparse LLaMA-7B/2-7B ob-
tained by Wanda across varying sparsity rates.

LLaMA-7B LLaMA2-7B

Method 50% 60% 70% 80% 50% 60% 70% 80%

Uniform 7.26 10.63 84.52 5889.13 6.92 10.96 74.26 1980.85
OWL 7.22 9.35 24.56 1002.87 6.87 9.80 30.38 629.99
DSA 7.17 9.38 24.52 1232.88 7.05 10.40 63.71 1638.81
AlphaPruning 7.18 9.47 23.86 698.56 6.88 9.78 28.87 1672.49
ATP 7.05 9.25 20.16 176.80 6.82 9.15 22.16 425.12

4.4. More LLM Architectures

We validate the effectiveness of our ATP method on LLMs
with a broader range of architectures. Specifically, we
use ATP method to obtain 70% sparse models, including
LLaMA3.1-8B, LLaMA3.2-1B/3B, OPT-13B, Vicuna-13B,
Qwen2.5-7B, Mistral-7B, and Mixtral-8x7B. These models
cover a wide range of parameter sizes, from 1B to 46.7B,
including both LLaMA-like architectures and sparsely ac-

tivated Mixture of Experts (MoE) models. We report the
experimental results in Table 4. The results demonstrate that
our ATP method consistently enhances the performance of
LLMs across various architectures, further demonstrating
its generalizability across different model architectures.

Table 4. The performance improvement of ATP on sparse LLMs
across a wider range of architectures.

Method Model Perplexity (↓) Accuracy (↑)

Dense LLaMA3.1-8B 6.18 65.93
Wanda LLaMA3.1-8B 109.99 36.10
w. ATP LLaMA3.1-8B 72.05 41.59

Dense LLaMA3.2-1B 9.65 52.82
SparseGPT LLaMA3.2-1B 129.24 37.26
w. ATP LLaMA3.2-1B 94.78 38.86

Dense LLaMA3.2-3B 7.73 60.42
SparseGPT LLaMA3.2-3B 65.97 39.50
w. ATP LLaMA3.2-3B 46.64 42.51

Dense OPT-13B 10.13 55.22
Wanda OPT-13B 73.70 41.51
w. ATP OPT-13B 33.98 44.58

Dense Vicuna-13B 5.94 65.53
Wanda Vicuna-13B 44.89 42.06
w. ATP Vicuna-13B 20.24 53.19

Dense Qwen2.5-7B 6.77 65.36
Wanda Qwen2.5-7B 75.16 41.10
w. ATP Qwen2.5-7B 43.28 42.82

Dense Mistral-7B 5.28 66.17
Wanda Mistral-7B 57.44 37.62
w. ATP Mistral-7B 29.19 42.76

Dense Mixtral-8x7B 3.86 69.35
Wanda Mixtral-8x7B 18.22 48.36
w. ATP Mixtral-8x7B 14.30 50.67

4.5. More Results

We provide more experimental results in the appendix.
Specifically, in Sec. F.1, we demonstrate the enhanced per-
formance of our ATP method on arithmetic and knowledge
reasoning tasks for sparse LLMs. Additionally, in Secs. F.2
and F.3, we present the performance gains of ATP on sparse
multimodal and vision models, respectively. In Sec. F.4,
we highlight the performance improvements when integrat-
ing ATP with other compression techniques, including N:M
sparsity, structured pruning, and quantization. Furthermore,
we compare ATP with additional layer-wise sparsity base-
lines (Sec. F.5), demonstrate its performance enhancements
across various post-training sparsity methods (Sec. F.6),
and showcase its effectiveness when combined with LoRA
fine-tuning for sparse LLMs (Sec. F.7). Furthermore, we
show the zero-shot accuracy of LLMs at 60% sparsity in
Sec. F.8.
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4.6. Ablation Study

Searching Step. In Sec. 3.4, we perform a grid search
with a step size of 0.002 to determine the optimal value of
β. Here, we analyze the impact of different step sizes on
the search results. As shown in Table 5, searches conducted
with larger step sizes yield inferior results compared to those
with a step size of 0.002. This is because larger step sizes
fail to sufficiently explore the possible optimal values of β.
Conversely, further reducing the step size for a more fine-
grained search shows limited improvement in perplexity.
Therefore, to balance both accuracy and efficiency, we adopt
a grid search with a step size of 0.002.

Table 5. The impact of different step sizes on search results.
Step size 0.0005 0.001 0.002 0.004 0.008

Perplexity (↓) 22.14 22.16 22.16 23.09 23.09
Search Time (min) 76 38 18 8 4

Comparison with Bayesian Search. We compare the
ATP method with layer-wise sparsity rates obtained through
Bayesian search. Specifically, we use Bayesian search to
determine the sparsity rates for the 50%, 60%, and 70%
sparse LLaMA2-7B model. The search is conducted using
the Optuna hyperparameter optimization framework (Ak-
iba et al., 2019), performing 1000 iterations to optimize
the sparsity rates across all 32 layers of LLaMA2-7B. The
sparsity rate for each layer is constrained between 0 and 1,
while ensuring that the average sparsity matches the target
rates. We integrate Bayesian search with the Wanda method,
with the objective of minimizing model perplexity on the
WikiText-2 dataset. The comparison of perplexity and zero-
shot accuracy between sparse LLMs obtained using ATP
and Bayesian search is presented in Table 6. The results indi-
cate that the performance of our ATP method is comparable
to the optimal solution obtained through Bayesian search,
demonstrating that the layer-wise sparsity rates determined
by our method are experimentally close to the optimal val-
ues identified by the search approach. However, Bayesian
search requires approximately 33 hours to complete on a
single NVIDIA A100 80GB GPU, whereas ATP only takes
18 minutes, demonstrating significantly higher efficiency.

Table 6. Comparison of ATP and Bayesian search.
Method Sparsity Perplexity (↓) Accuracy (↑)

Bayesian Search 50% 6.81 59.67
ATP 50% 6.82 59.63

Bayesian Search 60% 9.20 54.73
ATP 60% 9.15 54.79

Bayesian Search 70% 22.10 45.90
ATP 70% 22.16 45.83

Inference Speedup. We evaluate the acceleration perfor-
mance of the sparse LLaMA2-7B model, with results sum-
marized in Table 7. The end-to-end token generation time
was measured using the DeepSparse (NeuralMagic, 2021)
inference engine on an Intel Xeon Silver 4314 CPU and
the nm-vllm (NeuralMagic, 2024) inference engine on an
NVIDIA RTX 4090 GPU. Our method achieves significant
speedups, ranging from 1.79× to 2.63× on the CPU and
1.71× to 2.23× on the GPU, compared to the dense model,
at sparsity rates between 50% and 70%. In addition, there
is a discussion about which devices can be used with the
DeepSparse and nm-vllm inference engines to deploy sparse
LLMs for inference acceleration, please refer to Sec. E.

Table 7. End-to-end inference acceleration of sparse LLaMA2-7B
on CPU and GPU.

Device Sparsity Dense 50% 60% 70%

CPU
Throughput
(tokens/s) ↑ 3.40 6.10 7.39 8.95

Speedup ↑ 1.00× 1.79× 2.17× 2.63×

GPU
Throughput
(tokens/s) ↑ 57.29 97.92 111.86 127.67

Speedup ↑ 1.00× 1.71× 1.95× 2.23×

More Ablation Study. We provide more ablation results
in the appendix. Specifically, in Sec. G.1, we demonstrate
the computational efficiency of our ATP method. In Sec.
G.2, we analyze the layer-wise sparsity distribution gen-
erated by ATP at different sparsity rates. In addition, we
compare the sparsity rate distributions produced by ATP
and other layer-wise sparsity methods in Sec. G.3. In Sec.
G.4, we explore the impact of different β settings on the
perplexity of sparse LLMs. Furthermore, we demonstrate
the robustness of ATP under different random seeds in Sec.
G.5.

5. Conclusion
In this paper, we propose a theoretically grounded method
for determining layer-wise sparsity rates in LLMs, effec-
tively addressing the challenge of “reconstruction error
explosion”. Our approach utilizes an arithmetic progression
to streamline sparsity allocation, reducing the complexity
to a single hyperparameter while achieving near-optimal
performance with minimal tuning. We have demonstrated
through theoretical analysis and experimental validation that
our sparsity allocation scheme is close to the optimal solu-
tion. Extensive experiments demonstrate the effectiveness
of our method, yielding significant improvements in model
perplexity, accuracy, and inference speed. Furthermore, our
approach exhibits strong generalization across diverse ar-
chitectures and modalities, establishing it as a versatile and
robust solution for optimizing compressed models.
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Jiménez, Á. B., Lázaro, J. L., and Dorronsoro, J. R. Finding
optimal model parameters by discrete grid search. In
Innovations in hybrid intelligent systems, pp. 120–127.
Springer, 2008.
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A. Limitation and Future Work
In this paper, we derive that layer-wise sparsity rates should gradually increase based on the reconstruction error analysis
and determine these rates using a monotonically increasing arithmetic progression. Extensive experiments validate the
effectiveness of our method. However, the arithmetic progression configuration may not be optimal, and we plan to explore
more diverse sparsity rate schemes in the future. Additionally, while our method significantly enhances the accuracy of
existing post-training sparsity techniques for LLMs, there remains a performance gap compared to lossless sparsification,
particularly under high sparsity conditions. In future work, we aim to develop more advanced post-training sparsity methods
to further improve the accuracy of sparse LLMs.

B. Proof of Lemma 3.3
Proof of Lemma 3.3. Let A ∈ Rm×n and B ∈ Rn×p be any matrices. Consider the singular value decomposition (SVD)
of A:

A = UΣV T (11)

where:

• U ∈ Rm×m is an orthogonal matrix (UTU = I),

• V ∈ Rn×n is an orthogonal matrix (V TV = I), and

• Σ ∈ Rm×n is a diagonal matrix with non-negative singular values σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥ 0 on the diagonal.

Substituting the SVD of A into the expression for AB, we have:

AB = UΣV TB (12)

Therefore,

∥AB∥2F =
∥∥∥UΣV TB

∥∥∥2
F

(13)

Since U is an orthogonal matrix, the Frobenius norm is invariant under orthogonal transformations. Specifically:

∥UX∥F = ∥X∥F ∀ X (14)

Applying this property:

∥AB∥2F =
∥∥∥ΣV TB

∥∥∥2
F

(15)

The matrix Σ is diagonal with singular values σi on the diagonal. Let σmin = σmin(A) denote the smallest singular value
of A. Then, for any matrix X , we have:

ΣX ≥ σminX (16)

in the sense that each singular value scales the corresponding component of X .

Therefore, applying this to our case: ∥∥∥ΣV TB
∥∥∥2
F
≥ σ2

min

∥∥∥V TB
∥∥∥2
F

(17)

This inequality holds because scaling each component by at least σmin results in the squared norm being scaled by at least
σ2
min.

Similarly to U , the orthogonal matrix V preserves the Frobenius norm:∥∥∥V TX
∥∥∥
F
= ∥X∥F ∀ X (18)

Applying this property: ∥∥∥V TB
∥∥∥
F
= ∥B∥F (19)
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Substituting back, we obtain:

∥AB∥2F =
∥∥∥ΣV TB

∥∥∥2
F
≥ σ2

min

∥∥∥V TB
∥∥∥2
F
= σ2

min ∥B∥2F (20)

Thus, we have shown that:
∥AB∥2F ≥ σ2

min(A) ∥B∥2F (21)

C. Proof of Theorem 3.5
Proof of Theorem 3.5. Recall that each layer i ∈ {1, 2, . . . , L} in an LLM has a sparsity rate si ∈ [0, 1], where si indicates
the fraction of zero entries in the weight matrix of layer i. Let Li denote the reconstruction error of layer i, and let
L =

∑L
i=1 Li be the total reconstruction error of the entire LLM.

To prove Theorem 3.5, we will make the following assumptions based on the preceding sections:

1. According to Theorem 3.1, The reconstruction error for each layer i, denoted as Li, is an increasing function of the
sparsity rate si, denote as f(si).

2. According to Theorem 3.2, the reconstruction error propagates through layers such that the increase of reconstruction
error of i-th layer will lead to the increase of reconstruction error of (i+ 1)-th layer. Therefore we assume Li+1 =
cLi + f(si), where c > 1. The above formula indicates that the reconstruction error of a layer not only accumulates the
reconstruction errors from previous layers but also that the current sparse layer contributes to the reconstruction error.

The monotonically increasing sparsity scheme given by Eq. 10 (in Sec. 3.4) implies that s1 < s2 < · · · < sL, let us denote
such a scheme as

s↑ = (s↑1, s
↑
2, . . . , s

↑
L), (22)

where s↑1 < s↑2 < · · · < s↑L.

Consider a different non-monotonically increasing sparsity scheme:

s⋄ = (s⋄1, s
⋄
2, . . . , s

⋄
L), (23)

which is not monotonically increasing. That is, there exists at least one index k such that s⋄k > s⋄k+1

Moreover, suppose both s↑ and s⋄ satisfy the constraint that their average sparsities match the same overall budget. Formally,

1

L

L∑
i=1

s↑i =
1

L

L∑
i=1

s⋄i = S, (24)

and each s↑ and s⋄ results in a total reconstruction error

L↑ =

L∑
i=1

L↑
i , L⋄ =

L∑
i=1

L⋄
i . (25)

We will show that for any non-monotonic sparsity vector s⋄, we can redundantly reorder it layer by layer to get a
monotonically increasing vector s↑ of the same average sparsity, such that the overall reconstruction error L↑ is strictly
smaller than L⋄. Ultimately, we will deduce

L↑ < L⋄. (26)

Let us focus on any adjacent pair (s⋄k, s
⋄
k+1) where s⋄k > s⋄k+1. Define s∗k = s⋄k+1 and s∗k+1 = s⋄k, effectively swapping

these two sparsities. We then compare the total contribution of layers k and k + 1 to the overall reconstruction error, first in
the non-monotonic case and then in the swapped case.
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We restrict our attention to layers k and k + 1:

Layer k ⇒ L⋄
k = f(s⋄k), Layer k + 1 ⇒ L⋄

k+1 = cL⋄
k + f(s⋄k+1). (27)

Strictly speaking, L⋄
k+1 depends on partial errors from layer k and its own sparsity s⋄k+1. Intuitively, a higher error L⋄

k

“propagates” or “magnifies” into layer k+1. We keep the rest of the layer-wise sparsities fixed outside of these two positions
to isolate their effect.

Now, consider swapping the two sparsities: (s⋄k, s
⋄
k+1) 7→ (s∗k, s

∗
k+1) = (s⋄k+1, s

⋄
k). Let

L∗
k = f(s∗k) = f(s⋄k+1), L∗

k+1 = cL∗
k + f(s∗k+1) = c f(s⋄k+1) + f(s⋄k). (28)

Therefore, the total for these two layers is

Lswapping = L∗
k + L∗

k+1 = f(s⋄k+1) +
(
c f(s⋄k+1) + f(s⋄k)

)
= (1 + c) f(s⋄k+1) + f(s⋄k). (29)

Meanwhile, the original total is

Loriginal = L⋄
k + L⋄

k+1 = f(s⋄k) +
(
c f(s⋄k) + f(s⋄k+1)

)
= (1 + c) f(s⋄k) + f(s⋄k+1). (30)

The difference between the two is

Loriginal − Lswapping =
[
(1 + c) f(s⋄k) + f(s⋄k+1)

]
−

[
(1 + c) f(s⋄k+1) + f(s⋄k)

]
= (1 + c)

[
f(s⋄k)− f(s⋄k+1)

]
−

[
f(s⋄k)− f(s⋄k+1)

]
= c

[
f(s⋄k)− f(s⋄k+1)

]
.

(31)

Since c > 1 and f(s⋄k) > f(s⋄k+1), it follows that c
[
f(s⋄k)− f(s⋄k+1)

]
> 0.

Hence we obtain
Loriginal > Lswapping. (32)

This shows that locally swapping a pair (s⋄k, s
⋄
k+1) with s⋄k > s⋄k+1 reduces the total reconstruction error contributed by

layers k and k + 1. Globally across all L layers, repeating such a swap for each adjacent pair that breaks the monotonicity
moves s⋄ to a strictly monotonically increasing sequence of sparsities.

By iterating this argument over each adjacent pair that fails monotonicity, we reorder s⋄ into s↑. Since every swap strictly
reduces the local error, the resulting monotonically increasing scheme s↑ has an overall reconstruction error:

L↑ =

L∑
i=1

L↑
i <

L∑
i=1

L⋄
i = L⋄. (33)

Therefore, the total reconstruction error obtained from the monotonically increasing sparsity scheme proposed in Eq. 10 is
strictly less than that obtained from any non-monotonically increasing sparsity scheme, under the same average sparsity
constraint.

D. Zero-shot Evaluation Setting
We use the lm-eval-harness framework (Gao et al., 2021) to evaluate the zero-shot performance of LLMs. By default,
we follow the settings used in Wanda (Sun et al., 2023) and AlphaPruning (Lu et al., 2024), reporting the “acc” metric
across all datasets. However, lm-eval-harness provides multiple metrics depending on the dataset, including both “acc” and
“acc norm”. In contrast, ALS (Li et al., 2024c) employs different metrics for different datasets. The evaluation metrics are
summarized in Table 8.
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Table 8. Evaluation metrics for different datasets
Dataset Metric
boolq acc
hellaswag acc norm
arc easy acc
piqa acc
arc challenge acc norm
winogrande acc
openbookqa acc norm

E. Sparse Inference Engine Supported Devices
Due to the sparsity of weights in unstructured pruning, we must use a specific sparse inference engine to accelerate inference.
We use DeepSparse and nm-vllm to accelerate inference on general deployment environments, including CPUs and GPUs.
For CPUs, DeepSparse supports architectures including: x86 AVX2, AVX-512, AVX-512 VNNI, and ARM v8.2+, which
covers most Intel, AMD, and Apple M-series CPUs. For GPUs, as long as the device supports CUDA, inference acceleration
can be achieved using the nm-vllm. Similarly, if CUDA is supported for other deployment environments, nm-vllm can also
be used to achieve acceleration.

F. More Results
F.1. Arithmetic and Knowledge Reasoning Tasks

We further evaluate the performance improvements of our ATP method on arithmetic and knowledge reasoning tasks for
sparse models. Specifically, We evaluate the 8-shot accuracy of 40% sparse models on the GSM8K dataset and the 5-shot
accuracy of 60% sparse models on the MMLU dataset. The results are presented in Table 9. Our ATP method significantly
improves the accuracy of sparse models on both tasks, further demonstrating the generalization and effectiveness of our
approach.

Table 9. Accuracy of sparse LLaMA2 on the GSM8K and MMLU datasets.
GSM8K MMLU

Method 7B 13B 7B 13B

Dense 14.60 24.56 45.90 55.70

SparseGPT 11.07 16.91 29.40 39.60
SparseGPT w.ATP 12.01 19.02 32.40 47.70

Wanda 8.72 17.51 28.90 34.80
Wanda w.ATP 9.93 19.56 32.80 46.20

F.2. Multimodal Tasks

We demonstrate the applicability of our method to multimodal models by integrating it with Wanda to sparsify the Vicuna-7B
model (Chiang et al., 2023) in LLaVA-1.5 (Liu et al., 2024b). We only sparsify the Vicuna model within it. Similar to
LLaMA, we determine the sparsity rate for each layer and sparsify linear layers. The performance of the sparse model was
evaluated on various visual question-answering and reasoning benchmarks, including VQA (Singh et al., 2019), VQAv2
(Goyal et al., 2017), and SQA (Lu et al., 2022). We compared our method with magnitude-based pruning, SparseGPT,
Wanda, and the DSA method combined with Wanda, under a 50% sparsity rate. The results in Table 10 show that our method
outperforms the magnitude-based, SparseGPT, and Wanda approaches and demonstrates superiority over the DSA method.

F.3. Vision Models

We compare our ATP method with other approaches for determining layer-wise sparsity rates on vision models. Experiments
are conducted on both CNN and Transformer architectures, including ConvNeXt (Liu et al., 2022b), ViT (Dosovitskiy et al.,

17



Determining Layer-wise Sparsity for Large Language Models Through a Theoretical Perspective

Table 10. The performance improvement of the ATP method on sparse multimodal models.
LLaVA-1.5 VQA VQAv2 SQA

Dense 58.20 78.50 66.80
Magnitude 38.39 63.50 31.24
SparseGPT 53.69 75.86 63.92
Wanda 53.05 75.72 63.99
Wanda w. DSA 54.36 76.08 65.57
Wanda w. ATP 55.21 76.92 66.01

2021), and DeiT (Touvron et al., 2021), and we report the Top-1 accuracy on the ImageNet-1K dataset (Deng et al., 2009).
Sparse models are obtained using the Wanda (Sun et al., 2023) method, and ATP is compared against the following baselines:
uniform sparsity rate, OWL (Yin et al., 2023), and AlphaPruning (Lu et al., 2024). Following Wanda, we only sparsify the
linear layers within each block of the ConvNeXt, and we use our ATP method to determine the sparsity rate for each block.
For ViT, we use ATP to determine the sparsity rate for each layer. Each layer contains modules such as attention and MLP.
We use Wanda to sparsify linear layers. The results for ConvNeXt are presented in Table 11. These results demonstrate
that our method is effective for determining layer-wise sparsity rates in vision models and outperforms existing methods.
This further confirms the broad applicability of our monotonically increasing sparsity scheme in improving the accuracy of
diverse sparse models.

Table 11. Comparison of ImageNet-1K accuracy across different layer-wise sparsity methods on the ConvNeXt-Base model.
Method 50% 60% 70% 80%

Wanda 82.72 80.55 68.18 6.44
w. OWL 82.76 80.53 68.28 6.32
w. AlphaPruning 82.76 80.89 74.24 42.35
w. ATP 82.85 81.10 75.58 56.81

We also present the accuracy results for sparse ViT and DeiT models in Table 12. Additionally, we compare our method
with several widely-used non-uniform layer-wise sparsity strategies in computer vision, including ERK (Mocanu et al.,
2018), Global (Frankle & Carbin, 2018), and LAMP (Lee et al., 2020), as well as AlphaPruning (Lu et al., 2024). The
results indicate that our method outperforms all the aforementioned baselines.

Table 12. Comparison of ImageNet-1K accuracy across different layer-wise sparsity methods on the ViT-B and DeiT-B models.
ViT-B 16/224 DeiT-B 16/224

Method 40% 50% 60% 40% 50% 60%

Uniform 70.87 59.46 29.97 80.08 76.37 61.72
ERK (Mocanu et al., 2018) 70.89 60.49 33.15 80.05 76.22 63.49
Global (Frankle & Carbin, 2018) 66.81 45.75 8.09 79.94 75.09 57.01
LAMP (Lee et al., 2020) 69.45 57.51 26.99 80.19 76.35 63.32
AlphaPruning (Lu et al., 2024) 71.58 64.29 44.21 80.21 77.11 64.56
ATP 72.03 65.46 47.74 80.50 78.02 69.73

F.4. Integrate with other Compression Technologies

To demonstrate the generalization ability of our method for determining layer-wise sparsity rates, we combine ATP with
other compression techniques, including N:M sparsity, structured pruning, and mixed-precision quantization. For N:M
sparsity, we follow the mixed N:8 settings (Sun et al., 2021), using ATP to determine the value of N for each layer while
maintaining average sparsity at 2:8, 3:8 and 4:8. In terms of structured pruning, we integrated ATP with LLM-Pruner
(Ma et al., 2023a), where ATP determines the layer-wise sparsity rates, and LLM-Pruner applies pruning accordingly. For
mixed-precision quantization, we combine ATP with the LIMPQ method (Tang et al., 2022) to determine the quantization
bits for each layer. We apply these compression techniques to the LLaMA-7B model and report the perplexity of the
compressed models on the WikiText-2 validation set. The experimental results are presented in Table 13. It shows that ATP
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significantly enhances the performance of various compression methods and outperforms both the OWL and AlphaPruning
approaches.

Table 13. Experimental results of combining ATP with other compression technologies.
Method 4:8 3:8 2:8

Wanda 8.57 42.56 2962.00
OWL 8.55 22.77 331.37
AlphaPruning 8.55 21.49 585.81
ATP 8.15 16.08 265.96
Method 20% 40% 60%

LLM-Pruner 16.95 30.38 90.02
OWL 18.57 28.65 76.99
AlphaPruning 16.78 29.11 71.21
ATP 15.51 27.40 64.25
Method Mixed 3/4 Bit Mixed 2/3/4 Bit Mixed 2/4 Bit

Random 12.04 11455.54 14817.12
L1 norm 14.61 13959.42 33679.21
OWL 9.54 311.95 8429.39
AlphaPruning 9.01 261.39 7630.14
ATP 8.52 198.65 5321.35

F.5. More Layer-wise Sparsity Baselines

We compare our method with additional approaches for determining layer-wise sparsity rates, including Uniform (Zhu &
Gupta, 2017), Global (Frankle & Carbin, 2018), ER (Mocanu et al., 2018), ER-Plus (Liu et al., 2022a), and LAMP (Lee
et al., 2020). These methods are combined with the Wanda pruning approach to obtain sparse LLaMA-7B models. The
experimental results are presented in Table 14. It shows that across sparsity rates ranging from 50% to 80%, the perplexity of
models pruned using the ATP method is consistently lower than that of other baselines, further demonstrating the superiority
of our approach.

Table 14. Comparison of WikiText-2 perplexity across various sparsity rates and methods.
Method/Perplexity (↓) 50% 60% 70% 80%

Global 14848 17765 5147 39918.56
LAMP 7.57 12.86 185.52 15647.87
LAMP (per-block) 7.25 10.95 98.77 7318.08
ER 7.80 12.41 119.66 6263.79
ER-Plus 8.00 14.04 229.17 6013.91
Uniform 7.26 10.63 84.52 5889.13
ATP 7.05 9.25 20.16 176.80

F.6. Integrate with More Post-training Sparsity Methods

We have demonstrated that our method improves performance over Wanda and SparseGPT methods. Notably, ATP can be
integrated with any post-training sparsity method to further enhance their effectiveness. In this section, we showcase the
performance improvements achieved by combining ATP with other post-training sparsity methods. Specifically, we apply
ATP to DSnoT (Zhang et al., 2023), Pruner-Zero (Dong et al., 2024), and ALPS (Meng et al., 2024) to obtain a 70% sparse
LLaMA2-7B model. The perplexity and zero-shot accuracy results of the sparse models are presented in Table 15. The
results indicate that ATP significantly enhances the performance of DSnoT, Pruner-Zero, and ALPS methods.

F.7. Integrate with LoRA Fine-tuning

We further demonstrate the effectiveness of LoRA fine-tuning (Hu et al., 2021) in narrowing the performance gap between
highly sparse LLMs and dense models. Specifically, we obtain a 70% sparse LLaMA2-7B model using the Wanda method
and fine-tune it on 10,000 samples from the Alpaca-GPT4 (Peng et al., 2023) dataset. We compare the results against models
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Table 15. The performance improvement of ATP on DSnoT, Pruner-zero and ALPS methods.
Method Perplexity (↓) Accuracy (↑)

Dense 5.12 61.88

DSnoT 77.83 35.11
w. ATP 24.31 44.51

Pruner-Zero 103.15 34.78
w. ATP 48.82 44.77

ALPS 19.31 46.75
w. ATP 17.99 49.82

sparsified using uniform sparsity, OWL, and AlphaPruning methods. The results in Table 16 show that LoRA fine-tuning
significantly improves the accuracy of the sparse model, further reducing the gap with the dense model. Additionally, the
sparse model obtained through the ATP method achieves higher accuracy, and this advantage is retained even after LoRA
fine-tuning.

Table 16. Comparison of the perplexity and zero-shot accuracy of the 70% sparse LLaMA2-7B obtained by LoRA fine-tuning.
Method Fine-tuning Perplexity (↓) Accuracy (↑)

Dense N.A. 5.12 61.88

Uniform N.A. 74.26 35.33
Uniform LoRA 13.36 47.10

OWL N.A. 30.38 41.75
OWL LoRA 12.89 50.26

DSA N.A. 63.71 36.55
DSA LoRA 13.19 49.49

AlphaPruning N.A. 28.87 43.37
AlphaPruning LoRA 12.76 50.37

ATP N.A. 22.16 45.83
ATP LoRA 12.28 50.79

F.8. Zero-shot Accuracy at 60% Sparsity

We present the zero-shot accuracy results of LLaMA3-8B at 60% sparsity in Table 17. The sparse model is obtained using
the Wanda method, and we compare ATP with other layer-wise sparsity methods. We can observe that ATP significantly
improves the accuracy of Wanda, increasing the average zero-shot accuracy by 4.13% and narrowing the performance
gap between sparse and dense model. Furthermore, ATP outperforms OWL, DSA, and AlphaPruning, with 1.05% higher
accuracy than the best-performing AlphaPruning.

Table 17. Zero-shot accuracy results of sparse LLaMA3-8B at 60% sparsity obtained using the Wanda method.
Method HellaSwag Winogrande BoolQ OBQA PIQA ARC-e ARC-c Mean
Dense 60.19 72.77 81.35 34.80 79.71 80.09 50.43 65.62
Uniform 37.92 59.90 68.16 19.80 67.55 59.63 27.43 48.63
OWL 40.71 62.90 70.34 22.90 69.80 62.28 31.39 51.47
DSA 40.16 63.01 70.09 22.80 69.05 62.20 30.51 51.12
AlphaPruning 41.63 64.51 71.25 22.60 68.61 62.88 30.46 51.71
ATP 41.91 65.49 71.68 23.70 70.94 63.62 31.96 52.76

G. More Ablation Study
G.1. Computational Efficiency.

In Table 18, we report the time required to determine the layer-wise sparsity rates for 70% sparse LLMs using our ATP
method. The measurements were conducted on NVIDIA A100 80GB GPUs. The results show that only a few searches are
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needed to obtain the sparsity rates due to the narrow range of reasonable values for the hyperparameter β. Furthermore, as
the number of model parameters increases, this range narrows even further, enabling the sparsity rates to be determined
with fewer searches. For example, for the largest 70B model, only three searches are necessary. This demonstrates that our
method is highly computationally efficient.

Table 18. Computational efficiency of our ATP method (in minutes).
Model 7B 8B 13B 30B 65B 70B

Wanda 2.0 2.2 3.8 7.8 13.5 14.1
w. ATP 2.0×9 2.2×9 3.8×7 7.8×5 13.5×3 14.1×3

SparseGPT 6.6 7.3 10.0 35.0 60.0 67.5
w. ATP 6.6×9 7.3×9 7.3×7 10.0×5 60.0×3 67.5×3

G.2. Analyze the Layer-wise Sparsity Distribution.

We analyze the sparsity rate distribution across different average sparsity levels in Figure 2. Our findings indicate that at
lower average sparsity rates, the differences in sparsity rates across layers are minimal. In contrast, these differences become
more pronounced at higher average sparsity rates.
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Figure 2. Comparison of layer-wise sparsity rate distributions at different average sparsity levels.

G.3. Comparison of Sparsity Rates Distribution with other Methods

Figure 3 illustrates the sparsity rate distributions obtained from various layer-wise sparsity methods. We observe that the
sparsity rates generally follow an increasing pattern from low to high, further validating the rationale behind our method.
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Figure 3. Comparison of layer-wise sparsity rate distribution with other methods.
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G.4. Different β Settings.

Figure 4 shows the impact of different β settings on the perplexity of the 70% sparse LLaMA2-7B model obtained using the
Wanda method. We observe that as β increases, the perplexity initially decreases and then rises. Furthermore, the model’s
perplexity under various β settings remains lower than that of the uniform sparsity rate scheme.
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Figure 4. Impact of different β settings on the perplexity of the 70% sparse LLaMA2-7B.

G.5. Robustness of ATP under Different Random Seeds

Following OWL (Yin et al., 2023), DSA (Li et al., 2024b) and AlphaPruning (Lu et al., 2024), all experimental results are
conducted under a single fixed random seed. We also report WikiText2 perplexity of 70% sparse LLaMA2-7B obtained by
Wanda across five random seeds and different calibration sets in Table 19. The variance across random seeds is very low,
suggesting the robustness of ATP.

Table 19. The WikiText2 perplexity of 70% sparse LLaMA2-7B obtained by Wanda across five random seeds.
Method Perplexity

Dense 5.12 (±) 0.00
Uniform 74.26 (±) 0.10

OWL 30.38 (±) 0.09
DSA 63.71 (±) 0.08

AlphaPruning 28.87 (±) 0.06
ATP 22.16 (±) 0.05

H. Comparison with NEURONAL
The previous work NEURONAL (Cunegatti et al., 2024) also proposed adopting a monotonically increasing sparsity
schedule for LLMs, but there are significant differences between our ATP and NEURONAL:

1. Significant differences in algorithms for determining monotonically increasing sparsity schedules for LLMs.

Although both ATP and NEURONAL propose using monotonically increasing arithmetic progression to allocate sparsity
rates for each block of LLMs, there are significant differences in the algorithms by which ATP and NEURONAL derive
the final arithmetic sequences.

ATP calculates the reasonable range of values for the common difference β of the arithmetic progression, and then
searches for the optimal value of β within this reasonable range using a grid search with a step size of 0.002. The goal
of search is to find the value of β that minimizes perplexity of the sparse LLMs on the WikiText-2 dataset.

In contrast, NEURONAL defines a sparsity window, [s−λ, s+λ], in advance. Given an average sparsity rate of s, NEU-
RONAL searches for the optimal λ value within a predefined range of [0.01, 0.02, 0.03, 0.05, 0.06, 0.07, 0.08, 0.09,
0.10, 0.12, 0.15, 0.20, 0.25]. The optimal λ value is determined by maximizing the alignment between the activation
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values of the sparse and dense models. Due to the differences in these algorithms, the final sparsity allocation schemes
obtained by ATP and NEURONAL are different.

2. Significant differences between the two sparsity methods beyond the monotonically increasing sparsity schedule.
ATP focuses on deriving that existing LLM sparsity methods have a reconstruction error explosion problem, thus
proposing the use of a monotonically increasing arithmetic sequence to determine the sparsity rates for LLMs to alleviate
the above problem. Our method provides theoretical insights into the effectiveness and rationality of monotonically
increasing arithmetic sequence sparsity schemes. We only determined non-uniform sparsity rates for each block of
LLMs, with linear layers within blocks using uniform sparsity rates.

In contrast, NEURONAL proposes utilizing functional information from dense pre-trained models, i.e., their activations,
to obtain sparse models that maximize alignment of activations with the corresponding dense model. NEURONAL
adaptively selects the best hyperparameters for block sparsity rates and row-wise sparsity rates based on the model and
desired sparsity level, to maximize neuron alignment between activations.

Therefore, ATP and NEURONAL also have significant differences at the more macro algorithmic level of sparsity
algorithms.

I. Detailed Results for Zero-shot Tasks
In this section, we provide a detailed presentation of the performance of each zero-shot task introduced in Sec. 4.
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Table 20. Zero-shot accuracy results of LLaMA-V1 at 70% sparsity.

Model Method HellaSwag Winogrande BoolQ OBQA PIQA ARC-e ARC-c Mean

LLaMA-7B

Dense 56.92 69.93 75.05 34.40 78.67 75.34 41.89 61.74

SparseGPT 34.58 56.43 64.80 16.80 64.25 45.24 23.12 43.60
w. OWL 37.08 62.35 66.15 19.80 66.16 48.40 26.02 46.57
w. AlphaPruning 37.81 64.01 68.26 18.80 63.60 46.17 27.39 46.58
w. ATP 37.88 64.22 66.51 20.00 66.17 49.37 27.47 47.37

Wanda 28.86 52.80 59.69 14.20 57.56 31.27 17.75 37.45
w. OWL 34.89 58.64 62.63 17.60 64.30 46.97 24.32 44.19
w. DSA 34.68 59.67 62.69 15.40 64.09 45.16 24.40 43.72
w. AlphaPruning 36.26 62.35 66.12 17.20 63.93 43.90 25.17 44.99
w. ATP 37.44 61.43 65.79 20.80 67.46 50.63 25.68 47.03

LLaMA-13B

Dense 59.94 72.77 77.89 33.20 79.16 77.40 46.50 63.84

SparseGPT 37.51 63.30 68.78 20.80 67.63 52.78 25.17 48.00
w. OWL 40.36 66.22 66.82 20.80 69.86 57.37 28.67 50.01
w. AlphaPruning 42.43 67.80 67.58 22.00 70.01 55.47 29.10 50.63
w. ATP 43.31 67.92 69.14 23.40 70.89 59.97 30.20 52.12

Wanda 31.06 54.38 61.59 16.20 62.68 42.05 17.58 40.79
w. OWL 38.57 63.46 62.81 20.40 68.61 57.07 26.37 48.18
w. DSA 38.84 62.04 63.03 23.20 68.98 58.29 26.10 48.64
w. AlphaPruning 41.04 64.96 64.83 21.20 69.01 59.39 28.24 49.81
w. ATP 43.11 64.98 66.64 25.80 69.80 59.97 30.89 51.60

LLaMA-30B

Dense 63.35 75.69 82.69 36.00 81.01 80.30 52.82 67.41

SparseGPT 44.56 69.30 65.35 25.80 72.42 65.78 32.25 53.64
w. OWL 46.96 72.20 67.95 26.80 73.56 67.13 35.49 55.73
w. AlphaPruning 47.49 72.30 68.96 30.00 73.50 67.97 34.73 56.42
w. ATP 48.77 72.83 69.28 30.60 73.94 68.81 36.68 57.55

Wanda 44.23 67.01 66.70 26.40 72.03 64.86 32.25 53.35
w. OWL 47.69 69.77 65.02 29.20 73.88 68.98 36.62 55.88
w. DSA 45.62 67.25 73.15 27.80 72.36 68.13 32.17 55.21
w. AlphaPruning 49.40 71.27 63.82 31.00 73.50 69.40 38.31 56.67
w. ATP 50.27 71.37 65.35 31.40 75.41 70.62 39.42 57.69

LLaMA-65B

Dense 64.53 77.27 84.89 38.00 81.23 81.36 52.73 68.57

SparseGPT 49.98 74.74 81.03 29.20 74.76 72.05 39.51 60.18
w. OWL 51.25 74.98 81.30 27.00 75.68 68.35 37.71 59.47
w. AlphaPruning 52.40 74.59 83.80 28.42 75.68 69.30 38.05 60.32
w. ATP 53.10 75.69 83.73 28.45 76.06 71.46 40.69 61.31

Wanda 46.29 70.79 77.37 27.20 74.21 70.66 37.79 57.76
w. OWL 50.90 74.11 78.50 30.60 75.68 70.70 38.05 59.79
w. DSA 48.60 73.08 71.77 28.80 75.35 71.88 38.22 58.24
w. AlphaPruning 52.55 75.06 81.85 30.40 75.84 71.60 40.02 61.05
w. ATP 52.92 75.70 82.73 31.80 75.98 73.53 40.78 61.92
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Table 21. Zero-shot accuracy results of LLaMA-V2/V3 at 70% sparsity.

Model Method HellaSwag Winogrande BoolQ OBQA PIQA ARC-e ARC-c Mean

LLaMA2-7B

Dense 57.17 68.90 77.74 31.40 78.07 76.39 43.52 61.88

SparseGPT 33.08 58.41 64.89 17.40 62.46 43.22 22.01 43.07
w. OWL 36.57 63.06 66.94 21.60 63.89 49.33 24.49 46.55
w. AlphaPruning 36.83 62.19 65.93 19.80 64.58 49.62 24.43 46.20
w. ATP 38.94 63.54 69.54 21.70 68.12 52.74 25.85 48.63

Wanda 27.92 49.33 52.87 12.60 55.33 30.60 18.69 35.33
w. OWL 31.83 55.96 62.11 16.80 61.70 43.52 20.31 41.75
w. DSA 28.54 50.36 57.46 12.00 57.13 32.95 17.41 36.55
w. AlphaPruning 34.56 60.85 62.23 18.00 62.40 43.27 22.27 43.37
w. ATP 36.08 61.01 62.39 20.40 66.81 50.76 23.38 45.83

LLaMA2-13B

Dense 60.06 72.22 80.52 35.20 79.11 79.42 48.46 65.00

SparseGPT 36.90 61.64 66.02 21.00 67.57 52.61 25.94 47.38
w. OWL 39.31 65.75 68.04 22.80 67.89 57.70 27.82 49.90
w. AlphaPruning 41.26 68.03 68.13 24.00 68.28 57.15 29.18 50.86
w. ATP 42.81 68.09 72.91 24.40 69.74 58.25 31.06 52.46

Wanda 29.60 51.70 62.32 13.60 58.65 37.21 19.11 38.88
w. OWL 36.31 60.46 63.46 21.80 67.77 55.64 24.91 47.19
w. DSA 32.83 55.01 62.41 17.80 63.71 49.87 21.92 43.36
w. AlphaPruning 40.28 67.32 62.57 21.60 68.17 54.46 29.35 49.11
w. ATP 41.44 67.50 74.71 24.60 68.25 57.49 30.80 52.11

LLaMA2-70B

Dense 66.10 78.06 83.40 37.20 82.21 82.55 54.44 69.14

SparseGPT 50.98 75.45 80.06 30.00 75.24 73.57 40.61 60.84
w. OWL 51.95 74.98 79.25 30.40 75.68 73.00 40.53 60.83
w. AlphaPruning 51.90 75.06 80.40 29.20 75.68 74.10 40.87 61.03
w. ATP 53.44 76.56 80.42 31.00 76.71 75.38 42.23 62.25

Wanda 48.16 73.88 74.46 27.00 74.86 72.69 38.31 58.48
w. OWL 50.20 74.02 75.01 28.60 75.68 73.02 38.30 59.26
w. DSA 48.60 73.08 71.77 28.80 75.35 71.88 38.22 58.25
w. AlphaPruning 51.40 74.74 73.65 29.60 75.84 72.70 38.13 59.44
w. ATP 51.84 75.53 78.65 29.70 76.66 74.83 39.16 60.91

LLaMA3-8B

Dense 60.19 72.77 81.35 34.80 79.71 80.09 50.43 65.62

SparseGPT 34.26 56.75 66.51 16.80 63.28 42.09 21.42 43.02
w. OWL 36.78 58.96 69.54 18.20 65.45 49.46 24.06 46.06
w. AlphaPruning 35.54 61.56 71.02 17.00 63.92 46.17 21.67 45.27
w. ATP 38.19 63.22 71.12 19.00 66.59 50.20 26.19 47.79

Wanda 27.36 49.96 53.33 12.00 56.04 31.86 17.41 35.42
w. OWL 28.43 50.43 61.74 13.00 57.99 35.82 17.58 37.85
w. DSA 27.51 48.46 54.16 11.80 56.63 33.03 17.66 35.61
w. AlphaPruning 27.82 51.85 56.42 13.40 56.47 34.97 17.32 36.89
w. ATP 31.46 54.93 61.79 16.40 62.18 41.79 20.39 41.28
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Table 22. Zero-shot accuracy results of LLaMA-V1/V2 at 50% sparsity.

Model Method HellaSwag Winogrande BoolQ OBQA PIQA ARC-e ARC-c Mean

LLaMA-7B

Dense 76.18 70.09 75.11 44.40 79.16 72.98 44.71 66.09

Wanda 68.92 66.38 70.70 39.00 74.76 61.74 38.91 60.06
w. OWL 70.06 66.85 71.44 39.80 75.52 69.44 40.36 61.92
w. DSA 69.51 67.95 71.31 39.40 75.46 69.65 40.01 61.90
w. ALS 69.59 66.30 73.70 38.60 77.26 65.66 40.02 61.59
w. AlphaPruning 69.60 67.64 73.33 39.20 75.57 69.65 38.39 61.91
w. ATP 70.18 68.06 73.92 39.90 76.51 69.74 40.70 62.72

LLaMA-13B

Dense 79.06 72.77 77.89 44.80 80.14 74.79 47.78 68.18

Wanda 74.13 71.51 75.96 43.60 77.91 69.65 43.77 65.22
w. OWL 74.82 72.53 76.39 43.60 77.37 73.32 43.34 65.91
w. DSA 74.02 70.79 76.05 43.20 76.98 72.60 44.19 65.40
w. ALS 74.34 71.35 75.17 43.00 77.37 69.70 44.45 65.05
w. AlphaPruning 74.58 72.77 76.63 44.00 76.82 74.20 44.36 66.19
w. ATP 74.86 72.78 76.47 44.20 77.46 74.36 44.60 66.39

LLaMA2-7B

Dense 75.98 69.06 77.74 44.20 79.11 74.49 46.25 66.69

Wanda 68.76 67.32 75.78 41.40 76.99 69.23 41.72 63.03
w. OWL 70.79 67.32 75.96 42.80 76.33 72.01 41.97 63.88
w. DSA 70.90 66.45 76.42 43.00 76.22 71.42 42.83 63.89
w. ALS 70.75 67.80 75.47 44.80 77.10 69.61 42.32 64.12
w. AlphaPruning 70.89 67.48 76.63 43.00 76.33 72.22 42.83 64.20
w. ATP 70.99 67.84 76.73 43.70 76.44 72.90 42.85 64.49

LLaMA2-13B

Dense 79.39 72.38 80.58 45.20 80.52 77.53 49.15 69.25

Wanda 75.02 69.39 80.34 44.10 78.13 70.37 42.76 65.73
w. OWL 76.11 71.19 81.65 45.40 78.67 76.85 46.24 68.02
w. DSA 75.86 71.03 80.83 45.00 78.62 76.22 45.99 67.65
w. ALS 75.67 72.06 81.35 45.80 78.51 70.33 46.08 67.11
w. AlphaPruning 76.19 71.58 80.97 45.00 78.34 76.38 46.16 67.80
w. ATP 76.26 72.09 81.66 45.20 78.74 76.86 46.42 68.18
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Table 23. Zero-shot accuracy results of more LLM architectures at 70% sparsity.

Model Method HellaSwag Winogrande BoolQ OBQA PIQA ARC-e ARC-c Mean

LLaMA3.1-8B
Dense 59.98 73.32 82.05 33.20 79.98 81.57 51.45 65.93

Wanda 27.43 48.70 57.71 13.60 55.01 31.86 18.43 36.10
w. ATP 31.81 55.49 62.08 15.60 62.68 42.63 20.82 41.59

OPT-13B
Dense 52.43 65.04 65.93 27.20 75.84 67.13 32.94 55.22

Wanda 34.36 55.09 55.02 15.60 62.89 43.73 23.89 41.51
w. ATP 36.47 58.09 62.17 18.20 65.56 46.63 24.91 44.58

Vicuna-13B
Dense 59.64 71.59 85.26 36.80 79.00 78.66 47.78 65.53

Wanda 31.84 54.70 62.78 16.40 61.75 44.87 22.10 42.06
w. ATP 41.47 63.85 76.70 25.00 69.04 61.95 34.30 53.19

Qwen2.5-7B
Dense 60.01 72.85 84.65 33.20 78.73 80.43 47.70 65.36

Wanda 30.68 51.93 61.96 15.20 61.59 46.34 20.05 41.10
w. ATP 32.84 56.59 62.14 16.40 63.44 46.42 21.93 43.82

Mistral-7B
Dense 61.21 73.88 83.64 32.60 80.58 80.85 50.43 66.17

Wanda 28.86 51.07 60.03 12.60 57.56 34.60 18.69 37.62
w. ATP 34.44 58.96 62.20 15.60 63.93 42.68 21.50 42.76

Table 24. Zero-shot accuracy results of more post-training sparsity methods at 70% sparsity.

Model Method HellaSwag Winogrande BoolQ OBQA PIQA ARC-e ARC-c Mean

LLaMA2-7B

Dense 57.17 68.90 77.74 31.40 78.07 76.39 43.52 61.88

DSnoT 27.80 51.78 49.66 12.60 55.66 30.89 17.41 35.11
w. ATP 34.98 58.01 62.23 18.20 65.78 50.42 21.93 44.51

Pruner-Zero 27.56 50.99 41.93 13.00 56.90 34.47 18.60 34.78
w. ATP 35.97 57.93 64.46 18.60 64.15 48.27 23.98 44.77

ALPS 38.35 61.96 64.59 22.20 66.82 48.37 24.95 46.75
w. ATP 41.58 64.25 64.78 24.20 68.34 56.65 28.92 49.82
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