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ABSTRACT

While using two-dimensional convolutional neural networks (2D-CNNs) in image
processing, it is possible to manipulate domain information using channel statis-
tics, and instance normalization has been a promising way to get domain-invariant
features. Although 2D image features represent spatial information, 2D audio fea-
tures like log-Mel spectrogram represent two different temporal and spectral in-
formation. Unlike image processing, we analyze that domain-relevant informa-
tion in the audio feature is dominant in frequency statistics rather than channel
statistics. Motivated by our analysis, we introduce RFN, a plug-and-play, explicit
normalization module along the frequency axis, eliminating instance-specific do-
main discrepancy in the audio feature while relaxing undesirable loss of useful
discriminative information. Empirically, simply adding RFN to networks shows
clear margins compared to previous domain generalization approaches on acous-
tic scene classification, keyword spotting, and speaker verification tasks and yields
improved robustness to audio-device, speaker-ID, or genre.

1 INTRODUCTION

To minimize the expectation of loss functions, risk, over the intractable data space, it has been com-
monly used to minimize the empirical risk (expectation over training dataset) with i.i.d assumption
in machine learning (Vapnik, 1991). However, the assumption does not always hold, and deep neu-
ral networks (DNNs) have difficulty in being generalized to unseen domains, which can cause poor
results in real-world scenarios. Hence, in most fields, including computer vision, audio processing,
and natural language processing, domain generalization (DG) has been an essential research topic.

LeCun et al. (1989) and Krizhevsky et al. (2012) introduced two-dimensional convolutional neural
networks (2D-CNNs) in the image recognition task. Since then, 2D-CNN architecture has been
widely employed beyond the image field. Paying attention to that domain-relevant information is
reflected in the channel statistics of the convolutional features of images, several works (Nam & Kim,
2018; Pan et al., 2018; Choi et al., 2020; Bronskill et al., 2020) exploited Instance Normalization
(IN) (Ulyanov et al., 2016; 2017) to eliminate instance-specific domain discrepancy. This approach
is promising for achieving domain-invariant representations. Here, we raise a question: Does this
approach make sense in other fields, especially in audio?

In audio, temporal and frequency dimensions convey important information. Therefore, it has been
de facto to represent audio signals with 2D representation such as log-Mel spectrogram and Mel-
Frequency Cepstral Coefficients (MFCCs). Like the image field, taking those 2D representations
as inputs, 2D-CNNs have also been adopted in diverse audio tasks, e.g., audio scene classification,
speech recognition, and speaker recognition. However, whereas 2D convolution is operated along
spatial dimensions in the image field, it convolves the frequency and temporal information in the
audio field. Hence, dissimilar with images, domain information may not be mainly distributed in
channel statistics in audio. Although various works have addressed better usage of 2D-CNNs in the
audio field (Hershey et al., 2017; Park et al., 2019; Phaye et al., 2019; McDonnell & Gao, 2020;
Palanisamy et al., 2020; Chang et al., 2021; Kim et al., 2021a), there has been less effort to focus on
dimensional characteristics of 2D audio representation for DG in neural architectures.

1



Under review as a conference paper at ICLR 2022

This work focuses on domain generalization by explicit normalization, manipulating statistics in 2D
audio features. In particular, we analyze the relationship between the domain and the statistics of
each feature dimension by estimating mutual information, and demonstrate that the frequency fea-
ture (including spectrum and cepstrum) dimension carries more domain-relevant information than
channel and temporal dimensions. We also find that the frequency dimension contains a meaningful
representation of class discriminative information. Motivated by the analysis, we introduce a plug-
and-play DG module named Relaxed instance Frequency-wise Normalization (RFN). RFN removes
domain information through normalization along frequency dimension at the input and hidden layers
of networks. We also introduce the term relaxation that can effectively control the degree of normal-
ization to prevent the loss of useful discriminative information. We provide experimental analyses
of RFN on two classification tasks and one verification task for environmental sound and human
voice addressing multiple domains: acoustic scene classification (ASC), keyword spotting (KWS),
and speaker verification (SV). We empirically observe that the performing DG on the frequency
dimension is essential for audio features in 2D-CNNs.

We make the following contributions: (1) In 2D audio processing, we analyze that domain infor-
mation is highly correlated to frequency statistics. Our analysis show that it is possible and better
to explicitly manipulate frequency statistics rather than channel statistics to eliminate domain dis-
crepancy per instance; (2) We propose a novel domain generalization method, Relaxed instance
Frequency-wise Normalization (RFN) to manipulate instance frequency statistics. To the best of our
knowledge, this is the first work to solve domain generalization based on the different characteristics
of channel and frequency statistics in audio features; (3) Through extensive experiments, we demon-
strate that our RFN can discard unnecessary domain information while avoiding undesirable loss of
discriminative information. Simply adding our RFN to networks shows clear margins compared to
other DG methods in various audio tasks and yields better device, speaker ID, and genre robustness.

2 CHARACTERISTICS OF AUDIO IN 2D CNNS

We consider characteristics of 2D audio representation in RF×T as an input of 2D-CNNs where F
and T stands for frequency and time axes, respectively. Using a mini-batch axisN , we can represent
an element of activation, x, with a 4D-index of i = (iN , iC , iF , iT ), where iC is the channel-index.
Motivated by that the instance statistics along a specific dimension can represent domain-relevant
information (Huang & Belongie, 2017; Nam & Kim, 2018; Zhou et al., 2021), we consider the
domain information of each feature dimension in 2D-CNNs.

2.1 PRELIMINARIES

Estimation of Mutual Information. Direct computing of mutual information (MI) is usually in-
tractable for continuous random variables. Following the literature (Wang et al., 2021b), we add
an auxiliary classifier with parameter ψ on top of the statistics along a specific dimension of
activation x, and train the classifier to correctly classify d or y, one-hot ground-truth domain
or task label, respectively. More precisely, Wang et al. (2021b) approximated MI, I(x, y) =
H(y) − Ep(x,y)[− log p(y|x)] by approximating the expectations of true p(y|x) by the expecta-
tions of qψ(y|x) over a training set of size M . The resulting estimation is I(x, y) = H(y) −
1
M

∑M
i=1− log qψ(yi|xi). They simply use the test accuracy of q(ψ)(y|x) as an estimation of

I(x, y) which is highly correlated to 1
M

∑M
i=1− log qψ(yi|xi), the cross-entropy loss (same of d).

Notations. We generate instance statistics, mean and standard deviation (std), along a specific di-
mension for activation x of the 4D-index i. For instance, we denote instance frequency-wise statis-
tics of xiN as s(F ) (omit index iN for clarity) which is a concatenation of mean and std along F -axis,
s(F ) = concat(µ(F ),σ(F )), where µ(F ),σ(F ) ∈ RF . In image, there are spatial axes, H (height)
and W (width) instead of F and T , respectively.

2.2 ANALYSIS OF INSTANCE STATISTICS OF 2D AUDIO FEATURES

For the MI analysis in the image, we employ ResNet18 (He et al., 2016) trained on a multi-domain
image dataset, PACS (Li et al., 2017), which has seven common categories for y with four domains
(photo, art-painting, cartoon, and sketch) for d. In audio, we use BC-ResNet-Mod-1 (Kim et al.,
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Figure 1: Estimates of mutual information between dimension-wise statistics of intermediate hid-
den feature and the domain label, I(s, d) (top), or the class label, I(s, y) (bottom). We use log-Mel
spectrogram (left) and MFCC (middle) on the audio scene classification task and use raw RGB
image (right) for the PACS dataset (Average over 5 seeds; error bar stands for standard deviation).

2021a;b) suitable for DCASE 2021, multi-device acoustic scene classification (ASC) task (Heittola
et al., 2020) which has ten acoustic scenes (e.g., airport, shopping mall, metro station) for y with six
different train recording devices (domains) for d. (We denote BC-ResNet-Mod by BC-ResNet for
clarity.) The ASC validation set contains devices which are unseen during training, and we did six-
way classification for seen devices (3 real and 3 simulated devices) to get estimation of I(s, d). For
the ASC task, we exploit two representative 2D audio features: log-Mel spectrogram and MFCCs.
We estimate MI after each stage which is a sequence of convolutional blocks whose activations have
the same width.

The first row of Figure 1 plots the estimates of MI of each dimension varying stages for domain
labels. In PACS (right), the estimate of I(s(C), d) is higher than others in every stage and increases
until stage 3. Whereas the estimated MI of width or height-wise ones gradually decreases as layers go
deep. The observation correlates well with the common belief that channel-wise instance statistics
can represent style (domain) in image-level 2D-CNNs (Huang & Belongie, 2017). Contrarily, in
audio (left and middle), MI of frequency-wise statistics (Freq-wise Stat) is a par or superior to that
of channel statistics while MI of temporal statistics is inferior on all stages.

The second row of Figure 1 shows the estimates of MI for task label y. In the image, chan-
nel statistics again yields higher values than the width or height-wise ones. However, we ob-
serve that frequency statistics is also highly correlated to class label y in the audio domain.

Figure 2: 2D t-SNE visualiations using activation of
stage 1 in BC-ResNet-1.

Therefore, we can infer that it is essential
to suppress unnecessary domain informa-
tion and preserve the task-relevant informa-
tion in the frequency dimension for domain
generalization in audio.

t-SNE Visualization. We further analyze
the 2D t-SNE visualization (Van der Maaten
& Hinton, 2008) to compare s(F ) and
s(C). In Figure 2 the features are sepa-
rated better by device-IDs (A to S3) with
frequency-wise mean and std, s(F ), com-
pared to that of the channel, s(C). The ob-
servation support the analysis of MI estima-
tion. See Figure A5 for more plots.

3 RELAXED INSTANCE FREQUENCY-WISE NORMALIZATION

Instance Normalization (IN) (Ulyanov et al., 2016) has been one of the promising ways to get
domain-invariant features for various domain generalization (Nam & Kim, 2018; Pan et al., 2018;
Choi et al., 2020) and transfer approaches (Huang & Belongie, 2017) in image processing. However,
in Section 2, the MI analysis showed that domain information is highly contained in the frequency
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Algorithm 1 RFN, applied to activation x over a mini-batch.
Input: Activation x ∈ RN×C×F×T over a mini-batch. Relaxation λ ∈ [0, 1].
Output: y = RFN(x)

EIFN[x]←− 1
C·T

∑C
c

∑T
t x:,c,:,t

VarIFN[x]←− 1
C·T

∑C
c

∑T
t (x:,c,:,t − EIFN[x])� (x:,c,:,t − EIFN[x])

IFN(x):,c,:,t ←− x:,c,:,t−EIFN[x]√
VarIFN[x]−ε

. IFN

ELN[x]←− 1
C·F ·T

∑C
c

∑F
f

∑T
t x:,c,f,t

VarLN[x]←− 1
C·F ·T

∑C
c

∑F
f

∑T
t (x:,c,f,t − ELN[x])� (x:,c,f,t − ELN[x])

LN(x):,c,f,t ←− x:,c,f,t−ELN[x]√
VarLN[x]−ε

. LN

y ←− λ · LN(x) + (1− λ) · IFN(x) . RFN

dimension in the audio features. Also we observed that the audio features are better grouped by do-
main label while using frequency statistics compared to that of channel. Hence, we consider using
instance frequency-wise normalization (IFN) instead of IN for the domain generalization in audio.

Frequency-wise normalization. Before defining IFN, we start by reviewing the formulation of
conventional channel-wise normalization (CN), which includes Batch Normalization (BN) (Ioffe &
Szegedy, 2015), IN, and Group Normalization (GN) (Wu & He, 2018), to distinguish them from
frequency-wise normalization (FN). We denote an element of a normalized feature as x̂i = (xi −
µi)/σi where µi = 1

m

∑
k∈Si

xk and σ2
i = 1

m

∑
k∈Si

(xk − µi)2 + ε are calculated over an index-
set Si whose size |Si| = m. Then. feature normalization methods can be defined by the set Si. We
define CN as a feature normalization, where feature elements having same channel index, iC , share
the mean and variance, e.g., BN is defined by Si = {k|kC = iC} = {k|k = (:, iC , :, :)}.
Now, we define FN as a feature normalization, where feature elements sharing same frequency
feature index, f , are normalized together. Similar to CN, we can get Batch-FN (BFN), IFN, and
Group-FN (GFN), and we can define IFN by following Si.

IFN: Si = {k|kN = iN , kF = iF }. (1)

Relaxed instance frequency-wise normalization. We use IFN to eliminate instance-specific do-
main discrepancy represented in the frequency distribution. However, we also observe that frequency
statistics is highly correlated to both domain information and class-discriminative information in
Section 2, and thus, we can expect a possible loss of useful discriminative information from the
direct use of IFN. We try to relax (alleviate) the effect of IFN by using an additional normalization.
We use instance-wise global statistics from Si = {k|kN = iN}, which is also known as Layer Nor-
malization (LN) (Ba et al., 2016). Using IFN and LN, we introduce a novel domain generalization
module, named, Relaxed instance Frequency-wise Normalization (RFN) as following:

RFN(x) = λ · LN(x) + (1− λ) · IFN(x), (2)

where x is an input to RFN, and λ ∈ [0, 1] represents the degree of relaxation. Larger λ implies
more relaxation. We do not use affine transformation for IFN and additional normalizatoin, LN.

The resulting mean and std of RFN(x) are µ̂(F )
i = λ

σi
(µ

(F )
i − µi) and σ̂(F )

i = λ · σ
(F )
i

σi
+ (1 − λ),

respectively (See Appendix A.2) , where µ(F )
i and σ(F )

i are calculated over Si = {k|kN = iN , kF =

iF }, and µi and σi are statistics over Si = {k|kN = iN}. The values of µ̂(F )
i and σ̂(F )

i correspond
to mean and std of LN(x) and that of IFN(x) when λ = 1 and 0, respectively. The key feature of
relaxation is adding a normalized feature to IFN, not LN. In this work, we experiment LN with IFN
for RFN, but there are other possible design choices like BN or GN instead of LN depending on a
task and a model architecture. For more discussion, see Appendix A.3.

We present the RFN transform in algorithm 1 which is simple and easy to implement (example
PyTorch-like code in Appendix A.1). RFN can be inserted in the middle of the existing network
to erase unnecessary instance-specific domain discrepancy as an additional, plug-and-play module,
and it is also expected to avoid undesirable loss of task-relevant information through relaxation.
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4 RELATED WORKS

Normalization-based DG. The literature in domain generalization (DG) is vast and out of scope for
this work. Hence, we review the most relevant works. There have been various IN-based approaches,
e.g., BIN (Nam & Kim, 2018), IBN-Net (Pan et al., 2018), and Meta-BIN (Choi et al., 2020), to get
domain (style) invariant features by exploiting the property of image processing that domain infor-
mation can be captured in channel-wise distribution. They are effective, but IN is a task-agnostic
normalization layer that can cause lower discriminative performance (Ulyanov et al., 2017). There-
fore, they used IN with BN to alleviate the effect of IN as alternatives to conventional BN in neural
architectures, but limited to BN. Bronskill et al. (2020) proposed TaskNorm, combinations of BN
with IN or LN, to overcome the mismatch of data distributions in meta-learning scenarios. A plug-
and-play module, MixStyle (Zhou et al., 2021) got domain robustness using mixed channel-wise
statistics based on Adaptive IN (AdaIN) (Huang & Belongie, 2017), an image style transfer ap-
proach. Despite the relation to these approaches, we address that those approaches are not suitable
for manipulating domain information in audio features.

Other DG approaches. There have been other branches for DG besides using explicit normaliza-
tion. We introduce some notable works; (1) Data-augmentation approaches augment inputs or hidden
features to increase the diversity of seen domains to cover unseen data space, e.g., general-purpose
regularization or adversarial gradient-based methods (Zhang et al., 2018; Volpi et al., 2018; Shankar
et al., 2018; Zhou et al., 2020; Xu et al., 2021). They are effective, but still, depending on the size of
the training dataset and the number of seen domains. (2) There have been feature disentanglement
methods that decompose weights or hidden features into domain-specific and common parts (Peng
et al., 2019; Piratla et al., 2020), represented by Common-Specific Decomposition (CSD) (Piratla
et al., 2020), which decomposes the last softmax layer into domain-common and domain-specific
weights. (3) Moreover, there have been learning methods like meta-learning (learning-to-learn) for
DG scenarios (Li et al., 2018; Kang et al., 2020; Zhao et al., 2021). The above categories are con-
ceptually different and can be used together for better generalization capability (Wang et al., 2021a).
RFN can also be complementary to and not a replacement for them, as shown in later experiments.

Frequency-wise computations. Frequency-wise computations have been attempted to get robust
audio features, and frequency-wise normalization has been more widely studied recently (Chang
et al., 2021; Yeung et al., 2021; Stafylakis et al., 2021). For example, Wang et al. (2017) introduced
per-channel energy normalization (PCEN), a moving average of frequency-wise energy over time,
and Zeghidour et al. (2018) and Park & Yoo (2020) observed that IFN is beneficial for a learnable
filterbank. Cepstral mean and variance normalization (CMVN) (Viikki & Laurila, 1998; Prasad &
Umesh, 2013) shows that such normalization also works for MFCCs. They are successful to achieve
robust features, but are also suffer from information loss due to instance-wise normalization. Also
the methods are limited to input preprocessing. The proposed RFN is more flexible that it can be
used in the middle of the network, and we introduce additional normalized feature term, relaxation,
to successfully compensate undesirable information loss.

5 EXPERIMENTS

5.1 DATASETS AND EXPERIMENTAL SETUP

To verify DG capability of RFN, we experiment with RFN on three different audio tasks composed
of two classification tasks, audio scene classification (ASC) and keyword spotting (KWS), and one
verification task, speaker verification (SV).

Multi-device audio scene classification. In ASC, it is required to classify an audio segment to one of
the given acoustic scene labels. We use the TAU Urban Acoustic Scenes 2020 Mobile development
dataset (Heittola et al., 2020), which consists of training and validation data of 13,962 and 2,970
audio segments, respectively. The data are recorded from 12 European cities in 10 different acoustic
scenes using three real (A, B, and C) and six simulated devices (S1-S6). The task is challenging
due to domain imbalance (device A is dominant) and unseen domains (devices S4-S6 are not used
during training). We use the ASC version of BC-ResNets (Kim et al., 2021b), which recently won
the task in DCASE2021 (Martı́n-Morató et al., 2021) and another baseline architecture, CP-ResNet,
c=64 (Koutini et al., 2019).
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Table 1: Acoustic Scene Classification. Top-1 validation accuracy (%) on TAU Urban Acoustic
Scenes 2020 Mobile development dataset. (average and standard deviation; averaged over 5 seeds)

Method #Param seen unseen Overall ∆A B C S1 S2 S3 S4 S5 S6

BC-ResNet-8 315k 79.6 70.8 74.3 69.8 66.2 72.8 63.6 63.3 59.2 68.9 ± 0.8 + 0.0
+ Global FreqNorm 315k 80.2 72.2 76.2 70.8 67.5 72.6 65.4 66.0 56.2 69.7 ± 0.6 + 0.8
+ PCEN 315k 75.6 66.7 66.3 69.0 67.0 73.6 68.1 68.3 66.7 69.0 ± 0.7 + 0.1
+ Mixup 315k 79.9 70.3 72.0 69.8 65.9 70.1 60.5 60.8 56.1 67.3 ± 1.0 - 1.6
+ MixStyle 315k 78.5 70.0 72.0 68.4 65.9 68.3 59.0 59.3 54.6 66.2 ± 0.7 - 2.7
+ BIN 317k 76.9 70.2 71.4 67.3 65.6 69.6 60.4 62.2 57.6 66.8 ± 1.5 - 2.1
+ CSD 317k 77.5 71.4 72.8 68.7 66.8 71.0 65.0 63.5 56.7 68.2 ± 0.4 - 0.7

+ RFN (Ours) 315k 82.4 73.2 74.5 75.7 69.9 76.9 70.5 72.4 69.5 73.9 ± 0.7 + 5.0
λ = 0 (IFN) 315k 77.1 71.7 67.8 73.0 71.1 74.8 69.8 70.9 67.4 71.5 ± 1.2 + 2.6
λ = 1 (LN) 315k 79.8 71.9 72.9 73.6 68.9 70.7 62.2 63.2 57.2 68.9 ± 0.7 + 0.0

BC-ResNet-1 8.1k 73.3 61.3 64.9 61.0 58.3 66.7 51.8 51.3 48.5 59.7 ± 1.3 + 0.0
+ RFN (Ours) 8.1k 75.2 63.7 64.0 62.8 61.2 68.0 58.3 63.0 57.2 63.7 ± 0.9 + 4.0

CP-ResNet, c = 64 897k 78.1 71.2 73.4 68.3 65.9 68.7 64.8 64.8 58.5 68.2 ± 0.4 + 0.0
+ RFN (Ours) 897k 79.3 70.9 70.8 71.8 72.1 74.1 69.9 68.6 66.0 71.5 ± 0.3 + 3.3

Keword spotting. KWS aims to detect and classify predefined keywords. We use Google Speech
Commands dataset version 1 (Warden, 2018), which contains 64,727 utterances from 1,881 speak-
ers. Aside from audio device-ID in the ASC task, speaker ID is another important domain, which can
characterize audio data. Following the DG settings of Shankar et al. (2018) and Piratla et al. (2020),
we experiment with the architecture of Sainath & Parada (2015), cnn-trad-fpool3, with varying num-
bers of training speakers from 50 to a large number of domains, 1,000, and observe performance for
unseen speakers. The task is a 12-way classification for ten target keywords (among 30 words) and
two additional classes, ‘silence’ and ‘unknown words’ (the rest 20 words) (Warden, 2018). We split
validation and test speakers using 10% of the total speakers for each. We also experiment another
backbone, ResNet15 (Tang & Lin, 2018).

Multi-genre speaker verification. We also try RFN on a verification task, SV, which accepts or
rejects a speaker’s utterance’s claimed identity based on a few enrolled utterances from a target
speaker. We experiment on the CN-Celeb dataset (Fan et al., 2020; Li et al., 2020), which has a
total of 659,594 utterances from 3,000 speakers recorded in 11 genres, e.g., ‘interview,’ ‘drama,’
and ‘singing,’ from various platforms and devices. We use ‘singing’ and ‘movie’ as unseen genres
during training following (Li et al., 2020), and the dataset splits 200 speakers as CN-Celeb (E) for
validation (Fan et al., 2020). The task is especially challenging due to the severe imbalance between
genres in each speaker; more than half of speakers record only one genre. We exploit Fast ResNet-
34 (Chung et al., 2020; Heo et al., 2020), a variant of the ResNet with 34 layers, suitable for speaker
verification, and train the model with AM-Softmax, which has shown notable improvements over
cross-entropy loss (Wang et al., 2018a;b). The results are obtained using cosine-similarity without
any score or other normalization.

Baselines. We compare our approach to the following baselines. We use (1) ‘Global FreqNorm’
to normalize inputs using global frequency-wise statistics from training data as a naive baseline.
Next, we experiment (2) Per-Channel Energy Normalization (PCEN) (Wang et al., 2017), which
preprocess audio input by moving average of frequency-wise energy along the temporal axis. We
use PCEN instead of log-Mel. We compare IN-based approaches, (3) MixStyle (Zhou et al., 2021),
mixing channel-wise statistics within mini-batch in the middle of a network, and (4) BIN (Nam &
Kim, 2018), a combination of BN and IN, which switches all BNs in a network. We also compare
other notable DG approaches, (5) a general regularization approach, Mixup (Zhang et al., 2018), (6)
an adversarial gradient-based method, CrossGrad (Shankar et al., 2018), and (7) a decomposition
method, CSD (Piratla et al., 2020). We use the official implementations of MixStyle, BIN, Mixup,
and CSD (Zhou et al., 2021; Nam & Kim, 2018; Zhang et al., 2018; Piratla et al., 2020).

We set λ = 0.5 for all RFN as default. See Appendix A.4 for more details of experimental setups.

5.2 EXPERIMENTAL RESULTS

Multi-device acoustic scene classification. The results are shown in Table 1. The vanilla BC-
ResNet-8 shows poor device generalization capability. The dominant one, ‘A,’ shows the highest
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Table 2: Keyword Spotting. Top-1 test accuracy (%) with varying number of training speakers on
Google speech command dataset ver1. (average and standard deviation; averaged over 5 seeds)

Method 50 100 200 1000

cnn-trad-fpool3 72.5 ± 0.3 80.5 ± 0.5 86.9 ± 0.5 92.3 ± 0.4
+ Mixup 70.5 ± 0.5 79.7 ± 0.4 87.9 ± 0.4 93.3 ± 0.4
+ CrossGrad 73.7 ± 0.8 81.1 ± 0.5 87.2 ± 0.2 92.6 ± 0.2
+ CSD 73.4 ± 0.5 80.9 ± 0.6 87.5 ± 0.5 92.8 ± 0.3

+ RFN (Ours) 76.6 ± 0.6 82.3 ± 0.6 87.8 ± 0.6 92.4 ± 0.3
λ = 0 (IFN) 71.1 ± 1.1 77.9 ± 0.7 85.3 ± 0.3 90.9 ± 0.3
λ = 1 (LN) 72.7 ± 0.8 80.8 ± 0.7 86.5 ± 0.3 92.4 ± 0.2

ResNet15 84.4 ± 1.1 87.9 ± 0.4 91.1 ± 0.2 94.9 ± 0.2
+ RFN (Ours) 86.3 ± 1.0 90.2 ± 0.5 91.8 ± 0.4 95.6 ± 0.2

Table 3: Speaker verification. EER (%) on overall genres and each genre on CN-Celeb. The num-
bers are average and standard deviation (average over 5 seeds).

Method seen unseen Overalldrama entertainment interview live speech vlog movie singing

Baseline 13.1 14.6 11.4 13.8 5.7 7.6 18.4 28.7 14.5 ± 0.4

Mixup 13.9 14.3 10.7 12.0 4.6 6.3 16.8 28.9 14.1 ± 0.2
MixStyle 14.2 14.2 11.1 13.0 5.5 7.0 19.7 28.1 14.0 ± 0.3
BIN 14.1 15.5 12.2 14.0 5.3 8.4 18.3 29.5 15.0 ± 0.6

RFN (Ours) 11.9 13.5 10.1 12.9 4.1 7.2 18.7 27.4 13.4 ± 0.3

performance while the unseen devices’ performance is much lower compared to seen devices. Over-
all, the baselines do not show clear improvements compared to the vanilla BC-ResNet-8 for both
seen and unseen domains. PCEN seems to help device generalization by frequency-wise input pre-
processing, but it leads to performance degradation for seen devices. We attach five RFNs at the
input and after every stage of the networks. Our approach shows significant improvements, rela-
tively more than 10% in top-1 accuracy for unseen domains, while still shows promising results
for seen devices. When we directly use IFN by λ = 0 in RFN, it also shows good generalization
capability but lower performance than RFN especially for seen devices. Also, direct use of LN by
λ = 0 does show clear improvement here. (See Appendix A.5 for more experimental results using
less seen domain, BC-ResNet-1, or CP-ResNet with c=64.)

Keyword spotting. This task desires robustness over speaker IDs. In Table 2, both CrossGrad and
CSD show near 0.5 to 1% improvements for the varying number of training speakers compared
to the vanilla cnn-trad-fpool3. Mixup shows improvements with a large number of domains, but it
works poorly with a small number of training speakers. Here, we use RFN only at the input as an
additional module, considering the shallow architecture of cnn-trad-fpool3. Compared to baselines,
RFN especially shows clear margins when the number of training speakers is small. RFN also shows
clear improvements in ResNet15. There is no separation like the stage in the architecture, thus we
simply add RFN at input and after every ResBlock (in total there are seven RFNs).

Multi-genre speaker verification. This task requires robustness over genre, platform, and device.
The ‘baseline’ uses a conventional input normalization method in SV, global mean subtraction. We
measure the performance by equal error rates (EER) (lower is better) on both the overall validation
set and each genre validation set except ‘advertisement,’ ‘play,’ and ‘recitation,’ which consists of a
very few positive pairs following the settings of Li et al. (2020) and Kang et al. (2020). We show the
results in Table 3. The conventional normalization method produces poor generalization for novel
genres, i.e., ‘movie’ and ‘singing.’ RFN is also helpful for this metric learning task. RFN does not
show dramatic improvements for unseen but still brings better genre robustness and the best overall
EER of 13.4%.

5.3 IMPORTANCE OF FREQUENCY-WISE NORMALIZATION

Effectiveness of FN. Figure 3 left shows estimates of I(s(F ), d) of BC-ResNet-1 on the ASC task.
Here we compare ‘Relaxed-IN’ which use IN instead of IFN. We apply RFN or Relaxed-IN at the in-
put and after every stage and get s(F ) from the activation of each stage (before RFN or Relaxed-IN).
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Figure 3: Left: Estimates of mutual information, I(s(F ), d) where s(F ) and d are frequency-
wise statistics of intermediate hidden feature and audio-device (domain) label, respectively. Middle:
Train and validation accuracy curves. Right: Validation accuracies for seen and unseen domains.
(Average over 5 seeds; error bar stands for std)

Table 4: Compare frequency-wise ap-
proaches to their channel-wise counter-
parts (averaged over 5 seeds).

ASC, top-1 accuracy (%)
Method seen unseen Overall

Baseline 72.3 62.0 68.9 ± 0.8

Global Norm 71.8 60.3 68.0 ± 0.7
BIN 70.2 60.1 66.8 ± 1.5
MixStyle 70.5 57.6 66.2 ± 0.7
Relaxed-IN 72.9 60.7 68.8 ± 0.6

Global FreqNorm 73.2 62.5 69.7 ± 0.6
BIFN 72.0 62.6 68.8 ± 1.0
Freq-MixStyle 73.2 67.7 71.3 ± 0.9
RFN (Ours) 75.4 70.8 73.9 ± 0.7

SV, EER (%)
Method seen unseen Overall

Baseline 11.8 28.2 14.5 ± 0.4

MixStyle 11.4 27.7 14.0 ± 0.3
Relaxed-IN 11.3 27.3 13.9 ± 0.3

Freq-MixStyle 10.3 25.4 12.9 ± 0.7
RFN (Ours) 10.6 26.9 13.4 ± 0.3

Then, we directly compare the effect of IFN and IN,
which correspond to RFN and Relaxed-IN with λ = 0,
respectively. RFN with λ = 0 dramatically reduces
I(s(F ), d) as expected, while the effect of Relaxed-IN
is much smaller compared to RFN. We also confirm
that relaxation can alleviate the information loss using
bigger λ ∈ {0.2, 0.5, 1.0}.
Figure 3 middle and right show training curves for the
larger network, BC-ResNet-8. In Figure 3 middle, the
vanilla BC-ResNet-8 (baseline) and using Relaxed-IN
show a large generalization gap between train and val-
idation accuracies, and using RFN reduces the gen-
eralization gap with higher validation accuracy. Fig-
ure 3 right shows validation accuracies for seen and
unseen devices. While the baseline and Relaxed-IN re-
port poor validation accuracy for unseen devices, RFN
boosts the performance for unseen. We also report the
training curves of BC-ResNet-1 in Appendix A.5.

Frequency-wise vs. Channel-wise approaches. We
further compare various channel-wise approaches to
their frequency-wise counterparts for the ASC and SV
tasks as in Table 4. ‘Global Norm’ normalizes inputs using channel-wise global statistics over train-
ing dataset, and its frequency-wise version is ‘Global FreqNorm.’ We use IFN instead of IN to get
‘BIFN’ from BIN, and ‘Freq-MixStyle’ mixes frequency-wise statistics rather than channel-wise
statistics. We apply Freq-MixStyle at the input and after every stage in BC-ResNet-8 like RFN.
We also use ‘Relaxed-IN’ as a counterpart of RFN. The results show consistent improvements for
frequency-wise approaches compared to each of their channel-wise version. Thus, the results support
the importance of frequency-wise approaches in audio, and RFN still outperforms most frequency-
wise versions of the baselines except ‘Freq-MixStyle’ in SV, which shows a better result than our
RFN with default λ = 0.5.

5.4 ABLATION STUDIES

Table 5: Top-1 test accuracy (%)
using RFN with other baselines (av-
erage over 5 seeds).

KWS
Method 50 100 200

CrossGrad 73.7 81.1 87.2
CSD 73.4 80.9 87.5
RFN 76.6 82.3 87.8

RFN + CrossGrad 77.5 82.3 87.7
RFN + CSD 77.2 83.0 88.4

SV
Method seen unseen all

Mixup 11.1 28.3 14.1
RFN 10.6 26.9 13.4

RFN + Mixup 10.0 26.9 12.8

Complementariness of RFN. RFN is an explicit normaliza-
tion and can be complementary to conceptually different DG
approaches. Non-IN-based baselines, e.g., CrossGrad, CSD,
and Mixup, improve the performance in KWS and SV, but
they do not show clear improvements in ASC. Thus, we ex-
periment with our RFN combined with non-IN-based base-
lines on KWS and SV. In KWS, CrossGrad and CSD show
0.5 to 1% improvements, and Mixup shows 0.4% improve-
ments in SV compared to each of their vanilla training. In
Table 5, RFN used in conjunction with each of them achieves
additional improvements.
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Table 6: Position of RFN modules. Compare Top-1 validation accuracy (%) (or EER (%) for SV) for
the three tasks with number of multiplies. The numbers are average and standard deviation (average
over 5 seeds).

ASC SV KWS

RFN position Top-1 Acc. (%) #Mult RFN position EER (%) #Mult RFN position EER (%) #Mult

Baseline 68.9 ± 0.8 516.5M Baseline 14.5 ± 0.4 451.8M Baseline 84.4 ± 1.1 935.3M

Input 73.1 ± 0.7 516.7M Input 13.1 ± 0.4 451.8M Input 86.3 ± 1.0 935.3M
Input, Stage1 73.0 ± 0.6 519.9M Input, Stage1 13.5 ± 0.2 451.9M Input, ResBlock1,2 86.2 ± 0.6 936.7M
Input, Stage1, 2 72.7 ± 0.5 521.1M Input, Stage1, 2 13.6 ± 0.4 452.0M Input, ResBlock1,2,3,4 86.2 ± 0.6 938.1M
Input, Stage1, 2, 3 73.0 ± 0.8 521.5M Input, Stage1, 2, 3 13.3 ± 0.2 452.0M Input, All ResBlocks 86.3 ± 1.0 939.9 M
Input, Stage1, 2, 3, 4 73.9 ± 0.7 522.0M Input, Stage1, 2, 3, 4 13.4 ± 0.3 452.1M -
Stage1, 2, 3, 4 69.5 ± 0.9 521.8M Stage1, 2, 3, 4 14.3 ± 0.3 452.1M All ResBlocks 85.2 ± 0.9 939.9M

substitute BN 68.5 ± 0.5 516.5M substitute BN 14.6 ± 0.3 451.8M substitute BN 84.2 ± 0.5 937.6M

Figure 4: Relative results as λ changes compared to λ = 1 with various architectures (in ASC) or
with varying number of train domains (in KWS) (Average over 5 seeds; error bar stands for std).

Position of RFN. So far, we naively apply RFN at the input and after every stage in ResNet-based
architectures with naive relaxation of λ = 0.5. Table 6 shows experimental results and the number
of multiplies of three tasks with the varying position of RFN on BC-ResNet-8, Fast-ResNet34, and
ResNet15, respectively. Applying RFN to the input is the most effective compared to other positions
in all tasks, and using RFN in deeper layers can bring additional gain in BC-ResNet-8. Also using
RFN at other positions except input shows better results compared to the vanilla baselines. The
result fits our observations in section 2 that I(s(F ), d) is especially dominant at the input, and the
literature of Pan et al. (2018) which reports that domain-wise feature divergence is higher in shallow
layers. Here, we suggest using RFN at the input and after every stage as a good start. We also
experiment with ‘Substitute BN,’ which switches all BN by RFN in the networks, and it results in
poor performance compared to our suggestion.

Sensitivity to the degree of relaxation. In Figure 4, we plot how the varying λ affects the per-
formance. For clarity, we draw the graphs of relative performance compared to λ = 1 for the
experiments of Section 5.2. In both ASC and KWS, the optimal λ is between 0 and 1 for various
architectures (ASC) and for varying number of training domains (KWS) which implies the necessity
of relaxation in RFN. Especially in KWS, λ = 0 results in a performance drop. See Appendix A.5
for more results. On the other hand, SV shows a different tendency and gets the best EER of 11.7
± 0.3% at λ = 0 (lower is better). One possible reason would be overfitting to domain information
with larger λ due to the severe condition (high correlation), Cramér’s V (Cramér, 2016) of 0.825,
between class and domain labels of the CN-Celeb dataset. Compared to that, the other datasets used
in ASC and KWS show 0.004 and 0.158, respectively. We believe that fixed λ is not optimal for
every position and leave the automatic optimization of λ of RFN for future work. We report results
using direct SGD or meta-learning for λ in Appendix A.5.

6 CONCLUSION

In this work, we address the characteristics of audio features in 2D-CNNs and show a guideline to
get the audio domain invariant feature. Frequency-wise distribution is highly correlated to domain
information, and we can eliminate instance-specific domain discrepancy by explicitly manipulating
frequency-wise statistics rather than channel statistics. Based on the analysis, we introduce a novel
domain generalization method, Relaxed instance Frequency-wise Normalization (RFN), which con-
sists of IFN and additional normalization for relaxation, LN, in this work. The method shows its
feasibility on three different tasks addressing multiple domains: acoustic scene classification, key-
word spotting, and speaker verification with a clear margin compared to previous approaches.
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Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empiri-
cal risk minimization. In ICLR (Poster). OpenReview.net, 2018.

Yuyang Zhao, Zhun Zhong, Fengxiang Yang, Zhiming Luo, Yaojin Lin, Shaozi Li, and Nicu Sebe.
Learning to generalize unseen domains via memory-based multi-source meta-learning for person
re-identification. In CVPR, pp. 6277–6286. Computer Vision Foundation / IEEE, 2021.

Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Learning to generate novel
domains for domain generalization. In European Conference on Computer Vision, pp. 561–578.
Springer, 2020.

Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain generalization with mixstyle. In
ICLR. OpenReview.net, 2021.

13



Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 PYTORCH-LIKE PSEUDO-CODE FOR RFN

Algorithm 2 Pytorch-like pseudo-code for RFN
1: procedure RFN(x, λ, ε):
2: # x: input feature with shape [N, C, F, T].
3: # λ ∈ [0, 1]: relaxation.
4: # ε: small constant, e.g., 1e-5
5:
6: # Instance Frequency-wise Norm stats.
7: mean ifn = x.mean(dim=(1, 3), keepdim=True)
8: var ifn = x.var(dim=(1, 3), keepdim=True, unbiased=False) + ε
9: std ifn = var ifn.sqrt()

10:
11: # Layer Norm stats.
12: mean ln = x.mean(dim=(1, 2, 3), keepdim=True)
13: var ln = x.var(dim=(1, 2, 3), keepdim=True, unbiased=False) + ε
14: std ln = var ifn.sqrt()
15:
16: # RFN.
17: x = λ * (x - mean ln) / std ln + (1 - λ) * (x - mean ifn) / std ifn
18: return x

A.2 STATISTICS OF RFN OUTPUT

Using the notations in Section 3, it is straight that the output of equation 2 has the mean of µ̂(F )
i =

λ
σi

(µ
(F )
i − µi). We briefly explain how to get σ̂(F )

i = λ · σ
(F )
i

σi
+ (1− λ).

The outputs of LN and IFN result to mean and std of (µ
(F )
i − µi)/σi and σ(F )

i /σi and 0 and 1,
respectively. Here µ(F )

i and σ(F )
i are calculated over a set Si = {k|kN = iN , kF = iF } while µi

and σi are from S′i = {k|kN = iN}. Let us consider the elements xi ∈ Si. For X = {xi} and its
RFN outputs Y, the variance of Y, the weighted sum of LN and IFN, is

Var(Y) = λ2(
σ
(F )
i

σi
)2 + (1− λ)2 + 2λ(1− λ) · Cov(LN(X), IFN(X)). (3)

The covariance in the last term is represented by expectations over xi ∈ Si. Here, µi, σi, µ
(F )
i , and

σ
(F )
i are constant over the set Si.

Cov(LN(X), IFN(X)) = ESi [(
xi − µi
σi

− µ
(F )
i − µi
σi

)(
xi − µ(F )

i

σ
(F )
i

− 0)]

=
1

σi · σ(F )
i

· ESi
[(xi − µi)(xi − µ(F )

i )]− µ
(F )
i − µi
σi · σ(F )

i

· ESi
[xi − µ(F )

i ]

=
1

σi · σ(F )
i

(ESi
[x2i ]− (µi + µ

(F )
i ) · ESi

[xi] + µi · µ(F )
i )

=
1

σi · σ(F )
i

(ESi [x
2
i ]− (µ

(F )
i )2) =

σ
(F )
i

σi
, (4)

using ESi [xi] = µ
(F )
i . Apply the result to equation 3, and Var(Y) = (λ

σ
(F )
i

σi
+ (1− λ))2.

A.3 DESIGN CHOICE OF RFN

We use LN with IFN to alleviate the effect of IFN. There are other choices instead of LN, and we
compare an identity shortcut, BN, and GN in Figure A1. BN and GN do not use affine transforma-
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Figure A1: Top-1 Validation Error (%) on TAU Urban AcousticScenes 2020, development dataset
with various tactics to relax IFN (Average over 5 seeds).

tion, and an identity shortcut stands for RFN(x) = λ · x + (1 − λ) · IFN(x). We experiment with
BC-ResNet-1 on acoustic scene classification task as in Section 5. The result shows that RFN with
an identity shortcut also works. However, if we use the identity x, the effect of λ depends on the
distribution of x. In other words, the role of λ can change by the distribution of x. Thus, rather than
using identity, we prefer using normalized features. Using BN or GN instead of LN shows similar
results. However, BN has its weakness on small mini-batch size Wu & He (2018), and BN and GN
also have additional parameters, running mean/var. Thus, in this work, we use LN with IFN as RFN,
but still, we show that normalization like BN or GN also works well, and the choice can be changed
depending on a task and a model architecture.

A.4 DETAILS OF EXPERIMENTAL SETUP

Auxiliary Classifier. The auxiliary classifier in Section 2 has two fully connected (FC) linear layers
with batch normalization (BN) and ReLU nonlinearity which is in the form of FC-BN-ReLU-FC.
The number of hidden features is 32 in common, and BN uses affine transformation. After training
a base model, we freeze it and train randomly initialized auxiliary classifiers, which use s, statistics
of an intermediate hidden feature, as inputs to predict the target labels, i.e., domain or class labels.
Kim et al. (2021b) recently introduced a modified version of BroadCasting-Residual Networks (BC-
ResNets) (Kim et al., 2021a), and won the task in the DCASE2021 challenge (Martı́n-Morató et al.,
2021). We use the modified BC-ResNet-1 as a base ASC model.

Acoustic Scene Classification. In the training data, device ‘A’ has 10,215 samples while others (B,
C, S1-S3) have 750 samples each. In the validation data, all devices from ‘A’ to ‘S6’ have 330 seg-
ments for each. Each recording is 10-sec-long, and the sampling rate is 48kHz. We do downsampling
by 16kHz and use input features of 256-dimensional log-Mel spectrograms with a window length of
130ms and a frameshift of 30ms. During training, we augment data as follows: (1) In the temporal
dimension, we randomly roll each input feature in the range of -1.5 to 1.5 sec, and the out-of-range
part is concatenated to the opposite side; (2) We use Specaugment (Park et al., 2019) with two fre-
quency masks and two temporal masks with mask parameters of 40 and 80, respectively, except
time warping. We apply Specaugment only for the large model, BC-ResNet-8, and use it after the
first RFN at input features. We train each model for 100 epochs using stochastic gradient descent
(SGD) optimizer with momentum set to 0.9 and weight decay to 0.001. We use the mini-batch size
of 100 and 64 for BC-ResNet-1 and 8, respectively. The learning rate linearly increases from 0 to
0.1 and 0 to 0.06 over the first five epochs as a warmup (Goyal et al., 2017) for BC-ResNet-1 and 8,
respectively. Then it decays to zero with cosine annealing (Loshchilov & Hutter, 2017) for the rest
of the training. We report the validation performance of each trial after the last epoch.

Keyword Spotting. Each utterance in Google speech commands dataset ver1 is 1-sec-long, and the
sampling rate is 16kHz. We follow the official 12-class classification setting of Warden (2018). The
dataset has total thirty words and we use ten words, “Yes”, “No”, “Up”, “Down”, “Left”, “Right”,
“On”, “Off”, “Stop”, and “Go” for ten class labels. There are two additional classes “silence” and
“unknown word” consists of the rest twenty words. We borrow the settings introduced by Piratla
et al. (2020)1 for the experiments. We use 40-dimensional MFCCs with 30ms window and 10ms
frame shift. We augment the input during the training using time-shift of T milliseconds where
T ∼ Uniform[−100, 100] and adding background noise to each sample with a probability of 0.8

1https://github.com/vihari/CSD
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Table A1: Details of BC-ResNets with input shapes where B, c and T stand for the mini-batch size,
the number of base channel, and the total time steps, respectively.

Input: log-Mel spectrogram of B×1×256×T

RFN
Input:B×1×256×T, conv1:Conv5x5 with stride2 - BN - ReLU

Input:B×2c×128×T/2, stage1:BC-ResBlocks × 2

RFN
Maxpool 2×2

Input:B×c×64×T/4, stage2:BC-ResBlocks × 2

RFN
Maxpool 2×2

Input: B×1.5c×32×T/8, stage3:BC-ResBlocks × 2

RFN
Input: B×2c×32×T/8, stage4:BC-ResBlocks × 3

RFN
Input: B×2.5c×32×T/8, Conv1x1 - BN

Input: B×10×32×T/8, Global AvgPool

Output shape: B×10×1×1

following common settings (Tang & Lin, 2018; Piratla et al., 2020; Kim et al., 2021a). For the
experiment of ResNet15, we follow the settings of Tang & Lin (2018). We use 40-dimensional
MFCCs with 30ms window and 10ms frame shift and use same data augmentation as the experiment
of cnn-trad-fpool3. We train the model for 9,000 iterations with mini-batch size of 64 using SGD
optimizer with momentum set to 0.9 and weight decay to 1e-5. We use step decaying of learning
rate whose initial value is 0.1 and we multiply by 0.1 to the learning rate at every 3,000 iterations.

Speaker Verification. Utterances in CN-Celeb are recorded in various lengths, and their sampling
rate is 16kHz. During training, we use a fixed-length 2-sec-long temporal segment extracted ran-
domly from each utterance. We convert the fixed segment into 40-dimensional log-Mel spectrograms
for inputs of Fast ResNet-34. We train each model for 100 epochs using stochastic gradient descent
(SGD) optimizer with momentum to 0.9 and weight decay to 0.001. We use a mini-batch size of
200, and the learning rate is decayed 0.1 to 0 with cosine annealing. We report the validation EER
of each trial after the last epoch. We evaluate the trained models on the CN-Celeb validation set
(CN-Celeb (E)). We sample ten 3-second temporal crops at regular intervals from each enroll and
validation segment and compute cosine similarities between all possible combinations from every
pair of segments. We use the average score of 100 similarities. This protocol is in line with Chung
et al. (2020). We evaluate validation performance on each domain and overall domains in Table 3,
and EER on seen/unseen domains are also reported in Table 4. We follow the official evaluation
setting in CN-Celeb (Fan et al., 2020; Li et al., 2020). The overall validation set consists of million
pairs of enrollment and validation utterances, which are various scenarios containing both the same
genre and cross-genre. We split the overall validation set into each domain, and we report the per-
formance of six seen domains and two unseen domains in Table 3. Since the validation sets of the
rest domains are composed of very few positive pairs, 20, 50, and 105 for ‘advertisement,’ ‘play,’
and ‘recitation,’ respectively, we skip reporting EER for them following the settings of the previous
works (Li et al., 2020; Kang et al., 2020). Similar to the setting for each domain, we get validation
pairs of seen and unseen domains by splitting the overall validation set to measure the performance
of seen and unseen genres.

Baseline Details. PCEN uses hyperparameters of s = 0.025, α = 0.98, δ = 2, and r = 0.5
following the settings of Wang et al. (2017). We use PCEN instead of log-Mel spectrogram. We
use α = 0.2 to get λ ∼ Beta(α, α) in Mixup (Zhang et al., 2018). Following the settings of Zhou
et al. (2021), we apply MixStyle after stage 1 and 2 with α = 0.1 and use the ‘Random’ shuffle
and a probability of 0.5 to decide using MixStyle or not. For CSD, we use k = 1 and 2, the rank of
the domain-specific component, when number of training speakers are {50, 100} and {200, 1000},
respectively, in KWS, and we use k = 1 for the ASC task. Also, we use λ = 1, and κ = 1 following
the default settings in Piratla et al. (2020). We choose α = 0.5 and ε = 0.5 for CrossGrad following
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Figure A2: Experiment BC-ResNet-1. Left: Train and validation accuracy. Right: Validation accu-
racies of seen and unseen devices. (Average over 5 seeds).

the suggestion of Shankar et al. (2018). We use the official implementations2 of Mixup, Mixtyle,
BIN, and CSD.

Table A2: Details of Fast-ResNet34 with input shapes where B and T stand for the mini-batch size
and the total time steps, respectively.

Input: log-Mel spectrogram of B×1×40×T

RFN
Input:B×1×40×T, conv1:Conv7x7 with stride(2,1) - BN - ReLU

Input:B×16×20×T, stage1:ResBlocks × 3

RFN
Input:B×16×20×T, stage2:ResBlocks × 4

RFN
Input: B×32×10×T/2, stage3:ResBlocks × 6

RFN
Input: B×64×5×T/4, stage4:ResBlocks × 3

RFN
Input: B×128×5×T/4, Freq-wise Avgpool

Input: B×128×1×T/4, Self-Attentive Pooling (Cai et al., 2018)

Input: B×128×1×1, Fully-connected layer

Output shape: Bx512

Model architectures. Tables A1 and A2 show the details of architectures with RFN. In Table A1,
c is 10 and 80 for BC-ResNet-1 and 8, respectively. The details of the BC-ResBlock are described
in the literature of Kim et al. (2021a), and the ResBlock used in Fast-ResNet34 are described by
Chung et al. (2020), and Heo et al. (2020). The details of cnn-trad-fpool3 (Sainath & Parada, 2015)
is straight because RFN is only applied at the input.

A.5 MORE EXPERIMENTAL RESULTS

Acoustic Scene Classification. In Table A3, we experiment with less seen domains. We do not
use real device ‘C’ or ‘B and C’ during training. The result shows that RFN is helpful for better
generalization of unseen real devices ‘B’ and ‘C’. Table A4 shows more results on small model,
BC-ResNets-1 and another ASC backbone, CP-ResNet (Koutini et al., 2019). We use the modified
version of BC-ResNet-1 as indicated by Kim et al. (2021b).

Figure A2 compares training curves of vanilla BC-ResNet-1 to RFN on the ASC task.

2Mixup: https://github.com/facebookresearch/mixup-cifar10,
MixStyle: https://github.com/KaiyangZhou/mixstyle-release,
BIN: https://github.com/hyeonseobnam/Batch-Instance-Normalization,
CSD: https://github.com/vihari/CSD
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Table A3: Acoustic Scene Classification using Less Scene Domains. Top-1 validation accuracy
(%) on TAU Urban AcousticScenes 2020 Mobile, development dataset. We show mean and standard
deviation of scores. (averaged over 5 seeds, *: average over 10 seeds)

seen unseen

Method #Param A B S1 S2 S3 C S4 S5 S6 Overall ∆

BC-ResNet-8 315k 80.5 71.4 69.3 69.7 71.2 56.6 63.3 63.7 56.5 66.9 ± 1.1 + 0.0
+ PCEN 315k 75.4 67.4 69.8 67.6 74.1 59.8 67.7 66.8 65.2 68.2 ± 0.5 + 1.3
+ Mixup 315k 79.2 67.4 69.8 64.4 69.9 56.3 61.3 60.3 53.3 64.7 ± 1.1 - 2.2
+ MixStyle 315k 79.9 65.7 67.9 65.7 71.0 56.2 67.0 67.0 61.8 66.9 ± 0.8 + 0.0
+ BIN 317k 76.8 68.6 66.1 64.5 70.1 53.2 62.1 62.8 56.1 64.5 ± 0.9 - 2.4

+ Freq-MixStyle 315k 80.9 70.1 71.3 70.9 75.6 61.8 69.0 69.6 62.0 70.1 ± 0.5 + 3.2

+ RFN (Ours) 315k 81.3 70.9 75.7 68.4 75.7 64.0 68.2 72.5 67.5 71.6 ± 0.4 + 4.7
λ = 0 (IFN) 315k 77.4 70.4 72.7 71.9 74.7 62.0 72.0 71.8 66.0 71.0 ± 0.6 + 4.1
λ = 1 (LN) 315k 80.7 71.4 72.8 68.0 71.7 53.3 59.4 62.7 55.8 66.2 ± 0.7 -0.7

seen unseen

Method #Param A S1 S2 S3 B C S4 S5 S6 Overall ∆

BC-ResNet-8 315k 81.2 70.4 67.1 70.8 41.4 54.2 62.7 64.4 54.8 63.0 ± 0.7 + 0.0

+ RFN (Ours) 315k 80.4 74.4 69.6 74.5 49.2 62.0 70.1 72.7 67.2 68.9 ± 0.7 + 5.9

Table A4: More Results in Acoustic Scene Classification. Top-1 validation accuracy (%) on TAU
Urban AcousticScenes 2020 Mobile, development dataset. We show mean and standard deviation of
scores. (averaged over 5 seeds)

Method #Param seen unseen Overall ∆A B C S1 S2 S3 S4 S5 S6

BC-ResNet-1 8.1k 73.3 61.3 64.9 61.0 58.3 66.7 51.8 51.3 48.5 59.7 ± 1.3 + 0.0
+ Global FreqNorm 8.1k 72.2 59.5 62.7 59.3 56.8 63.9 49.3 51.1 45.2 57.8 ± 1.2 - 1.9
+ PCEN 8.1k 68.4 55.5 58.9 60.1 57.6 63.9 59.3 61.9 56.8 60.3 ± 1.1 + 0.6
+ Mixup 8.1k 72.4 61.1 63.2 58.5 56.9 63.7 49.5 51.6 44.5 57.9 ± 1.6 - 1.8
+ MixStyle* 8.1k 71.6 54.8 58.8 53.1 53.5 57.6 43.0 46.0 39.0 53.0 ± 1.5 - 6.7
+ BIN* 8.3k 74.7 60.6 64.9 59.3 59.9 65.9 54.6 53.3 49.5 60.3 ± 2.0 + 0.6
+ CSD* 8.4k 74.6 60.7 64.7 59.9 57.4 66.9 50.8 51.5 46.6 59.2 ± 1.2 - 0.5

+ Freq-MixStyle* 8.1k 71.7 59.5 59.1 58.3 57.5 63.9 58.9 60.1 52.0 60.1 ± 1.0 + 0.4
+ BIFN* 8.3k 74.8 62.2 63.1 59.9 58.0 65.1 54.1 55.1 50.4 60.3 ± 1.3 + 0.6

+ RFN (Ours) 8.1k 75.2 63.7 64.0 62.8 61.2 68.0 58.3 63.0 57.2 63.7 ± 0.9 + 4.0
λ = 0 (IFN) 8.1k 67.6 61.5 57.7 63.6 64.1 65.3 63.3 61.6 56.8 62.4 ± 0.5 + 2.7
λ = 1 (LN) 8.1k 73.8 60.2 61.7 61.0 59.4 65.2 51.3 53.5 45.9 59.1 ± 1.3 - 0.6
Relaxed-IN 8.1k 73.3 58.9 59.0 59.2 59.3 62.5 52.1 51.6 44.5 57.8 ± 0.8 - 1.9

CP-ResNet, c = 64 897k 78.1 71.2 73.4 68.3 65.9 68.7 64.8 64.8 58.5 68.2 ± 0.4 + 0.0

+ RFN using BN 897k 80.4 72.8 73.6 73.8 71.5 75.1 72.4 70.7 70.2 73.4 ± 0.3 + 5.2
λ = 1.0 (BN) 897k 77.3 72.9 73.9 68.6 66.1 68.4 65.3 63.9 57.8 68.2 ± 0.3 + 0.0

+ RFN using LN 897k 79.3 70.9 70.8 71.8 72.1 74.1 69.9 68.6 66.0 71.5 ± 0.3 + 3.3
λ = 1.0 (LN) 897k 73.7 68.8 67.5 63.8 65.8 68.1 59.6 61.8 53.6 64.7 ± 0.8 - 3.5

Figure A3 left shows sensitivity to relaxation λ on BC-ResNet-8 with varying number of domains,
2, 4, and 6. We use only ‘A’ and ‘S1’ for the number of domains of 2 and ‘A,’ ‘B,’ ‘S1,’ and ‘S2’ for
the number of domains of 4. 6 is the default setting we’ve used in Section 5. Regardless of domain
size, the optimal λ is between 0 and 1. Figure A3 right compares RFN to its channel-wise version,
Relaxed-IN, which uses IN instead of IFN. When λ = 0, training of Relaxed-IN fails due to the
direct use of IN at the last stage.

Keyword Spotting In Table A5, we compare our method to PCEN. For fair comparison, we use
log-mel spectrogram instead of MFCCs for vanilla network and RFN.

Automatic update of relaxation, λ. Automatic update of λ is not straightforward due to unseen
domains during training and imbalance between seen domains. Table A6 compares various tactics to
decide λ. First, based on the observations in Figure 1, we gradually increase λ as layers go deep. We
naively use λ = [0.1, 0.3, 0.5, 0.7, 0.9] or λ = [0.5, 0.6, 0.7, 0.8, 0.9] for input, after stage 1, stage 2,
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Figure A3: Top-1 test accuracy (%) of BC-ResNet-8 on TAU Urban Acoustic Scenes 2020 Mobile,
development dataset. Left shows graphs with varying number of training domains 2, 4 and 6, and
Right compares RFN with Relaxed-IN. (Average over 5 seeds; error bar stands for std)

Table A5: Keyword Spotting. Compare PCEN to others using log-Mel spectrogram instead
of MFCCs. Top-1 test accuracy (%) with varying number of training speakers on Google speech
command dataset ver1. (average and standard deviation; averaged over 5 seeds)

Method 50 100 200 1000

cnn-trad-fpool3 75.2 ± 0.3 79.8 ± 0.4 86.0 ± 0.3 92.0 ± 0.4
+ PCEN 81.6 ± 0.4 85.6 ± 0.5 89.5 ± 0.2 94.0 ± 0.1

+ RFN (Ours) 82.6 ± 0.3 86.3 ± 0.5 90.8 ± 0.2 94.2 ± 0.2

stage 3, and stage4, respectively. The linear interpolated λ results in 0.9% lower validation accuracy
compared to that of fixed λ = 0.5. Second, we try a naive SGD update of λ, but it results in poor
performance. Further, we tried the Meta-Learning Domain Generalization approach (MLDG) (Li
et al., 2018). We use the same optimizer and learning rate schedule as the baseline and use α = γ
and β = 1 for MLDG and use the first-order approximation of MAML (Finn et al., 2017). We
trained the network parameters by conventional SGD training and updated λ by meta-test loss in
the MLDG scenario. The approach got λ of [0.7, 0.5, 0.3, 0.5, 0.1] for input and after each stage,
respectively, on average over five seeds and results in 72.2% accuracy, which is better than naive
SGD but still worse than the fixed λ = 0.5. We leave the automatic update of λ as future work.

Table A6: Decision rules for λ. Compare Top-1 validation accuracy (%) of BC-ResNet-ASC-8 on
TAU Urban AcousticScenes 2020 Mobile, development dataset (average over 5 seeds).

Method Top-1 Acc. (%)

Baseline (fixed λ = 0.5) 73.9 ± 0.7
+ Linear interpolation 73.0 ± 0.9
+ Naive SGD update 69.2 ± 0.5
+ Meta-learning domain generalization (MLDG) 72.2 ± 0.9

Analysis of Instance Statistics of 2D Audio Features. We also estimate MI while train the vanilla
BC-ResNet-1 by frequency-wise pooling at last. We did the global avgpool at last in Table A1 along
frequency-axis instead of channel, and it results to activation x ∈ RN×1×F×1. We use frequency-
wise pooled feature for classification. The Figure A4 shows the result that domain information in
frequency-wise statistics still seems dominant compared to the other dimensions. Figure A5 shows
more t-SNE visualizations which compare sF and sC
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Figure A4: Estimates of mutual information between dimension-wise statistics of intermediate
hidden feature and the domain label, I(s, d) (left), or the class label, I(s, y) (right). We use log-Mel
spectrogram (Average over 5 seeds; error bar stands for standard deviation).

Figure A5: 2D t-SNE visualiations using activations of Vanilla BC-ResNet-1.
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