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Abstract

In this paper, we address the problem of capturing graph directionality using transformers.
Most existing graph transformers typically capture distances between graph nodes and do
not take edge direction into account. This is a limiting assumption since many graph
applications need to exploit sophisticated relationships in graph data, such as time, causality,
or generic dependency constraints. We introduce a novel graph transformer architecture that
explicitly takes into account the directionality between connected graph nodes. To achieve
this, we make use of dual encodings to represent both potential roles, i.e., source or target,
of each pair of vertices linked by a directed edge. These encodings are learned by leveraging
the latent adjacency information extracted from a directional attention module, localized
with k-hop neighborhood information. Extensive experiments on synthetic and real graph
datasets show that our approach can have significant accuracy gains over previous graph
transformer (GT) and graph neural network (GNN) approaches, providing state-of-the-art
(SOTA) results on inherently directed graphs.

1 Introduction

Graphs are one of the most general and versatile data structures encountered in diverse application domains,
ranging from biology and social networks to transportation and finance. Analyzing the graphs that arise from
such applications and discovering patterns in them is of paramount importance in the associated domains.
An important property of a graph is whether its edges are directed or not. Directed graphs are natural
representations of relations including social connections, human communications, paper citations, financial
transactions, Web links, and causes and effects. The state-of-the-art methods for analyzing directed graphs
use Graph Neural Networks (GNNs) to learn node and directed edge encodings for tasks like link prediction
(Kollias et al., 2022; Salha et al., 2019), node classification (Zhang et al., 2021) and graph-level tasks (Beaini
et al., 2021).

In this paper, we address the relatively unexplored problem of analyzing directed graphs using graph trans-
formers (GTs). Transformers hold the promise of enhanced performance over GNNs due to their ability to
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represent entities without enforcing the inductive adjacency bias (Vaswani et al., 2017), and due to their dy-
namic multi-head attention mechanism, in contrast to GNNs where the attention is hardwired in static edge
weights. This flexibility of GTs comes, however, with the challenge of modeling directed graph structures.
Most existing GTs focus on integrating only the graph connectivity structure into the Transformer. They do
not prioritize how to reflect the directionality of graph edges in their proposed architecture. This is either
because some key techniques are not applicable to directed graphs (e.g., Laplacian eigenvectors (Dwivedi
& Bresson, 2021)) or the edge-direction information is encoded as static, fixed scalars (either local in/out
degrees in (Ying et al., 2021) or pairwise shortest path distances in (Hussain et al., 2022; Ying et al., 2021)).

We introduce Directed Graph Transformer (DiGT), a novel GT architecture that explicitly takes into account
graph directionality. The crux of this architecture is that it incorporates both edge direction and graph
connectivity structure into the standard Transformer architecture (Vaswani et al., 2017) as first-class citizens.
Edge direction is represented by dual encodings for each graph node capturing its potential role as either a
source or target of a directed edge. Source and target encodings are learned using a multi-head directional
attention module that incorporates edge channels as bias. By interpreting attention matrices as latent
adjacency matrices, our technique updates a node’s source vector by aggregating the target vectors of the
neighbors it points to, after incorporating suitable learnable parameters; similarly, a node’s target vector
update is the aggregation of the source vectors of those neighbors pointing to it.

Although the general idea of using dual encodings at each graph node has been explored in various non-
GT methods for directed graph learning, its application to the domain of GTs is novel and comes with
its challenges. The main difference is that existing methods leverage and rely on the existing directed
graph structure: the dual encodings are statically computed based on graph properties or message passing
occurs using the directed graph connectivity structure. This introduces a convolutional inductive bias: the
neighborhood of a node only consists of the edges of the directed graph and cannot include latent edges
which could be learned and produce more discriminative node encodings for directed graphs. In contrast, in
DiGT dual node encodings are dynamically learned without using the explicit directed graph structure.

We evaluate our DiGT model architecture for directed graph classification tasks. A challenge is that publicly
available directed graph benchmark datasets for this task are scarce and only capture directionality indirectly.
For example, the directed graph dataset in (Hussain et al., 2022) is derived from MNIST/CIFAR10 images
which are inherently undirected. To this end, we introduce the FlowGraph family of directed graph datasets
that explicitly relate the edge direction pattern in graphs to their classification labels. Using these new
datasets, as well as existing MNIST/CIFAR10 (Hussain et al., 2022), Twitter (Leskovec & Mcauley, 2012),
and Malnet-tiny (Freitas et al., 2020) datasets, we empirically demonstrate that DiGT gives significant
accuracy gains for the tasks on both synthetic and real graph datasets. Our extensive experiments reveal
that when edge directionality is an inherent, rather than derivative, characteristic of the instances to be
classified, DiGT provides state-of-the-art (SOTA) results, outperforming graph transformer based and GNN
alternatives by a large margin.

2 Related work

Methods for Directed Graph Learning. Earlier works on analyzing directed graphs are based on
matrix factorization techniques to learn node encodings, such as Singular Value Decomposition (SVD) of
higher-order adjacency matrices exploring the directed k-hop neighborhood of a node (Ou et al., 2016),
or Non-negative Matrix Factorization (NMF) (Sun et al., 2019). Another line of work focuses on analyz-
ing special matrix forms of adjacency information such as the Hermitian adjacency matrix of the directed
graph (Cucuringu et al., 2020) or learning linear combinations of powers of the directed graph adjacency
matrix and its transpose (He et al., 2021). More recently, GNNs have been used (Kollias et al., 2022; Tong
et al., 2020a;b; Zhang et al., 2021) that operate based on a message-passing architecture and provide higher
learning flexibility due to the usage of learnable weight matrices that multiply the node encodings. Graph
Attention Network (GAT) (Veličković et al., 2017) is a GNN that incorporates local self-attention resembling
a transformer.

A limitation of all the aforementioned approaches is that they critically rely on the explicit directed graph
structure (adjacency matrix): (a) The k-hop neighborhood learning techniques (He et al., 2021; Ou et al.,
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2016; Sun et al., 2019; Zhou et al., 2017) involve matrix factorization or composition of powers of known
adjacency matrices, or random walks over the graph structure. (b) Special matrix forms of adjacency
information used in (Cucuringu et al., 2020; Tong et al., 2020a) allow directed graphs as input. (c) GNNs
in (Kollias et al., 2022; Salha et al., 2019; Tong et al., 2020b; Veličković et al., 2017; Zhang et al., 2021) are
message-passing models, and single or dual-node encoding messages can flow only through existing edges.
Reliance on the directed graph structure introduces inductive bias during learning: latent edges that could
positively contribute to the learning problem at hand can be missed as a result. In contrast, DiGT does not
rely on the directed graph structure (in effect it assumes full graph connectivity) and learns the edge weights
by exchanging the dual node encodings between the nodes.

We note here that the general idea of dual node encodings has also been used in several of the above works.
However, such encodings are typically computed by exploiting the directed graph structure. Applying
this idea in GTs is challenging because there are no assumptions on graph structure (i.e., assuming full
connectivity) and they need to be learned in a dynamic manner.

Graph Transformers GTs were introduced in (Dwivedi & Bresson, 2021), which proposed two inspir-
ing GT architecture variants. The first variant produces only node encodings, while the second variant
is augmented to also produce edge encodings. Node encodings follow the standard Transformer architec-
ture (Vaswani et al., 2017), while edge encodings are updated by scaling the attention matrix. They attend
only to existing neighbors (local self-attention), so a strong inductive bias is enforced. SAN (Kreuzer et al.,
2021) uses learned positional encodings (LPE) to enhance the learning of graph structure. SAT (Chen et al.,
2022) enhances the learning by extracting k-hop subgraphs. In Graphormer (Ying et al., 2021), the attention
aperture critically expands to all nodes (global self-attention). They propose adding and learning node en-
codings that are functions of input and output degree centralities (centrality encoding), and arbitrary node
pairs are represented by two bias terms to the attention matrix (spatial and edge encodings). In EGT (Hus-
sain et al., 2022), they combine ideas from (Dwivedi & Bresson, 2021) (separate channels for nodes and
edges, scaling and gating the attention matrix) and from (Ying et al., 2021) (global self-attention, bias terms
from spatial encoding, however, learned from the edge channels) to yield an effective GT approach. Recently,
hybrid models that combine graph neural networks with graph transformers have been proposed, such as
GraphGPS (Rampášek et al., 2022) and Exphormer (Shirzad et al., 2023), that attain competitive perfor-
mance results, while aiming at scalability. GraphGPS is a framework for combining pluggable encodings, local
message passing, and global attention modules; Exphormer introduces a sparse attention mechanism based
on global virtual nodes and expander graphs. In Digraph Transformer (Digraph-T) (Geisler et al., 2023),
they learn over directed graphs using Transformers, leveraging the eigenvectors of the Magnetic Laplacian
matrix (Furutani et al., 2020) as position encodings, as well as directional random walks. Whereas we also
use position encodings (PE), including the Magnetic Laplacian, it is only a minor component of our overall
architecture. Our main contribution is the integration of bidirectional attention for graph transformers.

Our DiGT approach is a global self-attention transformer, learning both dual node encodings and edge
encodings (dual-channel architecture). A node encoding in DiGT consists of a pair of source and target
vectors that capture the edge direction semantics. Therefore, in downstream tasks that require directionality
and take node encodings as input, DiGT provides embeddings of high discriminative power. In comparison,
Graphormer (Ying et al., 2021), EGT (Hussain et al., 2022), and the other graph transformers (Dwivedi &
Bresson, 2021; Zhang et al., 2020) produce only single-vector node embeddings that cannot differentiate the
direction of an edge; and, as already mentioned, directed GNNs (Kollias et al., 2022; Salha et al., 2019; Tong
et al., 2020b; Veličković et al., 2017; Zhang et al., 2021) produce dual node embeddings that suffer from
convolutional inductive bias, that is restricted to only the given neighborhood structure.

3 Directed Graph Transformer Architecture

We now describe our directed graph transformer DiGT, whose main components are shown in Figure 1.
DiGT uses three main ideas: dual node embeddings – for source and target representations, with a HITS-
inspired (Kleinberg, 1999) aggregation combined with learnable implicit adjacency information via directed
attention, as well as using k-hop neighborhood virtual edges. Table 1 shows the notations used below. Our
model contains multiple layers and multiple attention heads, but we omit these for ease of presentation.
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Table 1: Mathematical Notation
Notation Meaning Shape Notation Meaning Shape
V The set of graph nodes E The set of graph edges
n,e Number of nodes or edges d,de Dimension of input node feature or edge feature
h Number of heads dp Dimension of attention layer. dp = d/h

A Adjacency matrix n × n D(k)
ST , D(k)

T S k-hop filter matrix from source-target or target-soruce n × n × 1
S, T Initial node encodings for source or target nodes n × d EST , ET S Edge features for source-target n × n × h
QS, KS, VS Query, Key, Value for source nodes n × dp GST , GT S Gate matrix for source-target or target-source n × n × h

QT, KT, VT Query, Key, Value for target nodes n × dp ĀST , ĀT S Attention matrix before softmax for source-target or target-source n × n × h

Y Value representation n × dp ÃST , ÃT S Attention matrix after softmax for source-target or target-source n × n × h

(a) DiGT source and target at-
tention head

(b) DiGT layer structure

Figure 1: The two figures show the DiGT architecture. In (a), the attention is calculated in both directions
for each node. Then, in (b), a softmax operation is applied on the stacking dimension to compute the
importance of directionality (i.e., softmax is over the ST and TS axes). Blue nodes and arrows represent the
flow of source embeddings, red nodes and arrows represent the flow of target embeddings, and purple nodes
represent the operations on both source and target embeddings.

3.1 Input Layer

We represent a directed graph as G(V, E); V is the set of n = |V | graph nodes, E = {(i, j) ∈ V × V : i 7→ j}
is the set of its m = |E| directed edges. Each node i is equipped with a pair of vectors in Rd, 1 ≤ i ≤ n: (i)
vector si encodes i’s role as a source, which is the same for any of the directed edges it participates in as a
source, and (ii) vector ti encodes i’s role as a target.

Positional encodings play an important role in comprehending graph structures for GNNs. Traditional
methods, such as the graph Laplacian, are limited to undirected graphs due to their requirements of a
symmetric adjacency matrix. In our study, we select two techniques to overcome this limitation: Singular
Value Decomposition (SVD), and the Magnetic Laplacian (Geisler et al., 2023). We detail these two positional
encoding methods in the Appendix. For a given adjacency matrix A, we denote by PS and PT the positional
encodings for the source and target nodes, respectively. When input node features Nf are available (set
Nf = 0, otherwise), the input/initial node embeddings for the DiGT model are given as

S = Ls(PS) + Lf (Nf ) T = Lt(PT ) + Lf (Nf ) (1)

where Ls, Lt and Lf are learnable linear transformations (subscripted as s for the sources, t for targets, and
f for input features), and S, T ∈ Rn×d. To encode the edges, considering input edge features Ef (set Ef = 0
otherwise), the input/initial edge embeddings for the DiGT model are given as

EST = Le([δst]s,t=1,...,n) + Lef (Ef ) (2)

where Le is an embedding layer, Lef is a learnable linear transformation, and δst is the shortest directed
path distance from source s to target t, clipped at maximum k-hops (if t is not reachable from s, we set
δst = k + 1). The result, EST ∈ Rn×n×h, is the matrix of h dimensional edge embeddings, and we set ET S

as the transpose of EST along the first two dimensions.
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3.2 DiGT Attention Layer

Inspiration: Given the dual node encodings, we need to determine the relationship between the source
and target encoding vectors of different nodes, which will be used for updates in our GT architecture. For
this, we draw high-level inspiration from the HITS (Kleinberg, 1999) centrality algorithm that computes two
scalar-valued hub and authority scores for each node in a directed graph – a source node with a high hub
score refers to (or points to) target nodes that contribute relevant information (in our case, for learning),
and thus gain elevated authority scores. Consider for the moment one-dimensional or scalar source and
target node embeddings, si and ti, which serve as the hub and authority score, respectively; we can express
their relationship as si =

∑
i 7→j tj (i.e., good hubs point to good authorities) and ti =

∑
j 7→i sj (i.e., good

authorities are pointed to by good hubs).

Generalizing to our d-dimensional source and target encoding vectors si and ti, we could analogously write
si =

∑
j Aijtj and ti =

∑
j Ajisj , or more compactly as S = AT and T = A⊤S. Conceptually, si and ti

play the role of multi-dimensional hub and authority scores.

Implicit and Directed Adjacency via Attention: The key insight in DiGT is that we should not
rely on the fixed adjacency matrix A; rather, we should construct an implicit adjacency matrix, denoted
Ā, by exploiting the attention mechanism. A straightforward approach to compute Ā could be Ā = ST⊤.
However, we need to make this learnable. To allow the flexibility of learning weight matrices for computing
the implicit adjacency we use dual attention mechanisms. For the source nodes S, let

QS = S WQS KS = S WKS VS = S WV S (3)

and similarly for the target nodes T, let

QT = T WQT KT = T WKT VT = T WV T (4)

where all W’s ∈ Rd×dp are learnable weight matrices, and dp is the projection dimensionality (suitably scaled
down). As shown in Figure 1a, we obtain a pair of attention matrices

ĀST =
(

QSKT
⊤

)
/
√

dp ĀT S =
(

QT KS
⊤

)
/
√

dp (5)

That is, the attention matrix ĀST treats the source nodes as queries and the target as keys to compute their
similarity, and vice-versa for ĀT S (see Figure 1a).

Edge Feature and Neighborhood Attention: We now allow for the edge channels to directly influence
the attention by introducing the edge feature matrix, EST ∈ Rn×n×h, and gate matrix, GST ∈ Rn×n×h,
which is linear transformations from EST (with added layer norms). Further, ET S and GT S are their
transpose matrices, respectively.

Next, we localize the attention from node channels to the k-hop neighborhood around each node. This is
implemented by masking the attention matrix along with the edge bias via an element-wise product with
the binary k-hop filter matrix, defined as D(k)

i,j = {1 iff δij ≤ k, 0 iff δij > k}, where δij denotes the shortest
path distance from node i to node j. Thus, the attention matrices, denoted Ã, for this layer are given as:

ÃST =
(
ĀST + EST

)
⊙ D(k)

ST ÃT S =
(
ĀT S + ET S

)
⊙ D(k)

T S (6)

where D(k)
ST and D(k)

T S are the filter matrices in the two directions. This way we control the attention to be
within the k-hop neighbors around each node.

Directional Attention: For any two nodes within a graph, our objective is to determine the direction
of message passing between them. To achieve this, we compare the attention values in both directions.
The larger of these values will indicate the predominant direction of message passing. Therefore, unlike
traditional transformers that compute node importance via a softmax along each row of the attention matrix,
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we stack both ÃST and ÃT S and compute the softmax along the stacking direction (Figure 1b visualizes
this mechanism), given as

ÃST , ÃT S = softmax(ÃST , ÃT S). (7)

Note that directional attention combined with the k-hop filter matrix D(k) applies a soft-thresholding for
unidirectional edges, as opposed to the hard-thresholding that is typically used when masking with −∞.
That is, if we were to set D(k)

i,j = −∞ if δij > k, then information would flow only along the direction
that exists, and it would ignore the opposite direction for unidirectional edges. We show conclusively in our
ablation study in Section 4.3 that soft-thresholding yields better performance.

Finally, we enable the flow of information between nodes by gating their value representations prior to
aggregation; this is realized as multiplication by the sigmoid function, σ(), of the entries in gate matrices,
GST and GT S , resulting in

Y =
(
(ÃST ⊙ σ(GST )) VT

)
+

(
(ÃT S ⊙ σ(GT S)) VS

)
, (8)

where Y ∈ Rn×dp is the value representation for one head. So, when we have h = d/dp heads, we concatenate
all of them (and add layer norm) to obtain the final value representation Y ∈ Rn×d, for the next step. Also,
the different DiGT layers do not share edge embeddings and this is also true for bias and gate matrices.

3.3 Output Layers and Prediction

After each DiGT layer, we take the combined value encoding Y, and use layer normalization and feed-forward
network modules with residual connections to produce the node and edge encoding outputs for a DiGT layer.
These outputs become inputs for the next layer. Thus, the updated dual encodings S′, T′ are given as:

S′ = f(LY S(Y)) T′ = f(LY T (Y)), (9)

where, LY S and LY T are two linear transformations followed by a non-linear activation f (with layer norms
and residual connections). To obtain the updated edge embeddings E′

ST ∈ Rn×n×h for the next layer, we
apply a similar function on ĀST as follows:

E′
ST = f(LE(ĀST )) (10)

Lastly, after the last DiGT layer is processed, the encodings X = concat(S′, T′) are driven through some
final task-specific learning modules. These are typically multilayer perceptron layers (MLP) for tasks related
to node and edge learning (node classification, link prediction), or pooling layers for graph-level learning
(graph classification, graph regression). For the directed graph classification task, we use global average
pooling as our main method for producing a representation/encoding of the whole graph; this is essentially
the average of the final node encodings. We also experiment with the method of virtual nodes based pooling
(Hussain et al., 2022): a clique of artificial nodes (virtual nodes) are added to each graph and connected to
all its nodes (with the edge directed only from a graph node to the virtual nodes). After training, we average
the concatenated source and target node embeddings of the virtual nodes and leverage the same final MLP
layers for the downstream task. We examine the effects of these choices in the ablation studies.

4 Experiments

Our experiments were performed on NVIDIA V100 GPUs, with 32GB memory, using PyTorch. We provide
additional experimental details in the Appendix.

4.1 Directed Graph Datasets

There are several directed datasets used in previous studies, such as MNIST (LeCun & Cortes, 2005),
CIFAR10 (Krizhevsky et al., 2009), Ogbg-Code2 (Hu et al., 2020), and Malnet-tiny (Freitas et al., 2020).
See the Appendix for dataset statistics.
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Table 2: Randomized directionality via edge flips: Model performance

MNIST CIFAR10 Model Ogbg-Code2 Model Malnet-tiny Malnet-sub

EGT 98.17 +/- 0.09 68.70 +/- 0.41 DAG 20.2 +/- 0.2 Exphormer 94.02 +/- 0.21 79.71 +/- 0.37
EGT-Flip50 97.99 +/- 0.09 67.28 +/- 0.38 DAG-Flip50 19.0 +/- 0.1 Exphormer-Flip50 87.90 +/- 1.65 71.51 +/- 0.45

Model FlowGraph2 FlowGraph3 FlowGraph6 Twitter3 Twitter5

DiGT 98.00 +/- 0.54 74.61 +/- 1.95 46.03 +/- 0.41 93.33 +/- 0.64 86.67 +/- 0.52
DiGT-Flip50 49.67 +/- 1.39 32.33 +/- 1.66 16.78 +/- 0.04 82.96 +/- 1.13 65.44 +/- 0.38

MNIST and CIFAR10: (Hussain et al., 2022) used MNIST and CIFAR10 as collections of directed graph inputs
for their graph classification task, following the introduction of these datasets in (Dwivedi et al., 2020).
They are originally collections of images (respectively, of handwritten digits and objects) and not graphs.
In (Dwivedi et al., 2020), they convert an image to a directed graph by first segmenting the original image
pixels into sets of (coarser-grained) SLIC superpixels (Achanta et al., 2012). Directionality in the edges then
follows from the fact that if a superpixel i has fewer neighboring superpixels than one of its neighbors j, it
will tend to connect to j rather than the other way around (i.e., i 7→ j will have more weight than j 7→ i).

Malnet-tiny and Malnet-sub: Malnet-tiny provides a graph classification task for five different types
of malicious software. It contains 5,000 graphs, and each graph contains less than 5,000 nodes. Its graph
size is an obstacle for many graph transformers. We apply a filter to generate the Malnet-sub dataset: we
choose the graphs with fewer than 500 nodes for training sets, and those with fewer than 2,000 nodes for
both validation and test datasets. As a result, the Malnet-sub dataset contains 2,444 graphs. Malnet-sub
dataset is more challenging than Malnet-tiny since it forces the models to effectively generalize from smaller
graphs in the training data to larger, unseen graphs in the validation and testing phases1.

Ogbg-Code2: The Ogbg-code2 dataset is a collection of Abstract Syntax Trees (ASTs) from thousands of
Python method definitions extracted from 13,587 different popular repositories on GitHub. Given the AST
and node features, the goal is code summarization, i.e., to predict the sub-tokens forming the method name.

4.1.1 Importance of Direction: Random Flip Test

Even though the above datasets are purported to be directed, our analysis points out a severe limitation,
namely, direction plays little to no role in these datasets, unfortunately.

To evaluate the role of directionality in these datasets, we designed a simple random flip test. In essence, for
a given edge flip probability, say θ (e.g., θ ∈ {0.25, 0.5}), we flip each edge (u, v) with probability θ during
each of the training, validation and testing steps. If, even after randomizing the edge direction for θ fraction
of the edges, a model consistently achieves accuracy comparable to that on the original dataset, this provides
strong support that directionality is not a crucial factor for that dataset.

Table 2 shows the results with θ = 0.5 (i.e., 50% of the edges are flipped). We use EGT (Hussain et al., 2022)
on the MNIST and CIFAR10 graphs, Exphormer (Shirzad et al., 2023), which is the SOTA on Malnet-tiny, and
DAGformer (Luo, 2022), which is the top-performer on the Ogbg-Code2 leaderboard (Hu et al., 2020). We
observe that despite altering the direction of almost half of the edges on MNIST, CIFAR10 and Ogbg-Code2,
the results remain largely unaffected: predictive performance drops at most 0.42% for MNIST, 1.42% for
CIFAR10, and 1.2% for Ogbg-Code2 in absolute terms. These tiny differences indicate that directionality is
not important for those datasets. On the other hand, there is a significant performance loss on Malnet-tiny
and Malnet-sub indicating the importance of directionality for these. See the Appendix for results on
different θ values and other models, too.

1For example, the current state-of-the-art model, Exphormer (Shirzad et al., 2023), achieves a high accuracy of 93.38% on
Malnet-tiny, while its performance drops to 79.71% accuracy on Malnet-sub when constrained to 100,000 parameters.
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4.1.2 Inherently Directed Datasets

Having shown that existing datasets used to evaluate directed graph transformers violate their raison d’être,
we propose two classes of inherently directed graphs (see Appendix for details of dataset generation).

FlowGraph datasets: We introduce a family of directed graph datasets that explicitly relate the edge
direction pattern in graphs to their classification labels. In each graph, we create multiple clusters of nodes
interconnected by random edges and arrange these clusters in a sequential order. For directed edges linking
nodes in consecutive clusters, namely cluster l and cluster l+1, we define a directional flow: a set percentage
f% of edges flow from cluster l to l+1, while the remaining 1−f% edges flow in the reverse direction. These
directional flow percentages vary across different classes. We generate three distinct graph datasets with 2, 3,
and 6 classes. Table 2 reveals that directionality is important in these datasets: FlowGraph2 experiences a
48.33% drop in performance when 50% of the edges are reversed. Large drops are observed for the other
FlowGraph datasets, too.

Twitter datasets: We use 973 directed ego-networks from Twitter2, each corresponding to some user u
(ego): the ego-network is between u’s friends also referred to as alters (Leskovec & Mcauley, 2012). If nodes
vi, vj are in u’s ego-network then u follows them and if vi follows vj then there is a directed edge vi 7→ vj in
the ego-network. We introduce perturbations to each of these real ego-networks where a perturbation can be
either (i) rewiring of an existing edge, or (ii) reversing of the direction of an existing edge. Leveraging these
perturbations, we create two distinct graph datasets: Twitter3 with 3 classes and Twitter5 with 5 classes.
These classifications are based on varying percentages of perturbed edges. In Table 2, we observe significant
drops in performance with 50% edge flipping: Twitter3 shows an absolute drop of 9.37%, whereas Twitter5
shows a drop of 21.23%, indicating that directionality plays an important role for these datasets.

4.1.3 Degree of Directionality
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Figure 2: SCC entropy for each class for each dataset

To further cement the role
of directionality for a dataset,
we propose another measure
– the degree of directional-
ity. Let SCC denote a
strongly connected component
in a directed graph (a maxi-
mal subset of mutually reach-
able nodes). Further, given the
set of m SCCs of a directed
graph, S = {S1, S2, ..., Sm},
define the SCC entropy of the
graph as follows: E(S) =
−

∑m
i=1 pi log pi, where pi =

|Si|/n, i.e., the distribution of
SCC sizes. A low entropy means that most nodes are mutually reachable, and thus directionality is not
expected to play a big role. On the other hand, larger SCC entropy values, with a maximum value of log n,
indicate smaller reachable components, which means that directionality is clearly important.

Figure 2 plots the SCC entropy for the different datasets; for each class, we plot the average and standard
deviation3. We can see a very clear trend. FlowGraph classes are inherently directed, with larger entropies,
and Twitter captures the inherent directionality of the “follow” relationship between entities, exhibiting
lower entropy values. More importantly, the derived MNIST and CIFAR10 have no inherent directedness,
and their entropy values are extremely low. We will show that DiGT performs even better when direction
matters, such as for FlowGraph, Twitter, and Malnet-sub.

2https://snap.stanford.edu/data/ego-Twitter.html
3We do not consider ogb-code2 further, since directionality is not important for this dataset, and the task is code summa-

rization instead of classification.
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Table 3: Classification accuracy of DiGT against various GNNs and GTs.

Model FlowGraph2 FlowGraph3 FlowGraph6 Twitter3 Twitter5 Malnet-sub MNIST CIFAR10

GCN (Kipf & Welling, 2016) 87.50 +/- 1.27 58.28 +/- 0.88 30.36 +/- 0.55 76.24 +/- 0.56 61.23 +/- 1.67 78.75 +/- 0.23 90.71 +/- 0.22 55.71 +/- 0.38
GAT (Veličković et al., 2017) 84.92 +/- 1.90 58.83 +/- 1.47 30.31 +/- 0.28 74.59 +/- 1.59 56.79 +/- 0.05 79.58 +/- 1.65 95.54 +/- 0.21 64.22 +/- 0.46
GatedGCN (Bresson & Laurent, 2017) 94.33 +/- 0.24 68.61 +/- 0.61 35.22 +/- 1.21 87.49 +/- 0.85 65.75 +/- 1.14 80.50 +/- 1.74 97.34 +/- 0.14 67.31 +/- 0.31
GraphSage (Hamilton et al., 2017) 92.92 +/- 0.43 65.55 +/- 0.21 34.14 +/- 0.61 70.28 +/- 0.43 57.20 +/- 1.02 76.77 +/- 1.73 97.31 +/- 0.10 65.77 +/- 0.31
PNA (Corso et al., 2020) 96.17 +/- 0.31 72.94 +/- 0.64 41.42 +/- 1.32 88.26 +/- 1.16 70.94 +/- 2.01 78.85 +/- 1.01 97.41 +/- 0.16 70.21 +/- 0.15
GT (Dwivedi & Bresson, 2021) 93.17 +/- 0.82 66.17 +/- 0.60 36.20 +/- 1.12 90.66 +/- 0.35 79.55 +/- 0.68 75.04 +/- 0.61 97.75 +/- 0.12 68.02 +/- 0.16
SAN (Kreuzer et al., 2021) 91.73 +/- 1.84 63.87 +/- 0.66 34.57 +/- 0.45 85.33 +/- 0.78 63.13 +/- 1.65 79.27 +/- 0.23 96.82 +/- 0.13 66.96 +/- 0.39
Digraph-T (Geisler et al., 2023) 95.42 +/- 0.82 72.39 +/- 0.32 40.81 +/- 0.76 87.24 +/- 0.32 70.77 +/- 1.94 73.28 +/- 1.52 96.06 +/- 0.03 65.35 +/- 0.45
EGT (Hussain et al., 2022) 95.00 +/- 1.67 72.06 +/- 1.16 42.97 +/- 0.62 86.49 +/- 0.73 73.94 +/- 1.47 72.35 +/- 1.38 98.17 +/- 0.09 68.70 +/- 0.41
Exphormer (Shirzad et al., 2023) 96.72 +/- 0.44 72.81 +/- 0.38 41.70 +/- 0.39 89.76 +/- 0.30 72.72 +/- 1.40 79.71 +/- 0.37 98.55 +/- 0.04 74.69 +/- 0.13
DiGT 98.00 +/- 0.54 74.61 +/- 1.95 46.03 +/- 0.41 93.33 +/- 0.64 86.67 +/- 0.52 80.78 +/- 1.76 98.02 +/- 0.10 67.05 +/- 0.20

4.2 Experimental Comparison

We compare DiGT with GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2017), GatedGCN (Bresson
& Laurent, 2017),GraphSage (Hamilton et al., 2017), and PNA (Corso et al., 2020) as the representatives
of GNNs, and with GT (Dwivedi & Bresson, 2021), SAN (Kreuzer et al., 2021), EGT (Hussain et al., 2022),
Exphormer (Shirzad et al., 2023), and Digraph-T (Geisler et al., 2023) as the representatives of GTs. We
train all the models on FlowGraph, Twitter, Malnet-sub, and MNIST/CIFAR10 respectively, restricted to
100K parameters. The accuracy results are listed in Table 3. Additional details can be found in the Appendix.
Our source code is available via github: https://github.com/Qitong-Wang/Directed-Graph-Transformers.

For MNIST and CIFAR10, which are not intrinsically directed by construction, DiGT maintains competitive
performance over GT and EGT, experiencing only a minor decrease in accuracy. On the other hand, we
observe that for all the datasets where direction is important, DiGT outperforms existing models providing
SOTA results. For instance, on the FlowGraph6 dataset, DiGT outperforms the next best model EGT
by 3.06% in accuracy; the performance gains against GNN alternatives are even larger. Likewise, for the
Twitter5 dataset, DiGT outperforms the next best model, GT, by over 7.12% in accuracy. Among the
GNNs, PNA is the best but lags behind DiGT by a huge margin. For Malnet-sub, models that are adept at
capturing local information, such as GCN and Exphormer, show good performance. In contrast, traditional
transformers that focus on the whole graph-level attention, like GT and EGT face more challenges for this
task. However, DiGT surpasses the next best model, Exphormer, by 1.07% in accuracy. These results indicate
that the dual attention mechanisms in DiGT can effectively learn both local and graph-level information.

4.3 Ablation Studies

We present ablation studies demonstrating the effectiveness of incorporating dual-vector attention matrices
and k-hop virtual edge filters. Additionally, further ablation studies regarding other architectural components
of our models, such as positional encodings and virtual nodes, are detailed in the Appendix.

4.3.1 Single-Vector Node Embeddings

To study the benefit of our dual node encodings, we constrain DiGT to leverage only one vector embedding
per node, and refer to this version as DiGT-OneEmb. This kind of ablation makes DiGT similar to EGT,
so the expectation is to get accuracy values closer to EGT. Results in Table 4 confirm this intuition. On
average, the ablated DiGT model scores between the reported values for DiGT (higher) and EGT (lower) and
much closer to those of EGT, especially in the case of Twitter datasets, e.g., 86.04±0.45 versus 86.49±0.73
in EGT for Twitter3.

Table 4: Ablation: Single-Vector Node Embeddings.
Model FlowGraph2 FlowGraph3 FlowGraph6 Twitter3 Twitter5 Malnet-sub MNIST CIFAR10

DiGT 98.00 +/- 0.54 74.61 +/- 1.95 46.03 +/- 0.41 93.33 +/- 0.64 86.67 +/- 0.52 80.78 +/- 1.76 98.02 +/- 0.10 67.05 +/- 0.20
DiGT-OneEmb 96.75 +/- 0.41 73.67 +/- 0.85 43.81 +/- 0.42 87.52 +/- 0.50 73.09 +/- 0.59 70.07 +/- 1.30 97.49 +/- 0.72 66.78 +/- 0.90
EGT (Hussain et al., 2022) 95.00 +/- 1.67 72.06 +/- 1.16 42.97 +/- 0.62 86.49 +/- 0.73 73.94 +/- 1.47 72.35 +/- 1.38 98.17 +/- 0.09 68.70 +/- 0.41
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Figure 3: Visualization of adjacency and attention matrix for DiGT, for a selected Malnet-sub graph.

Additionally, Figure 3 visually represents attention matrices for a sample graph within the Malnet-sub
dataset. Figure 3(b) provides a pair of attention matrices in DiGT: the left figure shows the attention
directed from the source to the target, namely ÃST in Equation 8, and the right one depicts the attention
flow from the target to the source, namely ÃT S . Figure 3(c) shows the attention for the DiGT-OneEmb
variant. For all the figures, we sum up the last layer of the attention matrices from all heads and normalize
the values from 0 to 1. Brighter colors correspond to higher attention values, indicating greater importance
of the information at that specific location. In summary, these figures visualize the status of the attention
matrices, which are ready to be multiplied (after gating) by the values VT , VS .

Traditional transformers struggle to discern critical patterns within a graph. This challenge is shown in
Figure 3(c), where the most informative neighboring node for any given source node is indicated by the
brightest node in each row. For instance, the red rectangle highlights one such pair. However, this does
not necessarily imply that these two nodes are pivotal for the entirety of the figure. On the contrary, in
Figure 3(b), the presence of a bright flow within the red rectangle suggests that all these nodes are crucial
for the overall graph structure. The application of softmax across the stack direction of the two attention
matrices enables the model to discern the relationships between each edge and its corresponding reversed
virtual edge within k-hops, and the information flow comes from the union of the original graph and its
reversed counterpart.

4.3.2 k-Hop Virtual Edge Filters

Graph transformers, operating under the assumption that all nodes are interconnected, can be interpreted as
adding virtual edges among all nodes. We introduce a hyperparameter k to constrain the addition of virtual
edges, which has two critical functions: First, it sets the boundary for the shortest directed path distance
between two nodes in Equation 2, which contributes to the edge features EST , ET S and gates GST , GT S .
Second, it determines the D(k)

ST , D(k)
T S virtual edge filters in Equation 6, which restrict message passing among

distant nodes. Above, we demonstrated that DiGT effectively captures graph patterns and identifies key
node pairs. We now present an ablation study to explore the impact of varying k on the model’s performance,
where ‘unlimited’ refers to setting k = 25 as a sufficiently large number for the edge embedding layer Le and
not multiplying with D(k)

ST , D(k)
T S filters in Equation 6.

Table 5: Ablation: Number of Hops.
Model FlowGraph2 FlowGraph3 FlowGraph6 Twitter3 Twitter5 Malnet-sub MNIST CIFAR10

DiGT 98.00 +/- 0.54 74.61 +/- 1.95 46.03 +/- 0.41 93.33 +/- 0.64 86.67 +/- 0.52 80.78 +/- 1.76 98.02 +/- 0.10 67.05 +/- 0.20
DiGT-hop 1 98.58 +/- 0.24 74.39 +/- 1.10 43.92 +/- 1.03 93.90 +/- 0.08 85.97 +/- 1.35 80.53 +/- 0.87 97.23 +/- 0.28 64.50 +/- 0.84
DiGT-hop 3 98.00 +/- 0.54 74.61 +/- 1.95 46.03 +/- 0.41 93.33 +/- 0.64 86.67 +/- 0.52 80.09 +/- 0.95 98.02 +/- 0.10 67.05 +/- 0.20
DiGT-hop 5 97.00 +/- 0.71 74.11 +/- 0.98 45.53 +/- 1.27 92.08 +/- 0.56 86.56 +/- 0.25 80.58 +/- 1.15 96.62 +/- 0.48 65.16 +/- 0.94
DiGT-hop 12 96.42 +/- 0.42 70.28 +/- 1.59 44.72 +/- 0.48 92.42 +/- 0.66 85.85 +/- 0.42 80.78 +/- 1.76 97.12 +/- 0.22 66.40 +/- 0.12
DiGT-hop unlimited 96.00 +/- 0.71 71.61 +/- 1.17 44.75 +/- 1.37 92.59 +/- 0.58 86.60 +/- 1.69 78.31 +/- 0.74 96.62 +/- 0.45 65.00 +/- 0.10
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Figure 4: DiGT-attention matrices for a selected FlowGraph6 graph.

Figure 4 illustrates that an increase in k leads to more connections among nodes. In Figure 4(b), with k = 1,
the model behaves similarly to a GNN. It has the ability to capture relationships beyond the adjacency
matrix by using additional layers, but it is less effective than with higher k values. Figure 4(d) illustrates a
scenario with no hop limitations, allowing unrestricted message passing among all nodes. We can see that
the model is capable of reconstructing the graph structure even under the assumption that all nodes are
connected. However, the comparison in Table 5 illustrates that DiGT-hop unlimited does not achieve state-
of-the-art performance on any datasets. On the other hand, the integration of filter D(k) matrices, which
inform the model about the graph’s structure, can effectively improve the model’s performance. As seen in
Figure 4(c), when k = 3, the filter matrices enhance the connectivity of the original graph. Consequently, the
attention matrix more accurately reflects important node relationships from the original graph and facilitates
effective message passing between distant nodes. This configuration achieves the highest accuracy score on
the FlowGraph6 dataset.

Table 5 further indicates that the optimal number of hops varies with different datasets. For the Malnet-sub
dataset, the highest accuracy is achieved at k = 12, with a significant drop when there are no hop limitations.
This can be attributed to the large size of Malnet-sub graphs, which can have up to 2000 nodes, and their
edges are sparse. As a result, a model requires a larger k compared to smaller datasets. In contrast, we
choose k = 3 for other datasets since they only contain approximately 200 nodes per graph. For datasets like
FlowGraph2 and Twitter3, k = 1 seems more effective, though these results still fall within one standard
deviation compared to k = 3. In our experiments, we choose k = 12 for the Malnet-sub dataset and k = 3
for other datasets, as the default value.

4.3.3 Hard vs. Soft Thresholding for D(k)

Our k-hop virtual filter matrix D(k) has been defined as D(k)
i,j = {1 iff δij ≤ k, 0 iff δij > k} where δij

denotes the shortest path distance from node i to node j. In this case, 0 means there are no existing paths
among two nodes. In this ablation study, we turn our focus to a variant definition, where D(k)

i,j = {1 iff
δij ≤ k, −∞ iff δij > k} to examine how the performance is affected when we set an extreme value for those
node pairs with no existing paths.

Table 6 shows the results for DiGT and its variant, DiGT-inf. We see that on dense graphs like Twitter, the
accuracy difference between these two methods is small (e.g., at most 1.57% on the Twitter5). In contrast,
on sparse graphs such as FlowGraph and Malnet-sub, the DiGT-inf variant results in a significant decline
in performance (e.g., a 5.69% drop on Malnet-sub).
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Figure 5: DiGT and DiGT-inf attention matrices for a selected FlowGraph6 graph.

Table 6: Ablation: D(k)

Model FlowGraph2 FlowGraph3 FlowGraph6 Twitter3 Twitter5 Malnet-sub MNIST CIFAR10

DiGT 98.00 +/- 0.54 74.61 +/- 1.95 46.03 +/- 0.41 93.33 +/- 0.64 86.67 +/- 0.52 80.78 +/- 1.76 98.02 +/- 0.10 67.05 +/- 0.20
DiGT-inf 92.08 +/- 0.59 69.22 +/- 0.91 37.53 +/- 1.26 91.17 +/- 0.85 84.10 +/- 1.67 75.09 +/- 1.09 93.52 +/- 0.95 49.34 +/- 0.73

Table 7: Attention Values Applying softmax

Relationship Before softmax After softmax
DiGT DiGT-inf DiGT DiGT-inf

Unconnected 0, 0 −∞, −∞ 0.5,0.5 0.5,0.5
Bi-directional 0.7,0.4 0.7,0.4 0.57, 0.43 0.57, 0.43

Uni-directional 0.7,0 0.7,−∞ 0.67, 0.33 1.0, 0.0

To better understand the results, Table 7 presents
an example of attention values, for a pair of nodes,
before and after applying the softmax along the
stack dimension in our directional attention ap-
proach. For an arbitrary node pair, there are three
possible relationships: unconnected, bidirectional,
or unidirectional. Both models exhibit identical re-
sults for pairs that are either unconnected or bi-directional. The divergence occurs with uni-directional
connection: DiGT assigns an extreme value of −∞, whereas DiGT uses 0. Consequently, DiGT-inf yields
a pair (1.0, 0.0) making the attention values solely dependent on one direction (in this case, from source to
target). Figure 5 illustrates this effect. In other words, for unidirectional node pairs, a hard thresholding
using −∞ blocks information flow completely in one direction (with the non-existent edge), whereas using
soft thresholding of 0 still favors the direction that exists, but also allows flow in the opposite direction,
which leads to SOTA performance of DiGT.

5 Conclusions and Future Work

In this paper, we present DiGT, a novel architecture for capturing graph directionality using transformers.
We empirically evaluate its classification accuracy on real and synthetic graph datasets and demonstrate its
performance gains against state-of-the-art GTs and GNNs. We conduct several ablation studies to reveal the
need for a balanced treatment between local and global attention in node and edge encoding channels. Our
experiments promote the view that GNNs and GTs could be complementary with the shortcomings of the
former (over-smoothing, over-squashing, and limited expressiveness) mitigated by the strengths of the latter
and vice versa (with scalability limitations, non-standard graph encodings for attention bias, as potential
pitfalls in GTs).

In the future, to overcome the limitations of moderate-sized graph data that are imposed by the quadratic
attention complexity, i.e., to scale up the attention mechanism, we plan to explore recently proposed ap-
proaches to expand the context (Bertsch et al., 2023; Tay et al., 2022), and study their effectiveness for
directed graph datasets.
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Appendix

A Experiment details

We test our code on a node with NVIDIA V100 GPUs (32GB RAM), 20-core 2.5Ghz Intel Xeon CPU (768GB
RAM), running Linux. We use Python and specifically the PyTorch library for our implementation. Our
code is available via Github: https://github.com/Qitong-Wang/Directed-Graph-Transformers.

For a fair comparison, we run all models with the number of learnable parameters, around 100K with 4 layers
for the graph classification tasks. We fix the batch size to 32, the number of maximum epochs to 200, and
we employ grid search for tuning the learning rate η ∈ {2i × u | i = 0, 1, 2, 3, 4} with u = 5 × 10−4, choosing
η = 5 × 10−4 (or i = 1) for EGT and DiGT models on MNIST and CIFAR10 datasets, and η = 8 × 10−3 (or
i = 4) for all other datasets. We employ a grid search for tuning the number of hops k ∈ {1, 3, 5, 10, 25};
we also employ a grid search for normalization [no normalization, batch normalization, layer normalization].
We apply a similar process for other models. Table 8 contains parameters used for DiGT.

We compare DiGT with GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2017), and PNA (Corso et al.,
2020) as the representatives of GNNs, and with GT (Dwivedi & Bresson, 2021), SAN (Kreuzer et al., 2021),
EGT (Hussain et al., 2022), Exphormer (Shirzad et al., 2023), and Digraph-Transformer (Geisler et al.,
2023) as the representatives of GTs. We reimplemented Digraph Transformer (Digraph-T) since we were
not able to directly run their github code, despite a lot of effort to debug and fix the problems encountered.
We followed the same approach as done in (Geisler et al., 2023) for Digraph-T. That is, we modified the
SAT implementation (Chen et al., 2022) (in Pytorch) and added the Magnetic Laplacian position encodings.
Furthermore, as suggested, we also modified the SAT framework by replacing the GCN layer with three
bidirectional GNN layers, using GELU instead of ReLU for the activation function, and adding dropout on
the node features. We did not modify the softmax function since our datasets do not suffer from the problem
of class imbalance of the special tokens.

We train all methods on FlowGraph, Twitter, Malnet-sub, and MNIST/CIFAR10, respectively. To conduct
a fair comparison, if the models provide a parameter setting for a similar dataset (e.g., Exphormer has a
parameter setting for Malnet-tiny), we will keep the same settings and shrink the dimension of hidden
layers. If the models do not provide a parameter setting for a dataset, we follow the settings of DiGT, and
adjust the hidden dimension. For PNA, we tried grid search over {identity, amplification, attenuation} for
the scalers and {mean, max, std, var, sum} for the aggregators.

Table 8: Training Settings (default values).

FlowGraph MNIST MALNETsub
Hyperparameters Twitter CIFAR

Batch Size 32 32 16
Number of Epochs 200 200 200
Early Stops 0 10 0
Max Learning Rate (η) 0.008 0.0005 0.008
Number of Virtual Nodes (q) 0 0 0
Number of Layers 4 4 3
Number of Heads (h = d/dp) 8 8 4
Node dimensionality (d) 32 32 44
Edge dimensionality (de) 32 32 32
PE dimension (r) 25 8 25
Batch normalization True False True
Layer normalization False True False
Number of Parameters 93,450 91,538 102,403

for FlowGraph2 for MNIST
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B Dataset details

Table 9 shows the dataset statistics for each of the datasets used in our experiments.

Table 9: Datasets details: Number of graph instances G in the dataset, average number of nodes |N |, average
number of directed edges |E| and the number of graph classes nc are tabulated.

Dataset G Avg. |N | Avg. |E| nc

FlowGraph2 2000 114.46 150.30 2
FlowGraph3 3000 111.66 150.70 3
FlowGraph6 6000 111.40 149.93 6
Twitter3 2919 131.76 2237.55 3
Twitter5 4865 131.76 2208.79 5
MNIST 70000 70.57 564.53 10
CIFAR10 60000 117.63 941.07 10
Malnet-sub: Train 1434 84.85 126.14 5
Malnet-sub: Val/Test 1010 466.72 938.69 5

B.1 Twitter Datasets

We use 973 directed ego-networks from Twitter4, each corresponding to some user u (ego): the ego-network
is between u’s friends also referred to as alters (Leskovec & Mcauley, 2012). If nodes vi, vj are in u’s
ego-network then u follows them and if vi follows vj then there is a directed edge vi 7→ vj in the ego-
network. We introduce perturbations to each of these real ego-networks where a perturbation can be either
(i) rewiring of an existing edge (an (a, b) ∈ E(ego(u)), where it is deleted and replaced by an edge (c, d)
where nodes c, d are randomly selected from V (ego(u))), or (ii) reversing of the direction of an existing
edge (a, b) ∈ E(ego(u)), where it is replaced by (b, a). The percentage of the perturbed edges in an ego-
network can be [0, 25, 50, 75, 100]%. Rewiring and reversing the direction of edges takes place with equal
probabilities. So, for each of the percentages, 973 new perturbed ego-networks are generated, each labeled
with the corresponding perturbation percentage. We refer to the collection of the 5×973 perturbed Twitter
datasets as Twitter5 (5 labels/classes). Similarly, if we get 3 × 973 of them corresponding to perturbation
percentages [0%, 50%, 100%], then we have the Twitter3 dataset (3 labels/classes).

B.2 FlowGraph Datasets

Given the limitations of existing benchmarks, we introduce a family of directed graph datasets that explicitly
relate the edge direction pattern in graphs to their classification labels. In particular, we generate graphs with
their nodes organized in successive layers and then we leverage the notion of a flow between the layers through
directed edges: for a predefined subset of layers, graphs with different aggregate flow between successive layers
in the subset are assigned different labels. Our FlowGraph generator is modeled after the Directed Stochastic
Block Model (DSBM) (Malliaros & Vazirgiannis, 2013). Following the notation in (He et al., 2021), we
organize N graph nodes into K clusters and define cluster adjacencies in a meta-graph adjacency matrix F,
with its entries Fkl marking the allowance of directed edges from nodes in cluster k to those of cluster l.
More specifically, we assume that the node clusters are arranged sequentially, l = 0, 1, . . . , K − 1 (say from
left to right) and a subset of its first lS < K consecutive clusters define a subgraph S. In FlowGraph we allow
directed edges between nodes belonging to all clusters with the probability being a small noise parameter
η (typically η = 0.01). Then for directed edges between nodes in successive clusters, with the source node
l being in a cluster in subgraph S, we set Fl,l+1 to a percentage f%. These percentages are different for
different classes and depend on the number of classes nc. In our experiments, for all generated graphs we set
N = 150, K = 10, lS = 4. We generate 3 graph datasets: one dataset for each of the nc = 2, 3, 6-class cases.

4https://snap.stanford.edu/data/ego-Twitter.html
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Figure 6: The visualization of three categories of graphs in FlowGraph3 dataset.

Figure 6 visualizes FlowGraph3. The yellow edges are the flows from left to right, the red edges are the flows
from right to left, and the green edges are noises. In all three samples, half of the edges are noise, shown
with green edges. In the leftmost sample, besides the noise edges, almost all the edges have the flow from
left to right; in the middle sample, 75% of the edges have the flow from left to right; whereas in the right
sample, 50% of the edges have the flow from left to right.

C Flipping Edge Directions

We reverse the direction of 25% and 50% of graph edges, randomly selected, and empirically evaluate
the importance of directionality in all the datasets. Table 10 lists our findings. We use GAT(Veličković
et al., 2017) and EGT (Hussain et al., 2022) as the representatives for graph neural networks and graph
transformers. We confirm that the derived notion of edge direction in MNIST (Achanta et al., 2012) and
CIFAR10 (Krizhevsky et al., 2009) is not significant: classification results from both EGT and GAT models
are almost agnostic to edge direction flips in these datasets; the differences between the vanilla datasets and
flipped datasets are at most 2.1%.

For the Ogbg-Code2 dataset (Hu et al., 2020), we select SAT (Chen et al., 2022) and DAGformer (Luo,
2022), the two top-performing models, as the baseline for testing random flips. We observe that DAGformer
only exhibits a 1.2% decrease in performance when 50% of the edges in this dataset are randomly flipped.
This suggests that directionality is not a significant factor in this dataset.

We employ the current state-of-the-art model, Exphormer(Shirzad et al., 2023), to examine the significance
of direction in Malnet-tiny dataset (Freitas et al., 2020). It is observed that there’s a 6.12% decrease
in performance in the flip50 case. This gap refers to the importance of directionality in the Malnet-tiny
dataset.

For FlowGraph and Twitter datasets, the labels are determined by the percentage of edge perturbations.
Consequently, the directionality of these graphs plays a critical role. In particular, DiGT accuracy con-
sistently decreases across all FlowGraph and Twitter datasets under all edge reversal percentages. In
FlowGraph, accuracy drops are sharper (and saturate as we increase the reversal percentage): with 25%
of edges flipped accuracy decreases in the range of 46.25% to 28.94%: from 97.42% to 51.17% in FlowGraph2
and from 46.80% to 17.86% in FlowGraph6.

D Ablation: Positional Embeddings

We select two techniques for the positional encodings: Singular Value Decomposition (SVD), and the Mag-
netic Laplacian (Geisler et al., 2023). Here are the details for these two methods:

Singular Value Decomposition Given an adjacency matrix A, we apply Singular Value Decomposition
(SVD) to decompose it into A = UΣV∗ where U and V∗ are orthogonal matrices and Σ is a diagonal matrix
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Table 10: Random Flips of MNIST, CIFAR10, Ogbg-Code2, Malnet-tiny datasets.

Model MNIST CIFAR10 Model Ogbg-Code2 Model Malnet-tiny Malnet-sub

GAT 95.54 +/- 0.21 64.22 +/- 0.46 SAT 19.37 +/- 0.03 Exphormer 94.02 +/- 0.21 79.71 +/- 0.37
GAT-Flip25 93.92 +/- 0.22 62.86 +/- 0.18 SAT-Flip25 18.72 +/- 0.08 Exphormer-Flip25 88.77 +/- 0.41 70.93 +/- 0.73
GAT-Flip50 93.43 +/- 0.23 62.11 +/- 0.78 SAT-Flip50 18.70 +/- 0.03 Exphormer-Flip50 87.90 +/- 1.65 71.51 +/- 0.45
EGT 98.17 +/- 0.09 68.70 +/- 0.41 DAG 20.2 +/- 0.2
EGT-Flip25 97.90 +/- 0.11 67.27 +/- 0.56 DAG-Flip25 18.9 +/- 0.2
EGT-Flip50 97.99 +/- 0.09 67.28 +/- 0.38 DAG-Flip50 19.0 +/- 0.1

Table 11: Random Flips of FlowGraph and Twitter datasets.
Model FlowGraph2 FlowGraph3 FlowGraph6 Twitter3 Twitter5

GAT 84.92 +/- 1.90 58.83 +/- 1.47 30.31 +/- 0.28 74.59 +/- 1.59 56.79 +/- 0.05
GAT-Flip25 73.67 +/- 0.72 44.16 +/- 1.70 48.62 +/- 0.80 67.69 +/- 1.06 48.62 +/- 0.80
GAT-Flip50 51.00 +/- 3.89 33.00 +/- 2.38 17.31 +/- 0.66 65.64 +/- 1.71 44.34 +/- 2.05
DiGT 98.00 +/- 0.54 74.61 +/- 1.95 46.03 +/- 0.41 93.33 +/- 0.64 86.67 +/- 0.52
DiGT-Flip25 51.17 +/- 1.25 33.50 +/- 0.36 17.86 +/- 0.92 89.29 +/- 0.90 77.47 +/- 0.90
DiGT-Flip50 49.67 +/- 1.39 32.33 +/- 1.66 16.78 +/- 0.04 82.96 +/- 1.13 65.44 +/- 0.38

containing singular values. After sorting the singular values in Σ, we select the top p columns (rows) from
both U and V∗ , where p represents the dimensionality of our positional encodings. We utilize them as the
dual positional encodings in our model for our input layer as follows where Nf is input node features:

S = Ls(U) + Lf (Nf ) T = Lt(V∗) + Lf (Nf ) (11)

Magnetic Laplacian We first compute a symmetric adjacency matrix AS given a directed adjacency
matrix A as AS = A ∨ AT , where ∨ denotes the ‘or’ operation. Then, we compute the symmetric diagonal
degree matrix DS from AS . According to (Geisler et al., 2023) and (Furutani et al., 2020), we compute the
magnetic Laplacian as

L = DS − AS ⊙ exp(iΘq) (12)

where ⊙ is Hadamard product, exp is element-wise exponential, i =
√

−1, Θ = 2πq(Au,v − Av,u), and
q ≥ 0. L is a Hermitian matrix, and we can get a complex eigenvector with real and imaginary R and M
components. Then, we select p columns from R and M. Since we have two pairs of eigenvectors for one
node, we change our input layer as the following formula:

S = Ls1(R) + Ls2(M) + Lf (Nf ) T = Lt1(R) + Lt2(M) + Lf (Nf ) (13)

Table 12: Ablation: Positional Embeddings .
Model FlowGraph2 FlowGraph3 FlowGraph6 Twitter3 Twitter5 Malnet-sub MNIST CIFAR10

DiGT-Magnet 98.00 +/- 0.54 74.61 +/- 1.95 46.03 +/- 0.41 93.33 +/- 0.64 86.67 +/- 0.52 80.78 +/- 1.76 97.25 +/- 0.22 63.10 +/- 0.94
DiGT-SVD 97.42 +/- 0.82 74.55 +/- 0.69 45.83 +/- 0.25 91.67 +/- 0.79 85.94 +/- 0.25 77.12 +/- 3.68 98.02 +/- 0.10 67.05 +/- 0.20
DiGT-No PE 96.83 +/- 0.47 74.83 +/- 1.98 45.11 +/- 0.75 91.28 +/- 0.98 85.88 +/- 0.84 80.93 +/- 3.97 97.63 +/- 0.10 65.55 +/- 1.35

Table 12 presents the comparative results of these strategies, compared with having no positional encodings.
We see that Magnetic Laplacian encodings exhibit superior performance in datasets where directionality is a
critical factor, such as FlowGraph, Twitter, and Malnet-sub. Conversely, SVD is more effective in scenarios
where directionality is less relevant, such as MNIST and CIFAR10 datasets. Consequently, DiGT follows the
same strategy to select the most suitable positional encoding method. Furthermore, the table suggests that
incorporating positional encodings generally enhances learning performance, with the exception of applying
SVD to the Malnet-sub dataset.
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E Ablation: Virtual Nodes

We investigate the virtual node method from (Hussain et al., 2022): adding q virtual nodes and establishing
bidirectional edges between each node from the original graph and each virtual node. In the output layer,
it aggregates the output embedding by averaging the node embeddings exclusively from the virtual nodes
instead of from all nodes. However, we find that for directed graphs, it is more effective to add edges from
the graph to the virtual nodes only, rather than introducing bidirectional connections. Table 13 summarizes
our findings for a different number of virtual nodes, q ∈ {1, 3, 5}, denoted as DiGT-VNq. Note that DiGT by
default does not use virtual nodes (q = 0). We observe that for FlowGraph3 dataset, DiGT-VN3 outperforms
DiGT by 1.32%. For FlowGraph6 dataset, DiGT-VN1 shows a 0.72% improvement over DiGT. However,
these differences are slight. Additionally, in other datasets, the introduction of virtual nodes tends to decrease
performance. Consequently, we decide not to incorporate virtual nodes in our default model due to its limited
benefits and potential drawbacks.

Table 13: Ablation: Virtual Nodes.

Model FlowGraph2 FlowGraph3 FlowGraph6 Twitter3 Twitter5 Malnet-sub MNIST CIFAR10

DiGT 98.00 +/- 0.54 74.61 +/- 1.95 46.03 +/- 0.41 93.33 +/- 0.64 86.67 +/- 0.52 80.78 +/- 1.76 98.02 +/- 0.10 67.05 +/- 0.20
DiGT-VN1 97.25 +/- 0.41 75.28 +/- 0.44 46.75 +/- 1.76 92.02 +/- 0.29 86.63 +/- 0.64 75.93 +/- 0.59 97.24 +/- 0.12 64.15 +/- 0.46
DiGT-VN3 97.83 +/- 0.51 75.94 +/- 0.70 45.75 +/- 1.49 92.82 +/- 0.14 86.32 +/- 0.86 78.97 +/- 0.82 97.32 +/- 0.29 64.83 +/- 0.76
DiGT-VN5 98.00 +/- 0.35 75.89 +/- 1.76 46.14 +/- 1.30 91.05 +/- 0.32 86.63 +/- 0.49 76.75 +/- 0.52 96.96 +/- 0.13 64.63 +/- 0.69

F Ablation: Undirected Graph Datasets

Table 14: Ablation: Undirected Graph Datasets.

Model Zinc 100K Zinc 500K

GCN (Kipf & Welling, 2016) 0.459 +/- 0.006 0.367 +/- 0.011
GAT (Veličković et al., 2017) 0.475 +/- 0.007 0.384 +/- 0.007
GatedGCN (Bresson & Laurent, 2017) 0.375 +/- 0.003 0.282 +/- 0.015
GraphSage (Hamilton et al., 2017) 0.468 +/- 0.003 0.398 +/- 0.002
PNA (Corso et al., 2020) 0.188 +/- 0.004 0.142 +/- 0.010
EGT (Hussain et al., 2022) 0.277 +/- 0.019 0.228 +/- 0.020
EGT+DO (Hussain et al., 2022) 0.143 +/- 0.011 0.108 +/- 0.009
DiGT 0.213 +/- 0.031 0.134 +/- 0.039

While undirected graphs are not our primary focus, we aim to demonstrate that DiGT remains highly
effective on such datasets. We choose to further evaluate DiGT on the Zinc (Irwin & Shoichet, 2005)dataset,
which contains 12K undirected graphs, for the graph regression task. Table 14 reports the mean absolute
error (MAE; lower is better) for the Zinc dataset under two different training settings: approximately
100K parameters and 500K parameters. Notably, DiGT exhibits superior performance over GCN, GAT,
GatedGCN, GraphSage, and EGT. PNA leverages multiple aggregators with degree-scalers to aggregate the
neighbors’ features and captures the graph structure to attain better performance, and EGT-DO integrates
both EGT with a secondary task of distance prediction. Nevertheless, the results indicate that DiGT is
competitive for tasks based on undirected graph datasets.

G Complexity and Limitations

We designed our experiments so that we allocate the same hardware resources (GPU/CPU, amount of mem-
ory) for all experiments. We also limit the number of learned weight parameters to be the same for all models,
as shown in Table 15 (for Malnet-sub). The recorded training timings show that our method is very compet-
itive with graph transformers: Training time for DiGT is 42s/epoch (for FlowGraph6 dataset) and 57s/epoch
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Table 15: Training Settings (for Malnet-sub).

DiGT EGT GCN Exphormer
Number of Layers 4 4 4 5
Number of Heads (h = d/dp) 8 8 8 4
Node dimensionality (d) 44 60 72 48
Edge dimensionality (de) 32 48 0 48
Number of Parameters 102,403 107,489 105,845 113,645

(for Twitter3 dataset). In comparison: for EGT (Hussain et al., 2022) (also a transformer-based architec-
ture), the training time is 30s/epoch (for FlowGraph6 dataset) and 50s/epoch (for Twitter3 dataset). Train-
ing time for GNNs differs significantly based on their architectures. Vanilla GCN is fast, the training time is
2s/epoch (for FlowGraph6 dataset) and 3s/epoch (for Twitter3 dataset). In contrast, for PNA (Corso et al.,
2020), a GCN-based architecture, the training time is 62s/epoch (for FlowGraph6 dataset) and 297s/epoch
(for Twitter3 dataset). In general, for N nodes and d-dimensional vectors for node representations at each
layer, graph transformers learn weight matrices (space complexity) with O(N2) parameters each, and graph
neural networks learn weight matrices with O(d2) parameters each (with both (graph) transformers and
GCN producing N , d-dimensional representations for the nodes), conducting matrix-matrix multiplications
respectively of (time) complexities O(N2d) and O(d2N). Given that for the graph-level tasks we conduct,
the graphs are relatively small (small N , comparable or smaller to d), this explains the generally favorable
performance of our approach. On top of this, transformer architectures like ours, perform multiplications
by splitting matrix dimension d into multiple heads and conducting resulting multiplications in parallel (on
GPUs).

21


	Introduction
	Related work
	Directed Graph Transformer Architecture 
	Input Layer
	DiGT Attention Layer
	 Output Layers and Prediction

	Experiments
	Directed Graph Datasets
	Importance of Direction: Random Flip Test
	Inherently Directed Datasets
	Degree of Directionality

	Experimental Comparison
	Ablation Studies
	Single-Vector Node Embeddings
	k-Hop Virtual Edge Filters
	Hard vs. Soft Thresholding for D(k)


	Conclusions and Future Work
	Experiment details
	Dataset details
	Twitter Datasets
	FlowGraph Datasets

	Flipping Edge Directions
	Ablation: Positional Embeddings
	Ablation: Virtual Nodes
	Ablation: Undirected Graph Datasets
	Complexity and Limitations

