
Published as a conference paper at ICLR 2025

HYPOTHETICAL MINDS: SCAFFOLDING THEORY OF
MIND FOR MULTI-AGENT TASKS WITH LARGE LAN-
GUAGE MODELS

Logan Cross1∗ Violet Xiang2 Agam Bhatia1 Daniel L.K. Yamins1,2 Nick Haber3

Stanford University
1Department of Computer Science
2Department of Psychology
3Graduate School of Education

ABSTRACT

Multi-agent reinforcement learning methods struggle with the nonstationarity of
multi-agent systems and fail to learn online when tested with novel agents. Here,
we leverage large language models (LLMs) to create an autonomous agent that can
handle these challenges. Our agent, Hypothetical Minds, consists of a cognitively-
inspired architecture, featuring modular components for perception, memory, and
hierarchical planning over two levels of abstraction. We introduce the Theory
of Mind module that scaffolds the high-level planning process by generating hy-
potheses about other agents’ strategies in natural language. It then evaluates and
iteratively refines these hypotheses by reinforcing hypotheses that make correct
predictions about the other agents’ behavior. Hypothetical Minds significantly
improves performance over previous LLM-agent and RL baselines on a range of
competitive, mixed motive, and collaborative domains in the Melting Pot bench-
mark, including both dyadic and population-based environments. Additionally,
comparisons against LLM-agent baselines and ablations reveal the importance of
hypothesis evaluation and refinement for succeeding on complex scenarios.

1 INTRODUCTION

A fundamental challenge in artificial intelligence is creating agents that can rapidly adapt to oth-
ers in multi-agent environments. Whether in competitive settings like games, collaborative tasks
like team projects, or mixed-motive scenarios like negotiation, success requires building predictive
models of another agent’s behavior by inferring their hidden strategies and latent capabilities. One
approach involves training reinforcement learning models that can learn adaptive policies. However,
multi-agent reinforcement learning (MARL) methods suffer from various drawbacks, including high
sample complexity, poor generalization to agents not seen in training, and limited reasoning capa-
bilities (Wong et al., 2023).

Another approach deploys foundation models as the backbone to agents, with specialized modules
that mediate the decomposition of long horizon planning (Wang et al., 2024; 2023a; Brohan et al.,
2023a; Park et al., 2023). LLMs are not only powerful reasoners and in-context learners, but they
are also particularly suited for social tasks given the utility of language for scaffolding Theory of
Mind (ToM) (Astington & Baird, 2005; de Villiers, 2007; 2021; Kosinski, 2023; Gandhi et al.,
2024). Thus, we introduce Hypothetical Minds (HM), a LLM agent that produces adaptive policies
in competitive, cooperative, and mixed-motive multi-agent scenarios. At its core, HM addresses
the challenge of interacting with agents whose behavior is driven by latent features - first inferring
these features through a natural language approximation of Bayesian inference, then conditioning
its policy on these inferences.

∗Corresponding author: locross@stanford.edu
Code: https://github.com/locross93/Hypothetical-Minds/

1

mailto:locross@stanford.edu
https://github.com/locross93/Hypothetical-Minds/

Published as a conference paper at ICLR 2025

A

B

Figure 1: A. Hypothetical Minds architecture and model workflow. B. ToM module generates
hypotheses about agent strategies. Previously generated hypotheses and values are shown for refine-
ment. Top k hypotheses predict agent’s next behavior ˆϕ(τ), considering counterfactual scenarios.
Highest-valued hypothesis informs high-level planning. Later, hypotheses are evaluated against ob-
served behavior ϕ(τ), updating values with intrinsic reward. Hypotheses are validated at a threshold.

HM builds on the generative agents architecture, integrating modules for perception, memory, and
hierarchical planning with novel ToM machinery (Park et al., 2023). The Theory of Mind module
generates and evaluates hypotheses about other agents’ strategies, scoring them based on their ability
to predict future actions. Thus, our agent finds useful explanations of other agents’ behaviors in-
context, affording it the ability to adapt to the inferred strategies and achieve high rewards.

We evaluate our model on the Melting Pot MARL benchmark that encompasses diverse challenges
and social dynamics (Agapiou et al., 2022). Collaborative Cooking Asymmetric requires effec-
tive coordination and division of labor among agents. Running With Scissors necessitates strategic
reasoning about opponents’ policies and the ability to exploit predictable patterns in a competitive
setting, with the eight-player version offering a unique challenge to the model’s scalability. More-
over, the mixed-motive environment Prisoner’s Dilemma involves a tension between individual and
collective interests. Diverse evaluation scenarios stress test playing with a wide array of agents with
fixed or adaptive policies, necessitating contextual adaption. Hypothetical Minds surpasses LLM
agent baselines on a majority of evaluation scenarios in every environment, and performs better than
MARL baselines on 3/4 environments despite the fact that those methods are trained on upwards
of a billion steps. To our knowledge, Hypothetical Minds is the first LLM agent for diverse multi-

2

Published as a conference paper at ICLR 2025

agent environments, with strong performance across collaborative, competitive, and mixed-motive
domains, unlike previous works limited to collaborative settings. Our contributions are as follows:

• We propose the Hypothetical Minds model (HM), an embodied LLM agent for multi-agent
environments that integrates modular components for perception, memory, and hierarchical
planning conditioned on ToM inferences.

• HM incorporates a novel Theory of Mind (ToM) module, which generates, evaluates, and
refines hypotheses about other agents’ strategies or goals in natural language. Through
ablations and comparisons against LLM-agent baselines, we identify the critical role of
hypothesis evaluation and refinement within the ToM Module.

• We demonstrate the effectiveness of HM Minds across multiple multi-agent environments,
including competitive, collaborative, and mixed-motive domains, and 30 distinct evalua-
tion scenarios. Our agent significantly outperforms LLM-agent and RL baselines in every
environment and in a large majority of evaluation scenarios, showcasing its generalizability.

2 RELATED WORK

2.1 LLM-BASED AGENTS

A burgeoning area of research involves building autonomous agents rooted in large language models
Wang et al. (2024); Sumers et al. (2023). This involves deploying LLMs as central controllers
across many different domains by leveraging their extensive background knowledge from training.
Applications span a wide range from equipping LLMs with external tools to interface with databases
and APIs (Schick et al., 2024; Shen et al., 2023; Qin et al., 2023) to using them for high-level
planning and control in robotics (Huang et al., 2022; Brohan et al., 2023b; Rana et al., 2023; Brohan
et al., 2023a). The most relevant branch of this research direction includes works where LLMs are
used as planners in embodied virtual environments. Voyager autonomously builds complex skills in
Minecraft by storing and retrieving behaviors in a skill library of executable code and uses the skill
library to solve progressively harder tasks (Wang et al., 2023a; 2024). In this work, we use an LLM
for long horizon high-level planning and predicting the future states of other agents in multi-agent
environments. Previous papers have also incorporated LLM-based agents into embodied multi-agent
environments (Liu et al., 2023a). Park et al. (2023) introduce a interactive simulation of a rich social
environment, where each agent autonomously selects goals and builds relationships with others.
We extend the cognitive module framework developed in this work for multi-agent environments
of varied dynamics by introducing the novel Theory of Mind module. SAMA uses an LLM to
plan out sequences of subgoals for language-based goal-conditioned RL policies in environments
requiring multi-agent coordination Li et al. (2023). Another study builds cooperative embodied
agents, by using an LLM for planning and communication between agents Zhang et al. (2023b).
ProAgent develops a method for improving zero-shot coordination in Overcooked by using an LLM
to infer the intentions of teammates based on the present state Zhang et al. (2023a). As these works
have focused solely on collaborative domains, here we present a generalizable and scalable method
that addresses the challenge of inferring other agents intentions’ across a wide spectrum of social
dynamics.

2.2 REASONING AND HYPOTHESIS SEARCH WITH LLMS

LLMs have shown impressive reasoning abilities, augmented by Chain-of-Thought methods that
scaffold the thought process (Wei et al., 2022; Zhang et al., 2023c). Our hypothesis generation ap-
proach builds on this work by implementing structured reasoning steps for theory of mind inference
and decision-making. Tree-of-Thoughts (Yao et al., 2024) extends chain-of-thought by maintaining
and evaluating multiple reasoning paths in parallel, similar to our parallel evaluation of multiple hy-
potheses about opponent strategies. ToT evaluates different solution paths of a reasoning trajectory
with an external verifier or LLM as judge, whereas we score hypotheses about an agent based on
the quality of predictions they make about that agent’s behavior. The structured prompting in our
ToM module draws on broader findings about effective prompt engineering for complex reasoning
(Zhang et al., 2023c). For example, our separation between reasoning and action in our prompts
draws inspiration from the ReAct framework (Yao et al., 2023).

Recent work has specifically investigated LLMs’ capabilities for hypothesis generation and testing.
Wang et al. (2023b) explores LLMs’ inductive reasoning by generating and evaluating hypotheses
on the Abstraction and Reasoning Corpus (ARC), while Qiu et al. (2023) refines LLM-generated

3

Published as a conference paper at ICLR 2025

hypotheses using task-specific symbolic interpreters. Similarly, we generate, evaluate, and refine
hypotheses based on feedback, though in our case computing values for each hypothesis by predict-
ing another agent’s goals. STaR (Zelikman et al., 2022) also learns from feedback by finetuning
language models on rationales that produced correct answers.

2.3 MULTI-AGENT DECISION-MAKING AND THEORY OF MIND

Decision-making in multi-agent settings has been extensively studied through multi-agent reinforce-
ment learning (MARL), with benchmarks like Melting Pot providing diverse social interaction sce-
narios to evaluate agents (Agapiou et al., 2022). While algorithms like MADDPG (Lowe et al., 2017)
and MAPPO (Yu et al., 2022a) have advanced MARL through centralized training approaches, spe-
cialized models incorporating Theory of Mind principles (Rabinowitz et al., 2018; Wang et al., 2021;
Yu et al., 2022b; Huh & Mohapatra, 2024; Vezhnevets et al., 2020; Sclar et al., 2022) have shown
promise in modeling other agents’ intentions. However, even sophisticated approaches like OPRE
(Vezhnevets et al., 2020) struggle to generalize in complex environments like Melting Pot’s Running
With Scissors (Agapiou et al., 2022), highlighting MARL’s limitations in compute requirements and
training stability. In cognitive science, the Rational Speech Act framework (Goodman & Frank,
2016) and Bayesian inverse planning (Baker et al., 2009) model how humans infer others’ goals and
beliefs through Bayesian inference, providing inspiration for our ToM module.

3 METHOD

3.1 PARTIALLY-OBSERVABLE MARKOV GAMES

Our method is directly applicable to any multi-agent environment where states are partially observ-
able and agent(s)’ policies are hidden. We formally define this as a Markov game for N players in
a partially observable setting. Let the finite set S represent the possible states of the game. Each
player i receives observations given an observation function χi : S → O, representing their limited
point of view. Additionally, each player i can take actions from their action space Ai, and when all
players choose actions (a1, . . . , aN) ∈ A1 × · · · × AN := A, the state transitions according to a
probability distribution T : S ×A→ D(S). The reward function for each player i is represented as
ri : S ×A→ R, mapping the current state and joint actions to a real-valued reward.

3.2 HYPOTHETICAL MINDS MODEL

HM consists of several cognitive modules that altogether form an embodied LLM agent (Figure 1).
The egocentric observations are represented by a textual map/state representation, which is added
to a memory system after every step. The memory system also logs rewards and other important
state information like the inventories from previous interactions in Running With Scissors. Two
cognitive modules depend on an LLM, a Theory of Mind module and a Subgoal module, which
output high-level goals and action plans respectively. An action planner takes an action plan (i.e.
”move to coordinate (13, 5)”) and creates a sequence of actions that achieves that action plan with a
pathfinding algorithm. Each cognitive module is explained in more detail in the Appendix. Below
we describe the key novel contributions of our method that implement hierarchical planning.

Theory of Mind Module In multi-agent environments, other agents’ behavior can be influenced
by various latent variables, such as their strategies (e.g., ”always defect”), goals (e.g., ”trying to
pick up an object”), competence levels (e.g., ”highly skilled” vs. ”negligent”) and locations in an
environment. These latent variables are often not directly observable and must be inferred from
partially-observable information from your perspective as the ego agent. We represent these latent
variables as a multidimensional space Θ = θ1, θ2, . . . , θm, where each dimension θi corresponds
to a specific latent variable in an embedding. The ToM module generates hypotheses about these
latent variables in natural language. It then maintains a set of hypotheses H = h1, h2, . . . , hn in its
working memory, where each hypothesis ht represents a belief about the latent variables hi = p(Θ).
A hypothesis at time t is generated by asking an LLM to infer another agent’s strategy, conditioned
on HM’s memory M of important past observations O. Additionally, the LLM is shown the top
k valued previously generated hypotheses, such that it can perform hypothesis refinement (see
Appendix and code for more details and prompts):

ht = LLM(M, h<t) (1)

4

Published as a conference paper at ICLR 2025

whereM is a memory buffer storing an agent’s past actions, observations, and rewards.

Each hypothesis hi is scored based on how well it predicts the other agent’s future behavior, noted
here formally as a distribution of trajectories p(τ). We formalize this scoring mechanism using a
likelihood function p(τ |hi) representing the probability of an agent exhibiting trajectory τ given the
hypothesis hi. The best hypothesis h∗ is selected using the Maximum a Posteriori (MAP) estimate:

h∗ = argmax
hi∈H

p(hi|τ) = argmax
hi∈H

p(τ |hi)p(hi)

p(τ)
(2)

where p(hi) is the prior probability of hypothesis hi and p(τ) is the marginal probability of the
observed action a and has no effect on the argmax. The likelihood is approximated by a hypothesis
evaluation mechanism described below. The LLM predicts the other agent’s future behavior con-
ditioned on each hypothesis separately. Hypotheses leading to correct predictions will have higher
values reflecting higher likelihoods. The prior p(hi) corresponds both to the background knowledge
embedded in the weights of an LLM from pretraining and to the refinement mechanism that shows
the top valued hypotheses to the LLM when the LLM generates a hypothesis. By continuously
updating and selecting the best hypothesis based on observed information, the ToM module can
effectively infer the latent variables governing the other agents’ behavior and adapt its own strate-
gies accordingly. When the environment has more than one other agent, the ToM module maintains
separate hypothesis streams for each other agent, with unique hypotheses and values tracked per
agent.

Hypothesis Evaluation Drawing on cognitive modeling approaches (Rescorla, 1972; Daw & To-
bler, 2014), multiple hypotheses are scored with a value system Vhi

= E[r] where r reflects in-
trinsic reward based on the accuracy of the predictions the hypothesis generates. We compute self-
supervised intrinsic rewards bootstrapped from the LLM’s own predictions. Let ϕ(τ) be a particular
behavior, a feature from an observed trajectory, and ˆϕ(τ) be the predicted behavior by the LLM,
such as the inventory played by an agent in Melting Pot environments. The intrinsic reward function
ri can then be defined as:

ri =

{
c if ˆϕ(τ) = ϕ(τ)

−c if ˆϕ(τ) ̸= ϕ(τ)

where c is a hyperparameter. Vhi
is then dynamically updated with a Rescorla Wagner update rule

(Rescorla, 1972) , expressed as:
δ = ri − Vhi

Vhi
← Vhi

+ α · δ

modulated by learning rate α via a prediction error δ. The learning rate dictates how much to weigh
recent interactions, a useful property when playing against evaluation scenarios where agents change
their strategy within an episode. When the value of a hypothesis meets a threshold Vthr, the ToM
module marks the hypothesis as validated and uses this hypothesis to condition high-level plans
(using the highest-valued one if multiple pass the threshold). This hypothesis will then continue
to be used for planning until it no longer makes good predictions and its value subsequently falls
below the threshold. If no hypothesis meets the threshold, by default the latest generated hypothesis
(with the most updated information) is used for conditioning high-level plans. The highest value
hypothesis could also be used in our code. We set the validation threshold Vthr = 0.7 apriori based
on analysis of the Rescorla-Wagner dynamics. With reward values of c = 1 and learning rate = 0.3,
a hypothesis requires consistent predictive accuracy to reach and maintain this threshold. The top k
hyperparameter mediates cost trade-offs, representing how many of the top k old hypotheses are
continually evaluated in parallel. Each ToM module call uses (3 + top k) LLM calls if no hypothesis
is validated yet and only 2 calls after validation, thus scaling linearly at the step in computational
cost when hypotheses are not validated and sublinearly when they are frequently validated. (See
Table 4 in Appendix for all hyperparameters and Table 5 and Appendix Section B for information
about computational costs). The default value as reported in the results use top k = 5.

Conditioning High-Level Plans The ToM module then conditions its high-level plans on the
inferred latent variables represented by the hypotheses. A high-level plan z is a natural language

5

Published as a conference paper at ICLR 2025

Figure 2: Results for all models. Average reward per episode (with normalized steps for variable
length episodes) for each environment and scenario. 5 seeds are generating for each model, with
errorbars reflecting the SEM across those 5 episodes.

description of HM’s overall strategy, goal, or intention, conditioned on the best hypothesis h∗ and
memory of past events:

z = LLM(M, h∗) (3)
By conditioning the high-level plans on the hypotheses, HM can adapt its strategy based on its
understanding of the other agents’ latent states.

Subgoal Module Finally, the Subgoal module selects a sequence of subgoals. Let g = g1, g2, . . . , gk
be a sequence of subgoals, where each subgoal gi is an action or short sequence of actions that the
agent needs to take to achieve the high-level plan z:

g = LLM(O,M, z) (4)

The sequence is generated by conditioning the LLM on the high-level plan, observations, and mem-
ory, and prompt to achieve the high-level plans. The LLM outputs a sequence of specified subgoal
function calls, which are then parsed and mapped to the corresponding actions in the environment
by a hardcoded Action Planner (see Appendix).

4 EXPERIMENTS

Here we investigate the following to analyze the generalizability and scalability of our method:

Q1. How does Hypothetical Minds perform compared to LLM agent and RL baselines in embodied
competitive zero-sum environments?

Q2. How does Hypothetical Minds perform compared to LLM agent and RL baselines in a collabo-
rative domain that requires adaptation to a partner’s role and competence?

Q3. How does Hypothetical Minds perform compared to LLM agent and RL baselines in a mixed-
motive setting?

Q4. Does the Hypothetical Minds agent scale effectively to environments with larger populations of
agents?

Q5. How do the different components of the Hypothetical Minds agent and the Theory of Mind
module contribute to its overall performance?

We directly test our LLM-based agent on the evaluation scenarios in four Melting Pot environments
(Figure 2). The key evaluation method is to test agents against different bots with various policies.

6

Published as a conference paper at ICLR 2025

Figure 3: HM’s reward per number of interactions before or after a hypothesis meets the validation
threshold and is used for high-level strategy selection in RWS. Vertical green line indicates the
average reward at the point where a hypothesis is validated, and positive and negative numbers on
the x-axis indicate how many interactions before or after this point. Shaded region represents the
range where the good hypothesis is typically first generated with a 95% confidence interval.

Across environments, this consists of 30 distinct evaluation scenarios. Crucially, our agent has no
knowledge about which strategies they may be playing in the prompts given. Strategies have to be
ascertained online within an episode via in-context learning.

Baselines

ReAct synergizes reasoning and acting in language models, allowing them to generate both reason-
ing traces and task-specific actions in an interleaved manner (Yao et al., 2023). Reflexion includes
three main components: an Actor module that generates actions and text, an Evaluator that scores
these actions, and a Self-Reflection module that uses the evaluations to provide constructive feed-
back stored for subsequent use (Shinn et al., 2024). PlanReAct To provide a hierarchical baseline to
test against our hierarchical model, we include the PlanReAct architecture introduced in (Liu et al.,
2023b). This structure allows the agent to plan before interacting with the environment. PPO is a
model-free RL baseline (Schulman et al., 2017) and we train agents in a population of models with
the same parameters. OPRE is a hierarchical MARL method where agents learn high-level options
as strategic responses to other agents’ behaviors (Vezhnevets et al., 2020). The high-level controller
selects options based on observations of other agents, and the low-level controller executes actions
conditioned on these options. We include the OPRE results from the Melting Pot 2.0 paper (Agapiou
et al., 2022) as a baseline to compare against a hierarchical MARL approach that, like our model,
aims to adapt dynamically to other agents’ strategies.

Prompts and architectures are shared across baselines to provide a fair comparison and natural abla-
tions of our model. The Subgoal module provides a baseline actor shared between LLM baselines,
and the only difference between PlanReAct and Hypothetical Minds is that high-level planning is
mediated by the Theory of Mind module, including hypothesis generation, evaluation, and refine-
ment.

4.1 HOW DOES HYPOTHETICAL MINDS PERFORM IN COMPETITIVE ENVIRONMENTS?

Running With Scissors in the Matrix Repeated (RWS) is a zero-sum competitive environment
with two players moving around a map and collecting yellow, purple, or blue resources that corre-
spond to rock, paper, and scissors respectively. Zapping your opponent causes an interaction, with
one agent getting positive reward and the other agent getting an opposite negative reward according
to the inventories of resources picked up by each player, mirroring the rock, paper, scissors matrix
game.

RWS presents nine distinct evaluation scenarios, which range in complexity. These include three
straightforward strategies where opponents consistently play rock, paper, or scissors. The remaining
scenarios introduce more dynamic and adaptive strategies (see Appendix for details and full list).
Therefore in order to succeed on the scenarios, an agent needs to correctly infer the strategy and
exploit it. Against the simple policies, the agent should play the same type of inventory every round
rather than playing randomly or anticipating a change in its opponent’s policy. In contrast, success

7

Published as a conference paper at ICLR 2025

against the adaptive strategies demands not only the anticipation of the opponent’s next move based
on personal previous plays but also selecting the most advantageous counter.

Figure 2 and Appendix Table 1 demonstrate how Hypothetical Minds model consistently achieves
large magnitude rewards and performs reliably better than the baselines on every single scenario.
Hypothetical Minds performs the best on the static strategies, scenarios 0, 6, 7, 8 representing fixed
policies that play for the same inventory on every interaction (6: rock, 7: paper, 8: scissors, 0: ran-
dom sample from 6-8). Therefore it is able to exploit the static strategy reliably once it correctly
infers it. The agent is also able to consistently return positive rewards against the difficult scenario
1, the adaptive bot that plays the best response to your last round. In contrast, baselines are failing
to achieve consistent positive rewards. OPRE, a method designed specifically for a earlier version
of this task, gets rewards near zero for every scenario. PlanReAct is the only other model to achieve
positive rewards on the difficult best response bot, illustrating the usefulness of a hierarchical struc-
ture for this evaluation in particular. Reflexion performs second best overall, underscoring the value
of evaluative reflection for this environment.

Figure 3 showcases HM’s dynamics, depicting the agent’s reward per interaction before and after
hypothesis validation. Upon validation, the agent consistently achieves high positive returns, while
rewards are near zero or negative during the information-gathering phase. The upward trajectory
in reward after generating a good hypothesis and the significant increase just before the validation
threshold demonstrate the agent’s ability to exploit accurate hypotheses effectively.

4.2 HOW DOES HYPOTHETICAL MINDS PERFORM IN COLLABORATIVE ENVIRONMENTS?

In the Collaborative Cooking: Asymmetric environment, two players on distinct sides of a divided
kitchen must collaborate to efficiently cook tomato soup. The layout provides distinct advantages
to each side—one side is closer to the goal delivery but farther from the tomato dispenser, and
vice versa for the other side. To maximize rewards, the two players should specialize based on
their proximity to resources: one handles tomato dispensing and delivery, and the other manages
dish retrieval and soup delivery. Evaluation scenarios challenge the focal agent to demonstrate dual
forms of adaptation: adjusting to the specialized role dictated by their side of the kitchen and to the
varying competence of their partner, from skilled and specialized to entirely unresponsive.

Again, Hypothetical Minds achieves higher rewards than the baselines on every scenario (Figure 2).
Interestingly, HM performs significantly better than the baselines on the scenarios where there is a
functional partner (Appendix Table 1). This suggests that if there is value in a partner, HM can take
advantage of this and adapt its behavior accordingly, highlighting the model’s usefulness for com-
plex, dynamic environments where cooperative interaction is crucial. The LLM baselines perform
relatively well with the negligent partner, where success hinges on repeatedly executing an intuitive
sequence of actions — filling and delivering pots — without the need to take into account the actions
of another mind. For instance, baseline LLM agents struggled when encountering a pot already at
capacity while attempting to add tomatoes. PPO showed the opposite relative weakness, performing
moderately with the skilled partner but has a dramatic lack of generalization to the unhelpful partner
scenario, as it is used to role specialization from self play. OPRE performs poorly on every scenario.

4.3 HOW DOES HYPOTHETICAL MINDS PERFORM IN MIXED-MOTIVE ENVIRONMENTS?

In the Prisoner’s Dilemma in the Matrix Repeated (PD) environment, agents navigate a similar
grid world to RWS and collect resources corresponding to cooperation or defection in the iterated
prisoner’s dilemma game. The payoff matrix incentivizes mutual defection in a single interaction,
but the highest total welfare is achieved through mutual cooperation across an episode.

Hypothetical Minds achieves the highest reward among LLM agents and in 5/10 scenarios (Figure 2,
Appendix Table 1). This highlights its ability to perceive the background agent’s strategy and adapt
accordingly. HM outperforms the LLM baselines relatively more with dynamic partners. With
tit-for-tat for example (scenarios 5 and 6), Hypothetical Minds achieves the highest score among
all models, by engaging in more consistent cooperation while demonstrating some forgiveness to
avoid cycles of alternating defection, a pattern that plagues LLM baselines. In scenarios 8 and 9,
Hypothetical Minds showcases a capacity for ”corrective punishment.” By defecting against these
partners that initially defect, it persuades them to switch to conditional cooperation. The agent then
shifts to a forgiving cooperation strategy to maintain a mutually beneficial equilibrium.

8

Published as a conference paper at ICLR 2025

Figure 4: Comparing different versions of HM. Errorbars reflect SEM across 5 episodes.

However, OPRE achieves the highest rewards overall on Prisoner’s Dilemma. Fixed heuristic poli-
cies such as always defecting, playing tit-for-tat, etc. can achieve high rewards without needing to
correctly infer the policy it is playing against. One explanation is that advanced RL methods like
OPRE collect resources more efficiently than Hypothetical Minds in Prisoner’s Dilemma, due to
the limited spatial reasoning abilities of ungrounded LLMs like GPT4. One limitation of HM is
that the agent frequently travels across the environment to pick up resources that were closer to its
original location. On the other hand, HM demonstrates good reasoning about the strategies it is play-
ing against, and good hypotheses are frequently found and validated. This illustrates the tradeoffs
between these two methods. LLM agents provide better abstract reasoning about things like other
agent’s goals right out of the box due to their extensive training data, but lack the low-level control
necessary to maximize performance in a dense reward embodied environment (which RL excels at).

4.4 HOW DOES HYPOTHETICAL MINDS SCALE TO ENVIRONMENTS WITH LARGER
POPULATIONS OF AGENTS?

Running With Scissors in the Matrix Arena (RWS Arena) is an eight-player extension of RWS,
where the agent controls one player against a population of 7 strategies. This adds additional com-
plexity to the decision-making process and tests the scalability of models, as agents now must infer
the strategies of separate agents and maintain this information in memory. Hypothetical Minds is
set up for this by maintaining separate hypothesis evaluation streams for every agent. Additionally,
in order to maximize reward, agents should only interact with opponents that it knows it can beat
with its current inventory. Models are therefore tasked with integrating uncertainty and seeking out
opponents for which they have high confidence about their strategy.

Hypothetical Minds achieves higher rewards than the baselines in RWS Arena (Figure 2) and is the
best model on 6/8 scenarios (Appendix Table 1). HM performs particularly well on homogeneous
populations of rock, paper, or scissors (scenarios 5-7). Scenarios 2-4 consist of heterogeneous pop-
ulations where 2/3rds of the population are one pure strategy and the remaining 1/3rd represents the
pure strategy that would beat the best response to the majority strategy (e.g., scenario 2 is 2/3 rock
and 1/3 scissors). HM performs the best on 2 out of 3 of these difficult scenarios, and performance
for scenario 4 is dragged down by one highly negative episode in which the agent was exploited by
the minority strategy. In contrast, all baseline models struggle to achieve rewards of more than 10 on
average in nearly every scenario. This highlights the difficulty of the environment, for which proper
coordination between high-level plans, the embodiment, and memory is crucial for success. These
results also suggest that Hypothetical Minds scales well to population-based environments in which
you need to either handle distinct agents differently or make population-level inferences.

4.5 ABLATIONS

Our ablation studies focused on three key aspects: (1) comparing performance across different base
LLMs, (2) analyzing the components of the ToM module, and (3) analyzing the sensitivity of the
ToM module’s hyperparameters.

9

Published as a conference paper at ICLR 2025

First, we compared GPT-4, GPT-3.5, and Llama-3-70B-Instruct across environments (Figure 5).
GPT-4 significantly outperformed the other LLMs. Llama-3 performed moderately on RWS Re-
peated and Collaborative Cooking, placing between GPT-4 and GPT-3.5, but fell below GPT-3.5 on
Prisoner’s Dilemma. Due to context length limits, we could not evaluate Llama-3 on RWS Arena.

Second, we conducted a detailed ablation analysis of the ToM module using RWS Repeated as our
test environment. We evaluated five variants: 1. Vanilla Mind Prompting (VMP): A simplified
version using a single API call for all ToM steps, without hypothesis evaluation or refinement. 2.
Modular Mind Prompting (MMP): Removes hypothesis evaluation and refinement but queries the
LLM separately for each reasoning step (ie. hypothesis generation and planning the next strategy
are separate). 3. Modular Mind Prompting + Hypothesis Evaluation (MMP + HE): This version
introduces hypothesis evaluation in comparison to the previous model. 4. Hypothesis Evaluation
and Refinement w/o Mind Prompting (HE + HR): Focuses only on hypothesis evaluation and
refinement, removing ToM-specific prompting. 5. Full Hypothetical Minds: The complete model
combining MMP + HE with hypothesis refinement.

Results show MMP consistently outperformed VMP (Figure 4, Figure 8). Adding hypothesis eval-
uation (MMP + HE) and refinement (full HM) improved performance, with both variants achieving
positive returns above 10 across all scenarios. The full model showed particular strength against the
challenging best response bot (SC 1). This demonstrates that valuation and refinement may be most
beneficial for complex strategies that are difficult to generate or reason about from scratch.

While GPT-4 could sometimes identify correct hypotheses through reasoning alone, it did so incon-
sistently, highlighting the value of systematic hypothesis evaluation. The HE + HR variant excelled
with adaptive opponents but struggled against fixed strategies, suggesting that explicit theory of
mind modeling is crucial for recognizing static opponent behaviors (Rakoczy, 2022). Additionally,
removing ToM prompting led to verbose, less focused hypotheses (see Figure 9).

Third, we examined key hyperparameters in the ToM module. The ‘top k‘ parameter controlling
how many top hypotheses to evaluate (default=5) trades off computational costs. Performance
improves most dramatically when maintaining any hypotheses beyond just the last generated one
(‘top k = 0‘ is equivalent to the MMP model), particularly for challenging scenarios like scenario 1
(Figure 11, Figure 12). This reflects a categorical difference when the best hypothesis is kept around,
giving the agent some memory of past guesses, while poor hypotheses naturally fall out of the top
‘k‘. Increasing ‘top k‘ beyond 3 shows diminishing returns for RWS Repeated and may become
detrimental past 5. The relationship between ‘top k‘ and computational cost is plotted in Figure 13
and Figure 14. Once top k > 0, most cost variance stems from other factors, and higher costs (> $10
per episode) actually correlate with decreased performance. This occurs primarily because hypoth-
esis validation reduces subsequent LLM calls, leading to both lower costs and better performance.
Tests with Llama3 showed performance is relatively robust to learning rate α (which weights re-
cent predictions) and the validation threshold (Figure 15, Figure 16). While smaller learning rates
performed better, the model achieved above-chance performance across all parameter values tested.
This robustness makes sense: a good hypothesis will eventually be validated across a reasonable
range of these parameters, leading to high rewards for the remainder of the episode.

5 CONCLUSION
We have presented Hypothetical Minds, a model that demonstrates strong performance across di-
verse multi-agent environments through its novel approach to theory of mind modeling and hypothe-
sis evaluation. Our work has several limitations that suggest promising directions for future research.
The current implementation requires human intervention to establish scaffolding and prompting for
the agent. Additionally, knowledge of game rules and mechanics must be explicitly encoded in
the prompts rather than learned from the environment. An important avenue for future research
is developing methods for agents to learn these concepts and appropriate types of scaffolding au-
tonomously from environmental feedback. This could enable more general-purpose agents that can
flexibly adapt to novel multi-agent scenarios without manual configuration.

The success of our approach in structured game environments suggests broader applications to real-
world multi-agent systems where understanding and adapting to people is crucial. Future work
should investigate how the principles of the ToM module demonstrated here could extend to more
complex social interactions such as adaptive tutoring or personalizing chat bot responses to users
with hidden preferences. Such advances would represent important progress toward autonomous
agents that can effectively navigate diverse social tasks.

10

Published as a conference paper at ICLR 2025

AUTHOR CONTRIBUTIONS

L.C. conceptualized and designed the Hypothetical Minds framework, developed the core code-
base, conducted experiments, analyzed results, and wrote the manuscript. V.X. contributed to the
framework design, codebase, and implementation. A.B. assisted with experiments. D.Y. and N.H.
supervised the research, provided guidance on the project direction, and secured funding. All au-
thors reviewed and provided feedback on the manuscript.

ACKNOWLEDGMENTS

We thank members of the Yamins and Haber labs at Stanford University for their valuable feedback
and suggestions throughout the development of this work. This work was supported by the following
awards: To D.L.K.Y.: Simons Foundation grant 543061, National Science Foundation CAREER
grant 1844724, National Science Foundation Grant NCS-FR 2123963, Office of Naval Research
grant S5122, ONR MURI 00010802, ONR MURI S5847, and ONR MURI 1141386 - 493027.

REFERENCES

John P Agapiou, Alexander Sasha Vezhnevets, Edgar A Duéñez-Guzmán, Jayd Matyas, Yiran Mao,
Peter Sunehag, Raphael Köster, Udari Madhushani, Kavya Kopparapu, Ramona Comanescu, et al.
Melting pot 2.0. arXiv preprint arXiv:2211.13746, 2022.

Janet Wilde Astington and Jodie A Baird. Why language matters for theory of mind. Oxford
University Press, 2005.

Chris L Baker, Rebecca Saxe, and Joshua B Tenenbaum. Action understanding as inverse planning.
Cognition, 113(3):329–349, 2009.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023a.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho,
Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. Do as i can, not as i say: Grounding
language in robotic affordances. In Conference on Robot Learning, pp. 287–318. PMLR, 2023b.

Nathaniel D Daw and Philippe N Tobler. Value learning through reinforcement: the basics of
dopamine and reinforcement learning. In Neuroeconomics, pp. 283–298. Elsevier, 2014.

Jill G de Villiers. The interface of language and theory of mind. Lingua, 117(11):1858–1878, 2007.

Jill G de Villiers. The role (s) of language in theory of mind. In The neural basis of mentalizing, pp.
423–448. Springer, 2021.

Kanishk Gandhi, Jan-Philipp Fränken, Tobias Gerstenberg, and Noah Goodman. Understanding
social reasoning in language models with language models. Advances in Neural Information
Processing Systems, 36, 2024.

Noah D Goodman and Michael C Frank. Pragmatic language interpretation as probabilistic infer-
ence. Trends in cognitive sciences, 20(11):818–829, 2016.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint arXiv:2207.05608, 2022.

Dom Huh and Prasant Mohapatra. Representation learning for efficient deep multi-agent reinforce-
ment learning. arXiv preprint arXiv:2406.02890, 2024.

Michal Kosinski. Evaluating large language models in theory of mind tasks. arXiv e-prints, pp.
arXiv–2302, 2023.

Wenhao Li, Dan Qiao, Baoxiang Wang, Xiangfeng Wang, Bo Jin, and Hongyuan Zha. Se-
mantically aligned task decomposition in multi-agent reinforcement learning. arXiv preprint
arXiv:2305.10865, 2023.

11

Published as a conference paper at ICLR 2025

Ryan Liu, Howard Yen, Raja Marjieh, Thomas L Griffiths, and Ranjay Krishna. Improving
interpersonal communication by simulating audiences with language models. arXiv preprint
arXiv:2311.00687, 2023a.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue, Shelby Heinecke, Rithesh Murthy, Yihao Feng,
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit, et al. Bolaa: Benchmarking and orchestrating
llm-augmented autonomous agents. arXiv preprint arXiv:2308.05960, 2023b.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. Advances in neural informa-
tion processing systems, 30, 2017.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings
of the 36th Annual ACM Symposium on User Interface Software and Technology, pp. 1–22, 2023.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar, Valentina Pyatkin, Chandra Bhagavatula, Bailin
Wang, Yoon Kim, Yejin Choi, Nouha Dziri, et al. Phenomenal yet puzzling: Testing in-
ductive reasoning capabilities of language models with hypothesis refinement. arXiv preprint
arXiv:2310.08559, 2023.

Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, SM Ali Eslami, and Matthew
Botvinick. Machine theory of mind. In International conference on machine learning, pp. 4218–
4227. PMLR, 2018.

Hannes Rakoczy. Foundations of theory of mind and its development in early childhood. Nature
Reviews Psychology, 1(4):223–235, 2022.

Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-Chakra, Ian Reid, and Niko Suenderhauf.
Sayplan: Grounding large language models using 3d scene graphs for scalable task planning.
arXiv preprint arXiv:2307.06135, 2023.

Robert A Rescorla. A theory of pavlovian conditioning: Variations in the effectiveness of rein-
forcement and non-reinforcement. Classical conditioning, Current research and theory, 2:64–69,
1972.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Melanie Sclar, Graham Neubig, and Yonatan Bisk. Symmetric machine theory of mind. In Interna-
tional Conference on Machine Learning, pp. 19450–19466. PMLR, 2022.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36:38154–38180, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Theodore R Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L Griffiths. Cognitive archi-
tectures for language agents. arXiv preprint arXiv:2309.02427, 2023.

Alexander Vezhnevets, Yuhuai Wu, Maria Eckstein, Rémi Leblond, and Joel Z Leibo. Options as
responses: Grounding behavioural hierarchies in multi-agent reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 9733–9742. PMLR, 2020.

12

Published as a conference paper at ICLR 2025

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023a.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024.

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah D Goodman.
Hypothesis search: Inductive reasoning with language models. arXiv preprint arXiv:2309.05660,
2023b.

Yuanfei Wang, Fangwei Zhong, Jing Xu, and Yizhou Wang. Tom2c: Target-oriented multi-agent
communication and cooperation with theory of mind. arXiv preprint arXiv:2111.09189, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Annie Wong, Thomas Bäck, Anna V Kononova, and Aske Plaat. Deep multiagent reinforcement
learning: Challenges and directions. Artificial Intelligence Review, 56(6):5023–5056, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611–24624, 2022a.

Xiaopeng Yu, Jiechuan Jiang, Wanpeng Zhang, Haobin Jiang, and Zongqing Lu. Model-based op-
ponent modeling. Advances in Neural Information Processing Systems, 35:28208–28221, 2022b.

Eric Zelikman, Jesse Mu, Noah D Goodman, and Yuhuai Tony Wu. Star: Self-taught reasoner
bootstrapping reasoning with reasoning. 2022.

Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
Zhang, Anji Liu, Song-Chun Zhu, et al. Proagent: Building proactive cooperative ai with large
language models. arXiv preprint arXiv:2308.11339, 2023a.

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B Tenenbaum, Tian-
min Shu, and Chuang Gan. Building cooperative embodied agents modularly with large language
models. arXiv preprint arXiv:2307.02485, 2023b.

Zhuosheng Zhang, Yao Yao, Aston Zhang, Xiangru Tang, Xinbei Ma, Zhiwei He, Yiming Wang,
Mark Gerstein, Rui Wang, Gongshen Liu, et al. Igniting language intelligence: The hitchhiker’s
guide from chain-of-thought reasoning to language agents. arXiv preprint arXiv:2311.11797,
2023c.

13

Published as a conference paper at ICLR 2025

A APPENDIX

Scenario Agent Type
HM (ours) Reflexion ReAct PlanReAct PPO OPRE

Running With
Scissors Repeated

0: Mix of all 3 50.8 ± 8.6 21.0 ± 10.2 -1.0 ± 3.9 5.5 ± 3.6 -2.9 ± 1.8 0.0 ± 0.0
1: Best Response 23.2 ± 4.7 -3.5 ± 3.5 -2.3 ± 4.2 21.1 ± 5.0 0.5 ± 1.6 -0.1 ± 0.0
2: 0 ∪ 1 54.6 ± 4.3 29.3 ± 12.5 17.1 ± 7.2 16.6 ± 6.1 -1.1 ± 2.0 0.0 ± 0.0
3: Flip After 2 40.6 ± 11.1 30.9 ± 5.4 12.8 ± 4.7 13.2 ± 6.4 0.8 ± 0.5 0.0 ± 0.0
4: Flip After 1 48.5 ± 6.3 1.9 ± 4.2 -1.5 ± 6.1 9.0 ± 5.1 -2.4 ± 1.8 0.0 ± 0.0
5: Gullible 12.9 ± 5.1 8.2 ± 3.2 2.5 ± 1.9 7.2 ± 3.4 0.1 ± 0.6 0.1 ± 0.0
6: Rock 50.5 ± 4.4 17.9 ± 9.5 14.3 ± 8.6 15.6 ± 4.3 1.2 ± 2.0 0.2 ± 0.0
7: Paper 59.6 ± 4.0 13.2 ± 6.8 2.7 ± 2.3 13.0 ± 4.4 -0.1 ± 1.0 0.1 ± 0.0
8: Scissors 63.8 ± 5.1 31.0 ± 6.5 29.0 ± 4.3 14.4 ± 3.3 -4.2 ± 1.4 -0.3 ± 0.0

Running With
Scissors Arena

0: Mix of all 3 13.3 ± 6.9 1.1 ± 3.6 3.5 ± 3.2 -8.0 ± 4.1 -0.5 ± 1.5 0.1 ± 0.2
1: Gullible -2.6 ± 3.4 -1.8 ± 2.3 -5.6 ± 4.0 0.9 ± 3.6 -0.4 ± 1.0 -0.6 ± 0.2
2: Rock + Flip After 2 16.2 ± 3.9 -1.7 ± 2.2 -4.4 ± 2.0 2.1 ± 3.2 -1.0 ± 1.1 0.5 ± 0.4
3: Paper + Flip After 2 11.6 ± 4.5 1.6 ± 2.2 -4.2 ± 3.6 0.9 ± 3.6 1.3 ± 1.4 0.3 ± 0.3
4: Scissors + Flip After 2 -2.6 ± 5.7 10.6 ± 2.2 -1.2 ± 3.3 -2.4 ± 3.1 -2.1 ± 1.0 0.2 ± 0.3
5: Rock 21.8 ± 3.0 1.4 ± 2.0 -4.3 ± 3.1 -7.1 ± 2.0 1.7 ± 0.8 0.5 ± 0.4
6: Paper 24.9 ± 2.5 -1.1 ± 1.4 -10.7 ± 2.5 -4.0 ± 3.1 -2.4 ± 1.0 0.4 ± 0.5
7: Scissors 32.1 ± 1.8 11.8 ± 4.5 11.6 ± 2.0 -0.2 ± 2.6 0.9 ± 0.9 0.7 ± 0.3

Collaborative Cooking
Asymmetric

0: Skilled Partner 628.3 ± 35.1 292.6 ± 38.2 225.4 ± 60.0 402.9 ± 70.1 244.0 ± 76.1 21.5 ± 15.0
1: Semi-skilled Partner 498.8 ± 78.2 402.9 ± 65.0 254.2 ± 39.1 455.6 ± 55.7 86.0 ± 28.9 36.6 ± 28.0
2: Unhelpful Partner 426.8 ± 42.5 398.1 ± 33.6 383.7 ± 21.4 292.6 ± 36.7 0.0 ± 0.0 62.0 ± 62.0

Prisoner’s Dilemma in the Matrix
0: 1 ∪ 2 40.6 ± 12.9 44.5 ± 13.2 57.9 ± 13.0 37.0 ± 15.3 20.7 ± 5.7 67.2 ± 1.2
1: Cooperator 78.7 ± 2.4 87.2 ± 1.7 77.3 ± 1.0 78.8 ± 2.2 40.0 ± 5.4 102.5 ± 1.0
2: Defector 21.9 ± 0.5 22.1 ± 0.8 24.0 ± 0.3 22.5 ± 0.5 9.1 ± 2.0 34.5 ± 0.9
3: Grim Reciprocator 31.6 ± 4.7 28.8 ± 0.4 29.2 ± 1.3 25.2 ± 0.4 13.0 ± 1.1 36.3 ± 1.0
4: Grim Reciprocator (2 strikes) 27.8 ± 1.2 29.3 ± 1.7 30.7 ± 1.7 28.0 ± 1.2 16.5 ± 1.4 38.1 ± 1.2
5: Tit-for-tat 52.5 ± 1.1 33.9 ± 0.7 35.8 ± 0.7 42.2 ± 2.1 15.4 ± 2.1 37.4 ± 0.5
6: Noisy tit-for-tat 46.7 ± 2.2 40.3 ± 2.4 41.9 ± 2.7 42.0 ± 1.3 17.3 ± 2.7 47.8 ± 0.6
7: Cooperates then defects 20.9 ± 0.5 25.1 ± 1.0 28.4 ± 0.7 24.9 ± 0.6 8.8 ± 0.9 38.3 ± 0.9
8: Defector that turns tit-for-tat 42.1 ± 1.5 31.0 ± 1.4 30.1 ± 1.4 36.8 ± 0.9 8.1 ± 2.0 38.7 ± 0.6
9: Defector that turns to noisy tit-for-tat 45.3 ± 1.8 34.7 ± 1.7 36.6 ± 1.6 40.6 ± 1.1 15.1 ± 2.5 46.7 ± 0.9

Table 1: Average reward and SEM for different agents across substrates and scenarios. Note that
the variance in scenarios that are a union of two scenarios may be related to which scenarios were
sampled.

Figure 5: Comparing base LLM models. 3 seeds are generated per LLM.

14

Published as a conference paper at ICLR 2025

Figure 6: Example of GPT4-based agent finding a good hypothesis and employing good reasoning
to select its next target inventory.

Validated hypothesis: {'Opponent_strategy': 'My
opponent seems to be adapting to my previous
inventory by playing the counter resource. They
are not sticking to a pure strategy but are
responsive to my last move.', 'value’: 0.79}

Interaction 14

Reward: 0.94

vs.

: 4

: 1

: 1

: 4

: 1

: 3

…… ……

…… … ……

Hypothesis based on Interaction 1-5:
{'Opponent_strategy': My opponent seems to be
adapting to my previous inventory by playing the
counter resource. They are not sticking to a pure
strategy but are responsive to my last move.'}

Interaction 5

Highest-valued hypothesis: {'Opponent_strategy':
'Based on the interaction history, the opponent
appears to be consistently playing a pure
paper/purple strategy, collecting around 3 purple
resources each time.', 'value': 0.36}

Other hypothesis: {'Opponent_strategy': 'My
opponent seems to be adapting to my previous
inventory by playing the counter resource. They
are not sticking to a pure strategy but are
responsive to my last move.', 'value': 0.09}

Reward: -6.4

vs.

: 1

: 5

: 1

: 1

: 1

: 5

Interaction 6

Hypothesis based on Interaction 1-6:
{'Opponent_strategy': 'The opponent primarily
plays a paper/purple strategy, often collecting
around 3 purple resources, but may switch to
rock/yellow if anticipating a scissors/blue
strategy from me.'}

Highest-valued hypothesis: {'Opponent_strategy':
'Based on the interaction history, the opponent
appears to be consistently playing a pure
paper/purple strategy, collecting around 3 purple
resources each time.', 'value': 0.55}

Other hypothesis: {'Opponent_strategy': 'My
opponent seems to be adapting to my previous
inventory by playing the counter resource. They
are not sticking to a pure strategy but are
responsive to my last move.', 'value': 0.13}

Reward: 0.63

vs.

: 2

: 1

: 7

: 1

: 1

: 3

Interaction 13

Hypothesis based on Interaction 1-13: {The
opponent adapts their strategy based on our last
strong move, showing a preference for
paper/purple but switching to rock/yellow to
counter scissors/blue. They are responsive and do
not consistently play a pure strategy.}

Highest-valued hypothesis: {'Opponent_strategy':
'The opponent primarily plays a paper/purple
strategy, often collecting around 3 purple
resources, but may switch to rock/yellow if
anticipating a scissors/blue strategy from me.',
'value': 0.61.}

Other hypothesis: {'Opponent_strategy': 'My
opponent seems to be adapting to my previous
inventory by playing the counter resource. They
are not sticking to a pure strategy but are
responsive to my last move.', 'value': 0.59}

Reward: 0

vs.

: 1

: 1

: 5

: 1

: 1

: 5

Highest-valued hypothesis: {'Opponent_strategy':
'Based on the interaction history, the opponent
appears to be consistently playing a pure
paper/purple strategy, collecting around 3 purple
resources each time.', 'value': 0.09}

Interaction 3

Hypothesis based on Interaction 1-3:
{'Opponent_strategy': 'My opponent seems to be
adapting to my previous inventory by playing the
counter resource. They are not sticking to a pure
strategy but are responsive to my last move.'}

Reward: -3.7

vs.

: 6

: 2

: 1

: 1

: 5

: 1

Figure 7: Example of a successful evolution of a hypothesis for MMP + HE + HR playing a Best
Response bot. It shows the process of how the LLM-based agent generated a good hypothesis about
the opponent’s strategy, which was eventually validated.

15

Published as a conference paper at ICLR 2025

Figure 8: Average reward per episode on all evaluation scenarios for each version of the ToM module
using the full version. Errorbars reflect SEM across 5 episodes. Reward is normalized per 1200
timesteps to reduce variance with variable length episodes.

Example generated strategy for HE + HR playing rock bot

Given the interaction history and the current state of the game, it seems that a
strategy that adapts to the opponent’s recent choices while maintaining an element of
unpredictability could be effective. The opponent’s strategy is not entirely clear
from the interaction history, but there are patterns of losses and wins that can be
used to inform our strategy.

Here’s a high-level strategy for player 0:
1. Observe the opponent’s recent strategy: Look at the last few interactions
to determine if the opponent is favoring a particular resource. If a pattern is
detected, prepare to counter it.
2. Adapt based on interaction history: If we win an interaction, introduce a slight
randomness to our next choice to avoid being predictable. If we lose, counter the
opponent’s last winning resource. In the case of a tie, either maintain the current
resource or switch based on the observed pattern of the opponent.
3. Efficient resource collection: Focus on collecting resources that align with our
strategy while avoiding unnecessary collection of other resources. This will help in
building a strong inventory for the next duel.
4. Strategic duel initiation: Initiate duels when we have a strong inventory that
counters the opponent’s likely choice. Use memory and observation to infer the
opponent’s strategy and position.
5. Avoid unnecessary resource collection: Once we have enough of a particular
resource to play a strong strategy, avoid collecting more of that resource and instead
focus on positioning for a duel or collecting a different resource if our strategy
requires it.
6. Maintain flexibility: Be ready to adapt our strategy based on new information
from the opponent’s actions and the outcomes of interactions.

Now, let’s summarize this strategy in a Python dictionary format:
‘‘‘python
{
’my strategy’: ’Adaptive Strategy with Randomness and Countering’,
’observe recent opponent strategy’: True, ’adapt based on interaction history’:
True, ’introduce randomness post win’: True, ’efficient resource collection’: True,
’strategic duel initiation’: True, ’avoid unnecessary resource collection’: True,
’maintain flexibility’: True, ’interaction guidelines’: { ’if win next’: ’introduce
slight randomness to avoid predictability’, ’if lose next’: ’counter opponent’s last
winning resource’, ’if tie next’: ’maintain or switch based on observed opponent
pattern’
}
} ‘‘‘

Figure 9: Example of a failure mode for HE + HR playing rock bot. Generated strategies make
little sense given the interaction history and requested format.

16

Published as a conference paper at ICLR 2025

Example of a successful embodied exploration at the beginning of an episode

, First subgoals: Subgoal Plan: Since I am currently at (21, 10) with an orientation
facing North and my high-level strategy is to collect 5 yellow resources to play a
pure rock strategy, I need to find and move towards the nearest yellow box locations.
However, there are no observable yellow box locations in my immediate vicinity.
Therefore, my first subgoal is to explore the environment to find yellow boxes. I
should move towards the center of the map where I am more likely to find resources and
encounter the other player for a potential duel.

Given that I am at the edge of the map, I should move left (West) towards the center.
I will move to (20, 10), then to (19, 10), and continue in this direction until I find
yellow boxes or reach a more central location on the map. If I encounter yellow boxes
along the way, I will adjust my path to collect them. Once I have collected 5 yellow
boxes, I will look for the opponent to initiate a duel.
Action Plan:
‘‘‘python
{
action plan: [move to((21, 10), (20, 10)), move to((20, 10), (19, 10)), move to((19,
10), (18, 10)), move to((18, 10), (17, 10)), move to((17, 10), (16, 10))]
} ‘‘‘

Figure 10: Example of a subgoal module exploring the environment at the beginning of an episode
to build up a cognitive map of where resources are located.

B HYPERPARAMETERS AND COMPUTATIONAL COSTS

Hyperparameter Value
Alpha (α) 0.3
Intrinsic reward c 1.0
Threshold for Hypothesis Value (Vthr) 0.7
Top k Hypotheses Considered (k) 5

Table 2: Default Hyperparameters of the Hypothetical Minds model

Figure 11: Average reward per episode on Running With Scissors Repeated (all scenarios) for four
values of top k. Top k reflects the number of top hypotheses to continue evaluating (default=5).
Errorbars reflect SEM across 45 episodes. Reward is normalized per 1200 timesteps to reduce
variance with variable length episodes.

17

Published as a conference paper at ICLR 2025

Figure 12: Average reward per scenario on Running With Scissors Repeated for four values of
top k. Top k reflects the number of top hypotheses to continue evaluating (default=5). Errorbars
reflect SEM across 5 episodes per scenario. Reward is normalized per 1200 timesteps to reduce
variance with variable length episodes.

Figure 13: Scatter plot showing the relationship between computational cost and reward for different
top-k parameter values in the hypothesis generation process. Each point represents an episode, with
color indicating the top-k value used. Reward and cost is normalized per 1200 timesteps to reduce
variance with variable length episodes.

18

Published as a conference paper at ICLR 2025

Figure 14: Comparison of computational costs across different top-k values in three metrics. Left:
Total monetary cost in dollars. Middle: Number of input tokens consumed. Right: Number of output
tokens generated. All metrics are normalized per episode length (1200 steps). Errorbars reflect SEM
across 45 episodes.

Figure 15: Average reward per episode on Running With Scissors Repeated (all scenarios) for each
four values of the learning rate alpha α. Alpha reflects how much to weigh recent interactions when
evaluating the prediction accuracy of the hypotheses, with higher values weighing recent interactions
more heavily (default=0.3). Errorbars reflect SEM across 10 episodes in two representative scenar-
ios. Reward is normalized per 1200 timesteps to reduce variance with variable length episodes.

19

Published as a conference paper at ICLR 2025

Figure 16: Average reward per episode on Running With Scissors Repeated (all scenarios) for each
five values of the value threshold for hypothesis validation. V thr reflects how confident we want to
be before validating a hypothesis as correct such that we do not generate or evaluate more hypotheses
until that value falls under the threshold (default=0.7). Errorbars reflect SEM across 10 episodes in
two representative scenarios. Reward is normalized per 1200 timesteps to reduce variance with
variable length episodes.

Hyperparameter Value
Alpha (α) 0.3
Counterfactual reward c 3.0
Threshold for Hypothesis Value (Vthr) 3.0
Top k Hypotheses Considered (k) 5

Table 3: Hyperparameters of the HE + HR model

Hyperparameter GPT-4 GPT-3.5 Llama3
Model ”gpt-4-1106-preview” ”gpt-3.5-turbo-1106” ”Meta-Llama-3-70B-Instruct”
Max tokens 4000 2000 2000
Temperature 0.1 0.2 0.2
Top p 1.0 1.0 1.0
n 1 1 10

Table 4: Hyperparameters of Various Models

B.1 EXPERIMENTS COMPUTE RESOURCES

In Table 5, we show the cost of running an episode with 1000 steps. For Llama3 experiments which
required 4 GPUs, we ran our experiments on three compute nodes with A40s or L40s.

Money ($) Time (mins)
HM-GPT4 10 45
Reflexion 8 42

ReAct 6 14
PlanReAct 4 21

HM-GPT3.5 1 24
HM-Llama3 - 58

Table 5: Experiment costs for a single episode of RWS Repeated. Rounded to nearest integer.

20

Published as a conference paper at ICLR 2025

C ENVIRONMENTS

C.1 RUNNING WITH SCISSORS REPEATED

Specifically, here we evaluate our model on the Running With Scissors in the matrix: Repeated
environment (RWS) in the Melting Pot multi-agent decision-making benchmark (Agapiou et al.,
2022). This is a zero-sum competitive environment with two players moving around a map and
collecting yellow, purple, or blue resources that correspond to rock, paper, and scissors respectively.
In addition to movement, the agents have an action to fire an ”interaction” beam which initiates a
duel with the other player when that player is within range of the beam. An interaction results in one
agent getting positive reward and the other agent getting an opposite negative reward according to
the inventories of resources picked up by each player. Specifically a player will collect an inventory,
which is only observable by that player:

ρ = (ρyellow, ρpurple, ρblue).

Reward is determined by matrix multiplication operations mirroring the rock, paper, scissors matrix
game:

rrow = vT
rowArowvcol, rcol = −rrow

where vi =
ρi∑K

j=1 ρj
and

Arow =

[
0 −10 +10

+10 0 −10
−10 +10 0

]
.

The partially-observable input in Melting Pot consists of a 5x5 window around the agent such that
it can see three grids in front of itself and one behind it, and two on each side.

C.1.1 SCENARIOS

Description of scenarios for each substrate are reproduced directly from (Agapiou et al., 2022):

SC0: Versus mixed strategy opponent. Here the focal agent must defeat an opponent that was
trained to play a pure strategy: either rock, paper, or scissors. However, the specific oppo-
nent is sampled at test time so it could be any of those. All opponents commit strongly to
their choice, aiming to collect at least three resources before interacting. To defeat them,
the focal agent should scout out which pure strategy its opponent is playing and then collect
the resources to implement its counter strategy. Since this is a one-shot interaction, success
requires the focal agent to pay close attention to which resources are missing since they
provide a clue to which strategy their opponent is implementing.

SC1: Versus opponent who plays the best response to what the focal player did in the last round.
Here the focal agent must defeat an opponent who may change their strategy with each
interaction. The opponent will always select the best response to what the focal player
selected in the previous interaction. For instance, if the focal player plays rock in one in-
teraction then its opponent will play paper in the next interaction. On the first interaction
of each episode it chooses one of the three pure strategies at random. The opponent always
commits strongly to its choice, aiming to collect at least five resources before interacting.
To win the focal player can trick its opponent into choosing a specific strategy and counter-
ing it. This requires changing strategy from interaction to interaction, cycling around the
three options.

SC2: Versus opponent who sometimes plays a pure strategy but sometimes plays the best response
to what the focal player did in the last round. Focal player must defeat an opponent sampled
from the union of the background populations used in SC 0 and SC 1. The probability of
sampling a pure opponent is 3/4 while the probability of sampling a best response opponent
is 1/4.

SC3: Versus mixture of opponents who often flip to other strategies after two interactions. Focal
player must defeat an opponent that may initially play any pure strategy and, with proba-
bility 1/3, may flip after the second interaction to the best response to the best response to

21

Published as a conference paper at ICLR 2025

its initial strategy. For example if it starts out playing rock then the best response to that
would be paper, so after the second interaction it would switch to playing the best response
to paper i.e. scissors. It only weakly commits to its strategy for the first two interactions.
That is, it aims to collect only one resource before interacting. After two interactions, at
the point when it changes strategy, it also starts committing more strongly to its choice,
aiming to collect five resources before each interaction. With probability 2/3, the opponent
instead plays a pure strategy throughout the entire episode. In half of the pure opponent
episodes the bot fully commits to its pure strategy, aiming to collect five resources before
interacting, while the other half of the time it commits less strongly, aiming to collect only
one resource before interacting. Note that opponents may be weakly committed to their
strategy for the first two interactions regardless of whether they will ultimately flip strategy
or not so it’s not possible for the focal agent to observe weak commitment early on as a cue
to predict whether or not their opponent will later flip strategies.

SC4: Versus mixture of opponents who either flip to another strategy after one interaction and
keep it forever or continue to change, always best responding to what the focal player
just did. Two kinds of opponents are possible. Both change their strategy after the first
interaction. With probability 3/4 the opponent will be a bot that flips to a different strategy
after the first interaction and then follows it till the end of the episode. It always flips to
the best response to the best response to its initial strategy (so if it initially plays rock then
it will flip to scissors). With probability 1/4 the other kind of opponent is sampled. This
opponent is identical to the one in SC 1. Both kinds of opponents always fully commit to
their choice, aiming to collect at least five resources before interacting so its not possible to
observe the opponent’s commitment level to predict which kind they are. To win the focal
player must figure out which kind of opponent it is playing against and either best respond
by selecting the same choice in all interactions after the first if paired with the first kind of
opponent, or apply the cyclic strategy described as the solution to SC 1 if paired with the
second kind of opponent.

SC5: Versus gullible opponent. Here the focal agent must defeat an opposing agent that was
trained to best respond to agents playing pure strategies. The opponent should attempt to
scout out what strategy the focal agent is playing so it can pick the appropriate counter. To
defeat it, the focal agent should feint toward one resource and then collect the counter to
its counter. So for example, if the focal agent successfully feinted that it would pick rock,
inducing its opponent to pick paper, the focal agent should then collect and play scissors.
This opponent is fairly weak.

SC6: Versus pure rock opponent. Opponent always plays rock, and commits to it strongly, aiming
to collect five resources before interacting. The focal player gets a high score when it picks
paper and commits strongly to that choice.

SC7: Versus pure paper opponent. Same as SC 6 but opponent plays paper so focal player should
play scissors.

SC8: Versus pure scissors opponent. Same as SC 6 but opponent plays scissors so focal player
should play rock.”

It should be noted that scenario 5 includes a gullible opponent, that attempts to scout out what
strategy you are playing and pick the appropriate counter. From first principles, to beat this oppo-
nent an agent should feint towards one resource to fool the opponent and then select the counter
to its counter. Since our ToM module selects strategies on a higher-level of abstraction than the
embodiment, it was not specifically designed to beat this opponent. Integrating high-level strat-
egy information with relevant embodied information is the subject of future research. However, in
practice the gullible bot does not effectively scout out our agent, and it frequently plays the same
strategy, which is exploited by our agent, leading to positive rewards on this scenario on average for
all model versions.

C.2 RUNNING WITH SCISSORS ARENA

We also evaluate our model on Running With Scissors in the matrix: Arena environment in the Melt-
ing Pot multi-agent decision-making benchmark (Agapiou et al., 2022). This environment has the
same dynamics as Running With Scissors in the matrix: Repeated with the main exception being that

22

Published as a conference paper at ICLR 2025

their are 8 players in this substrate playing on a larger 25 by 24 matrix with a 11 by 11 observability
window, skewed towards viewing more in front of the agent. All scenarios under this agent rep-
resent one focal resident (agent) playing against 7 others with varying fixed and dynamic policies,
attempting to maximize reward decided by the payoff matrix equivalent to the one in Running with
Scissors Repeated.

C.2.1 SCENARIOS

SC0: Versus a background population containing bots implementing all three pure strategies.
Here one focal player joins seven from the background population. The background pop-
ulation contains bots who implement all three pure strategies: rock, paper, and scissors.
They may either commit to their strategy moderately (aiming to collect three resources be-
fore interacting) or more strongly (aiming to collect five). The task for the focal agent is to
watch its opponents, see what strategy one of them is implementing, and act accordingly.

SC1: Versus gullible bots. Here one focal player joins seven from the background population.
The background population consists entirely of weak bots who were trained to best respond
to agents playing pure strategies. They are weak opponents.

SC2: Versus mixture of opponents who play rock and some who flip to scissors after two interac-
tions Here one focal player joins seven from the background population. The focal player
should pay attention to what each prospective partner has collected since 2/3 of them play
rock while 1/3 play scissors after the first two interactions. Choosing paper to best respond
to rock is a bad choice if accidentally paired with an opponent playing scissors.

SC3: Versus mixture of opponents who play paper and some who flip to rock after two interac-
tions. Like SC2 but with bots playing paper and bots switching from paper to rock.

SC4: Versus mixture of opponents who play scissors and some who flip to paper after two in-
teractions. Like SC 2 but with bots playing scissors and bots switching from scissors to
paper.

SC5: Visiting a population of pure paper bots. Here one focal player joins seven from the back-
ground population. All seven background bots play paper so the focal player can get a high
score by playing scissors.

SC6: Visiting a population of pure rock bots Here one focal player joins seven from the back-
ground population. All seven background bots play rock so the focal player can get a high
score by playing paper.

SC7: Visiting a population of pure scissors bots. Here one focal player joins seven from the
background population. All seven background bots play scissors so the focal player can
get a high score by playing rock.

C.3 PRISONERS DILEMMA REPEATED

The Prisoners Dilemma in the Matrix Repeated environment is a mixed-motive one where two indi-
viduals collect resources that represent ‘defect’ (red) or ‘cooperate’ (green) and compare inventories
in an encounter, analogous to the Running With Scissors substrates. Consequences of the inventory
comparison are congruent with the classic Prisoner’s Dilemma matrix game, exposing tension be-
tween reward for the group and reward for the individual. Reward is delivered after an interaction
weighted by the proportion of items in each agent’s inventory, as described above for Running With
Scissors. The payoff matrix for the interaction is

Arow = AT
col =

[
3 0
5 1

]
C.3.1 SCENARIOS

SC0: Partner may play either cooperate or defect The optimal strategy is simply to uncondi-
tionally defect. However, given that the focal doesn’t know the strategy of the background
player, a good strategy is more subtle. A reasonable strategy is to be a grim reciprocator
cooperator, which would cooperate with the cooperator, and defect to the defector. Alterna-
tively the focal player might try to ascertain whether the background player is exploitable.

23

Published as a conference paper at ICLR 2025

Doing so, however, carries a risk, for if the background player were to be a Grim recipro-
cator (like in other scenarios), this would cause them to defect for the rest of the episode.

SC1: Partner typically plays cooperate. The optimal strategy is simply to unconditionally de-
fect. The same considerations about uncertainty of the background player’s strategy from
Scenario 0 apply here.

SC2: Partner typically plays defect The optimal strategy is simply to unconditionally defect.
However, because the focal player doesn’t a priori know the strategy of the background
player, they must first try to find out their strategy. This can be done by looking at which
resources they collect or by paying attention to the results of the first few interactions. Once
the focal has identified its background partner is defecting then it may have confidence that
it should defect as well. The focal player should also consider the possibility that the
background bot is corrigible, i.e. that it could be persuade to switch from defection to
cooperation. This is not the case here but the background populations used in SC 8 and SC
are corrigible.

SC3: Partner is a hair-trigger grim reciprocator, i.e. one who initially cooperates but, if defected
on once, will retaliate by defecting forever after. The optimal strategy is simply to coop-
erate. Grim reciprocator background players are non-exploitable, and there is no way to
know how they will react to a defection ahead of time. Because of this uncertainty, testing
for exploitability can lead to poor performance of the focal player. Conditional cooperators
who cooperate first but retaliate if defected on should achieve a high score.

SC4: Partner is a two-strikes grim reciprocator, i.e. one who initially cooperates, but if defected
on twice, will retaliate by defecting forever after The optimal strategy is simply to coop-
erate. Grim reciprocator background players are non-exploitable, and there is no way to
know how they will react to a defection ahead of time. Because of this uncertainty, testing
for exploitability can lead to poor performance of the focal player. In principle, it would
be possible to defect once against the background player leading to higher reward. But
since it is not possible to know the background player is a two-strikes grim reciprocator,
and testing it against a hairtrigger grim reciprocator leads to defection, in practice is better
simply to cooperate. Conditional cooperators who cooperate first but retaliate if defected
on should achieve a high score.

SC5: Partner is a tit-for-tat conditional cooperator The optimal strategy is simply to cooper-
ate. Defecting against a tit-for-tat agent, even occasionally, might lead to miscoordinated
interactions where one player cooperates and the other defects, in an alternating way. For-
giveness is one way to break out of such cycles of recrimination. Conditional cooperators
who cooperate first but retaliate if defected on should also be forgiving to ensure they do
well in this scenario.

SC6: Partner is a tit-for-tat conditional cooperator who occasionally plays defect instead of
cooperate. Like the previous scenario, except the tit-for-tat background player occasionally
will defect instead of cooperate. This is known as trembling hand in game theory. A strict
tit-for-tat focal player would occasionally fall into miscoordinated interactions with the
background player resulting in alternating cooperation and defection. As in SC5, focal
conditional cooperators must also be forgiving to ensure they do well in this scenario.
Forgiveness is even more important here since the background player will defect relatively
frequently itself but will still implement tit-for-tat retaliation when defected on itself.

SC7: Partner plays cooperate for a while then switches to defect Similar considerations to the
previous scenarios. A good strategy is a grim reciprocator, or tit-for-tat for the focal player.
Unconditional cooperation would be exploited by the background player.

SC8: Partner tries to take advantage of the focal player by playing defect, but if punished, part-
ner then switches to tit-for-tat conditional cooperation Related to Scenario 2, the optimal
strategy is for the focal player to persuade the background player to stop defecting by pun-
ishing it through defecting itself. Once persuaded, the background player implements a
conditional cooperation (tit-fortat) strategy. So it is safe to start cooperating with them
once you have verified that they are themselves consistently cooperating.

SC9: Partner tries to take advantage of the focal player by playing defect, but if punished, partner
then switches to noisy tit-for-tat conditional cooperation Like the previous scenario, except

24

Published as a conference paper at ICLR 2025

the focal player must implement a more generous form of conditional cooperation after
persuading the background player to switch from defection.

C.4 COLLABORATIVE COOKING ASYMMETRIC

In the Collaborative Cooking Asymmetric substrate, players need to collaborate to follow recipes.
The environment described in (Agapiou et al., 2022) follows the regular pseudoreward scheme,
which is turned off by default. The asymmetric environment is a version of the Collaborative Cook-
ing with an asymmetric advantages map. This is to test whether players can choose high-level
strategies that play to their strengths.

C.4.1 SCENARIOS

SC0: Collaborate with a skilled chef Here the background player implements a particular policy
that can be very effective when its partner does its part. The two players are on two distinct
and disconnected sides of the map. On one side the goal delivery location is close to
cooking pots and the tomato dispenser is far away whereas on the other side the the goal
delivery location is far from the cooking pots but the tomato dispenser is close. The players
should collaborate, each specializing in the part of the task that it is most efficient for them
to do on the side of the map where they spawned. The background player implements
this kind of policy, which depends on the actions of its partner to complete the task. The
background player was trained with the V-MPO algorithm.

SC1: Collaborate with a semi-skilled apprentice chef This scenario is similar to SC 0 but the
background player is not as well trained. In fact the background population used here is
the same as in SC0 but from an earlier point in training. The importance of evaluating
cooperation with bots of varying skill levels, and different points in training.

SC2: Succeed despite an unhelpful partner In this scenario the background player never moves
or helps in any way. On this map it is less efficient to implement all steps of the recipe alone
versus to work together with a partner. But it is still possible for either player to perform
all the steps on their own. The task is to realize that the background player won’t do their
part of the joint policy so the focal agent had better do everything itself.

D METHODS

D.1 TEXTUAL MAP

Pixel images of the global state are preprocessed into a text-based state representation. The images
are divided into 8x8 patches, each corresponding to a cell within the Melting Pot grid that entities
can occupy. Each patch may represent one of four types: an agent, a resource, a wall, or a blank
space. The patches are labeled by comparing them to manually labeled reference patches of each
type of entity, including the numerous possible body orientations and hat colors an agent can em-
body in each environment. Automating the process with computer vision is a candidate for future
work. The global state can then be fully represented in text by coordinates in a Height x Width grid
and the entity label at each coordinate. Egocentric states are then created from this according to
the partially-observable 5x5 box around an agent (dependent on its orientation). We tried several
representations of feeding this textual map to GPT, and in practice the best representation consists
of printing each entity type with a list of all the coordinates where that entity type is present. For ex-
ample “Player Position: {’player 0-S’: [(21, 4)]}, Observable Yellow Box Locations: [(13, 10), (14,
11)]}, Observable Blue Box Locations: [], Observable Purple Box Locations: [(13, 11), (15, 11)]“
encodes the player position and orientation (south) along with the observable box locations. The
player’s current inventory is also included in the textual state representation, as it is in the default
state representation for Running With Scissors and Prisoner’s Dilemma.

D.2 MEMORY

The memory system consists of two parts. The first data structure appends the observed states in
the previous step to lists of each entity type in a tuple with the step it was observed. For example:
‘yellow box’: [((13, 3), ‘Step: 1087’), ((13, 4), ‘Step: 1087’), ((7, 3), ‘Step: 1091’)]. The LLM is

25

Published as a conference paper at ICLR 2025

prompted that its memory can be outdated and therefore should take the step it was last observed
into account.

The second data structure in the memory system contains a list of the agent’s inventories and rewards
from the interactions that occurred so far. This specific information, distinct from the previously
observed states, is relayed to the ToM module.

D.3 THEORY OF MIND MODULE

The Theory of Mind Module is queried periodically after discrete events. For the * in the Matrix
substrates, this occurred after an interaction. For collaborative cooking, this occurred after a dish
was delivered.

The ToM module consisted of a multi-step process, as depicted in Figure 1 for the * in the Matrix
substrates:

1. Record the observed behavior from the other agent’s trajectory ϕ(τ). Here this refers
to whether they played rock, paper, or scissors, the argmax of the inventory (or cooper-
ate/defect in Prisoner’s Dilemma). Since the opponent’s inventory is never observed, we
have to estimate it given the inventory Hypothetical Minds played and the reward it re-
ceived. Thus, we ask the LLM to estimate the opponent’s inventory given this information,
and note the output as the empirical opponent’s inventory.

2. Evaluate Hypotheses about opponent’s strategy. In the previous interaction, the top
k hypotheses are used to generate predictions about the opponent’s next inventory ˆϕ(τ).
These argmax of the inventory predictions are compared to the argmax of the empirical
opponent’s inventory (did they play rock, paper, or scissors). As described in the main
text, Hypotheses that led to correct predictions get a positive intrinsic reward and negative
otherwise. If a hypothesis is validated, meeting Vthr, then step 3 is skipped and this hypoth-
esis is used for step 4 until the hypothesis falls below the threshold (meaning its not longer
making good predictions)

3. Generate new and refine old hypotheses. The LLM is tasked with generating a hypoth-
esis about the other agent’s strategy given the entire interaction history (see prompt below
for more details). The prompt also includes the top k hypotheses generated so far if the
hypotheses have a value above 0 (meaning at least one correct prediction) such that the
LLM can refine previously generated hypotheses.

4. Guess opponent’s next goal. The LLM is prompted to guess the opponent’s next inventory
given a hypothesis and the interaction history. If no hypothesis has yet surpassed Vthr, then
guesses are made for the top k hypotheses and the last generated hypothesis. The prediction
from the last generated hypothesis would be used to select a counter inventory in the next
step. Moreover, all the predictions will be used for step 2 (hypothesis evaluation) after the
next interaction. If a hypothesis crosses Vthr, then only it will be used in this step.

5. Select goal to counter opponent. The LLM is prompted to select a counter inventory
given the prediction about the opponent’s next inventory. Since this step involves straight-
forward reasoning given the opponent’s predicted inventory, it is done simultaneously in the
API/LLM call with the previous step. Therefore, the LLM is specifically tasked with out-
putting both the predicted opponent’s next inventory ˆϕ(τ) and its own goal/target inventory
z in a single API/LLM call.

In RWS Arena, step 4 is done separately than step 5. The LLM is first prompted to guess the next
inventory for the opponent they just played. Then in a subsequent step, it is asked again to select
which opponents to seek out, and to guess what inventory they will play (this could be a different
opponent than the one interacted with in the last round). Therefore, the ToM module can evaluate the
hypotheses for each opponent based on the quality of the predictions they make for that particular
opponent, and this process is separable from selecting the target inventory in the next interaction
(see prompts).

A similar process occurs for Collaborative Cooking Asymmetric. Step 1 is hardcoded and not LLM
dependent; the other agent’s actions/behavior ϕ(τ) are labeled by custom code given the observa-
tions (abstracting away the problem of action recognition from textual observations). These actions

26

Published as a conference paper at ICLR 2025

include ”Teammate picked up a dish”, ”Teammate put down a dish”, ”Teammate picked up cooked
soup in dish”, ”Teammate delivered cooked soup”, ”Teammate picked up a tomato”, or nothing. In
step 4, the LLM is prompted to guess the teammate’s next behavior ˆϕ(τ) in natural language. An-
other LLM instance is used in step 2 to assess whether the prediction was correct or not, prompting
the LLM to output True or False, and giving each hypothesis the appropriate intrinsic reward. Step
5 is completed in a separate API call for Collaborative Cooking, and the LLM is prompted: ”what
strategy do you want to take next and why? Teammate’s observed strategy: ”. Think step by step
about how to adapt to their behavior and maximize all resources and efficiency accordingly.”

D.4 SUBGOAL MODULE

The subgoal module is responsible for generating efficient subgoal plans for the agent. Given the
high-level strategy and the current state of the game, the module decomposes the strategy into a
sequence of subgoals in the form of action function calls to efficiently implement the strategy. The
subgoal module uses the LLM to generate these plans as a sequence of action function calls (usually
3-6). The prompt includes the current step of the game, the high-level strategy/target inventory pre-
viously decided upon, details about the current observations (including player position, orientation,
inventory, observable resource locations, other agent locations), valid movement locations, memory,
and instructions about the action functions.

Action functions for the * in the Matrix substrates:

• move to(src coord, target coord): Efficiently move agent from source coordinate to target
coordinate.

• fire at(target coord): Stay around specified coordinate and fire interaction when opponent
is spotted to initiate duel.

Action functions for Collaborative Cooking Asymmetric:

• move to(src coord, target coord): Efficiently move agent from source coordinate to target
coordinate. Only move to valid move to locations where counters or objects are not present.

• interact(target coord): Move to and interact with the entity at the target coordinate, such as
picking up ingredients or delivering dishes of cooked soup. To place an object on a counter
to free your hands, use interact(counter coord).

• wait(target coord): Wait for the pot at target coord to finish cooking. Check the progress
of the pots and only use valid locations where pots are present.

D.5 ACTION PLANNER

The action planner turns the sequence of subgoals specified by the subgoal module into a se-
quence of atomic actions compatible with the Melting Pot environment. These actions include
step forward, backward, left, or right, turn left or right, fire zapping beam, and noop. For the
move to(source coordinate, target coordinate) function, the A* algorithm find
the most efficient path given a set of obstacles. Walls are always considered obstacles, and other
resources are conditionally added as obstacles. If a path can be found without picking up another
resource, the action planner will return it. However, in many cases the language model picks a target
coordinate where other resources cannot be avoided. The action planner will use a priority system
in this case, privileging paths where only resources of the same type as the target coordinate will be
picked up. The fire at function returns a sequence of actions to turn towards the opponent and
zap them when the agent is within the extent of the zapping beam’s range. If the opponent is not in
view, then the fire at function turns the agent continually clockwise until the other agent is found.

D.6 SELF-REFLECTION - COLLABORATIVE COOKING

For Collaborative Cooking Asymmetric, an evaluator and self-reflection mechanism was added as in
the Reflexion baseline (Shinn et al., 2024). This was added such that if the agent was making action
plans that did not change the state of the world, for example trying to pick up a tomato while holding
a dish, these action plans were not repeated with the same state information. By first reflecting on

27

Published as a conference paper at ICLR 2025

whether the previous action plan was successful, the agent was able to make less mistakes over the
course of the episode. This additional cognitive module for self-reflection could in principle also be
added for the other substrates, but was not necessary for good performance on the * in the matrix
games because the state transitions were simpler for LLMs to understand.

E BASELINES

E.1 REACT

The ReAct (Yao et al., 2023) agent combines reasoning traces with task-specific actions in an inter-
leaved manner. This approach allows the agent to generate both reasoning steps and actions within
the same language model framework. In our context, the reasoning consists of chain of thought
reasoning preceding a subgoal plan in the specified format of utilizing action functions. The agent
is prompted to think about the other agents’ strategies and come up with a subgoal plan accordingly.
Thus, ReAct is functionally an ablation of Hypothetical Minds such that there is only a subgoal
module and not a theory of mind module. Three example responses are shown as few-shot prompts,
consistent with the ReAct framework.

E.2 REFLEXION

Reflexion adds evaluation and self-reflection to the ReAct agent backbone serving as the Actor
module. After a subgoal plan is completed, the LLM is queried to evaluate the outcomes of that
plan. Outcomes are represented as the reward during the plan, and salient state information pre
and post plan. This state information includes the position and the inventory of the agent for the *
in the matrix games. For Collaborative Cooking Asymmetric, the given state information included
position, what the agent is holding, and the state of the two pots.

E.3 PLANREACT

We include the PlanReAct architecture introduced in (Liu et al., 2023b) as a hierarchical baseline.
This model first generates a high-level plan in language and then feeds this plan to a subgoal module
that outputs a subgoal plan based on the high-level plan. Thus, the only difference between PlanRe-
Act and Hypothetical Minds is that high-level planning is mediated by the multiple processing steps
of the theory of mind module, including hypothesis generation, evaluation, and refinement.

E.4 PPO

We train RL agents in a population of PPO agents (Schulman et al., 2017) on each substrate. The
weights are randomly initialized for each agent in the population and weights are not shared. There-
fore the agents are not playing against identical copies of themselves and see a greater diversity
during training than traditional self-play. Models were trained in PyTorch using the Ray Rllib
pipeline and this starter code https://github.com/rstrivedi/Melting-Pot-Contest-2023. Optimal pa-
rameters were searched over and the final models were trained for 1e8 steps.

E.5 OPRE

We include the Options as REsponses model (OPRE) introduced in the first version of the Running
With Scissors environment (Vezhnevets et al., 2020). OPRE is a hierarchical MARL method where
agents learn high-level options as strategic responses to other agents’ behaviors. The high-level
controller selects options based on observations of other agents, and the low-level controller executes
actions conditioned on these options. As this was included as a baseline in the Melting Pot 2.0 paper,
we reuse the results reported in that paper (Agapiou et al., 2022).

F ABLATION DETAILS

The Hypothesis Evaluation + Hypothesis Refinement model had a different evaluation procedure
than the other models. Rather than computing values based on predicting the opponent’s inventory,

28

Published as a conference paper at ICLR 2025

here we use extrinsic reward and counterfactual reward. If a hypothesis is used online for goal
selection, then the rewards received in the next interaction can be directly used for evaluating it. For
the other considered hypotheses, we simulate counterfactual reward by 1. asking GPT to generate a
target inventory given the hypothesis/strategy and the given situation and 2. after the next interaction
we ask GPT again to reason about what the reward would have been if it played the inventory from
1. GPT is asked to output, positive, negative, or neutral, which we convert to reward with the c
parameter.

G PROMPTS

All prompts can be seen in our code. The most representative prompts are also reproduced below.

29

Published as a conference paper at ICLR 2025

G.1 RUNNING WITH SCISSORS: ARENA PROMPTS

RWS Arena System Message

You are Agent 0 in the eight player ’running with scissors’ Melting Pot
multiagent reinforcement learning environment that is a 25x24 (x by y) grid
with resources to collect and walls to navigate around. 8 Players can move
around the map and collect resources of 3 discrete types corresponding to
rock, paper, and scissors strategies - Yellow box = rock - Purple box =
paper - Blue box = scissors. Rock/yellow beats scissors/blue, paper/purple
beats rock/yellow, and scissors/blue beats paper/purple.
In addition to movement, the agents have an action to fire an "interaction"
beam which initiates a duel with one player getting positive reward and
the other agent getting an opposite negative reward according to their
inventories.
All players carry an inventory with the count of resources picked up since
last respawn and for each respawn start with an inventory of 1 resource
each. This inventory is visible in the state with the key ’inventory’.
To play a pure strategy strongly, pick up at least 5 resources or more of
the color and then fire the interaction beam at another player. To commit
less strongly to a strategy, pick up around 3 resources of the color and
then fire the interaction beam at another player.
Usually you will only want to pick up one type of resource before an
interaction, in order to gain the most information about the other players’
strategies and to not waste time collecting other resources.
You also want to maximize the number of interactions so after you pick up
4-6 resources, you should seek out a duel to reset your inventory and gain
more information about the other players’ strategies.
Your opponents will also almost always only pick up one type of resource
before an interaction.
For example, player0 inventory = [7, 1, 1] (Yellow, Purple, Blue) is a good
inventory that will lead to an informative duel, whereas player0 inventory =
[2, 2, 2] (Yellow, Purple, Blue) will not be informative.
Your reward is the result of a matrix multiplication involving your
inventory in a vector format, and your opponent’s inventory vector, and a
payoff matrix similar to rock paper scissors.
r t = transpose(your inventory) * A payoff * opponent inventory where A payoff
= np.array([[0, -10, 10], [10, 0, -10], [-10, 10, 0]])
The reward usually ranges from (5, -5) depending on the inventories of both
players (the min is -10 and max 10, but it is rare to get these magnitudes).
Typically +/- 3-5 is a high magnitude, and a reward near 0 suggests both
players played a similar inventory.
State Description: This environment is partially-observable, you can
observe an 11x11 grid around your agent depending on your position and
orientation (you can see more in front of you than behind).
Previously seen states will be represented in memory, but note that these
states could potentially be outdated. For example, the other agent could
collect a resource that you previously saw.
Given the partially-observable nature of the environment, you will need
to explore the environment appropriately and select goals based on the
information you’ve gathered.
Also pay attention to your opponents’ positions when you see them in order
to duel with them and gain information about their strategy.
To find a specific player, you can first move towards the last known
location of the player and then move randomly around the map.
Hanging around the center of the map and waiting for a player to come to you
is not a good strategy for this environment.
After you gather information about your opponents’ strategies, seek
out opponents whose strategy you know and can exploit and play a
counter-strategy.

30

Published as a conference paper at ICLR 2025

G.1.1 HYPOTHETICAL MINDS

Subgoal Module Message

Current State Description:
- Global Map Size: {map size} grid (Walls are located at the boundaries of
the map and in other places that are invalid for move to).
- Valid Locations for move to: {movable locations}
- Player Position: {player position}
- Player Orientation: {player orientation}
- Player Inventory (yellow, purple, blue): {player inventory}
- Egocentric Observations Size: 11x11 grid around your agent. You
currently can observe the following based on your position and orientation:
- Observable Yellow Box Locations (format: ((x,y), distance from current
location)): {yellow locations with distance}
- Observable Blue Box Locations: {blue locations with distance}
- Observable Purple Box Locations: {purple locations with distance}
- Observable Opponent Locations: {opponent locations}
- Previously seen states from memory (format: ((x,y), step last observed,
distance from current location)): {self.memory states}
Execution Outcomes:
{execution outcomes}
Error for extracting and executing actions from the response:
{get action from response errors}
Rewards:
{rewards str}
Strategy Request:
You are at step {step} of the game.
You have decided to execute a high-level strategy/target inventory in a
previous response given what you predicted your opponent will do.
Select subgoals in order to achieve the strategy, including first achieving
a target my next inventory: {self.hls next inventories}.
Once you achieve the target inventory, STOP picking up resources and
immediately seek out a duel with an opponent close to you that you can
exploit based on your hypothesis about their strategy and your current
inventory.
So once you’ve picked up about 5-7 resources in total, seek out a duel
to receive rewards, get more information about strategies, and reset your
inventory.
Here are your hypotheses about each player’s strategy:
{self.opponent hypotheses}
If you’ve generated a hypothesis about a player’s strategy, you can use this
to inform your strategy about whether to interact with them or not.
Each strategy is paired with a value on how well it explains the data
observed so far, starting at 0.
A hypothesis is validated when its value is greater than:
{self.good hypothesis thr}.
Your task is to devise efficient action plans for player {self.agent id},
reason through what the next subgoals should be given the state information.
Your response should be broken up into two parts:
1. Subgoal Plan - based on the current state and the high-level strategy
you previously specified above, decompose this strategy into a sequence of
subgoals and actions to efficiently implement this strategy. Think step by
step about this. This could be fairly long.
2. Action Plan - output this sequence of actions in the following Python
dictionary format, parsable by ast.literal eval() starting with:

{{ ’action_plan’: [’move_to((11, 7), (9, 5))’, ’move_to((9, 5), (13, 5))’] }}

Example response 1, 2, and 3 are formatted similarly, detailing other
strategies and actions.

31

Published as a conference paper at ICLR 2025

ToM Module User Message 1

An interaction with another player has occurred at step {step},
{self.interaction history[self.last played id][-1]}.
What was my opponent’s likely inventory in the last round given the
inventory I played and the reward received?
Think step by step about this. First think about what resource
you had the most of in your inventory, and then think about which
resource would beat that if you received a negative reward of -1
or worse or which resource would lose to yours if you received a
positive reward of 1 or more.
If you received a small magnitude reward near 0 and in between (-1,
1), then your opponent may have played a similar inventory to you.
Then depending on the magnitude of the reward and the number of
resources you played, you can infer the opponent’s inventory and
whether they played that strategy strongly (5+ of that resource) or
weakly (3 of that resource).
An inventory of {’rock/yellow’: 1, ’paper/purple’: 1,
’scissors/blue’: 1} is not possible because you need at least 2
resources of a type to play a duel.
Here are some example interactions to help you reason about how the
reward function works:
’your inventory’: {’rock/yellow’: 3, ’paper/purple’:
1, ’scissors/blue’: 1}, ’rewards’: -2.285,
’possible opponent inventory’: {’rock/yellow’: 1, ’paper/purple’:
5, ’scissors/blue’: 1}
’your inventory’: {’rock/yellow’: 5, ’paper/purple’: 1,
’scissors/blue’: 1}, ’rewards’: 3.571, ’possible opponent inventory’:
{’rock/yellow’: 1, ’paper/purple’: 1, ’scissors/blue’: 6}
’your inventory’: {’rock/yellow’: 1, ’paper/purple’: 4,
’scissors/blue’: 1}, ’rewards’: 2.0, ’possible opponent inventory’:
{’rock/yellow’: 3, ’paper/purple’: 1, ’scissors/blue’: 1}

In the 2nd part of your response, output the predicted opponent’s
inventory in following Python dictionary format, parsable by
ast.literal eval() starting with: ’possible opponent inventory’:
{’rock/yellow’: 1, ’paper/purple’: 1, ’scissors/blue’: 5}
Example output:
Given that I last played a strong paper strategy with an inventory
of {’rock/yellow’: 1, ’paper/purple’: 5, ’scissors/blue’: 1} and
received a reward of -3.428, I believe my opponent played a strong
scissors strategy.
The reward suggests that my paper was beaten by their scissors,
which means their inventory likely had a higher count of
blue/scissors resources.
A possible inventory for them could be {’rock/yellow’: 1,
’paper/purple’: 1, ’scissors/blue’: 5} or a similar distribution
favoring scissors.

32

Published as a conference paper at ICLR 2025

ToM Module User Message 2

Total Rewards: {rewards str}
Strategy Request:
An interaction with another player has occurred at step {step},
{self.interaction history[self.last played id][-1]}.
The total interaction history with this opponent is:
{self.interaction history[self.last played id]}.
If self-improvement is a focus:
Here are your previous hypotheses about the algorithm this opponent
is playing: {self.top hypotheses[self.last played id]}.
What is your opponent’s likely policy given the inventories and
the reward function? Think step by step about this given the
interaction history.
If your previous hypotheses are useful, you can iterate and refine
them to get a better explanation of the data observed so far.
If a hypothesis already explains the data very well, then repeat
the hypothesis in this response.
They may be playing the same pure policy every time, a complex
strategy to counter you, or anything in between.
They are not necessarily a smart agent that adapts to your
strategy, you are just playing an algorithm.
Are you getting high positive or negative reward when playing the
same type of inventory? For example, getting high positive reward
every time you play many paper resources. If so, this opponent may
be playing a pure strategy and you can exploit this by playing the
counter strategy.
Once you have output a hypothesis about this opponent’s strategy
with step by step reasoning, you can use the hypothesis to inform
your strategy.
In the 2nd part of your response, summarize your hypothesis
in a concise message following Python dictionary format,
parsable by ast.literal eval() starting with: ’rock/yellow’: 1,
’paper/purple’: 1, ’scissors/blue’: 5
{’Opponent strategy’: ’I think my opponent is always playing a pure
scissors strategy and collecting around 5 blue resources.’}
Otherwise:
What is this opponent’s likely policy given the inventories and the
reward
function? Think step by step about this given the interaction
history.
They may be playing the same pure policy every time, a complex
strategy to
counter you, or anything in between.
They are not necessarily a smart agent that adapts to your
strategy.
Are you getting high positive or negative reward when playing the
same type of inventory? For example, getting high positive reward
every time you play many
paper resources. If so, this opponent may be playing a pure
strategy and you
can exploit this by playing the counter strategy.
Once you have output a hypothesis about this opponent’s strategy
with step by step reasoning, you can use hypothesis to inform your
strategy.
In the 2nd part of your response, summarize your hypothesis in
a concise message following Python dictionary format, parsable
by ast.literal eval() starting with: {’Opponent strategy’: ’I
think my opponent is always playing a pure scissors strategy and
collecting around 5 blue resources.’}
You will be prompted again shortly to select subgoals and action
plans to execute this strategy that achieves the target inventory,
so do not include that in your response yet right now.

33

Published as a conference paper at ICLR 2025

ToM Module User Message 3

An interaction with self.last played id has occurred at step
{step}, The total interaction history with {self.last played id{
is: You previously made the following guess about this player’s
strategy: Think step by step and predict what this opponent
will play the next time you interact with them. Given the
above mentioned guess about the opponent’s policy/strategy,
and the last inventory you played (if their strategy is
adaptive, it may not be), what is their likely inventory in
the next round. In the 2nd part of your response, output
the predicted opponent’s next inventory in following Python
dictionary format, parsable by ‘ast.literal eval()‘ starting
with ‘‘‘python. Example response 1: ’Opponent next inventory’:
Given that my opponent is playing a rock policy, I believe
their next inventory will be inventory={’rock/yellow’: 5,
’paper/purple’: 1, ’scissors/blue’: 1}. ‘‘‘python {
’predicted opponent next inventory’: {’rock/yellow’: 5,
’paper/purple’: 1, ’scissors/blue’: 1} } ‘‘‘ Example response 2:
’Opponent next inventory’: Since my guess is that this player is
playing a scissors policy, I predict that their next inventory will
be {’rock/yellow’: 1, ’paper/purple’: 1, ’scissors/blue’: 5}.
‘‘‘python { ’predicted opponent next inventory’: {’rock/yellow’: 1,
’paper/purple’: 1, ’scissors/blue’: 5} } ‘‘‘ Example response
3: ’Opponent next inventory’: Since my opponent is following
a paper strategy, I predict their upcoming inventory will be
inventory={’rock/yellow’: 1, ’paper/purple’: 5, ’scissors/blue’:
1}. ‘‘‘python { ’predicted opponent next inventory’:
{’rock/yellow’: 1, ’paper/purple’: 5, ’scissors/blue’: 1} }

34

Published as a conference paper at ICLR 2025

ToM Module User Message 4

An interaction with self.last played id has occurred at step {step},
The total interaction history with self.last played id is: The
total interaction history overall is: . You previously made
the following guesses about all the other players’ strategies:
possible opponent strategy. High-level strategy Request: Provide
the next high-level strategy for your player self.agent id. This
response should include step by step reasoning in parts 1-3 about
which strategy to select based on the entire interaction history
in the following format: 1. ’Opponents to seekout’: Given the
hypotheses about your opponent’s strategies and their values,
which players should you seek out to duel with next and why? If
possible, select opponents you have a good hypothesis about so you
can exploit it and maximize your reward. Try to select multiple
players if possible as one player might be hard to find or is
respawning. Are you noticing any patterns across the population
as a whole? 2. ’Opponent next inventory’: Given the above
mentioned guess about the opponent’s policy/strategy what is their
likely inventory in the next round. 3. ’My next inventory’:
Given the opponent’s likely inventory in the next round, what
should your next inventory be to counter this? 4. In the
4th part of your response, output the opponent to seekout,
the predicted opponent’s next inventory, and your next
inventory in following Python dictionary format, parsable by
‘ast.literal eval()‘ starting with ‘‘‘python. Example response
1: 1. ’Opponent to seekout’: Given that I am fairly certain
that player 1 and player 5 is playing a rock policy, I believe I
should seek out either player 1 or player 5 to duel with next. 2.
’Opponent next inventory’: Given that these opponents are playing a
rock policy, I believe their next inventory will be something like
inventory={’rock/yellow’: 5, ’paper/purple’: 1, ’scissors/blue’:
1}. 3. ’My next inventory’: Given that these players are playing
a rock policy, I believe my next inventory should be a paper policy
inventory={’rock/yellow’: 1, ’paper/purple’: 5, ’scissors/blue’:
1}. ‘‘‘python { ’opponents to seekout’: [’player 1’, ’player 5’],
’predicted opponent next inventory’: {’rock/yellow’: 5,
’paper/purple’: 1, ’scissors/blue’: 1} ’my next inventory’:
{’rock/yellow’: 1, ’paper/purple’: 5, ’scissors/blue’: 1} }
Example response 2: 1. ’Opponents to seekout’: Considering
all the interactions, player 2, player 3, and player 5 seem to
heavily favor the scissors/blue strategy with consistent picks.
Engaging either of these players could offer a high reward
opportunity. 2. ’Opponent next inventory’: Based on the observed
behavior of player 2, player 3, and player 5, it is likely they
will continue with a strong scissors/blue strategy, potentially
having an inventory of {’rock/yellow’: 1, ’paper/purple’: 1,
’scissors/blue’: 5}. 3. ’My next inventory’: To effectively
counter the scissors/blue strategy, my optimal approach would be
to adopt a rock/yellow strategy. An inventory geared towards this
would be {’rock/yellow’: 5, ’paper/purple’: 1, ’scissors/blue’:
1}. ‘‘‘python { ’opponents to seekout’: [’player 2’, ’player 3’,
’player 5’], ’predicted opponent next inventory’: {’rock/yellow’:
1, ’paper/purple’: 1, ’scissors/blue’: 5}, ’my next inventory’:
{’rock/yellow’: 5, ’paper/purple’: 1, ’scissors/blue’: 1} }

35

Published as a conference paper at ICLR 2025

G.2 RUNNING WITH SCISSORS: REPEATED

The prompts for Running with Scissors Repeated remain very similar as Running with Scissors:
Arena with the modification of the prompts being in a 2 player setting.

G.3 PRISONER’S DILEMMA: REPEATED
System Message

You are Agent {self.agent id} in the two player ’prisoner dilemma in the matrix’
Melting Pot multiagent reinforcement learning environment that is an 23x15
(x by y) grid with resources to collect and walls to navigate around. Your
goal is to maximize reward. Players can move around the map and collect
resources of 2 discrete types corresponding to cooperate and defect strategies
- Green box = cooperate - Red box = defect. You and another agent will collect
resources and compare inventories in an encounter in repeated rounds. In
addition to movement, the agents have an action to fire an "interaction" beam
which initiates a duel to compare inventories and distribute rewards. All
players carry an inventory with the count of resources picked up since last
respawn and for each respawn start with an inventory of 1 resource each. This
inventory is visible in the state with the key ’inventory’. Here is how the
payoff matrix in the generic prisoner dilemma works:

• If both players cooperate, they both receive a reward of around 3,

• If one player cooperates and the other defects, the defector receives a
reward of around 5 and the cooperator receives a reward of around 0,

• If both players defect, they both receive a reward of around 1.

The nuance of ’prisoner dilemma in the matrix repeated’ is that the rewards are
using the payoff rules of the classic prisoner dilemma, but the interaction is
repeated and the rewards are distributed based on the inventory of resources
collected by each player.

• If both agents cooperate, the one with more cooperate resources will
receive a reward lower than the one with less cooperate resources,

• If one agent cooperates and the other defects, the more defect
resources the defector has, the higher the reward for the defector,

• If both agents defect, the one with more defect resources will receive
a higher reward than the one with less defect resources.

Your goal before each interaction is to try and infer what the other player
will play and how their strategy over time is affected by your plays. You
will only want to pick up one type of resource before an interaction. For
example, the inventories {’cooperate/green’: 1, ’defect/red’: 1} and
{’cooperate/green’: 3, ’defect/red’: 3} will both result in the same
reward, so don’t waste time collecting more than you need. Player 1 will
also always only pick up one type of resource before an interaction. To
play a strategy strongly, pick up at least 6 resources or more of only one
color and then fire the interaction beam at the other player. To commit
less strongly to a strategy, pick up around 2 resources of only one color
and then fire the interaction beam at the other player. State Description:
This environment is partially-observable, you can observe a 5x5 grid around
your agent depending on your position and orientation (you can see more in
front of you than behind). Previously seen states will be represented in
memory, but note that these states could potentially be outdated. For example,
the other agent could collect a resource that you previously saw. Given the
partially-observable nature of the environment, you will need to explore the
environment appropriately and select goals based on the information you’ve
gathered. Also pay attention to Player 1’s position when you see it in order
to duel with them and gain information about their strategy. Your goal is to
maximize reward attained over an entire episode, so keep in mind the long-term
consequences of your actions. Look at events in a gestalt manner.

36

Published as a conference paper at ICLR 2025

G.4 COLLABORATIVE COOKING PROMPTS

System Message for Collaborative Cooking Asymmetric

You are Player {self.agent id} in the Collaborative Cooking Asymmetric environment,
the goal is to cook and deliver tomato soup dishes with a partner. The environment
consists of a kitchen with a tomato dispenser, pots, delivery locations, and dish
dispensers. Each agent (of 2) has access to specific parts of the kitchen and can
perform actions like picking up ingredients, putting soup in a dish, and delivering
cooked soup dishes. There is an impassable barrier in the middle of the kitchen
that separates the agents’ sides at x=4, where the pots are located. The goal is to
work together with the other agent to efficiently cook and serve as many dishes of
tomato soup as possible to maximize the collective reward. However, communication is
not possible, so you must infer your partner’s strategy from their actions and adapt
accordingly to coordinate tasks. To cook tomato soup, 1. put 3 tomatoes in a pot,
2. pick up a dish when it is finished cooking, 3. put the cooked soup in a dish, and
4. deliver it to the delivery location. Your team receives a reward of 20 for each
successfully delivered dish. Only interact with objects on your side of the kitchen.
You can only hold one tomato at once. You cannot pick up a tomato from the tomato
dispenser with another item like a dish in your hand. You need to pick up a dish
before you pick up cooked soup from a pot. The environment is partially observable,
and you can only see a 5x5 grid around your agent. You will be prompted at different
points to provide high-level strategies and lower-level action plans to achieve them.
Use these three functions for lower-level action plans:

• move to(src coord, target coord): Efficiently move agent from source
coordinate to target coordinate. Only move to valid move to locations where
counters or objects are not present. Use sparingly.

• interact(target coord): Move to and interact with the entity at the
target coordinate, such as picking up ingredients or delivering dishes of
cooked soup. To place an object down on a counter to free your hands, use
interact(counter coord). Mostly use this function.

• wait(target coord): Wait for the pot at target coord to finish cooking.
Check the progress of the pots and only use valid locations where pots are
present. You probably only want to use this when both pots are full to
maximize efficiency.

Most of the time you will just want to use the interact function because it both moves
to and interacts with objects, therefore all the cooking steps can be completed with
the interact function. To put down an item to pick something else up, interact with
a counter to free your hands. Do not put down items on the floor or the delivery
location.

G.4.1 HYPOTHETICAL MINDS

High Level Strategy Message (in ToM Module of HM) for Collaborative Cooking Asymmetric

Strategy Request:
You are at step {step} of the game.
Provide a strategy for agent {self.agent id}.
Your response should outline a high-level strategy - what strategy
do you want to take next and why?
Teammate’s observed strategy: {self.teammate strategy}
Think step by step about how to adapt to their behavior and
maximize all resources and efficiency accordingly.
This response will be shown to you in the future in order for you
to select lower-level actions to implement this strategy.
Example response:
High-level strategy: I want to focus on cooking tomato soup
dishes.
You will be prompted again shortly to select subgoals and action
plans to execute this strategy, so do not include that in your
response yet.

37

Published as a conference paper at ICLR 2025

Subgoal Module Message

Strategy Request:
You are at step {step} of the game.
Your task is to devise efficient action plans for agent
{self.agent id}, reason through what the next subgoals should be
given the state information.
Your previously specified high-level strategy is:
{self.my strategy}
Your response should be broken up into two parts:

1. Subgoal Plan - Based on the current state and the high-level
strategy you previously specified, decompose this strategy
into a sequence of subgoals and actions to efficiently
implement this strategy. For every subgoal, think step by
step about the best action function and parameter to use for
that function. This could be fairly long.

2. Action Plan - Output this sequence of actions in
the following Python dictionary format, parsable by
ast.literal eval() starting with:

{{ ’action_plan’: [’interact((5, 1))’] }}

Example response 1:
Subgoal Plan: Given the current state and my high-level strategy
to focus on cooking tomato soup dishes, I should:
Move to the tomato dispenser and pick up a tomato.

{{ ’action_plan’: [’interact((5, 1))’] }}

Example response 2:
Subgoal Plan: Given the current state and my high-level strategy
to focus on delivering tomato soup dishes, I should:
Move to the dish dispenser and pick up a dish, then plate the
cooked soup.

{{ ’action_plan’: [’interact((3, 4))’, ’interact((4, 2))’] }}

Example response 3:
Subgoal Plan: Next I should move to the delivery location and
deliver the cooked soup.

{{ ’action_plan’: [’interact((3, 1))’] }}

38

Published as a conference paper at ICLR 2025

Evaluate Action Outcomes/Self-Reflection

User Message Preamble:
If subgoal failed:
You are an action plan evaluator.
The last subgoal included an interact action that failed.
Your task is to look at the subgoal the agent took, the state of
the environment before and after the subgoal,
and evaluate why the subgoal was unsuccessful and provide feedback
about what the agent should do next time.
We will next plan an entire new action plan, so suggest specific
action plans and action functions to use next when applicable.

If subgoal succeeded:
You are an action plan evaluator.
Your task is to look at the action plan the agent took, the state
of the environment before the plan and the state of the environment
after the plan,
and evaluate whether the action plan was successful, and if not,
provide feedback about what failed and what the agent should do
next time.
Take into account that your teammate could have influenced the
outcome of the subgoal in some circumstances.
Suggest specific action plans and action functions to use next when
applicable.

Infer Teammate Strategy Message

User Message:
Based on the observed actions of your teammate (player 1), what do
you think their strategy is?
Are they specializing in any specific activity or subtask?

Teammate’s observed actions:
{self.teammate actions}

Here are your previous hypotheses about the strategy your partner
is playing: {self.top hypotheses}.

Think step by step and provide an analysis of their strategy, any
specialization you infer from their behavior, and their competence.
Then analyze how you can adapt your strategy to maximize efficiency
and coordination with your teammate.
Remember communication is not allowed.

39

Published as a conference paper at ICLR 2025

Predict Teammate Behavior Message

A dish has been delivered at step {step}.
You previously guessed that your teammate’s (player 1) policy is:
{possible teammate strategy}
Based on the proposed hypothesis about your teammate (player 1),
what do you think they will do next?
Output a concise label about your teammate’s next behavior in the
following Python dictionary format, parsable by ast.literal eval()
starting with:

python
{{ ’predicted_next_behavior’: ’placing tomatoes into pot (4,2)’ }}

Evaluate Predicted Behavior

A dish has been delivered at step {step}.
You previously guessed that your teammate’s (player 1) would perform
this behavior in this round: {predicted next behavior}
Here is the observed behavior of your teammate (player 1) in this
round: {latest teammate actions}
Did your prediction match the observed behavior?
Concisely output True or False in the below Python dictionary
format, parsable by ast.literal eval() starting with:

{{ ’evaluate_predicted_behavior’: True }}

40

	Introduction
	Related Work
	LLM-based Agents
	Reasoning and Hypothesis Search with LLMs
	Multi-agent Decision-Making and Theory of Mind

	Method
	Partially-observable Markov games
	Hypothetical Minds Model

	Experiments
	How does Hypothetical Minds perform in competitive environments?
	How does Hypothetical Minds perform in collaborative environments?
	How does Hypothetical Minds perform in mixed-motive environments?
	How does Hypothetical Minds scale to environments with larger populations of agents?
	Ablations

	Conclusion
	Appendix
	Hyperparameters and Computational Costs
	Experiments Compute Resources

	Environments
	Running With Scissors Repeated
	Scenarios

	Running With Scissors Arena
	Scenarios

	Prisoners Dilemma Repeated
	Scenarios

	Collaborative Cooking Asymmetric
	Scenarios

	Methods
	Textual Map
	Memory
	Theory of Mind Module
	Subgoal Module
	Action Planner
	Self-Reflection - Collaborative Cooking

	Baselines
	ReAct
	Reflexion
	PlanReAct
	PPO
	OPRE

	Ablation Details
	Prompts
	Running With Scissors: Arena Prompts
	Hypothetical Minds

	Running with Scissors: Repeated
	Prisoner's Dilemma: Repeated
	Collaborative Cooking Prompts
	Hypothetical Minds

