
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Perlin Noise for Exploration in Reinforcement
Learning

Anonymous authors
Paper under double-blind review

Abstract

Reinforcement Learning (RL) enables agents to solve tasks by autonomously
acquiring policies by interacting with the environment receiving sparse or noisy
feedback in the form of a reward. However, achieving successful optimization in RL
requires efficient exploration, which remains a significant challenge, particularly
in continuous action spaces. Existing exploration techniques often exhibit limited
state-space reach and fail to overcome local optima, resulting in suboptimal policies.
Additionally, these techniques can cause erratic movements, posing risks when
applied to real-world robots. In this work, we introduce a novel exploration strategy
leveraging Perlin Noise, a gradient noise function that generates smooth, continuous
disturbances, thus enhancing the agent’s performance by promoting structured
exploration and fluid motions. We quantitatively demonstrate the benefits of our
approach compared to state-of-the-art methods, showing that it outperforms both
unstructured and structured techniques in thorough experimental evaluations.

1 Introduction

It is well known that exploration in Reinforcement Learning (RL) is essential to successfully train the
agent (Jiang et al., 2023). The policy is updated based on reward feedback to generate actions that
control the agent to high-reward state regions. Visiting unseen and novel states in a broad range of the
state space during this optimization is therefore essential to overcoming sub-optimal policies and
converging to a high-performing policy. At the same time, the agent should explore the state space
smoothly to prevent damage to itself (Raffin et al., 2022).

In the discrete action space, exploration has been addressed by various strategies such as epsilon
greedy exploration (Amini & Solemany, 2008), Boltzmann exploration (Derthick, 1984; Amini &
Solemany, 2008), or upper confidence bounds (Mizukami et al., 2017). Similarly, there has been
extensive research on exploration strategies for continuous action spaces in the RL community
(Fortunato et al., 2018; Osband et al., 2016; Plappert et al., 2018). Commonly RL methods rely on
simple exploration strategies such as factorized Gaussian noise where in each decision step the action
emerges by sampling from a Gaussian distribution (Schulman et al., 2017; 2015; Haarnoja et al., 2018).
While these simple exploration strategies ensure good local exploratory behavior (see Fig. 1(a)), they
might lack exploring relevant state-action regions that are far away from the initialization and might
result in poor performance (Schumacher et al., 2023; Raffin et al., 2022). Additionally, the resulting
motions are usually shaky and might damage agents such as robots (Raffin et al., 2022). Researchers
have therefore proposed different exploration strategies to mitigate the aforementioned issues.

(a) White Noise (b) Pink Noise (c) Perlin Noise

Figure 1: An agent propelled by random actions sampled from different noises ’exploring’ a 2D box.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Intrinsic motivation-based methods (Pathak et al., 2017; Burda et al., 2019) augment the objective
function for the policy update with novelty functions that reward the agent if novel state spaces are
visited. Alternative approaches apply exploration on the trajectory level by applying Gaussian noise
in the parameter space that represents a trajectory rather than applying noise in each decision step
(Otto et al., 2022; 2023; Celik et al., 2021; 2024; Li et al., 2023; 2024). However, these methods
require additional treatment of the underlying optimization method by changing the objectives or
introducing higher-level abstractions of the actions. In contrast, methods proposed by (Raffin et al.,
2022; Eberhard et al., 2023; Hollenstein et al., 2024), propose simply exchanging the underlying
exploration mechanism while maintaining the RL method.

This work proposes Perlin noise for exploration in RL for continuous action spaces, inspired
by techniques from computer graphics (Perlin, 1985). Perlin noise generates smooth, temporally
correlated disturbances by assigning random gradient vectors to points on a grid and interpolating
between them, creating continuous transitions across space. The noise value at any given point is
calculated by taking the dot product between the surrounding grid gradients and the vectors to that
point, then blending these values using interpolation to ensure naturally flowing patterns.

We introduce a process to turn Perlin noise into a tractable distribution, allowing its usage as a drop-in
replacement for White noise in Gaussian policies commonly used in RL algorithms such as PPO
(Schulman et al., 2017), TRPO (Schulman et al., 2015), TRPL (Otto et al., 2021), and SAC (Haarnoja
et al., 2019). This approach preserves the structure of these algorithms, requiring no modifications to
their core objective functions or abstractions of actions.

In a qualitative analysis of Perlin noise compared to other exploration strategies, we show that it
produces smoother and more coherent trajectories, leading to higher state-space coverage and broader
exploration (see Fig. 1(c)).

We conduct extensive quantitative experiments on various benchmark environments, comparing
Perlin noise to state-of-the-art exploration strategies, such as generalized State-Dependent Exploration
(gSDE), White noise, and colored noise (Eberhard et al., 2023; Hollenstein et al., 2024), across
multiple environments from diverse benchmark suites (Tunyasuvunakool et al., 2020; Yu et al., 2019;
Kanagawa, 2023; Ellenberger, 2018; Towers et al., 2024). The results demonstrate that Perlin noise
is capable of solving hard exploration problems, outperforming or performing on par with these
baselines in both state-space coverage and task performance.

2 Background and Related Works

2.1 Exploration in Reinforcement Learning

For RL algorithms, it is important to effectively balance exploitation and exploration, which is crucial
for discovering new behaviors in the environment to achieve optimal performance while avoiding
local optima.

Action noise is the most common and simplest exploration method for continuous control, utilized
by various RL algorithms (Schulman et al., 2015; 2017; Otto et al., 2022; Haarnoja et al., 2019;
Abdolmaleki et al., 2018). Specifically, most agents leverage white noise, i.e., noise from an
independent Gaussian distribution at each step, by sampling from a stochastic policy. While white
noise can help in exploring new actions, it often leads to unstructured and jerky movements, which
can be problematic in robotic applications (Peters et al., 2010; Otto et al., 2023). Maximum entropy
RL, which typically also leverages white noise, further encourages exploration by adding an entropy
term to the reward function, promoting policies that maximize both expected return and entropy.
This approach results in more stochastic policies, thus enhancing exploration (Ziebart et al., 2010;
Haarnoja et al., 2019).

Instead of white noise, Lillicrap et al. (2015) applies Ornstein-Uhlenbeck noise as actions noise. More
recently, colored noises (Eberhard et al., 2023; Hollenstein et al., 2024) have also been introduced
in deep RL, which incorporate temporally correlated disturbances instead of the traditionally used
uncorrelated white noise. This temporal correlation leads to more structured exploration patterns,
potentially enhancing exploration efficiency and performance in certain environments. With a similar
goal, Rückstieß et al. (2008); Raffin et al. (2022) propose random sampling of a function for each
episode that deterministically modifies action selection. Additionally, Schumacher et al. (2023)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(a) 1D Perlin (b) 2D Perlin

Figure 2: Examples of 1D and 2D Perlin noise. (a) 1D Perlin noise shows smooth transitions
along a single dimension, while (b) 2D Perlin noise creates a continuous, organic texture across two
dimensions, often used for procedural texture generation.

explore learning correlations between action and state space dimensions. Alternatively, perturbing
policy parameters instead of the actions themselves has been suggested (Plappert et al., 2018; Mania
et al., 2018). A hybrid approach involves adding action noise to the entire trajectory by planning
actions in the trajectory space (Otto et al., 2022; 2023; Celik et al., 2021; 2024; Li et al., 2023; 2024).

In addition to action noise, previous research (Thrun, 1992; Tang et al., 2017; Burda et al., 2018;
2019; Pathak et al., 2017) has incorporated novelty and intrinsic rewards to encourage exploration of
previously unseen areas of the search space. Furthermore, insights from the bandit literature, such
as Thompson sampling (Russo et al., 2018; Osband et al., 2016), can also be leveraged to enhance
exploration strategies.

2.2 Perlin Noise

Perlin noise (Perlin, 1985), is a gradient noise function widely employed in computer graphics (Perlin,
1985; 2002; Bennett, 2019), simulations (Li et al., 2017), and scientific modeling (Ebert et al., 2002).
It generates coherent, continuous, and seemingly random patterns that can be defined for spaces of
arbitrary dimensions. Examples of Perlin noise spanned in one and two dimensions can be seen in
Figure 2.

The process of computing Perlin noise at a point x = (𝑥1, . . . , 𝑥𝑛) follows four steps:

Identify Surrounding Lattice Points. We identify the 2𝑛 surrounding lattice points i ∈ Z𝑛 that form
the corners of the hypercube containing x. These points are given by the set

I = {i = (𝑖1, 𝑖2, . . . , 𝑖𝑛) | 𝑖𝑘 ∈ {⌊𝑥𝑘⌋, ⌊𝑥𝑘⌋ + 1} for 𝑘 = 1, 2, . . . , 𝑛}.

Gradient Generation. Perlin noise is spanned from randomly sampled gradients (see Figure 3(a));
for each lattice point i ∈ I, we uniformly sample a unit-length gradient vector gi using a Pseudo
Random Number Generator (PRNG), that is deterministic given a (i, seed) pair via

gi = PRNG(i, seed), with | |gi | | = 1.

Dot Products. Each vertex gradient induces a hyperplane (see Figure 3(b)); for each lattice point i ∈ I,
the dot product between the gradient vector gi and the displacement between x and i is computed as

di = gi · (x − i) =
𝑛∑︁

𝑘=1
𝑔𝑘 (i) (𝑥𝑘 − 𝑖𝑘).

Interpolation. In order to have the final value smoothly vary across the edges of the different
hyperplanes of the surrounding 2𝑛 vertices, a smooth interpolation function is applied (see Figure 3(c)).
We use smoothstep, as given by Φ(𝑡) = 3𝑡2 − 2𝑡3. The final Perlin noise value is then the weighted
sum of the dot products

Perlin(x) =
∑︁
i∈I

(
di

𝑛∏
𝑘=1

Φ(𝑥𝑘 − 𝑖𝑘)
)
.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) Gradient Generation (b) Dot Product (c) Interpolation

Figure 3: Visualization of the steps involved in generating 2D Perlin noise. (a) Gradient vectors are
randomly generated at the lattice points surrounding a given point. (b) Dot products are computed
between each gradient vector and the displacement vector from the lattice point to the given point.
(c) The final Perlin noise value is obtained by smoothly interpolating these dot products to ensure
continuity across the grid.

We can regard any sampling from Perlin noise as sampling from a finite-dimensional subspace of an
infinite-dimensional distribution, since

Perlin(𝑥1, . . . , 𝑥𝑛) = Perlin(𝑥1, . . . , 𝑥𝑛, 0, . . . , 0).
This holds because, in the additional dimensions, 𝑥𝑘 = 0 results in the interpolation Φ(0) = 1, and
the dot products vanish since 𝑥𝑘 − 𝑖𝑘 = 0 for 𝑘 > 𝑛. Consequently, the noise function reduces to the
𝑛-dimensional case.

A pseudocode implementation for 2D Perlin noise can be found in Appendix G.

3 Perlin Noise for Exploration in Reinforcement Learning

Many RL methods, such as PPO (Schulman et al., 2017), TRPO (Schulman et al., 2015), TRPL
(Otto et al., 2021), require calculating the likelihood of the current policy. This calculation becomes
challenging when naively using Perlin noise, as the underlying probability density function generating
these samples is unclear. Others generate gradients via reparameterization, e.g. SAC (Haarnoja et al.,
2019). We can ensure correct operation and gradient generation for both these cases by ensuring the
Perlin samples to follow the Gaussian policy distribution normally used in these methods. This also
ensures Perlin-based exploration is usable as a drop-in replacement.

3.1 Sampling Actions using Perlin

Perlin noise on its own does not follow a Gaussian distribution and is not related to it. To use Perlin
noise for smooth exploration, we wish to generate noise that aligns with the policy, which we continue
to model as a Gaussian distribution. For a given state 𝑠𝑡 , sampling from a Gaussian policy with mean
𝜇𝜋 and covariance Σ = 𝐿𝑇

Σ
𝐿Σ is formalized as

𝑎𝑡 = 𝜇𝜋 + 𝐿Σ𝜖, 𝜖 ∼ N(0, 1),
where 𝐿Σ is the Cholesky factor of the covariance. Sampling 𝜖 ∼ N(0, 1) leads to generating samples
from the parameterized Gaussian policy. However, for sampling actions from a policy that applies
Perlin noise, we reformulate the sampling process to

𝑎𝑡 = 𝜇𝜋 + 𝐿Σ𝜖, 𝜖 ∼ P(𝑥, 𝑦), where P𝑖 (𝑥, 𝑦) = Normalize(Perlin𝑖 (𝑥, 𝑦)).
We sample from Perlin noise with 𝑥 = 𝑡 · 𝑘𝑠𝑝𝑒𝑒𝑑 and 𝑦 = 𝑖 · 𝑘𝑜 𝑓 𝑓 𝑠𝑒𝑡 , where 𝑡 is the timestep index and
𝑖 is the action dimension index. These define the sampling line, as depicted in Figure 4. Since Perlin
passes through 0 at each vertex, we consider 2D Perlin noise, where the parameter 𝑘𝑜 𝑓 𝑓 𝑠𝑒𝑡 shifts the
sampling line away from integer coordinates, and the parameter 𝑘𝑠𝑝𝑒𝑒𝑑 defines how fast the noise
changes over time.

While 𝑘𝑠𝑝𝑒𝑒𝑑 is treated as a tunable hyperparameter, 𝑘𝑜 𝑓 𝑓 𝑠𝑒𝑡 is set to a constant value (e.g., 𝜋), as in
our experiments it showed negligible impact on performance for reasonable choices.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

o

Environment

Policy

seed,

Normalize

Figure 4: A schematic illustrating the integration of our Perlin noise sampling method into an existing
RL algorithm (left), alongside a visualization of the sampling lines in 2D Perlin noise (right).

The computational complexity of our approach to sampling via Perlin noise is 𝑂 (𝑎 · 𝑛 · 2𝑛), where 𝑎

is the action dimensionality and 𝑛 is the dimensionality of the spanned Perlin noise (fixed at 2 in our
case). The added overhead is negligible compared to other noise generation methods.

The function Normalize transforms Perlin noise samples to match standard normal moments, as
described in the next section. This enables its use in RL methods, supporting log-likelihood gradient
estimation (e.g., PPO, TRPL) and reparameterization-based approaches (e.g., SAC) without modifying
existing procedures.

3.2 The Normalization Function for Perlin Noise

In order to establish the existence of an appropriate normalization function, we consider that Perlin
noise inherently centers itself around zero, a characteristic stemming from its generation mechanism
(derivation in Appendix D.1). Further, the autocorrelation function 𝜌(𝑘), governing the relationship
between two samples 𝑥𝑖 and 𝑥 𝑗 , clearly exhibits a diminishing trend as the lag parameter 𝑘 = 𝑗 − 𝑖

approaches infinity. Consequently, the Central Limit Theorem (CLT) becomes applicable, asserting
that the expected empirical mean of our samples converges to 𝜇 = 0. Furthermore, due to Perlin’s
construction, it restricts its moments to finite orders beyond the second (derivation in Appendix D.2).
Making use of Asymptotic Normality, we can deduce that the empirical variance will tend towards a
constant as the sample size grows sufficiently large.

We construct Normalize(𝑥) as a polynomial expansion of degree 𝑀

Normalize(𝑥) =
𝑀∑︁
𝑛=0

𝑐𝑛𝑥
𝑛.

This parameterization is justified as Normalize(𝑥) is an analytic function (derivation in Appendix D.3).
Since Perlin already has 𝜇 = 0, it follows that 𝑐0 = 0.

We find a suitable Normalize(𝑥) function via the optimization problem
min

𝑐1 ,𝑐2 ,...,𝑐𝑀
𝐸 (𝑐1, 𝑐2, . . . , 𝑐𝑀),

where 𝐸 is the error function that enforces the empirical moments of the transformed Perlin noise to
match the theoretical moments (mean, variance, skewness, etc.) of a standard normal distribution
N(0, 1). The error function is defined as

𝐸 (𝑐1, 𝑐2, . . . , 𝑐𝑀) =
𝑘∑︁

𝑚=1

(
1
𝑁

𝑁∑︁
𝑖=1

Normalize(𝑥𝑖)𝑚 − 𝜇𝑚

)2

,

where 𝜇𝑚 are the theoretical moments of N(0, 1), and 𝑥𝑖 are the Perlin noise samples.

This optimization must only be performed once to find a suitable Normalize function and is not part
of the training or inference loop. We experimentally validate this normalization and provide the
results in subsection 3.3. Our implementation of this normalization function is available on GitHub1.
We found an expansion to first order to be sufficient to achieve accurate normalization.

1https://github.com/perlin-rl/Perlin_RL

5

https://github.com/perlin-rl/Perlin_RL

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
3

2

1

0

1

2

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

(a) White Noise

0 20 40 60 80 100
3

2

1

0

3 2 1 0 1
0.0

0.1

0.2

0.3

0.4

0.5

(b) Colored (Pink) Noise

0 20 40 60 80 100
2

1

0

1

2

3

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

(c) Perlin Noise

Figure 5: The top diagrams illustrate action trajectories for different noise types sampled from a
static Gaussian policy N(0, 1). The bottom diagrams present histograms, with the solid black curves
representing the true policy distribution and the dotted black lines a bell curve matched to the actual
samples.

3.3 Comparison of Sampling Behavior to existing noises

To analyze the sampling behavior of various exploration noises, we first focus on their application
to a static Gaussian policy distribution N(0, 1), without considering an RL setup. The diagrams
in Figure 5 show the resulting samples. The top diagrams depict 100 steps of the trajectory over
time, while the bottom ones display histograms of 2000 sampled steps, with the solid black curves
representing the true policy distribution. Additionally, the dotted black lines in the histograms match
a bell curve to the actual samples, providing a visual comparison of how well the noise types conform
to the expected distribution. We provide a Google Colab2 that allows testing various parameters and
replicating these results.

White Noise (Figure 5(a)) is the default noise used in Random Exploration (REX). As expected, the
empirical mean and variance align closely with the parameters of the Gaussian policy. However,
because the disturbances are sampled independently at each time step, the resulting motions are
jerky and unstructured. In physical systems like robotics, these sudden, erratic movements can cause
damage. Furthermore, White noise fails to achieve significant displacement in the state-space, limiting
the range of exploration, as shown in Figure 1(a), where a particle driven by White noise spends most
of its time in a limited area.

Colored Noise (Figure 5(b)), such as Pink noise, introduces temporal correlations into the disturbances,
allowing for more structured movements and greater displacement in the state-space. While colored
noise theoretically converges to the true policy distribution as sample size approaches infinity, in
practice, with finite rollouts, there can be a significant mismatch between the empirical and true policy
parameters. This can lead to suboptimal exploration, as the agent may over-explore or get stuck, as
shown in Figure 1(b), where a particle driven by Pink noise spends much of its time against walls.

gSDE cannot be evaluated independently, as its noise generation depends on the latent activations
of the policy network’s last hidden layer. Consequently, the behavior of gSDE varies between
tasks and across different stages of training. While gSDE provides smooth, structured motions, its
realized variance depends on the neural network’s architecture and weight initialization, making it
less consistent. The periodic resampling mechanism introduces some discontinuity, but overall, gSDE
smooths the exploration trajectory compared to White and Colored noise.

Perlin Noise (Figure 5(c)) provides a smooth and temporally correlated alternative to both White and
Colored noise without relying on periodic resampling. The smoothness of the trajectory is controlled
by a speed parameter, making it easier to tune and adapt across environments. Unlike gSDE, Perlin
noise is not dependent on the architecture of the neural network or the latent activations, leading to
more predictable and consistent behavior. As shown in Figure 5(c), Perlin noise achieves structured
exploration with minimal drift from the true policy parameters, even in finite rollouts. This makes it
particularly suited for on-policy exploration. In the exploration box scenario (Figure 1(c)), Perlin
noise successfully escapes the box, similar to Pink noise, but without the drawbacks of getting stuck
against walls.

2https://colab.research.google.com/drive/1-t7WmGCwEgkZWuriRN3dsuy5fmU34v9x

6

https://colab.research.google.com/drive/1-t7WmGCwEgkZWuriRN3dsuy5fmU34v9x

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0 0.5 1 1.5 2

0

20

40

60

80

100

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(a) MountainCar Reward

0 0.5 1 1.5 2

0

0.1

0.2

0.3

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(b) MountainCar Jerk

0 0.5 1 1.5 2 2.5

0

1,000

2,000

3,000

4,000

5,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(c) Meta/Push Reward

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(d) Meta/Push Jerk

Figure 6: Achieved episodic reward and smoothness (measured as mean squared jerk, lower is better)
on MountainCarContinuous-v0 and Metaworld/push-v2.

4 Experiments

We evaluate the performance of Perlin noise-based exploration against existing methods, including
generalized State-Dependent Exploration (gSDE), White noise, Pink noise, and HalfBeta noise.
We use the term HalfBeta noise to refer to colored noise with 𝛽 = 0.5, which was found to be the
optimal coefficient for on-policy settings in Hollenstein et al. (2024). Benchmarking exploration
capabilities can be particularly challenging, as many established environments were designed with
current algorithms in mind. To address this, we introduce custom maze environments that present
difficult exploration tasks. Additionally, we assess the performance of Perlin noise across a wide
range of standard benchmark suites to ensure a comprehensive evaluation against state-of-the-art
(SOTA) methods.

We use on-policy reinforcement learning, specifically Proximal Policy Optimization (PPO), for
all experiments. The performance of the noise on each environment was evaluated using 20 runs
(only 10 for MetaWorld), each with a different random seed. To calculate stratified bootstrapped
confidence intervals, we use the methodology proposed by rliable (Agarwal et al., 2021). The resulting
interquartile mean (IQM) and confidence intervals (CI) for all tested environments are presented in
the appendix (see Appendix A). Our summary bar chart shows the mean and standard error (SE)
across all evaluated environments in the specific suite. Here, we use the regular mean instead of
the IQM, as we do not treat exceptionally good or poor performance across entire environments as
statistical outliers. This contrasts with handling over- or under-performance in a single run within an
environment.

In addition to reward performance, we measure the smoothness of the action trajectories, quantified
by the mean squared jerk. Lower jerk values indicate smoother actions, which are desirable for many
physical systems and tasks requiring stable, continuous actions. Similar to reward, smoothness is
evaluated using IQM and stratified bootstrapped confidence intervals (CI). A formal description of
Mean Squared Jerk can be found in Appendix B.1, the results in Appendix B.2.

To ensure fair evaluation and reduce the risk of overfitting hyperparameters (HPs) onto specific
environments, we emphasize the importance of using shared hyperparameters across algorithms
and environments wherever feasible. Overfitting HPs could lead to misleading comparisons, where
methods may appear to perform better due to environment-specific tuning rather than the intrinsic
quality of the exploration strategy. Therefore, we have made a deliberate effort to use shared HPs
across all algorithms and environments as much as possible.

Our choice of HPs is based on prior work to ensure relevance and generalizability. Specifically, for
PyBullet, we follow the hyperparameters used by Raffin et al. (2022). For MetaWorld, we adapted the
settings from Li et al. (2024). For general environments, such as MujocoMaze and DMC, we rely on
the findings from Hollenstein et al. (2024).

The episodic return achieved over time on every environment tested can be found in Appendix A, the
smoothness of generated actions for all environments in Appendix B. For a complete overview of the
hyperparameters used in our experiments, see Appendix C.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

(a) Static (b) Random

0 0.2 0.4 0.6 0.8 1

−0.4

−0.3

−0.2

−0.1

0

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(c) Static Result

0 0.2 0.4 0.6 0.8 1

−0.3

−0.25

−0.2

−0.15

−0.1

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(d) Random Result

Figure 7: Static and random goal mazes used to benchmark Perlin noise against other exploration
methods, showcasing the resulting performance for difficult exploration challenges.

4.1 MountainCar (Gymnasium)

The Mountain Car Continuous environment (Moore, 1990) from Gymnasium (Towers et al., 2024) is
a deterministic MDP where a car starts at the bottom of a sinusoidal valley. The goal is to accelerate
the car strategically to reach the top of the right hill, which requires continuous and consistent actions.
The challenge lies in overcoming the gravitational pull by building up momentum, making this task
particularly difficult for exploration methods that rely on random, chaotic actions.

In our tests (see Figure 6(a)), White noise performed very poorly, as it failed to apply the consistent
accelerations needed to push the car uphill. While environment-specific hyperparameter tuning could
likely improve its performance, we conducted all tests without such adjustments to ensure consistency.
On the other hand, all other methods, including Perlin noise, performed similarly well, showing stable
results in this challenging task. Moreover, in Figure 6(b), we show the smoothness of generated action
trajectories, measured by the mean squared jerk (lower values indicate smoother trajectories). Perlin
noise outperforms all other methods, producing the smoothest trajectories overall. Notably, there
were significant differences in performance between algorithms. For example, the HalfBeta method
performed exceptionally poorly, producing extremely jerky actions.

4.2 Custom Mazes

To demonstrate Perlin noise’s effectiveness in difficult exploration tasks, we created two custom mazes
based on MujocoMaze (see Figure 7 (a,b)). One maze features a static goal position, and the other has
a goal that is randomly chosen from three possible locations. The agent always starts in the bottom
left corner, with the goal in the top right for the static maze, or in any other corner for the random
maze. We found (see Figure 7 (c,d)) that the exploration challenge in this environment is sufficiently
hard, causing all baseline methods tested to fail in learning a reliable policy. In contrast, Perlin noise
enabled the agent to successfully solve these environments. This shows that there are exploration
challenges that require more advanced techniques than current SOTA methods, and Perlin noise can
provide such a solution.

4.3 MujocoMaze

We tested Perlin noise on several environments from the MujocoMaze suite (Kanagawa, 2023). These
environments, which include agents such as simple dots, ants, and swimmers navigating various
mazes, were designed with SOTA methods in mind, making dramatic improvements hard to achieve.
While most tasks are relatively easy for modern RL algorithms, they remain useful for evaluating
exploration methods. In Figure 8(a) we can see how Perlin noise performed consistently well across
all tasks, maintaining stability and solving the environments without any performance degradation.
Pink noise performed the worst, while the other methods showed similar results, with Perlin noise
slightly outperforming them.

4.4 DMC

We tested Perlin noise on several environments from the DeepMind Control (DMC) Suite
(Tunyasuvunakool et al., 2020). The DMC suite is a standard collection of physics-based simulation

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0

0.2

0.4

0.6

0.8

1

0.91 0.86 0.71 0.82 0.83

Re
la

tiv
e

Pe
rfo

rm
an

ce

(a) MujocoMaze
0

0.2

0.4

0.6

0.8

1

0.82 0.84 0.68 0.41 0.75

Re
la

tiv
e

Pe
rfo

rm
an

ce

(b) DMC

0

0.2

0.4

0.6

0.8

1

0.79 0.46 0.16 0.82 0.75

Re
la

tiv
e

Pe
rfo

rm
an

ce

(c) PyBullet
0

0.2

0.4

0.6

0.8

1

0.90 0.73 0.41 0.80 0.87

Re
la

tiv
e

Pe
rfo

rm
an

ce

(d) Metaworld

Figure 8: Aggregate results showing the mean and standard error (SE) of episodic reward across entire
suites, with performance for each environment normalized relative to the best-performing algorithm.

environments powered by the MuJoCo engine, designed to test continuous control tasks. The chosen
tasks are inspired by the evaluations performed in Hollenstein et al. (2024). In our experiments
(see Figure 8(b)), Perlin noise performed well overall, coming second only to HalfBeta. Notably,
Perlin noise outperformed gSDE, which demonstrated poor results across most DMC environments.

4.5 PyBullet

The PyBullet Gymperium (Ellenberger, 2018; Coumans & Bai, 2016) suite provides an open-source
implementation of continuous control environments commonly used in reinforcement learning,
originally based on the OpenAI Gym MuJoCo tasks. In our experiments (see Figure 8(c)), we tested
Perlin noise on four environments, the same tasks used in the gSDE paper (Raffin et al., 2022) to
evaluate on-policy performance. gSDE performed best on these tasks, followed closely by Perlin
noise, significantly outperforming Pink noise and HalfBeta, both of which performed poorly in these
tasks.

4.6 Metaworld

MetaWorld (Yu et al., 2019) is an open-source simulated benchmark designed to advance meta-
reinforcement learning and multi-task learning, comprising 50 diverse robotic manipulation tasks.
These tasks take place in a shared tabletop environment featuring a simulated Sawyer robotic arm
interacting with various everyday objects. The benchmark is particularly well-suited for exploring
generalization and meta-learning due to its structured setup and diverse task distribution.

In our experiments, we focused on training policies for individual tasks, evaluating performance on
each task separately to assess the effectiveness of different exploration strategies. The results indicate
that Perlin noise consistently outperformed other methods, achieving the best overall performance
across the tasks. White noise followed closely as a second option, demonstrating solid performance
but with less consistency compared to Perlin noise. In contrast, the other methods tested, tended to
exhibit somewhat unreliable performance.

As an example, we present the smoothness of action trajectories (measured by mean squared jerk,
where lower is better) for the Metaworld/push-v2 environment. In this case, both Perlin noise and
White noise achieved similar rewards (see Figure 6(c)), with Perlin noise exhibiting the lowest jerk
(see Figure 6(d)), thus producing the smoothest action sequences.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0

0.2

0.4

0.6

0.8

1

0.86 0.72 0.49 0.71 0.80

Re
la

tiv
e

Pe
rfo

rm
an

ce

Figure 9: Aggregated results showing the mean and standard error (SE) of relative performance across
all suites, excluding MountainCar and our custom mazes.

5 Discussion

As demonstrated in Figure 9, Perlin noise consistently delivers strong and reliable results across
all tested suites. While Perlin noise is not always the optimal choice, its consistent and generally
favorable performance makes it a dependable exploration method for various applications without the
need for extensive tuning or task-specific adjustments.

In subsection 3.3, we had showed that Perlin noise produces significantly smoother trajectories than
other methods, and this is now validated in our experiments. As shown in Appendix B, Perlin noise
consistently shows lower jerk compared to other methods. While Pink noise also exhibits low jerk,
its smoothness often comes at the cost of poor task performance, as its learned policies sometimes
tend to remain close to a null policy. Perlin noise, on the other hand, achieves both smooth action
generation and high task performance, making it a well-balanced choice for structured exploration.

Additionally, in the earlier analysis, we demonstrated that Perlin noise has superior state-space
coverage compared to White and colored noise. This is now reflected in its superior performance
on the custom and suite-provided maze environments, where better state-space reach is crucial for
effective exploration.

6 Conclusion & Limitations

Exploration remains a critical component in the success of reinforcement learning (RL) algorithms,
as it drives agents to visit novel and high-reward states during training. In this work, we introduced a
novel exploration strategy that utilizes Perlin noise, a smooth, temporally correlated gradient noise
function. Perlin noise distinguishes itself by its ability to provide structured exploration. Unlike
conventional noise strategies like White noise, which can result in jerky, erratic movements, Perlin
noise promotes fluid motion, making it particularly suitable for tasks where smooth and stable actions
are required, such as in real-world robotic applications. As demonstrated in our experiments, Perlin
noise offers high state-space coverage, ensuring the agent explores effectively across a broad range of
tasks. Our approach was validated across various benchmark suites, showing competitive performance
when compared to state-of-the-art exploration strategies such as gSDE and colored noise.

Despite these advantages, Perlin noise has limitations. Its inherent smoothness, while beneficial
in many tasks, may hinder performance in environments where abrupt, high-frequency actions are
necessary for success.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Reproducibility Statement

We provide detailed documentation of hyperparameters, shared across environments to avoid
overfitting, in Appendix C. Our results are reported using stratified bootstrapped confidence intervals
and interquartile means (IQM), ensuring statistical robustness.

The implementation of our novel Perlin noise-based exploration mechanism, compatible with Stable
Baselines3 (SB3) (Raffin et al., 2021), is available in an open-source repository3.

Additionally, a Google Colab notebook4 allows interactive testing of noise parameters, replicating the
sampling behavior shown in subsection 3.3.

3https://github.com/perlin-rl/Perlin_RL
4https://colab.research.google.com/drive/1-t7WmGCwEgkZWuriRN3dsuy5fmU34v9x

11

https://github.com/perlin-rl/Perlin_RL
https://colab.research.google.com/drive/1-t7WmGCwEgkZWuriRN3dsuy5fmU34v9x

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

References
Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin

Riedmiller. Maximum a posteriori policy optimisation. In International conference on Learning
Representations, 2018.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Information
Processing Systems, 2021.

Alexander Amini and Ava Solemany. MIT 6.S191 - Introduction to Deep Learning, 2008. http:
//IntroToDeepLearning.com.

Mark Bennett. Frequency Spectra Filtering for Perlin Noise. The Computer Games Journal, 8(1):
13–24, March 2019. ISSN 2052-773X. doi: 10.1007/s40869-018-0074-7.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by Random Network
Distillation. arXiv:1810.12894 [cs, stat], October 2018. arXiv: 1810.12894.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos J. Storkey, Trevor Darrell, and Alexei A. Efros.
Large-Scale Study of Curiosity-Driven Learning. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.
arXiv:1808.04355 [cs, stat].

Onur Celik, Dongzhuoran Zhou, Ge Li, Philipp Becker, and Gerhard Neumann. Specializing Versatile
Skill Libraries using Local Mixture of Experts. In Aleksandra Faust, David Hsu, and Gerhard
Neumann (eds.), Conference on Robot Learning, 8-11 November 2021, London, UK, volume 164 of
Proceedings of Machine Learning Research, pp. 1423–1433. PMLR, 2021. arXiv:2112.04216 [cs].

Onur Celik, Aleksandar Taranovic, and Gerhard Neumann. Acquiring diverse skills using curriculum
reinforcement learning with mixture of experts. In Forty-first International Conference on Machine
Learning, 2024.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. http://pybullet.org, 2016.

Mark Derthick. Variations on the Boltzmann Machine Learning Algorithm. 1984.

Onno Eberhard, Jakob Hollenstein, Cristina Pinneri, and Georg Martius. Pink Noise Is All You Need:
Colored Noise Exploration in Deep Reinforcement Learning. 2023.

David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, Steven Worley, William R. Mark,
and John C. Hart. Texturing and Modeling: A Procedural Approach: Third Edition. Elsevier Inc.,
December 2002. ISBN 978-1-55860-848-1.

Benjamin Ellenberger. Pybullet gymperium. https://github.com/benelot/pybullet-gym,
2018.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
Remi Munos, Demis Hassabis, Olivier Pietquin, and Charles Blundell. Noisy networks for
exploration. In International Conference on Learning Representations, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and Andreas
Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 1861–1870. PMLR, 10–15 Jul 2018.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic
Algorithms and Applications, January 2019. http://arxiv.org/abs/1812.05905. Number:
arXiv:1812.05905 arXiv:1812.05905 [cs, stat].

12

http://IntroToDeepLearning.com
http://IntroToDeepLearning.com
http://pybullet.org
https://github.com/benelot/pybullet-gym
http://arxiv.org/abs/1812.05905

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jakob Hollenstein, Georg Martius, and Justus Piater. Colored Noise in PPO: Improved Exploration
and Performance through Correlated Action Sampling. Proceedings of the AAAI Conference on
Artificial Intelligence, 38(11):12466–12472, March 2024. ISSN 2374-3468, 2159-5399. doi:
10.1609/aaai.v38i11.29139. arXiv:2312.11091 [cs].

Yiding Jiang, J Zico Kolter, and Roberta Raileanu. On the Importance of Exploration for Generalization
in Reinforcement Learning, 2023. https://arxiv.org/abs/2306.05483.

Yuji Kanagawa. mujoco-maze: Some maze environments for reinforcement learning based on
mujoco-py and openai gym. https://github.com/kngwyu/mujoco-maze, 2023.

Ge Li, Zeqi Jin, Michael Volpp, Fabian Otto, Rudolf Lioutikov, and Gerhard Neumann. Prodmp:
A unified perspective on dynamic and probabilistic movement primitives. IEEE Robotics and
Automation Letters, 8(4):2325–2332, 2023. doi: 10.1109/LRA.2023.3248443.

Ge Li, Hongyi Zhou, Dominik Roth, Serge Thilges, Fabian Otto, Rudolf Lioutikov, and Gerhard
Neumann. Open the Black Box: Step-based Policy Updates for Temporally-Correlated Episodic
Reinforcement Learning. In The Twelfth International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. arXiv:2401.11437 [cs].

Hua Li, Huamin Yang, Chao Xu, and Yuling Cao. Water Surface Simulation Based on Perlin Noise
and Secondary Distorted Textures. In James J. (Jong Hyuk) Park, Yi Pan, Gangman Yi, and
Vincenzo Loia (eds.), Advances in Computer Science and Ubiquitous Computing, volume 421, pp.
236–245. Springer Singapore, Singapore, 2017. ISBN 978-981-10-3022-2 978-981-10-3023-9.
doi: 10.1007/978-981-10-3023-9_39. Series Title: Lecture Notes in Electrical Engineering.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear policies is
competitive for reinforcement learning. Advances in neural information processing systems, 31,
2018.

Naoki Mizukami, Jun Suzuki, Hirotaka Kameko, and Yoshimasa Tsuruoka. Exploration Bonuses
Based on Upper Confidence Bounds for Sparse Reward Games. In Mark H.M. Winands, H. Jaap
van den Herik, and Walter A. Kosters (eds.), Advances in Computer Games, pp. 165–175, Cham,
2017. Springer International Publishing. ISBN 978-3-319-71649-7.

Andrew William Moore. Efficient memory-based learning for robot control. PhD Thesis, Technical
Report, University of Cambridge, November 1990.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29, 2016.

Fabian Otto, Philipp Becker, Ngo Anh Vien, and Hanna Carolin Ziesche. Differentiable Trust Region
Layers for Deep Reinforcement Learning. International Conference on Learning Representations
(ICLR), 2021.

Fabian Otto, Onur Celik, Hongyi Zhou, Hanna Ziesche, Ngo Anh Vien, and Gerhard Neumann.
Deep Black-Box Reinforcement Learning with Movement Primitives. In Karen Liu, Dana Kulic,
and Jeffrey Ichnowski (eds.), Conference on Robot Learning, CoRL 2022, 14-18 December 2022,
Auckland, New Zealand, volume 205 of Proceedings of Machine Learning Research, pp. 1244–1265.
PMLR, 2022. arXiv:2210.09622 [cs].

Fabian Otto, Hongyi Zhou, Onur Celik, Ge Li, Rudolf Lioutikov, and Gerhard Neumann. MP3:
Movement Primitive-Based (Re-)Planning Policy. In CoRL Workshop on Learning Effective
Abstractions for Planning (LEAP). arXiv, July 2023. arXiv:2306.12729 [cs].

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-Driven Exploration
by Self-Supervised Prediction. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pp. 488–489, Honolulu, HI, USA, July 2017. IEEE. ISBN
978-1-5386-0733-6. doi: 10.1109/CVPRW.2017.70.

13

https://arxiv.org/abs/2306.05483
https://github.com/kngwyu/mujoco-maze

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ken Perlin. An image synthesizer. 19(3), 1985. doi: 10.1145/325165.325247.

Ken Perlin. Improving Noise. In ACM Trans. Graph, volume 21, pp. 681–682. Association for
Computing Machinery, July 2002. doi: 10.1145/566654.566636.

Jan Peters, Katharina Mulling, and Yasemin Altun. Relative Entropy Policy Search. Proceedings of
the AAAI Conference on Artificial Intelligence, 24(1):1607–1612, July 2010. ISSN 2374-3468,
2159-5399. doi: 10.1609/aaai.v24i1.7727.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter Space Noise for Exploration.
Published as a conference paper at ICLR 2018, 2018.

Antonin Raffin, Ashley Hill, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann. Stable-
Baselines3: Reliable Reinforcement Learning Implementations. 22(2021):1–8, 2021. doi:
http://jmlr.org/papers/v22/20-1364.html.

Antonin Raffin, Jens Kober, and Freek Stulp. Smooth exploration for robotic reinforcement learning.
In Conference on robot learning, pp. 1634–1644. PMLR, 2022.

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on
thompson sampling. Foundations and Trends® in Machine Learning, 11(1):1–96, 2018.

Thomas Rückstieß, Martin Felder, and Jürgen Schmidhuber. State-Dependent Exploration for Policy
Gradient Methods. In Walter Daelemans, Bart Goethals, and Katharina Morik (eds.), Machine
Learning and Knowledge Discovery in Databases, pp. 234–249. Springer Berlin Heidelberg, 2008.
ISBN 978-3-540-87480-5 978-3-540-87481-2.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust Region
Policy Optimization. Proceedings of the 31 st International Conference on Machine Learning, Lille,
France, 2015. JMLR: W&CP volume 37, 2015. Number: arXiv:1502.05477 arXiv:1502.05477
[cs].

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization Algorithms, August 2017. http://arxiv.org/abs/1707.06347. Number:
arXiv:1707.06347 arXiv:1707.06347 [cs].

Pierre Schumacher, Daniel Häufle, Dieter Büchler, Syn Schmitt, and Georg Martius. DEP-
RL: Embodied Exploration for Reinforcement Learning in Overactuated and Musculoskeletal
Systems. The Eleventh International Conference on Learning Representations (ICLR), April 2023.
arXiv:2206.00484 [cs].

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John
Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for
deep reinforcement learning. Advances in neural information processing systems, 30, 2017.

Sebastian B Thrun. Efficient exploration in reinforcement learning. Carnegie Mellon University,
1992.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks
for continuous control. Software Impacts, 6:100022, 2020. ISSN 2665-9638. doi: https:
//doi.org/10.1016/j.simpa.2020.100022.

David H. Wolpert. The Lack of A Priori Distinctions Between Learning Algorithms. Neural
Computation, 8(7):1341–1390, October 1996. ISSN 0899-7667, 1530-888X. doi: 10.1162/neco.
1996.8.7.1341.

David H. Wolpert and William G. Macready. No Free Lunch Theorems for Search. Santa Fe Institute,
1995.

14

http://arxiv.org/abs/1707.06347

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

David H. Wolpert and William G. Macready. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82, April 1997. ISSN 1089778X. doi:
10.1109/4235.585893.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning (CoRL), 2019.

Brian D Ziebart, J Andrew Bagnell, and Anind K Dey. Modeling Interaction via the Principle of
Maximum Causal Entropy. International Conference on Machine Learning 2010, 2010. ISSN
9781605589077. doi: 10.5555/3104322.3104481.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A Results

Perlin Halfbeta Pink gSDE White

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(a) Swimmer 4 Rooms v1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(b) Point 4 Rooms v1

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(c) Ant 4 Rooms v1

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(d) Ant U Maze v1

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(e) Swimmer U Maze v1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(f) Point U Maze v1

0 1 2 3 4

0

2

4

6

8

10

12

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(g) Ant Fall v0

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(h) Point Corridor v1

0 1 2 3 4

0

2

4

6

8

10

12

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(i) Ant Corridor v1

0 1 2 3 4

0

2

4

6

8

10

12

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(j) Ant Push v1

0 1 2 3 4

0.4

0.6

0.8

1

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(k) Point Push v1

0 1 2 3 4

−3

−2.8

−2.6

−2.4

−2.2

−2

·10−3

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(l) Point Fall v1

Figure 10: Results on selected environments from MujocoMaze (Page 1).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0 1 2 3 4

5

10

15

20

25

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(a) Swimmer Corridor v1

0 1 2 3 4

0

2

4

6

8

10

12

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(b) Ant Fall v1

0 1 2 3 4

0

2

4

6

8

10

12

Environment Steps (×106)
Ep

is
od

ic
Re

tu
rn

,I
Q

M

(c) Ant Push v0

0 1 2 3 4

−3

−2.8

−2.6

−2.4

−2.2

−2

·10−3

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(d) Point Fall v0

0 1 2 3 4
0.2

0.4

0.6

0.8

1

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(e) Point Push v0

Figure 11: Results on selected environments from MujocoMaze (Page 2).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0 0.5 1 1.5 2

0

200

400

600

800

1,000

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(a) DMC Ball In Cup Catch

0 0.5 1 1.5 2

0

200

400

600

800

1,000

Environment Steps (×106)
Ep

is
od

ic
Re

tu
rn

,I
Q

M

(b) DMC CartPole Balance Sparse

0 0.5 1 1.5 2

0

200

400

600

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(c) DMC CartPole Swingup Sparse

0 0.5 1 1.5 2

0

100

200

300

400

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(d) DMC Cheetah Run

0 0.5 1 1.5 2

0

1

2

3

4

5

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(e) DMC Hopper Hop

0 0.5 1 1.5 2

0

50

100

150

200

Environment Steps (×106)
Ep

is
od

ic
Re

tu
rn

,I
Q

M

(f) DMC CartPole Three Poles

0 0.5 1 1.5 2

0

50

100

150

200

250

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(g) DMC CartPole Two Poles

0 0.5 1 1.5 2

0

50

100

150

200

250

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(h) DMC Quadruped Fetch

0 0.5 1 1.5 2

0

100

200

300

400

500

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(i) DMC Quadruped Run

0 0.5 1 1.5 2

0

100

200

300

400

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(j) DMC Quadruped Walk

0 0.5 1 1.5 2

0

20

40

60

80

100

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(k) DMC Stacker Stack 4

0 0.5 1 1.5 2

0

200

400

600

800

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(l) DMC Pendulum Swingup

Figure 12: Results on selected environments from DMC (Page 1).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0 0.5 1 1.5 2

0

100

200

300

400

500

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(a) DMC Reacher Hard

0 0.5 1 1.5 2

0

50

100

150

200

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(b) DMC Walker Run

0 0.5 1 1.5 2

0

20

40

60

80

100

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(c) Mountain Car Continuous

Figure 13: Results on selected environments from DMC (Page 2) and MountainCarContinuous.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0 0.5 1 1.5 2

0

500

1,000

1,500

2,000

2,500

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(a) PB Ant

0 0.5 1 1.5 2

0

500

1,000

1,500

2,000

2,500

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(b) PB Cheetah

0 0.5 1 1.5 2

0

500

1,000

1,500

2,000

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(c) PB Hopper

0 0.5 1 1.5 2 2.5 3

0

200

400

600

800

1,000

1,200

1,400

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(d) PB Walker

Figure 14: Results on selected environments from PyBullet.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0 0.5 1 1.5 2 2.5
0

1,000

2,000

3,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(a) Assembly

0 0.5 1 1.5 2 2.5

0

1,000

2,000

3,000

4,000

5,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(b) Basketball

0 0.5 1 1.5 2 2.5

0

1,000

2,000

3,000

4,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(c) Bin Picking

0 0.5 1 1.5 2 2.5

0

1,000

2,000

3,000

4,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(d) Box Close

0 0.5 1 1.5 2 2.5

1,000

2,000

3,000

4,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(e) Button Press Topdown

0 0.5 1 1.5 2 2.5

1,000

2,000

3,000

4,000

Environment Steps (×107)
Ep

is
od

ic
Re

tu
rn

,I
Q

M

(f) Button Press Topdown Wall

0 0.5 1 1.5 2 2.5

1,000

2,000

3,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(g) Button Press

0 0.5 1 1.5 2 2.5

1,000

2,000

3,000

4,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(h) Button Press Wall

0 0.5 1 1.5 2 2.5

1,000

2,000

3,000

4,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(i) Coffee Button

0 0.5 1 1.5 2 2.5

0

1,000

2,000

3,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(j) Coffee Pull

0 0.5 1 1.5 2 2.5

0

500

1,000

1,500

2,000

2,500

3,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(k) Coffee Push

0 0.5 1 1.5 2 2.5

0

1,000

2,000

3,000

4,000

5,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(l) Dial Turn

Figure 15: Results from all Metaworld (v2 variant) environments (Page 1).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0 0.5 1 1.5 2 2.5

0

200

400

600

800

1,000

1,200

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(a) Disassemble

0 0.5 1 1.5 2 2.5

1,500

2,000

2,500

3,000

3,500

4,000

4,500

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(b) Door Close

0 0.5 1 1.5 2 2.5

1,000

2,000

3,000

4,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(c) Door Lock

0 0.5 1 1.5 2 2.5

1,000

2,000

3,000

4,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(d) Door Open

0 0.5 1 1.5 2 2.5

1,000

2,000

3,000

4,000

5,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(e) Door Unlock

0 0.5 1 1.5 2 2.5

2,000

3,000

4,000

5,000

Environment Steps (×107)
Ep

is
od

ic
Re

tu
rn

,I
Q

M

(f) Drawer Close

0 0.5 1 1.5 2 2.5
0

1,000

2,000

3,000

4,000

5,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(g) Drawer Open

0 0.5 1 1.5 2 2.5
1,000

2,000

3,000

4,000

5,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(h) Faucet Close

0 0.5 1 1.5 2 2.5

1,000

2,000

3,000

4,000

5,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(i) Faucet Open

0 0.5 1 1.5 2 2.5

0

1,000

2,000

3,000

4,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(j) Hammer

0 0.5 1 1.5 2 2.5

0

500

1,000

1,500

2,000

2,500

3,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(k) Hand Insert

0 0.5 1 1.5 2 2.5

1,000

2,000

3,000

4,000

5,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(l) Handle Press Side

Figure 16: Results from all Metaworld (v2 variant) environments (Page 2).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0 0.5 1 1.5 2 2.5

1,000

2,000

3,000

4,000

5,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(a) Handle Press

0 0.5 1 1.5 2 2.5

0

1,000

2,000

3,000

4,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(b) Handle Pull Side

0 0.5 1 1.5 2 2.5

1,000

2,000

3,000

4,000

5,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(c) Handle Pull

0 0.5 1 1.5 2 2.5

0

1,000

2,000

3,000

4,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(d) Lever Pull

0 0.5 1 1.5 2 2.5

0

1,000

2,000

3,000

4,000

5,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(e) Peg Insert Side

0 0.5 1 1.5 2 2.5

0

1,000

2,000

3,000

4,000

Environment Steps (×107)
Ep

is
od

ic
Re

tu
rn

,I
Q

M

(f) Peg Unplug Side

0 0.5 1 1.5 2 2.5

0

1,000

2,000

3,000

4,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(g) Pick Out of Hole

0 0.5 1 1.5 2 2.5

0

1,000

2,000

3,000

4,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(h) Pick Place

0 0.5 1 1.5 2 2.5

0

500

1,000

1,500

2,000

2,500

3,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(i) Pick Place Wall

0 0.5 1 1.5 2 2.5
0

1,000

2,000

3,000

4,000

5,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(j) Plate Slide Back Side

0 0.5 1 1.5 2 2.5

1,000

2,000

3,000

4,000

5,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(k) Plate Slide Back

0 0.5 1 1.5 2 2.5

1,000

2,000

3,000

4,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(l) Plate Slide Side

Figure 17: Results from all Metaworld (v2 variant) environments (Page 3).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0 0.5 1 1.5 2 2.5

1,000

2,000

3,000

4,000

5,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(a) Plate Slide

0 0.5 1 1.5 2 2.5

0

1,000

2,000

3,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(b) Push Back

0 0.5 1 1.5 2 2.5

0

1,000

2,000

3,000

4,000

5,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(c) Push

0 0.5 1 1.5 2 2.5

0

1,000

2,000

3,000

4,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(d) Push Wall

0 0.5 1 1.5 2 2.5

1,000

2,000

3,000

4,000

5,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(e) Reach

0 0.5 1 1.5 2 2.5

1,000

2,000

3,000

4,000

5,000

Environment Steps (×107)
Ep

is
od

ic
Re

tu
rn

,I
Q

M

(f) Reach Wall

0 0.5 1 1.5 2 2.5

0

1,000

2,000

3,000

4,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(g) Shelf Place

0 0.5 1 1.5 2 2.5

0

500

1,000

1,500

2,000

2,500

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(h) Soccer

0 0.5 1 1.5 2 2.5

0

1,000

2,000

3,000

4,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(i) Stick Pull

0 0.5 1 1.5 2 2.5

0

1,000

2,000

3,000

4,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(j) Stick Push

0 0.5 1 1.5 2 2.5

0

1,000

2,000

3,000

4,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(k) Sweep Into

0 0.5 1 1.5 2 2.5
0

1,000

2,000

3,000

4,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(l) Sweep

Figure 18: Results from all Metaworld (v2 variant) environments (Page 4).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0 0.5 1 1.5 2 2.5

1,000

2,000

3,000

4,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(a) Window Close

0 0.5 1 1.5 2 2.5

1,000

2,000

3,000

4,000

Environment Steps (×107)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(b) Window Open

Figure 19: Results from all Metaworld (v2 variant) environments (Page 5).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0

0.2

0.4

0.6

0.8

1

0.86 0.72 0.49 0.71 0.80

Re
la

tiv
e

Pe
rfo

rm
an

ce

(a) All Suites
0

0.2

0.4

0.6

0.8

1

0.87 0.75 0.50 0.74 0.84

Re
la

tiv
e

Pe
rfo

rm
an

ce

(b) All Envs

0

0.2

0.4

0.6

0.8

1

0.91 0.86 0.71 0.82 0.83

Re
la

tiv
e

Pe
rfo

rm
an

ce

(c) MujocoMaze
0

0.2

0.4

0.6

0.8

1

0.82 0.84 0.68 0.41 0.75

Re
la

tiv
e

Pe
rfo

rm
an

ce

(d) DMC

0

0.2

0.4

0.6

0.8

1

0.79 0.46 0.16 0.82 0.75

Re
la

tiv
e

Pe
rfo

rm
an

ce

(e) PyBullet
0

0.2

0.4

0.6

0.8

1

0.90 0.73 0.41 0.80 0.87

Re
la

tiv
e

Pe
rfo

rm
an

ce

(f) Metaworld

Figure 20: Aggregate results showing the mean and standard error (SE) of episodic reward across
all environments from all suites, with performance for each environment normalized relative to
its best-performing algorithm. Figure (a) is mean+SE over the results from all suites, excluding
MountainCar and our custom mazes. Figure (b) shows the mean+SE over all environments, including
MountainCar and our custom mazes.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

B Smoothness

B.1 Mean Squared Jerk

Jerk is defined as the rate of change of acceleration with respect to time. The approximation of jerk
depends on whether the actions represent speeds or accelerations. In both cases, jerk is numerically
derived by estimating the change in acceleration over time.

When actions represent speeds, jerk is approximated by first calculating acceleration (the derivative
of speed) and then computing the rate of change of acceleration. Given a discrete trajectory of speed
actions {𝑣1, 𝑣2, . . . , 𝑣𝑇 }, where 𝑣𝑡 represents the velocity at time 𝑡, the acceleration at time 𝑡 is given
by:

𝑎𝑡 =
𝑣𝑡+1 − 𝑣𝑡

Δ𝑡
.

The jerk is then calculated as the change in acceleration between consecutive time steps:

𝑗𝑡 =
𝑎𝑡+1 − 𝑎𝑡

Δ𝑡
.

Thus, when actions are speeds, we need to compute both acceleration and jerk, requiring two numerical
steps.

When actions represent accelerations, jerk is directly computed as the change in acceleration between
consecutive time steps. For a discrete trajectory of acceleration actions {𝑎1, 𝑎2, . . . , 𝑎𝑇 }, where 𝑎𝑡 is
the acceleration at time 𝑡, the jerk is given by:

𝑗𝑡 =
𝑎𝑡 − 𝑎𝑡−1

Δ𝑡
.

In this case, jerk is calculated in a single step, as it directly measures the change in acceleration.

The Mean Squared Jerk (MSJ) is then calculated as the average of the squared jerk values across the
trajectory:

MSJ =
1

𝑇 − 2

𝑇−2∑︁
𝑡=1

𝑗2𝑡 ,

where 𝑇 is the total number of steps in the trajectory.

This metric provides a quantitative measure of smoothness for action sequences. Lower MSJ values
indicate smoother trajectories, with less variation in the rate of acceleration. Whether the actions are
speeds or accelerations, the MSJ helps assess the smoothness of exploration in reinforcement learning,
as both the exploration noise and the learned policy dynamics influence the resulting jerk values.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

B.2 Smothness Results

Perlin Halfbeta Pink gSDE White

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(a) Swimmer 4 Rooms v1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(b) Point 4 Rooms v1

0 0.2 0.4 0.6 0.8 1

0

100

200

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(c) Ant 4 Rooms v1

0 0.2 0.4 0.6 0.8 1

0

100

200

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(d) Ant U Maze v1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(e) Swimmer U Maze v1

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(f) Point U Maze v1

0 1 2 3 4

0

100

200

300

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(g) Ant Fall v0

0 1 2 3 4
0

0.2

0.4

0.6

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(h) Point Corridor v1

0 1 2 3 4

0

100

200

300

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(i) Ant Corridor v1

0 1 2 3 4

0

100

200

300

400

500

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(j) Ant Push v1

0 1 2 3 4

0.1

0.2

0.3

0.4

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(k) Point Push v1

0 1 2 3 4

0.2

0.4

0.6

0.8

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(l) Point Fall v1

Figure 21: Smoothness (mean squared jerk, lower is better) on selected environments from
MujocoMaze (Page 1).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0 1 2 3 4

0.2

0.4

0.6

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(a) Swimmer Corridor v1

0 1 2 3 4

0

100

200

300

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(b) Ant Fall v1

0 1 2 3 4

0

100

200

300

400

Environment Steps (×106)
M

ea
n

Sq
ua

re
d

Je
rk

,I
Q

M
(c) Ant Push v0

0 1 2 3 4

0

0.2

0.4

0.6

0.8

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(d) Point Fall v0

0 1 2 3 4

0.1

0.2

0.3

0.4

0.5

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(e) Point Push v0

Figure 22: Smoothness (mean squared jerk, lower is better) on selected environments from
MujocoMaze (Page 2).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0 0.5 1 1.5 2

0

1

2

3

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(a) DMC Ball In Cup Catch

0 0.5 1 1.5 2

0

0.5

1

1.5

Environment Steps (×106)
M

ea
n

Sq
ua

re
d

Je
rk

,I
Q

M

(b) DMC CartPole Balance Sparse

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(c) DMC CartPole Swingup Sparse

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(d) DMC Cheetah Run

0 0.5 1 1.5 2

0

2

4

6

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(e) DMC Hopper Hop

0 0.5 1 1.5 2

0

0.1

0.2

0.3

0.4

Environment Steps (×106)
M

ea
n

Sq
ua

re
d

Je
rk

,I
Q

M

(f) DMC CartPole Three Poles

0 0.5 1 1.5 2

0

0.1

0.2

0.3

0.4

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(g) DMC CartPole Two Poles

0 0.5 1 1.5 2

0

5

10

15

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(h) DMC Quadruped Fetch

0 0.5 1 1.5 2

0

2

4

6

8

10

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(i) DMC Quadruped Run

0 0.5 1 1.5 2

0

2

4

6

8

10

12

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(j) DMC Quadruped Walk

0 0.5 1 1.5 2

0

5

10

15

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(k) DMC Stacker Stack 4

0 0.5 1 1.5 2

0

5 · 10−2

0.1

0.15

0.2

0.25

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(l) DMC Pendulum Swingup

Figure 23: Smoothness (mean squared jerk, lower is better) on selected environments from DMC
(Page 1).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0 0.5 1 1.5 2

0

2

4

6

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(a) DMC Reacher Hard

0 0.5 1 1.5 2

0

1

2

3

4

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(b) DMC Walker Run

0 0.5 1 1.5 2

0

0.1

0.2

0.3

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(c) Mountain Car Continuous

Figure 24: Smoothness (mean squared jerk, lower is better) on selected environments from DMC
(Page 2) and MountainCarContinuous.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0 0.5 1 1.5 2

0

2

4

6

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(a) PB Ant

0 0.5 1 1.5 2

0

1

2

3

4

5

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(b) PB Cheetah

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(c) PB Hopper

0 0.5 1 1.5 2

0

2

4

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(d) PB Walker

Figure 25: Smoothness (mean squared jerk, lower is better) on selected environments from PyBullet.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(a) Assembly

0 0.5 1 1.5 2 2.5

0

5 · 10−2

0.1

0.15

Environment Steps (×107)
M

ea
n

Sq
ua

re
d

Je
rk

,I
Q

M

(b) Basketball

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(c) Bin Picking

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(d) Box Close

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(e) Button Press Topdown

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

Environment Steps (×107)
M

ea
n

Sq
ua

re
d

Je
rk

,I
Q

M
(f) Button Press Topdown Wall

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(g) Button Press

0 0.5 1 1.5 2 2.5

0

5 · 10−2

0.1

0.15

0.2

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(h) Button Press Wall

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(i) Coffee Button

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(j) Coffee Pull

0 0.5 1 1.5 2 2.5

0

5 · 10−2

0.1

0.15

0.2

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(k) Coffee Push

0 0.5 1 1.5 2 2.5

0

5 · 10−2

0.1

0.15

0.2

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(l) Dial Turn

Figure 26: Smoothness (mean squared jerk, lower is better) from all Metaworld (v2 variant)
environments (Page 1).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(a) Disassemble

0 0.5 1 1.5 2 2.5

0

5 · 10−2

0.1

0.15

Environment Steps (×107)
M

ea
n

Sq
ua

re
d

Je
rk

,I
Q

M

(b) Door Close

0 0.5 1 1.5 2 2.5

0

5 · 10−2

0.1

0.15

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(c) Door Lock

0 0.5 1 1.5 2 2.5

0

5 · 10−2

0.1

0.15

0.2

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(d) Door Open

0 0.5 1 1.5 2 2.5

0

5 · 10−2

0.1

0.15

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(e) Door Unlock

0 0.5 1 1.5 2 2.5

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(f) Drawer Close

0 0.5 1 1.5 2 2.5

0

5 · 10−2

0.1

0.15

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(g) Drawer Open

0 0.5 1 1.5 2 2.5

0

5 · 10−2

0.1

0.15

0.2

0.25

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(h) Faucet Close

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(i) Faucet Open

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(j) Hammer

0 0.5 1 1.5 2 2.5

0

5 · 10−2

0.1

0.15

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(k) Hand Insert

0 0.5 1 1.5 2 2.5

0

5 · 10−2

0.1

0.15

0.2

0.25

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(l) Handle Press Side

Figure 27: Smoothness (mean squared jerk, lower is better) from all Metaworld (v2 variant)
environments (Page 2).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0 0.5 1 1.5 2 2.5

0

5 · 10−2

0.1

0.15

0.2

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(a) Handle Press

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

Environment Steps (×107)
M

ea
n

Sq
ua

re
d

Je
rk

,I
Q

M

(b) Handle Pull Side

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(c) Handle Pull

0 0.5 1 1.5 2 2.5

0

5 · 10−2

0.1

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(d) Lever Pull

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(e) Peg Insert Side

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

Environment Steps (×107)
M

ea
n

Sq
ua

re
d

Je
rk

,I
Q

M

(f) Peg Unplug Side

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(g) Pick Out of Hole

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(h) Pick Place

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(i) Pick Place Wall

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(j) Plate Slide Back Side

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(k) Plate Slide Back

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(l) Plate Slide Side

Figure 28: Smoothness (mean squared jerk, lower is better) from all Metaworld (v2 variant)
environments (Page 3).

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0 0.5 1 1.5 2 2.5

0

5 · 10−2

0.1

0.15

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(a) Plate Slide

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

Environment Steps (×107)
M

ea
n

Sq
ua

re
d

Je
rk

,I
Q

M

(b) Push Back

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(c) Push

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(d) Push Wall

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(e) Reach

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(f) Reach Wall

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(g) Shelf Place

0 0.5 1 1.5 2 2.5

0

0.1

0.2

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(h) Soccer

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(i) Stick Pull

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(j) Stick Push

0 0.5 1 1.5 2 2.5

0

2

4

6

8

·10−2

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(k) Sweep Into

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(l) Sweep

Figure 29: Smoothness (mean squared jerk, lower is better) from all Metaworld (v2 variant)
environments (Page 4).

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0 0.5 1 1.5 2 2.5

0

5 · 10−2

0.1

0.15

0.2

0.25

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(a) Window Close

0 0.5 1 1.5 2 2.5

0

5 · 10−2

0.1

Environment Steps (×107)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(b) Window Open

Figure 30: Smoothness (mean squared jerk, lower is better) from all Metaworld (v2 variant)
environments (Page 5).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

C HPs

Table 1: Base HPs (used for MountainCar, Custom Mazes, MujocoMaze, DMC)

Perlin White gSDE Pink HalfBeta

num parallel envs 4 4 4 4 4
number samples (n_steps) 2048 2048 2048 2048 2048
GAE 𝜆 0.95 0.95 0.95 0.95 0.95
discount factor 0.99 0.99 0.99 0.99 0.99

optimizer adam adam adam adam adam
epochs 10 10 20 10 10
learning rate 2.5e-4 2.5e-4 2.5e-4 2.5e-4 2.5e-4
use critic True True True True True
epochs critic 10 10 20 10 10
learning rate critic 2.5e-4 2.5e-4 3e-4 2.5e-4 2.5e-4
batch size 128 128 2048 128 128
SDE sampling frequency (ssf) n.a. n.a. 4 n.a. n.a.
𝑘speed 0.33 n.a. n.a. n.a. n.a.
𝛽-coefficient n.a. 0 n.a. 1 0.5
entropy coefficient 0 0 0 0 0

normalized observations True True True True True
normalized rewards True True True True True
PPO clip 0.2 0.2 0.2 0.2 0.2
max gradient norm 0.5 0.5 0.5 0.5 0.5

hidden layers [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
hidden layers critic [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
hidden activation tanh tanh tanh tanh tanh
initial std 1.0 1.0 1.0 1.0 1.0

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Table 2: PyBullet HPs

Perlin White gSDE Pink HalfBeta

num parallel envs 4 4 4 4 4
number samples (n_steps) 8192 8192 8192 8192 8192
GAE 𝜆 0.9 0.9 0.9 0.9 0.9
discount factor 0.99 0.99 0.99 0.99 0.99

optimizer adam adam adam adam adam
epochs 20 20 20 20 20
learning rate 3e-4 3e-4 3e-4 3e-4 3e-4
use critic True True True True True
epochs critic 20 20 20 20 20
learning rate critic 3e-4 3e-4 3e-4 3e-4 3e-4
batch size 128 128 128 128 128
SDE sampling frequency (ssf) n.a. n.a. n.a. n.a. n.a.
𝑘speed 0.33 0.33 0.33 0.33 0.33
𝛽-coefficient n.a. 0 n.a. 1 0.5
entropy coefficient 0 0 0 0 0

normalized observations True True True True True
normalized rewards True True True True True
PPO clip 0.4 0.4 0.4 0.4 0.4
max gradient norm 0.5 0.5 0.5 0.5 0.5

hidden layers [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
hidden layers critic [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
hidden activation tanh tanh tanh tanh tanh
initial std 0.33 0.33 0.33 0.33 0.33

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Table 3: Metaworld HPs

Perlin White gSDE Pink HalfBeta

num parallel envs 4 4 4 4 4
number samples (n_steps) 16000 16000 16000 16000 16000
GAE 𝜆 0.95 0.95 0.95 0.95 0.95
discount factor 0.99 0.99 0.99 0.99 0.99

optimizer adam adam adam adam adam
epochs 10 10 10 10 10
learning rate 1e-3 1e-3 1e-3 1e-3 1e-3
use critic True True True True True
epochs critic 10 10 10 10 10
learning rate critic 1e-3 1e-3 1e-3 1e-3 1e-3
batch size 500 500 500 500 500
SDE sampling frequency (ssf) n.a. n.a. n.a. n.a. n.a.
𝑘speed 0.33 0.33 0.33 0.33 0.33
𝛽-coefficient n.a. 0 n.a. 1 0.5
entropy coefficient 0 0 0 0 0

normalized observations True True True True True
normalized rewards True True True True True
PPO clip lin* lin* lin* lin* lin*
max gradient norm 0.5 0.5 0.5 0.5 0.5

hidden layers [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
hidden layers critic [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
hidden activation tanh tanh tanh tanh tanh
orthogonal initialization True True True True True
initial std 1.0 1.0 1.0 1.0 1.0

*Linear schedule from 0.25 to 0.01 during first 2/3 of training, then continued with 0.01.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

D Derivations

D.1 Perlin Noise Has Zero Mean

We aim to show that Perlin noise has a zero mean. Let AntiPerlin(𝑥) denote the inverse of Perlin noise, defined
as:

AntiPerlin(𝑥) = −Perlin(𝑥).

D.1.1 Construction of AntiPerlin from Perlin

The Perlin noise function is constructed by generating unit-length gradient vectors at lattice points and
interpolating between them. To construct AntiPerlin(𝑥), we can simply flip the sign of all gradient vectors used
in the construction of Perlin noise:

gAnti
i = −gi,

where gi is a gradient vector at lattice point i.

This transformation yields AntiPerlin(𝑥) = −Perlin(𝑥), since flipping the sign of all gradients results in the
negation of the entire noise function.

D.1.2 Equivalence of Distributions

Perlin noise gradients are uniformly sampled from a distribution 𝑃(𝑔). Therefore, the probability of sampling a
gradient 𝑔 is equal to the probability of sampling −𝑔:

𝑃(𝑔) = 𝑃(−𝑔).

As a result, the distribution of gradients used to generate Perlin(𝑥) is identical to that used for AntiPerlin(𝑥).
Thus, AntiPerlin(𝑥) follows the same distribution as Perlin(𝑥) under random seeds of the PRNG.

D.1.3 Conclusion

Since AntiPerlin = −Perlin and both functions are equal in distribution, it must be that

E[Perlin] = E[−Perlin],

which implies that Perlin noise is symmetric around zero and has a zero mean.

D.2 Finite Moments of Perlin Noise

D.2.1 Boundedness of Perlin Noise

Perlin noise is generated by summing weighted dot products between unit-length gradient vectors and
displacements from lattice points in a hypercube. Given a point x ∈ R𝑛, the Perlin noise value is computed as:

Perlin(x) =
∑︁
i∈I

(
di

𝑛∏
𝑘=1

Φ(𝑥𝑘 − 𝑖𝑘)
)
,

where: I is the set of 2𝑛 surrounding lattice points, di = gi · (x − i) is the dot product between the unit gradient
vector gi and the displacement x − i, Φ(𝑡) = 3𝑡2 − 2𝑡3 is the smooth interpolation function.

D.2.2 Boundedness of Individual Components

Dot Products: Since the gradient vectors gi are unit-length (∥gi∥ = 1) and each component of the displacement
(𝑥𝑘 − 𝑖𝑘) lies in the interval [0, 1], each dot product di is bounded:

|di | ≤ 𝐷,

where 𝐷 =
√
𝑛, the maximum value when the displacement vector is (1, 1, . . . , 1) and the gradient vector is

aligned with the displacement.

Interpolation Function: The interpolation function Φ(𝑡) satisfies 0 ≤ Φ(𝑡) ≤ 1 for 𝑡 ∈ [0, 1]. Therefore, the
product

∏𝑛
𝑘=1 Φ(𝑥𝑘 − 𝑖𝑘) is also bounded between 0 and 1.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

D.2.3 Boundedness of Perlin Noise Value

Each term in the Perlin noise sum is the product of a bounded dot product and a bounded interpolation factor�����di

𝑛∏
𝑘=1

Φ(𝑥𝑘 − 𝑖𝑘)
����� ≤ 𝐷.

Since there are 2𝑛 terms in the sum (one for each surrounding lattice point), the Perlin noise value is bounded by

|Perlin(x) | ≤ 𝐶,

where 𝐶 = 2𝑛𝐷.

D.2.4 Finite Moments

For a bounded random variable 𝑋 with |𝑋 | ≤ 𝐶, all moments of any order 𝑘 ≥ 1 are finite:

𝐸 [|𝑋 |𝑘] ≤ 𝐶𝑘 .

Applying this to the Perlin noise:
𝐸 [|Perlin(x) |𝑘] ≤ 𝐶𝑘 ,

which confirms that all moments of the Perlin noise are finite.

D.2.5 Conclusion

The bounded nature of the Perlin noise function ensures that all its moments, regardless of order, are finite. This
holds true due to the bounded dot products, the bounded interpolation function, and the finite number of terms in
the summation. Thus, we conclude that the Perlin noise has finite moments of all orders.

D.3 Analyticity of the Normalization Function

We aim to show that the normalization function 𝑁 (𝑥), which transforms Perlin noise into a Gaussian-like
distribution, is analytic. An analytic function is one that is infinitely differentiable and can be represented as a
polynomial expansion around a point 𝑥0.

D.3.1 Smoothness of Perlin Noise

Perlin noise is generated using smooth gradient functions. As these gradients are continuous and differentiable,
the Perlin noise function 𝑃(𝑥, 𝑦) inherits these properties, making it smooth and infinitely differentiable.

D.3.2 Construction of the Normalization Function

The normalization function 𝑁 (𝑥) maps Perlin noise values to a standard Gaussian-like distribution. If 𝐹 (𝑥) is
the cumulative distribution function (CDF) of Perlin noise, we can express 𝑁 (𝑥) using the inverse CDF of the
standard normal distribution Φ−1:

𝑁 (𝑥) = Φ−1 (𝐹 (𝑥)).

D.3.3 Smoothness of the Transformation

Since the CDF 𝐹 (𝑥) of Perlin noise is smooth and the inverse Gaussian CDF Φ−1 (𝑥) is smooth, their composition
𝑁 (𝑥) = Φ−1 (𝐹 (𝑥)) is also smooth and infinitely differentiable.

D.3.4 Conclusion

Because 𝑁 (𝑥) is infinitely differentiable, it is analytic and can thus be expressed as a polynomial expansion.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

E Additional Figures

(a) White noise

(b) Perlin noise

Figure 31: Comparison of Sampled Trajectories via White noise or Perlin noise.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

(a) White Noise (b) Pink Noise

(c) Perlin (d) Dirty Perlin

Figure 32: Particles driven by noise ’exploring’ a box.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
3

2

1

0

3 2 1 0 1
0.0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

2

1

0

1

3 2 1 0 1 2
0.0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

2

1

0

1

2 1 0 1 2
0.0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

1

0

1

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

Figure 33: Multiple simulations for Pink noise.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
3

2

1

0

1

2

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

(a) 𝑘speed = 0.2

0 20 40 60 80 100
2

1

0

1

2

3

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

(b) 𝑘speed = 0.1

0 20 40 60 80 100
1.5

1.0

0.5

0.0

0.5

1.0

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

(c) 𝑘speed = 0.05

0 20 40 60 80 100

0.5

0.0

0.5

1.0

1.5

2.0

2 1 0 1 2
0.0

0.1

0.2

0.3

0.4

0.5

(d) 𝑘speed = 0.01

Figure 34: Perlin noise with different 𝑘speed settings.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
2

1

0

1

2

4 3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

(a) Harmonic Perlin Noise with 𝑛 = 4 octaves.

0 20 40 60 80 100

1

0

1

2

3

4 3 2 1 0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

(b) Harmonic Perlin Noise with 𝑛 = 32 octaves.

Figure 35: Harmonic Perlin with 𝑘speed = 0.05.

F Further Compositional Noises for RL

Harmonic Perlin is constructed by superimposing multiple Perlin noise functions with different frequencies and
amplitudes. This allows us to construct fractal noises, that have more complex noise pattern and have richer
substructures while trading away some of the smoothness. We describe the individual Perlin noises as octaves.
While potentially any kind of mixture based on different frequencies and amplitudes is possible, we can reduce
the number of additional hyperparameters by enforcing the relation between these to follow the harmonic series.
As such Harmonic Perlin will be described by (formula shown is missing a correction term to ensure 𝜎 = 1)

HarmonicPerlin(𝑥) =
∑𝑛
𝑖=1

1
2𝑖 P𝑖 (𝑥)∑𝑛
𝑖=1

1
2𝑖

,

where 𝑘speed for P𝑖 is set to 2𝑛 · 𝑘speed.

As a way to efficiently approximate Harmonic Perlin with a large number of octaves we propose Dirty Perlin by
defining

DirtyPerlin(𝑥) = 𝑓 𝜖 + (1 − 𝑓)P(𝑥)√︁
𝑓 2 + (1 − 𝑓)2

,

where 𝜖 ∼ N(0, 1) and 𝑓 = 𝑘𝑑𝑖𝑟𝑡 𝑦_𝑟𝑎𝑡𝑖𝑜 .

We can use these two noises for exploration in the same fashion as already described for Perlin noise. While
these compositions allow us to design elaborate exploration noises with desired properties, we must also question
whether this is a good idea. Is a method that achieves better performance than another, while requiring more
HPs, actually better? Or are we just shiting the work of solving the task from the RL algorithm to the researcher
in charge of HP tuning? In our view, every added hyperparameter increases the risk of overfitting them to the
tasks, making it challenging to determine whether the ML algorithm truly represents an improvement on its own.

For low numbers of octaves we observe the desired smooth substructures overlayed with the Perlin of the first
harmonic (can be seen in Figure 35 (a)). Higher octaves lead to less smooth trajectories. High number of octaves
(can be seen in Figure 35 (b)) behave similar to Pink noise, in that we observe long terms trends, while generating
unsmooth trajectories. Contrary to Pink noise, our samples remain to be on-policy. The empirical parameters
remain close to the policy parameters.

Dirty Perlin (Figure 36) behaves similar to high octave Harmonic Perlin, while being a lot cheaper computationally
and can therefore be used as an approximation of high octave Harmonic Perlin.

Figure 32 shows the exploration behavior in 2D as a combination the general behavior of Perlin with unsmooth
substructures.

We present these additional noise methods as they may be of interest to the reader. While preliminary tests did
not show statistically significant overperformance, further experiments were not conducted. We also see the
danger of bloating the exploration method with unnecessary complexity and additional HPs. The codebase we
provide includes implementations for testing these noise types, allowing for easy experimentation.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100

2

0

2

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

Figure 36: Dirty Perlin Noise with 𝑘dirty_ratio = 1
3 .

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

G Pseudocode �
1 import math
2

3 def interpolate(a0, a1, t):
4 # Smoothstep interpolation
5 w = t * t * (3 - 2 * t)
6 return (a1 - a0) * w + a0
7

8 def random_gradient(ix, iy):
9 # Generate a pseudo-random angle based on coordinates

10 angle = hash((ix, iy)) % (2 * math.pi)
11 return (math.cos(angle), math.sin(angle))
12

13 def dot_grid_gradient(gradients , ix, iy, x, y):
14 gradient = gradients[(ix, iy)]
15 dx, dy = x - ix, y - iy
16 return dx * gradient[0] + dy * gradient[1]
17

18 def perlin(x, y):
19 # Determine grid cell coordinates
20 x0, x1 = math.floor(x), math.floor(x) + 1
21 y0, y1 = math.floor(y), math.floor(y) + 1
22

23 # Precompute gradients for the grid points
24 gradients = {
25 (x0, y0): random_gradient(x0, y0),
26 (x1, y0): random_gradient(x1, y0),
27 (x0, y1): random_gradient(x0, y1),
28 (x1, y1): random_gradient(x1, y1)
29 }
30

31 # Determine interpolation weights
32 sx, sy = x - x0, y - y0
33

34 # Compute dot product at each grid point
35 v00 = dot_grid_gradient(gradients , x0, y0, x, y)
36 v10 = dot_grid_gradient(gradients , x1, y0, x, y)
37 v01 = dot_grid_gradient(gradients , x0, y1, x, y)
38 v11 = dot_grid_gradient(gradients , x1, y1, x, y)
39

40 # Perform smoothstep interpolation
41 i1 = interpolate(v00, v10, sx)
42 i2 = interpolate(v01, v11, sx)
43

44 # Final smoothstep interpolation in the y dimension
45 return interpolate(i1, i2, sy)�

Listing 1: 2D Perlin Noise ’Pseudocode’ (actually valid Python)

49

	Introduction
	Background and Related Works
	Exploration in Reinforcement Learning
	Perlin Noise

	Perlin Noise for Exploration in Reinforcement Learning
	Sampling Actions using Perlin
	The Normalization Function for Perlin Noise
	Comparison of Sampling Behavior to existing noises

	Experiments
	MountainCar (Gymnasium)
	Custom Mazes
	MujocoMaze
	DMC
	PyBullet
	Metaworld

	Discussion
	Conclusion & Limitations
	Results
	Smoothness
	Mean Squared Jerk
	Smothness Results

	HPs
	Derivations
	Perlin Noise Has Zero Mean
	Construction of AntiPerlin from Perlin
	Equivalence of Distributions
	Conclusion

	Finite Moments of Perlin Noise
	Boundedness of Perlin Noise
	Boundedness of Individual Components
	Boundedness of Perlin Noise Value
	Finite Moments
	Conclusion

	Analyticity of the Normalization Function
	Smoothness of Perlin Noise
	Construction of the Normalization Function
	Smoothness of the Transformation
	Conclusion

	Additional Figures
	Further Compositional Noises for RL
	Pseudocode

