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Abstract

Reinforcement Learning (RL) enables agents to solve tasks by autonomously
acquiring policies by interacting with the environment receiving sparse or noisy
feedback in the form of a reward. However, achieving successful optimization in RL
requires efficient exploration, which remains a significant challenge, particularly
in continuous action spaces. Existing exploration techniques often exhibit limited
state-space reach and fail to overcome local optima, resulting in suboptimal policies.
Additionally, these techniques can cause erratic movements, posing risks when
applied to real-world robots. In this work, we introduce a novel exploration strategy
leveraging Perlin Noise, a gradient noise function that generates smooth, continuous
disturbances, thus enhancing the agent’s performance by promoting structured
exploration and fluid motions. We quantitatively demonstrate the benefits of our
approach compared to state-of-the-art methods, showing that it outperforms both
unstructured and structured techniques in thorough experimental evaluations.

1 Introduction

It is well known that exploration in Reinforcement Learning (RL) is essential to successfully train the
agent (Jiang et al., 2023). The policy is updated based on reward feedback to generate actions that
control the agent to high-reward state regions. Visiting unseen and novel states in a broad range of the
state space during this optimization is therefore essential to overcoming sub-optimal policies and
converging to a high-performing policy. At the same time, the agent should explore the state space
smoothly to prevent damage to itself (Raffin et al., 2022).

In the discrete action space, exploration has been addressed by various strategies such as epsilon
greedy exploration (Amini & Solemany, 2008), Boltzmann exploration (Derthick, 1984; Amini &
Solemany, 2008), or upper confidence bounds (Mizukami et al., 2017). Similarly, there has been
extensive research on exploration strategies for continuous action spaces in the RL community
(Fortunato et al., 2018; Osband et al., 2016; Plappert et al., 2018). Commonly RL methods rely on
simple exploration strategies such as factorized Gaussian noise where in each decision step the action
emerges by sampling from a Gaussian distribution (Schulman et al., 2017; 2015; Haarnoja et al., 2018).
While these simple exploration strategies ensure good local exploratory behavior (see Fig. 1(a)), they
might lack exploring relevant state-action regions that are far away from the initialization and might
result in poor performance (Schumacher et al., 2023; Raffin et al., 2022). Additionally, the resulting
motions are usually shaky and might damage agents such as robots (Raffin et al., 2022). Researchers
have therefore proposed different exploration strategies to mitigate the aforementioned issues.

(a) White Noise (b) Pink Noise (c) Perlin Noise

Figure 1: An agent propelled by random actions sampled from different noises ’exploring’ a 2D box.
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Intrinsic motivation-based methods (Pathak et al., 2017; Burda et al., 2019) augment the objective
function for the policy update with novelty functions that reward the agent if novel state spaces are
visited. Alternative approaches apply exploration on the trajectory level by applying Gaussian noise
in the parameter space that represents a trajectory rather than applying noise in each decision step
(Otto et al., 2022; 2023; Celik et al., 2021; 2024; Li et al., 2023; 2024). However, these methods
require additional treatment of the underlying optimization method by changing the objectives or
introducing higher-level abstractions of the actions. In contrast, methods proposed by (Raffin et al.,
2022; Eberhard et al., 2023; Hollenstein et al., 2024), propose simply exchanging the underlying
exploration mechanism while maintaining the RL method.

This work proposes Perlin noise for exploration in RL for continuous action spaces, inspired
by techniques from computer graphics (Perlin, 1985). Perlin noise generates smooth, temporally
correlated disturbances by assigning random gradient vectors to points on a grid and interpolating
between them, creating continuous transitions across space. The noise value at any given point is
calculated by taking the dot product between the surrounding grid gradients and the vectors to that
point, then blending these values using interpolation to ensure naturally flowing patterns.

We introduce a process to turn Perlin noise into a tractable distribution, allowing its usage as a drop-in
replacement for White noise in Gaussian policies commonly used in RL algorithms such as PPO
(Schulman et al., 2017), TRPO (Schulman et al., 2015), TRPL (Otto et al., 2021), and SAC (Haarnoja
et al., 2019). This approach preserves the structure of these algorithms, requiring no modifications to
their core objective functions or abstractions of actions.

In a qualitative analysis of Perlin noise compared to other exploration strategies, we show that it
produces smoother and more coherent trajectories, leading to higher state-space coverage and broader
exploration (see Fig. 1(c)).

We conduct extensive quantitative experiments on various benchmark environments, comparing
Perlin noise to state-of-the-art exploration strategies, such as generalized State-Dependent Exploration
(gSDE), White noise, and colored noise (Eberhard et al., 2023; Hollenstein et al., 2024), across
multiple environments from diverse benchmark suites (Tunyasuvunakool et al., 2020; Yu et al., 2019;
Kanagawa, 2023; Ellenberger, 2018; Towers et al., 2024). The results demonstrate that Perlin noise
is capable of solving hard exploration problems, outperforming or performing on par with these
baselines in both state-space coverage and task performance.

2 Background and Related Works

2.1 Exploration in Reinforcement Learning

For RL algorithms, it is important to effectively balance exploitation and exploration, which is crucial
for discovering new behaviors in the environment to achieve optimal performance while avoiding
local optima.

Action noise is the most common and simplest exploration method for continuous control, utilized
by various RL algorithms (Schulman et al., 2015; 2017; Otto et al., 2022; Haarnoja et al., 2019;
Abdolmaleki et al., 2018). Specifically, most agents leverage white noise, i.e., noise from an
independent Gaussian distribution at each step, by sampling from a stochastic policy. While white
noise can help in exploring new actions, it often leads to unstructured and jerky movements, which
can be problematic in robotic applications (Peters et al., 2010; Otto et al., 2023). Maximum entropy
RL, which typically also leverages white noise, further encourages exploration by adding an entropy
term to the reward function, promoting policies that maximize both expected return and entropy.
This approach results in more stochastic policies, thus enhancing exploration (Ziebart et al., 2010;
Haarnoja et al., 2019).

Instead of white noise, Lillicrap et al. (2015) applies Ornstein-Uhlenbeck noise as actions noise. More
recently, colored noises (Eberhard et al., 2023; Hollenstein et al., 2024) have also been introduced
in deep RL, which incorporate temporally correlated disturbances instead of the traditionally used
uncorrelated white noise. This temporal correlation leads to more structured exploration patterns,
potentially enhancing exploration efficiency and performance in certain environments. With a similar
goal, Rückstieß et al. (2008); Raffin et al. (2022) propose random sampling of a function for each
episode that deterministically modifies action selection. Additionally, Schumacher et al. (2023)
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(a) 1D Perlin (b) 2D Perlin

Figure 2: Examples of 1D and 2D Perlin noise. (a) 1D Perlin noise shows smooth transitions
along a single dimension, while (b) 2D Perlin noise creates a continuous, organic texture across two
dimensions, often used for procedural texture generation.

explore learning correlations between action and state space dimensions. Alternatively, perturbing
policy parameters instead of the actions themselves has been suggested (Plappert et al., 2018; Mania
et al., 2018). A hybrid approach involves adding action noise to the entire trajectory by planning
actions in the trajectory space (Otto et al., 2022; 2023; Celik et al., 2021; 2024; Li et al., 2023; 2024).

In addition to action noise, previous research (Thrun, 1992; Tang et al., 2017; Burda et al., 2018;
2019; Pathak et al., 2017) has incorporated novelty and intrinsic rewards to encourage exploration of
previously unseen areas of the search space. Furthermore, insights from the bandit literature, such
as Thompson sampling (Russo et al., 2018; Osband et al., 2016), can also be leveraged to enhance
exploration strategies.

2.2 Perlin Noise

Perlin noise (Perlin, 1985), is a gradient noise function widely employed in computer graphics (Perlin,
1985; 2002; Bennett, 2019), simulations (Li et al., 2017), and scientific modeling (Ebert et al., 2002).
It generates coherent, continuous, and seemingly random patterns that can be defined for spaces of
arbitrary dimensions. Examples of Perlin noise spanned in one and two dimensions can be seen in
Figure 2.

The process of computing Perlin noise at a point x = (𝑥1, . . . , 𝑥𝑛) follows four steps:

Identify Surrounding Lattice Points. We identify the 2𝑛 surrounding lattice points i ∈ Z𝑛 that form
the corners of the hypercube containing x. These points are given by the set

I = {i = (𝑖1, 𝑖2, . . . , 𝑖𝑛) | 𝑖𝑘 ∈ {⌊𝑥𝑘⌋, ⌊𝑥𝑘⌋ + 1} for 𝑘 = 1, 2, . . . , 𝑛}.

Gradient Generation. Perlin noise is spanned from randomly sampled gradients (see Figure 3(a));
for each lattice point i ∈ I, we uniformly sample a unit-length gradient vector gi using a Pseudo
Random Number Generator (PRNG), that is deterministic given a (i, seed) pair via

gi = PRNG(i, seed), with | |gi | | = 1.

Dot Products. Each vertex gradient induces a hyperplane (see Figure 3(b)); for each lattice point i ∈ I,
the dot product between the gradient vector gi and the displacement between x and i is computed as

di = gi · (x − i) =
𝑛∑︁

𝑘=1
𝑔𝑘 (i) (𝑥𝑘 − 𝑖𝑘).

Interpolation. In order to have the final value smoothly vary across the edges of the different
hyperplanes of the surrounding 2𝑛 vertices, a smooth interpolation function is applied (see Figure 3(c)).
We use smoothstep, as given by Φ(𝑡) = 3𝑡2 − 2𝑡3. The final Perlin noise value is then the weighted
sum of the dot products

Perlin(x) =
∑︁
i∈I

(
di

𝑛∏
𝑘=1

Φ(𝑥𝑘 − 𝑖𝑘)
)
.
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(a) Gradient Generation (b) Dot Product (c) Interpolation

Figure 3: Visualization of the steps involved in generating 2D Perlin noise. (a) Gradient vectors are
randomly generated at the lattice points surrounding a given point. (b) Dot products are computed
between each gradient vector and the displacement vector from the lattice point to the given point.
(c) The final Perlin noise value is obtained by smoothly interpolating these dot products to ensure
continuity across the grid.

We can regard any sampling from Perlin noise as sampling from a finite-dimensional subspace of an
infinite-dimensional distribution, since

Perlin(𝑥1, . . . , 𝑥𝑛) = Perlin(𝑥1, . . . , 𝑥𝑛, 0, . . . , 0).
This holds because, in the additional dimensions, 𝑥𝑘 = 0 results in the interpolation Φ(0) = 1, and
the dot products vanish since 𝑥𝑘 − 𝑖𝑘 = 0 for 𝑘 > 𝑛. Consequently, the noise function reduces to the
𝑛-dimensional case.

A pseudocode implementation for 2D Perlin noise can be found in Appendix G.

3 Perlin Noise for Exploration in Reinforcement Learning

Many RL methods, such as PPO (Schulman et al., 2017), TRPO (Schulman et al., 2015), TRPL
(Otto et al., 2021), require calculating the likelihood of the current policy. This calculation becomes
challenging when naively using Perlin noise, as the underlying probability density function generating
these samples is unclear. Others generate gradients via reparameterization, e.g. SAC (Haarnoja et al.,
2019). We can ensure correct operation and gradient generation for both these cases by ensuring the
Perlin samples to follow the Gaussian policy distribution normally used in these methods. This also
ensures Perlin-based exploration is usable as a drop-in replacement.

3.1 Sampling Actions using Perlin

Perlin noise on its own does not follow a Gaussian distribution and is not related to it. To use Perlin
noise for smooth exploration, we wish to generate noise that aligns with the policy, which we continue
to model as a Gaussian distribution. For a given state 𝑠𝑡 , sampling from a Gaussian policy with mean
𝜇𝜋 and covariance Σ = 𝐿𝑇

Σ
𝐿Σ is formalized as

𝑎𝑡 = 𝜇𝜋 + 𝐿Σ𝜖, 𝜖 ∼ N(0, 1),
where 𝐿Σ is the Cholesky factor of the covariance. Sampling 𝜖 ∼ N(0, 1) leads to generating samples
from the parameterized Gaussian policy. However, for sampling actions from a policy that applies
Perlin noise, we reformulate the sampling process to

𝑎𝑡 = 𝜇𝜋 + 𝐿Σ𝜖, 𝜖 ∼ P(𝑥, 𝑦), where P𝑖 (𝑥, 𝑦) = Normalize(Perlin𝑖 (𝑥, 𝑦)).
We sample from Perlin noise with 𝑥 = 𝑡 · 𝑘𝑠𝑝𝑒𝑒𝑑 and 𝑦 = 𝑖 · 𝑘𝑜 𝑓 𝑓 𝑠𝑒𝑡 , where 𝑡 is the timestep index and
𝑖 is the action dimension index. These define the sampling line, as depicted in Figure 4. Since Perlin
passes through 0 at each vertex, we consider 2D Perlin noise, where the parameter 𝑘𝑜 𝑓 𝑓 𝑠𝑒𝑡 shifts the
sampling line away from integer coordinates, and the parameter 𝑘𝑠𝑝𝑒𝑒𝑑 defines how fast the noise
changes over time.

While 𝑘𝑠𝑝𝑒𝑒𝑑 is treated as a tunable hyperparameter, 𝑘𝑜 𝑓 𝑓 𝑠𝑒𝑡 is set to a constant value (e.g., 𝜋), as in
our experiments it showed negligible impact on performance for reasonable choices.
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o

Environment

Policy

seed, 

Normalize

Figure 4: A schematic illustrating the integration of our Perlin noise sampling method into an existing
RL algorithm (left), alongside a visualization of the sampling lines in 2D Perlin noise (right).

The computational complexity of our approach to sampling via Perlin noise is 𝑂 (𝑎 · 𝑛 · 2𝑛), where 𝑎

is the action dimensionality and 𝑛 is the dimensionality of the spanned Perlin noise (fixed at 2 in our
case). The added overhead is negligible compared to other noise generation methods.

The function Normalize transforms Perlin noise samples to match standard normal moments, as
described in the next section. This enables its use in RL methods, supporting log-likelihood gradient
estimation (e.g., PPO, TRPL) and reparameterization-based approaches (e.g., SAC) without modifying
existing procedures.

3.2 The Normalization Function for Perlin Noise

In order to establish the existence of an appropriate normalization function, we consider that Perlin
noise inherently centers itself around zero, a characteristic stemming from its generation mechanism
(derivation in Appendix D.1). Further, the autocorrelation function 𝜌(𝑘), governing the relationship
between two samples 𝑥𝑖 and 𝑥 𝑗 , clearly exhibits a diminishing trend as the lag parameter 𝑘 = 𝑗 − 𝑖

approaches infinity. Consequently, the Central Limit Theorem (CLT) becomes applicable, asserting
that the expected empirical mean of our samples converges to 𝜇 = 0. Furthermore, due to Perlin’s
construction, it restricts its moments to finite orders beyond the second (derivation in Appendix D.2).
Making use of Asymptotic Normality, we can deduce that the empirical variance will tend towards a
constant as the sample size grows sufficiently large.

We construct Normalize(𝑥) as a polynomial expansion of degree 𝑀

Normalize(𝑥) =
𝑀∑︁
𝑛=0

𝑐𝑛𝑥
𝑛.

This parameterization is justified as Normalize(𝑥) is an analytic function (derivation in Appendix D.3).
Since Perlin already has 𝜇 = 0, it follows that 𝑐0 = 0.

We find a suitable Normalize(𝑥) function via the optimization problem
min

𝑐1 ,𝑐2 ,...,𝑐𝑀
𝐸 (𝑐1, 𝑐2, . . . , 𝑐𝑀 ),

where 𝐸 is the error function that enforces the empirical moments of the transformed Perlin noise to
match the theoretical moments (mean, variance, skewness, etc.) of a standard normal distribution
N(0, 1). The error function is defined as

𝐸 (𝑐1, 𝑐2, . . . , 𝑐𝑀 ) =
𝑘∑︁

𝑚=1

(
1
𝑁

𝑁∑︁
𝑖=1

Normalize(𝑥𝑖)𝑚 − 𝜇𝑚

)2

,

where 𝜇𝑚 are the theoretical moments of N(0, 1), and 𝑥𝑖 are the Perlin noise samples.

This optimization must only be performed once to find a suitable Normalize function and is not part
of the training or inference loop. We experimentally validate this normalization and provide the
results in subsection 3.3. Our implementation of this normalization function is available on GitHub1.
We found an expansion to first order to be sufficient to achieve accurate normalization.

1https://github.com/perlin-rl/Perlin_RL
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(c) Perlin Noise

Figure 5: The top diagrams illustrate action trajectories for different noise types sampled from a
static Gaussian policy N(0, 1). The bottom diagrams present histograms, with the solid black curves
representing the true policy distribution and the dotted black lines a bell curve matched to the actual
samples.

3.3 Comparison of Sampling Behavior to existing noises

To analyze the sampling behavior of various exploration noises, we first focus on their application
to a static Gaussian policy distribution N(0, 1), without considering an RL setup. The diagrams
in Figure 5 show the resulting samples. The top diagrams depict 100 steps of the trajectory over
time, while the bottom ones display histograms of 2000 sampled steps, with the solid black curves
representing the true policy distribution. Additionally, the dotted black lines in the histograms match
a bell curve to the actual samples, providing a visual comparison of how well the noise types conform
to the expected distribution. We provide a Google Colab2 that allows testing various parameters and
replicating these results.

White Noise (Figure 5(a)) is the default noise used in Random Exploration (REX). As expected, the
empirical mean and variance align closely with the parameters of the Gaussian policy. However,
because the disturbances are sampled independently at each time step, the resulting motions are
jerky and unstructured. In physical systems like robotics, these sudden, erratic movements can cause
damage. Furthermore, White noise fails to achieve significant displacement in the state-space, limiting
the range of exploration, as shown in Figure 1(a), where a particle driven by White noise spends most
of its time in a limited area.

Colored Noise (Figure 5(b)), such as Pink noise, introduces temporal correlations into the disturbances,
allowing for more structured movements and greater displacement in the state-space. While colored
noise theoretically converges to the true policy distribution as sample size approaches infinity, in
practice, with finite rollouts, there can be a significant mismatch between the empirical and true policy
parameters. This can lead to suboptimal exploration, as the agent may over-explore or get stuck, as
shown in Figure 1(b), where a particle driven by Pink noise spends much of its time against walls.

gSDE cannot be evaluated independently, as its noise generation depends on the latent activations
of the policy network’s last hidden layer. Consequently, the behavior of gSDE varies between
tasks and across different stages of training. While gSDE provides smooth, structured motions, its
realized variance depends on the neural network’s architecture and weight initialization, making it
less consistent. The periodic resampling mechanism introduces some discontinuity, but overall, gSDE
smooths the exploration trajectory compared to White and Colored noise.

Perlin Noise (Figure 5(c)) provides a smooth and temporally correlated alternative to both White and
Colored noise without relying on periodic resampling. The smoothness of the trajectory is controlled
by a speed parameter, making it easier to tune and adapt across environments. Unlike gSDE, Perlin
noise is not dependent on the architecture of the neural network or the latent activations, leading to
more predictable and consistent behavior. As shown in Figure 5(c), Perlin noise achieves structured
exploration with minimal drift from the true policy parameters, even in finite rollouts. This makes it
particularly suited for on-policy exploration. In the exploration box scenario (Figure 1(c)), Perlin
noise successfully escapes the box, similar to Pink noise, but without the drawbacks of getting stuck
against walls.

2https://colab.research.google.com/drive/1-t7WmGCwEgkZWuriRN3dsuy5fmU34v9x

6

https://colab.research.google.com/drive/1-t7WmGCwEgkZWuriRN3dsuy5fmU34v9x


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0 0.5 1 1.5 2

0

20

40

60

80

100

Environment Steps (×106)

Ep
is

od
ic

Re
tu

rn
,I

Q
M

(a) MountainCar Reward
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(b) MountainCar Jerk
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(c) Meta/Push Reward
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(d) Meta/Push Jerk

Figure 6: Achieved episodic reward and smoothness (measured as mean squared jerk, lower is better)
on MountainCarContinuous-v0 and Metaworld/push-v2.

4 Experiments

We evaluate the performance of Perlin noise-based exploration against existing methods, including
generalized State-Dependent Exploration (gSDE), White noise, Pink noise, and HalfBeta noise.
We use the term HalfBeta noise to refer to colored noise with 𝛽 = 0.5, which was found to be the
optimal coefficient for on-policy settings in Hollenstein et al. (2024). Benchmarking exploration
capabilities can be particularly challenging, as many established environments were designed with
current algorithms in mind. To address this, we introduce custom maze environments that present
difficult exploration tasks. Additionally, we assess the performance of Perlin noise across a wide
range of standard benchmark suites to ensure a comprehensive evaluation against state-of-the-art
(SOTA) methods.

We use on-policy reinforcement learning, specifically Proximal Policy Optimization (PPO), for
all experiments. The performance of the noise on each environment was evaluated using 20 runs
(only 10 for MetaWorld), each with a different random seed. To calculate stratified bootstrapped
confidence intervals, we use the methodology proposed by rliable (Agarwal et al., 2021). The resulting
interquartile mean (IQM) and confidence intervals (CI) for all tested environments are presented in
the appendix (see Appendix A). Our summary bar chart shows the mean and standard error (SE)
across all evaluated environments in the specific suite. Here, we use the regular mean instead of
the IQM, as we do not treat exceptionally good or poor performance across entire environments as
statistical outliers. This contrasts with handling over- or under-performance in a single run within an
environment.

In addition to reward performance, we measure the smoothness of the action trajectories, quantified
by the mean squared jerk. Lower jerk values indicate smoother actions, which are desirable for many
physical systems and tasks requiring stable, continuous actions. Similar to reward, smoothness is
evaluated using IQM and stratified bootstrapped confidence intervals (CI). A formal description of
Mean Squared Jerk can be found in Appendix B.1, the results in Appendix B.2.

To ensure fair evaluation and reduce the risk of overfitting hyperparameters (HPs) onto specific
environments, we emphasize the importance of using shared hyperparameters across algorithms
and environments wherever feasible. Overfitting HPs could lead to misleading comparisons, where
methods may appear to perform better due to environment-specific tuning rather than the intrinsic
quality of the exploration strategy. Therefore, we have made a deliberate effort to use shared HPs
across all algorithms and environments as much as possible.

Our choice of HPs is based on prior work to ensure relevance and generalizability. Specifically, for
PyBullet, we follow the hyperparameters used by Raffin et al. (2022). For MetaWorld, we adapted the
settings from Li et al. (2024). For general environments, such as MujocoMaze and DMC, we rely on
the findings from Hollenstein et al. (2024).

The episodic return achieved over time on every environment tested can be found in Appendix A, the
smoothness of generated actions for all environments in Appendix B. For a complete overview of the
hyperparameters used in our experiments, see Appendix C.
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Figure 7: Static and random goal mazes used to benchmark Perlin noise against other exploration
methods, showcasing the resulting performance for difficult exploration challenges.

4.1 MountainCar (Gymnasium)

The Mountain Car Continuous environment (Moore, 1990) from Gymnasium (Towers et al., 2024) is
a deterministic MDP where a car starts at the bottom of a sinusoidal valley. The goal is to accelerate
the car strategically to reach the top of the right hill, which requires continuous and consistent actions.
The challenge lies in overcoming the gravitational pull by building up momentum, making this task
particularly difficult for exploration methods that rely on random, chaotic actions.

In our tests (see Figure 6(a)), White noise performed very poorly, as it failed to apply the consistent
accelerations needed to push the car uphill. While environment-specific hyperparameter tuning could
likely improve its performance, we conducted all tests without such adjustments to ensure consistency.
On the other hand, all other methods, including Perlin noise, performed similarly well, showing stable
results in this challenging task. Moreover, in Figure 6(b), we show the smoothness of generated action
trajectories, measured by the mean squared jerk (lower values indicate smoother trajectories). Perlin
noise outperforms all other methods, producing the smoothest trajectories overall. Notably, there
were significant differences in performance between algorithms. For example, the HalfBeta method
performed exceptionally poorly, producing extremely jerky actions.

4.2 Custom Mazes

To demonstrate Perlin noise’s effectiveness in difficult exploration tasks, we created two custom mazes
based on MujocoMaze (see Figure 7 (a,b)). One maze features a static goal position, and the other has
a goal that is randomly chosen from three possible locations. The agent always starts in the bottom
left corner, with the goal in the top right for the static maze, or in any other corner for the random
maze. We found (see Figure 7 (c,d)) that the exploration challenge in this environment is sufficiently
hard, causing all baseline methods tested to fail in learning a reliable policy. In contrast, Perlin noise
enabled the agent to successfully solve these environments. This shows that there are exploration
challenges that require more advanced techniques than current SOTA methods, and Perlin noise can
provide such a solution.

4.3 MujocoMaze

We tested Perlin noise on several environments from the MujocoMaze suite (Kanagawa, 2023). These
environments, which include agents such as simple dots, ants, and swimmers navigating various
mazes, were designed with SOTA methods in mind, making dramatic improvements hard to achieve.
While most tasks are relatively easy for modern RL algorithms, they remain useful for evaluating
exploration methods. In Figure 8(a) we can see how Perlin noise performed consistently well across
all tasks, maintaining stability and solving the environments without any performance degradation.
Pink noise performed the worst, while the other methods showed similar results, with Perlin noise
slightly outperforming them.

4.4 DMC

We tested Perlin noise on several environments from the DeepMind Control (DMC) Suite
(Tunyasuvunakool et al., 2020). The DMC suite is a standard collection of physics-based simulation
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(c) PyBullet
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(d) Metaworld

Figure 8: Aggregate results showing the mean and standard error (SE) of episodic reward across entire
suites, with performance for each environment normalized relative to the best-performing algorithm.

environments powered by the MuJoCo engine, designed to test continuous control tasks. The chosen
tasks are inspired by the evaluations performed in Hollenstein et al. (2024). In our experiments
(see Figure 8(b)), Perlin noise performed well overall, coming second only to HalfBeta. Notably,
Perlin noise outperformed gSDE, which demonstrated poor results across most DMC environments.

4.5 PyBullet

The PyBullet Gymperium (Ellenberger, 2018; Coumans & Bai, 2016) suite provides an open-source
implementation of continuous control environments commonly used in reinforcement learning,
originally based on the OpenAI Gym MuJoCo tasks. In our experiments (see Figure 8(c)), we tested
Perlin noise on four environments, the same tasks used in the gSDE paper (Raffin et al., 2022) to
evaluate on-policy performance. gSDE performed best on these tasks, followed closely by Perlin
noise, significantly outperforming Pink noise and HalfBeta, both of which performed poorly in these
tasks.

4.6 Metaworld

MetaWorld (Yu et al., 2019) is an open-source simulated benchmark designed to advance meta-
reinforcement learning and multi-task learning, comprising 50 diverse robotic manipulation tasks.
These tasks take place in a shared tabletop environment featuring a simulated Sawyer robotic arm
interacting with various everyday objects. The benchmark is particularly well-suited for exploring
generalization and meta-learning due to its structured setup and diverse task distribution.

In our experiments, we focused on training policies for individual tasks, evaluating performance on
each task separately to assess the effectiveness of different exploration strategies. The results indicate
that Perlin noise consistently outperformed other methods, achieving the best overall performance
across the tasks. White noise followed closely as a second option, demonstrating solid performance
but with less consistency compared to Perlin noise. In contrast, the other methods tested, tended to
exhibit somewhat unreliable performance.

As an example, we present the smoothness of action trajectories (measured by mean squared jerk,
where lower is better) for the Metaworld/push-v2 environment. In this case, both Perlin noise and
White noise achieved similar rewards (see Figure 6(c)), with Perlin noise exhibiting the lowest jerk
(see Figure 6(d)), thus producing the smoothest action sequences.

9
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Figure 9: Aggregated results showing the mean and standard error (SE) of relative performance across
all suites, excluding MountainCar and our custom mazes.

5 Discussion

As demonstrated in Figure 9, Perlin noise consistently delivers strong and reliable results across
all tested suites. While Perlin noise is not always the optimal choice, its consistent and generally
favorable performance makes it a dependable exploration method for various applications without the
need for extensive tuning or task-specific adjustments.

In subsection 3.3, we had showed that Perlin noise produces significantly smoother trajectories than
other methods, and this is now validated in our experiments. As shown in Appendix B, Perlin noise
consistently shows lower jerk compared to other methods. While Pink noise also exhibits low jerk,
its smoothness often comes at the cost of poor task performance, as its learned policies sometimes
tend to remain close to a null policy. Perlin noise, on the other hand, achieves both smooth action
generation and high task performance, making it a well-balanced choice for structured exploration.

Additionally, in the earlier analysis, we demonstrated that Perlin noise has superior state-space
coverage compared to White and colored noise. This is now reflected in its superior performance
on the custom and suite-provided maze environments, where better state-space reach is crucial for
effective exploration.

6 Conclusion & Limitations

Exploration remains a critical component in the success of reinforcement learning (RL) algorithms,
as it drives agents to visit novel and high-reward states during training. In this work, we introduced a
novel exploration strategy that utilizes Perlin noise, a smooth, temporally correlated gradient noise
function. Perlin noise distinguishes itself by its ability to provide structured exploration. Unlike
conventional noise strategies like White noise, which can result in jerky, erratic movements, Perlin
noise promotes fluid motion, making it particularly suitable for tasks where smooth and stable actions
are required, such as in real-world robotic applications. As demonstrated in our experiments, Perlin
noise offers high state-space coverage, ensuring the agent explores effectively across a broad range of
tasks. Our approach was validated across various benchmark suites, showing competitive performance
when compared to state-of-the-art exploration strategies such as gSDE and colored noise.

Despite these advantages, Perlin noise has limitations. Its inherent smoothness, while beneficial
in many tasks, may hinder performance in environments where abrupt, high-frequency actions are
necessary for success.
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Reproducibility Statement

We provide detailed documentation of hyperparameters, shared across environments to avoid
overfitting, in Appendix C. Our results are reported using stratified bootstrapped confidence intervals
and interquartile means (IQM), ensuring statistical robustness.

The implementation of our novel Perlin noise-based exploration mechanism, compatible with Stable
Baselines3 (SB3) (Raffin et al., 2021), is available in an open-source repository3.

Additionally, a Google Colab notebook4 allows interactive testing of noise parameters, replicating the
sampling behavior shown in subsection 3.3.

3https://github.com/perlin-rl/Perlin_RL
4https://colab.research.google.com/drive/1-t7WmGCwEgkZWuriRN3dsuy5fmU34v9x
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Figure 10: Results on selected environments from MujocoMaze (Page 1).
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Figure 11: Results on selected environments from MujocoMaze (Page 2).
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Figure 12: Results on selected environments from DMC (Page 1).
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Figure 13: Results on selected environments from DMC (Page 2) and MountainCarContinuous.
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Figure 14: Results on selected environments from PyBullet.
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Figure 15: Results from all Metaworld (v2 variant) environments (Page 1).
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Figure 16: Results from all Metaworld (v2 variant) environments (Page 2).
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Figure 17: Results from all Metaworld (v2 variant) environments (Page 3).
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Figure 18: Results from all Metaworld (v2 variant) environments (Page 4).
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Figure 19: Results from all Metaworld (v2 variant) environments (Page 5).
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(f) Metaworld

Figure 20: Aggregate results showing the mean and standard error (SE) of episodic reward across
all environments from all suites, with performance for each environment normalized relative to
its best-performing algorithm. Figure (a) is mean+SE over the results from all suites, excluding
MountainCar and our custom mazes. Figure (b) shows the mean+SE over all environments, including
MountainCar and our custom mazes.
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B Smoothness

B.1 Mean Squared Jerk

Jerk is defined as the rate of change of acceleration with respect to time. The approximation of jerk
depends on whether the actions represent speeds or accelerations. In both cases, jerk is numerically
derived by estimating the change in acceleration over time.

When actions represent speeds, jerk is approximated by first calculating acceleration (the derivative
of speed) and then computing the rate of change of acceleration. Given a discrete trajectory of speed
actions {𝑣1, 𝑣2, . . . , 𝑣𝑇 }, where 𝑣𝑡 represents the velocity at time 𝑡, the acceleration at time 𝑡 is given
by:

𝑎𝑡 =
𝑣𝑡+1 − 𝑣𝑡

Δ𝑡
.

The jerk is then calculated as the change in acceleration between consecutive time steps:

𝑗𝑡 =
𝑎𝑡+1 − 𝑎𝑡

Δ𝑡
.

Thus, when actions are speeds, we need to compute both acceleration and jerk, requiring two numerical
steps.

When actions represent accelerations, jerk is directly computed as the change in acceleration between
consecutive time steps. For a discrete trajectory of acceleration actions {𝑎1, 𝑎2, . . . , 𝑎𝑇 }, where 𝑎𝑡 is
the acceleration at time 𝑡, the jerk is given by:

𝑗𝑡 =
𝑎𝑡 − 𝑎𝑡−1

Δ𝑡
.

In this case, jerk is calculated in a single step, as it directly measures the change in acceleration.

The Mean Squared Jerk (MSJ) is then calculated as the average of the squared jerk values across the
trajectory:

MSJ =
1

𝑇 − 2

𝑇−2∑︁
𝑡=1

𝑗2𝑡 ,

where 𝑇 is the total number of steps in the trajectory.

This metric provides a quantitative measure of smoothness for action sequences. Lower MSJ values
indicate smoother trajectories, with less variation in the rate of acceleration. Whether the actions are
speeds or accelerations, the MSJ helps assess the smoothness of exploration in reinforcement learning,
as both the exploration noise and the learned policy dynamics influence the resulting jerk values.
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B.2 Smothness Results
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Figure 21: Smoothness (mean squared jerk, lower is better) on selected environments from
MujocoMaze (Page 1).

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Perlin Halfbeta Pink gSDE White

0 1 2 3 4

0.2

0.4

0.6

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(a) Swimmer Corridor v1

0 1 2 3 4

0

100

200

300

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(b) Ant Fall v1

0 1 2 3 4

0

100

200

300

400

Environment Steps (×106)
M

ea
n

Sq
ua

re
d

Je
rk

,I
Q

M
(c) Ant Push v0

0 1 2 3 4

0

0.2

0.4

0.6

0.8

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(d) Point Fall v0

0 1 2 3 4

0.1

0.2

0.3

0.4

0.5

Environment Steps (×106)

M
ea

n
Sq

ua
re

d
Je

rk
,I

Q
M

(e) Point Push v0

Figure 22: Smoothness (mean squared jerk, lower is better) on selected environments from
MujocoMaze (Page 2).
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Figure 23: Smoothness (mean squared jerk, lower is better) on selected environments from DMC
(Page 1).
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Figure 24: Smoothness (mean squared jerk, lower is better) on selected environments from DMC
(Page 2) and MountainCarContinuous.
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Figure 25: Smoothness (mean squared jerk, lower is better) on selected environments from PyBullet.
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Figure 26: Smoothness (mean squared jerk, lower is better) from all Metaworld (v2 variant)
environments (Page 1).
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Figure 27: Smoothness (mean squared jerk, lower is better) from all Metaworld (v2 variant)
environments (Page 2).
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Figure 28: Smoothness (mean squared jerk, lower is better) from all Metaworld (v2 variant)
environments (Page 3).
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Figure 29: Smoothness (mean squared jerk, lower is better) from all Metaworld (v2 variant)
environments (Page 4).
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Figure 30: Smoothness (mean squared jerk, lower is better) from all Metaworld (v2 variant)
environments (Page 5).
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C HPs

Table 1: Base HPs (used for MountainCar, Custom Mazes, MujocoMaze, DMC)

Perlin White gSDE Pink HalfBeta

num parallel envs 4 4 4 4 4
number samples (n_steps) 2048 2048 2048 2048 2048
GAE 𝜆 0.95 0.95 0.95 0.95 0.95
discount factor 0.99 0.99 0.99 0.99 0.99

optimizer adam adam adam adam adam
epochs 10 10 20 10 10
learning rate 2.5e-4 2.5e-4 2.5e-4 2.5e-4 2.5e-4
use critic True True True True True
epochs critic 10 10 20 10 10
learning rate critic 2.5e-4 2.5e-4 3e-4 2.5e-4 2.5e-4
batch size 128 128 2048 128 128
SDE sampling frequency (ssf) n.a. n.a. 4 n.a. n.a.
𝑘speed 0.33 n.a. n.a. n.a. n.a.
𝛽-coefficient n.a. 0 n.a. 1 0.5
entropy coefficient 0 0 0 0 0

normalized observations True True True True True
normalized rewards True True True True True
PPO clip 0.2 0.2 0.2 0.2 0.2
max gradient norm 0.5 0.5 0.5 0.5 0.5

hidden layers [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
hidden layers critic [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
hidden activation tanh tanh tanh tanh tanh
initial std 1.0 1.0 1.0 1.0 1.0
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Table 2: PyBullet HPs

Perlin White gSDE Pink HalfBeta

num parallel envs 4 4 4 4 4
number samples (n_steps) 8192 8192 8192 8192 8192
GAE 𝜆 0.9 0.9 0.9 0.9 0.9
discount factor 0.99 0.99 0.99 0.99 0.99

optimizer adam adam adam adam adam
epochs 20 20 20 20 20
learning rate 3e-4 3e-4 3e-4 3e-4 3e-4
use critic True True True True True
epochs critic 20 20 20 20 20
learning rate critic 3e-4 3e-4 3e-4 3e-4 3e-4
batch size 128 128 128 128 128
SDE sampling frequency (ssf) n.a. n.a. n.a. n.a. n.a.
𝑘speed 0.33 0.33 0.33 0.33 0.33
𝛽-coefficient n.a. 0 n.a. 1 0.5
entropy coefficient 0 0 0 0 0

normalized observations True True True True True
normalized rewards True True True True True
PPO clip 0.4 0.4 0.4 0.4 0.4
max gradient norm 0.5 0.5 0.5 0.5 0.5

hidden layers [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
hidden layers critic [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
hidden activation tanh tanh tanh tanh tanh
initial std 0.33 0.33 0.33 0.33 0.33
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Table 3: Metaworld HPs

Perlin White gSDE Pink HalfBeta

num parallel envs 4 4 4 4 4
number samples (n_steps) 16000 16000 16000 16000 16000
GAE 𝜆 0.95 0.95 0.95 0.95 0.95
discount factor 0.99 0.99 0.99 0.99 0.99

optimizer adam adam adam adam adam
epochs 10 10 10 10 10
learning rate 1e-3 1e-3 1e-3 1e-3 1e-3
use critic True True True True True
epochs critic 10 10 10 10 10
learning rate critic 1e-3 1e-3 1e-3 1e-3 1e-3
batch size 500 500 500 500 500
SDE sampling frequency (ssf) n.a. n.a. n.a. n.a. n.a.
𝑘speed 0.33 0.33 0.33 0.33 0.33
𝛽-coefficient n.a. 0 n.a. 1 0.5
entropy coefficient 0 0 0 0 0

normalized observations True True True True True
normalized rewards True True True True True
PPO clip lin* lin* lin* lin* lin*
max gradient norm 0.5 0.5 0.5 0.5 0.5

hidden layers [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
hidden layers critic [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
hidden activation tanh tanh tanh tanh tanh
orthogonal initialization True True True True True
initial std 1.0 1.0 1.0 1.0 1.0

*Linear schedule from 0.25 to 0.01 during first 2/3 of training, then continued with 0.01.
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D Derivations

D.1 Perlin Noise Has Zero Mean

We aim to show that Perlin noise has a zero mean. Let AntiPerlin(𝑥) denote the inverse of Perlin noise, defined
as:

AntiPerlin(𝑥) = −Perlin(𝑥).

D.1.1 Construction of AntiPerlin from Perlin

The Perlin noise function is constructed by generating unit-length gradient vectors at lattice points and
interpolating between them. To construct AntiPerlin(𝑥), we can simply flip the sign of all gradient vectors used
in the construction of Perlin noise:

gAnti
i = −gi,

where gi is a gradient vector at lattice point i.

This transformation yields AntiPerlin(𝑥) = −Perlin(𝑥), since flipping the sign of all gradients results in the
negation of the entire noise function.

D.1.2 Equivalence of Distributions

Perlin noise gradients are uniformly sampled from a distribution 𝑃(𝑔). Therefore, the probability of sampling a
gradient 𝑔 is equal to the probability of sampling −𝑔:

𝑃(𝑔) = 𝑃(−𝑔).

As a result, the distribution of gradients used to generate Perlin(𝑥) is identical to that used for AntiPerlin(𝑥).
Thus, AntiPerlin(𝑥) follows the same distribution as Perlin(𝑥) under random seeds of the PRNG.

D.1.3 Conclusion

Since AntiPerlin = −Perlin and both functions are equal in distribution, it must be that

E[Perlin] = E[−Perlin],

which implies that Perlin noise is symmetric around zero and has a zero mean.

D.2 Finite Moments of Perlin Noise

D.2.1 Boundedness of Perlin Noise

Perlin noise is generated by summing weighted dot products between unit-length gradient vectors and
displacements from lattice points in a hypercube. Given a point x ∈ R𝑛, the Perlin noise value is computed as:

Perlin(x) =
∑︁
i∈I

(
di

𝑛∏
𝑘=1

Φ(𝑥𝑘 − 𝑖𝑘)
)
,

where: I is the set of 2𝑛 surrounding lattice points, di = gi · (x − i) is the dot product between the unit gradient
vector gi and the displacement x − i, Φ(𝑡) = 3𝑡2 − 2𝑡3 is the smooth interpolation function.

D.2.2 Boundedness of Individual Components

Dot Products: Since the gradient vectors gi are unit-length (∥gi∥ = 1) and each component of the displacement
(𝑥𝑘 − 𝑖𝑘) lies in the interval [0, 1], each dot product di is bounded:

|di | ≤ 𝐷,

where 𝐷 =
√
𝑛, the maximum value when the displacement vector is (1, 1, . . . , 1) and the gradient vector is

aligned with the displacement.

Interpolation Function: The interpolation function Φ(𝑡) satisfies 0 ≤ Φ(𝑡) ≤ 1 for 𝑡 ∈ [0, 1]. Therefore, the
product

∏𝑛
𝑘=1 Φ(𝑥𝑘 − 𝑖𝑘) is also bounded between 0 and 1.
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D.2.3 Boundedness of Perlin Noise Value

Each term in the Perlin noise sum is the product of a bounded dot product and a bounded interpolation factor�����di

𝑛∏
𝑘=1

Φ(𝑥𝑘 − 𝑖𝑘)
����� ≤ 𝐷.

Since there are 2𝑛 terms in the sum (one for each surrounding lattice point), the Perlin noise value is bounded by

|Perlin(x) | ≤ 𝐶,

where 𝐶 = 2𝑛𝐷.

D.2.4 Finite Moments

For a bounded random variable 𝑋 with |𝑋 | ≤ 𝐶, all moments of any order 𝑘 ≥ 1 are finite:

𝐸 [|𝑋 |𝑘] ≤ 𝐶𝑘 .

Applying this to the Perlin noise:
𝐸 [|Perlin(x) |𝑘] ≤ 𝐶𝑘 ,

which confirms that all moments of the Perlin noise are finite.

D.2.5 Conclusion

The bounded nature of the Perlin noise function ensures that all its moments, regardless of order, are finite. This
holds true due to the bounded dot products, the bounded interpolation function, and the finite number of terms in
the summation. Thus, we conclude that the Perlin noise has finite moments of all orders.

D.3 Analyticity of the Normalization Function

We aim to show that the normalization function 𝑁 (𝑥), which transforms Perlin noise into a Gaussian-like
distribution, is analytic. An analytic function is one that is infinitely differentiable and can be represented as a
polynomial expansion around a point 𝑥0.

D.3.1 Smoothness of Perlin Noise

Perlin noise is generated using smooth gradient functions. As these gradients are continuous and differentiable,
the Perlin noise function 𝑃(𝑥, 𝑦) inherits these properties, making it smooth and infinitely differentiable.

D.3.2 Construction of the Normalization Function

The normalization function 𝑁 (𝑥) maps Perlin noise values to a standard Gaussian-like distribution. If 𝐹 (𝑥) is
the cumulative distribution function (CDF) of Perlin noise, we can express 𝑁 (𝑥) using the inverse CDF of the
standard normal distribution Φ−1:

𝑁 (𝑥) = Φ−1 (𝐹 (𝑥)).

D.3.3 Smoothness of the Transformation

Since the CDF 𝐹 (𝑥) of Perlin noise is smooth and the inverse Gaussian CDF Φ−1 (𝑥) is smooth, their composition
𝑁 (𝑥) = Φ−1 (𝐹 (𝑥)) is also smooth and infinitely differentiable.

D.3.4 Conclusion

Because 𝑁 (𝑥) is infinitely differentiable, it is analytic and can thus be expressed as a polynomial expansion.
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E Additional Figures

(a) White noise

(b) Perlin noise

Figure 31: Comparison of Sampled Trajectories via White noise or Perlin noise.
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(a) White Noise (b) Pink Noise

(c) Perlin (d) Dirty Perlin

Figure 32: Particles driven by noise ’exploring’ a box.
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Figure 33: Multiple simulations for Pink noise.
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(a) 𝑘speed = 0.2
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(b) 𝑘speed = 0.1
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(c) 𝑘speed = 0.05
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(d) 𝑘speed = 0.01

Figure 34: Perlin noise with different 𝑘speed settings.
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(a) Harmonic Perlin Noise with 𝑛 = 4 octaves.
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(b) Harmonic Perlin Noise with 𝑛 = 32 octaves.

Figure 35: Harmonic Perlin with 𝑘speed = 0.05.

F Further Compositional Noises for RL

Harmonic Perlin is constructed by superimposing multiple Perlin noise functions with different frequencies and
amplitudes. This allows us to construct fractal noises, that have more complex noise pattern and have richer
substructures while trading away some of the smoothness. We describe the individual Perlin noises as octaves.
While potentially any kind of mixture based on different frequencies and amplitudes is possible, we can reduce
the number of additional hyperparameters by enforcing the relation between these to follow the harmonic series.
As such Harmonic Perlin will be described by (formula shown is missing a correction term to ensure 𝜎 = 1)

HarmonicPerlin(𝑥) =
∑𝑛
𝑖=1

1
2𝑖 P𝑖 (𝑥)∑𝑛
𝑖=1

1
2𝑖

,

where 𝑘speed for P𝑖 is set to 2𝑛 · 𝑘speed.

As a way to efficiently approximate Harmonic Perlin with a large number of octaves we propose Dirty Perlin by
defining

DirtyPerlin(𝑥) = 𝑓 𝜖 + (1 − 𝑓 )P(𝑥)√︁
𝑓 2 + (1 − 𝑓 )2

,

where 𝜖 ∼ N(0, 1) and 𝑓 = 𝑘𝑑𝑖𝑟𝑡 𝑦_𝑟𝑎𝑡𝑖𝑜 .

We can use these two noises for exploration in the same fashion as already described for Perlin noise. While
these compositions allow us to design elaborate exploration noises with desired properties, we must also question
whether this is a good idea. Is a method that achieves better performance than another, while requiring more
HPs, actually better? Or are we just shiting the work of solving the task from the RL algorithm to the researcher
in charge of HP tuning? In our view, every added hyperparameter increases the risk of overfitting them to the
tasks, making it challenging to determine whether the ML algorithm truly represents an improvement on its own.

For low numbers of octaves we observe the desired smooth substructures overlayed with the Perlin of the first
harmonic (can be seen in Figure 35 (a)). Higher octaves lead to less smooth trajectories. High number of octaves
(can be seen in Figure 35 (b)) behave similar to Pink noise, in that we observe long terms trends, while generating
unsmooth trajectories. Contrary to Pink noise, our samples remain to be on-policy. The empirical parameters
remain close to the policy parameters.

Dirty Perlin (Figure 36) behaves similar to high octave Harmonic Perlin, while being a lot cheaper computationally
and can therefore be used as an approximation of high octave Harmonic Perlin.

Figure 32 shows the exploration behavior in 2D as a combination the general behavior of Perlin with unsmooth
substructures.

We present these additional noise methods as they may be of interest to the reader. While preliminary tests did
not show statistically significant overperformance, further experiments were not conducted. We also see the
danger of bloating the exploration method with unnecessary complexity and additional HPs. The codebase we
provide includes implementations for testing these noise types, allowing for easy experimentation.
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Figure 36: Dirty Perlin Noise with 𝑘dirty_ratio = 1
3 .
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G Pseudocode �
1 import math
2

3 def interpolate(a0, a1, t):
4 # Smoothstep interpolation
5 w = t * t * (3 - 2 * t)
6 return (a1 - a0) * w + a0
7

8 def random_gradient(ix, iy):
9 # Generate a pseudo-random angle based on coordinates

10 angle = hash((ix, iy)) % (2 * math.pi)
11 return (math.cos(angle), math.sin(angle))
12

13 def dot_grid_gradient(gradients , ix, iy, x, y):
14 gradient = gradients[(ix, iy)]
15 dx, dy = x - ix, y - iy
16 return dx * gradient[0] + dy * gradient[1]
17

18 def perlin(x, y):
19 # Determine grid cell coordinates
20 x0, x1 = math.floor(x), math.floor(x) + 1
21 y0, y1 = math.floor(y), math.floor(y) + 1
22

23 # Precompute gradients for the grid points
24 gradients = {
25 (x0, y0): random_gradient(x0, y0),
26 (x1, y0): random_gradient(x1, y0),
27 (x0, y1): random_gradient(x0, y1),
28 (x1, y1): random_gradient(x1, y1)
29 }
30

31 # Determine interpolation weights
32 sx, sy = x - x0, y - y0
33

34 # Compute dot product at each grid point
35 v00 = dot_grid_gradient(gradients , x0, y0, x, y)
36 v10 = dot_grid_gradient(gradients , x1, y0, x, y)
37 v01 = dot_grid_gradient(gradients , x0, y1, x, y)
38 v11 = dot_grid_gradient(gradients , x1, y1, x, y)
39

40 # Perform smoothstep interpolation
41 i1 = interpolate(v00, v10, sx)
42 i2 = interpolate(v01, v11, sx)
43

44 # Final smoothstep interpolation in the y dimension
45 return interpolate(i1, i2, sy)�

Listing 1: 2D Perlin Noise ’Pseudocode’ (actually valid Python)
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