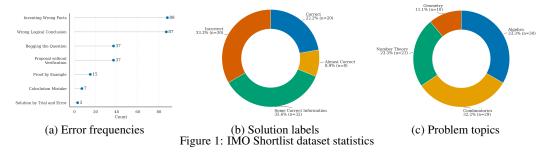
RefGrader: Automated Grading of Mathematical Competition Proofs using Agentic Workflows

¹Pennsylvania State University ²City University of New York ³New York University ⁴Amirkabir University of Technology ⁵Autodesk ⁶Carnegie Mellon University

Abstract


State-of-the-art LLMs have advanced from failing proof-based Olympiad problems to solving 5 of 6 IMO 2025 problems. We assess, as a case study, whether Gemini 2.5 Pro can grade proofs by detecting errors, assigning severity, and awarding partial credit beyond binary correctness. We evaluate Gemini 2.5 Pro's performance using two datasets: (1) 90 solutions generated by Gemini 2.5 Pro, carefully annotated by expert evaluators with scores of 1–4 and precise error annotations, (2) MathArena IMO/USAMO 2025 solutions scored 0–7. We first show that single-step grading is unreliable: while the model reliably flags incorrect solutions, it struggles with partial credit calibration. To address this, we introduce Ref-Grader, a grader agent implemented with Gemini 2.5 Pro with several workflows that automatically derive problem-specific rubrics from reference solutions for multi-step grading. We provide comprehensive analysis and ablation studies across the proposed workflows, demonstrating superior agreement with human grades and more reliable partial credit assignment across all metrics on both datasets. We release code, data, and prompts at https://github.com/ref-grader/ref-grader.

1 Introduction

Until early 2025, state-of-the-art LLMs consistently failed at Olympiad-level problems and performed near chance when judging solution validity or applying rubrics [37, 43]. Google and OpenAI report solving 5/6 IMO 2025 problems at gold medal level within exam time [36, 51], with independent reproductions confirming these results using Gemini 2.5 Pro using agentic workflows [27]. This rapid progress raises critical questions about automated proof assessment reliability. While cited limitations predate recent advances, and evaluations like Balunović et al. [4] report improvements for SOTA systems, the extent varies significantly by task and setup. Current benchmarks predominantly measure final-answer accuracy [11, 17, 24, 58], yet assessing proof quality remains substantially harder. Formal verification provides principled validation [6, 28, 34, 44, 61] but suffers from limited formal corpora and poor human readability. Binary proof judgments improve scalability [14, 20] but neglect partial credit, which is a critical aspect of mathematical assessment.

We advance beyond binary judgments to evaluate LLM grading comprehensively. We introduce Ref-Grader, a set of agentic workflows that automatically derive problem-specific rubric from reference solutions and grade the given solutions. We also construct a fine-grained Olympiad grading dataset: 90 Gemini 2.5 Pro solutions graded 1–4 with precise error types and locations. We also use the data gathered from the MathArena IMO/USAMO 2025 solutions scored 0–7. Using Gemini 2.5 Pro with maximum thinking budget, we first assess Single-turn grading, then evaluate our Agentic Workflows comparing different styles of rubric design and solution analysis. Our workflows substantially improve upon single-turn grading in partial-credit grading across diverse metrics

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AI.

such as Pearson/Spearman, MAE/RMSE, and QWK. We validate robustness through systematic ablations and cross-dataset evaluation. While requiring more tokens, most of our workflow steps are cachable, keeping costs manageable. We release all code, data, and prompts/logs.

2 Datasets

IMO Shortlist Data. We selected 90 problems from IMO Shortlist (2017–2023), generating one Gemini 2.5 Pro solution each (prompt in Appendix F). Human evaluators annotated solutions for fallacies following [37]: Proof by Example, Proposal Without Verification, Inventing Wrong Facts, Begging the Question, Solution by Trial-and-Error, Calculation Mistakes, and Wrong Logical Conclusion. We marked each error's span inline with its fallacy category (multiple labels when applicable), prioritizing the major fallacies. Each solution was graded on a 4-point scale (1 Incorrect; 2 Some Correct Information; 3 Almost Correct; 4 Correct), corresponding to 0/7–7/7 on the Olympiad scale. Annotators provided a brief Final Comment explaining the solution issues. Statistics are in Fig. 1.

MathArena Data. We collected 385 solutions for IMO and USAMO 2025 from MathArena, generated by: Grok 3 (Think), DeepSeek-R1-0528, Gemini 2.5 Pro, Gemini 2.0 Flash Thinking, QwQ-32B, DeepSeek-R1, o1-pro (high), o3-mini (high), o4-mini (high), Grok 4, o3 (high), and Claude-3.7-Sonnet (Think). MathArena conducts independent evaluations on contest-level problems; solutions are graded by human judges on a 0–7 scale. The distribution is zero-inflated as many solutions receive zero. To balance the dataset for analysis, we

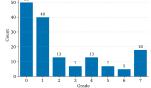


Figure 2: MathArena grade distribution

subsampled zero-scores with probability 0.14 (applied consistently in figures and tables). Figure 2 shows the resulting distribution.

3 Experimental Results

Evaluation Setting. To assess agreement between predicted grades $\{\hat{g}_i\}$ and ground-truth grades $\{g_i\}$, we report Pearson and Spearman correlations, mean absolute error (MAE), root mean squared error (RMSE), and quadratic weighted kappa (QWK). Full metric definitions are in Appendix C.

We first evaluate single-turn proof grading with quantitative metrics and qualitative visualizations.

Single-turn Grading. We evaluate single-turn grading: given each problem and solution, the model identifies errors and assigns a 0–7 grade (see prompt in Appendix F). Results (Table 1) show non-random agreement with human grades. Normalized confusion matrices (Figs. 3a,3b) indicate optimistic bias on lower/partially correct work (grades 0–4), with probability mass shifted right of the diagonal. By contrast, grades ≥ 5 exhibit stronger diagonal. This pattern aligns with Dekoninck et al. [14], Guo et al. [20] and implies that under binarized evaluation (grade ≥ 5 vs. < 5), performance is strong. Binary grading is simpler: a strong verifier can confirm correctness of complete solutions. For incomplete solutions, when the model cannot solve or repair the draft, assigning fair partial credit is ambiguous. We show that using a reference solution within a multi-step grading workflow yields substantially better performance.

Multi-turn Grading with Reference Solutions. We next evaluate reference-aided, multi-step grading workflows and ablations. We introduce *Ref-Grader*, collecting correct reference solutions from AoPS. The workflow works as follows: (1) **Reference clustering**: cluster references by similarity, (2)

Table 1: Single-turn grading on *Math-Arena* and *IMO Shortlist*. Higher is better for correlations and QWK; lower for MAE/RMSE.

Dataset	Pearson	Spearman	MAE	RMSE	QWK
Math-Arena IMO Shortlist	$0.638 \\ 0.486$	$0.582 \\ 0.512$		$2.886 \\ 3.095$	$0.323 \\ 0.229$

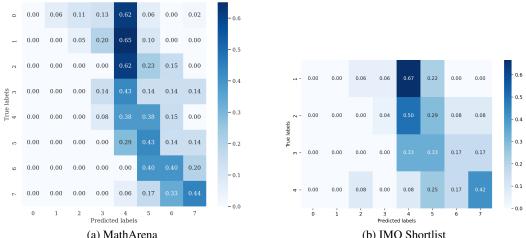


Figure 3: Normalized confusion matrices for single-turn grading.

Solution matching: select closest reference to the given solution, (3) **Solution analysis**: extract main steps' aha moments, (4) **Rubric design**: allocate 7 points across steps/substeps, and (5) **Grading**: score by rubric; detect errors directly or via contradictions with the reference solution. Workflow schema is in Fig. 4. Each step is a single model call (prompts in Appendix F). We use these methods in our evalutations: (i) *Single-turn Grader* (no reference), (ii) *3-step Ref-Grader (No Rubrics)* (reference added, no explicit rubric), (iii) *5-step Ref-Grader (Plain)* (solution analysis and rubric design), (iv) *5-step Ref-Grader (Approachability)* (distributes points by step difficulty), (v) *5-step Ref-Grader (Hybrid)* (combines approachability and milestones). *Approachability* is step-level difficulty. A *milestone* is a key intermediate achievement, and credit is awarded when the submission establishes the same or equivalent statement.

Table 2 summarizes results. On MathArena, 5-step Ref-Grader (Approachability) achieves best correlations and QWK, while Milestones attains lowest MAE. On IMO Shortlist, 5-step Ref-Grader (Milestones) is best on most metrics, with Plain second-best. In both datasets, 3-step Ref-Grader (No Rubrics) outperforms Single-turn Grader, indicating a similar reference helps even without explicit rubric. Interestingly, 5-step Ref-Grader (Hybrid) performs worse than other 5-step variants, likely because approachability interferes with milestones. Approachability is a reference step feature, while milestones can be independent, making the concepts incompatible. Practically, steps 1 (reference clustering), 3 (solution analysis), and 4 (rubric design) can be cached offline while only steps 2 and 5 run online per submission, amortizing workflow cost.

Sampling and Averaging. The multi-step workflow costs more than single-turn grading. We ask whether sampling/averaging within a method explains the gains. Figure 5 plots sampling trends (Spearman and MAE in Appendix E). Within-method sampling/averaging adds no gains, indicating improvements are not from spending more tokens. By contrast, ensembling across methods can help. On IMO Shortlist, averaging predictions from *3-step Ref-Grader (No Rubrics)*, *5-step Ref-Grader (Approachability)*, *5-step Ref-Grader (Plain)*, and *5-step Ref-Grader (Milestones)* yields Pearson 0.765, Spearman 0.758, MAE 1.171, and RMSE 1.571, matching or exceeding best single-method metrics. Systematic ensembling study is left for future work.

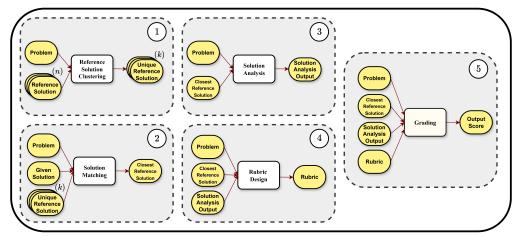


Figure 4: Workflow: reference solution clustering, solution matching, and grading.

Table 2: Single-turn vs multi-turn reference grading. Best per dataset in **bold**, second-best in blue.

	MathArena				IMO Shortlist					
Method	$r \uparrow$	$\rho \uparrow$	MAE↓	RMSE↓	QWK↑	$r \uparrow$	$\rho \uparrow$	MAE↓	RMSE↓	QWK↑
Single-turn Grader	0.63	0.55	2.54	2.96	0.30	0.48	0.49	1.93	2.32	0.32
3-step Ref-Grader (No Rubrics)	0.74	0.73	2.35	2.70	0.42	0.62	0.64	1.72	2.17	0.46
5-step Ref-Grader (Plain)	0.72	0.73	1.50	2.15	0.65	0.73	0.74	1.30	1.79	0.70
5-step Ref-Grader (Approachability)	0.81	0.77	1.28	1.88	0.74	0.69	0.69	1.32	1.85	0.68
5-step Ref-Grader (Milestones)	0.77	0.71	1.26	1.94	0.72	0.73	0.71	1.15	1.75	0.72
5-step Ref-Grader (Hybrid)	0.76	0.75	1.51	2.14	0.67	0.63	0.63	1.42	1.99	0.61

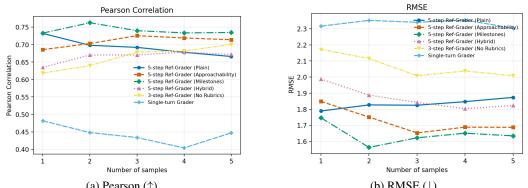


Figure 5: Sampling trends for grader steps across methods (IMO Shortlist). Sampling/averaging does not improve and sometimes degrades performance. Additional metrics (Spearman, MAE) in Appendix E.

4 Conclusion

We studied proof grading for Olympiad-level mathematics and showed that reference-aided, multiturn workflows substantially improve partial-credit calibration over single-turn graders. Across IMO Shortlist and MathArena datasets, our 5-step Ref-Grader variants consistently increase agreement with human judges, with approachability-weighted and milestone-based rubrics offering complementary strengths. Ablations show adding a similar reference helps even without rubric induction, while sampling/averaging within a method does not explain gains. Beyond evaluation, these workflows support broader uses. As LLM-as-a-judge, they provide transparent, step-referenced rationales and stable partial-credit decisions. As a generative reward model for reinforcement learning, the rubric-informed, reference-grounded scoring can shape trajectories toward correct proofs. In education, they can grade student work and surface interpretable feedback on missing steps and error types, provided appropriate references and guardrails. We release data, code, and prompts to facilitate adoption and extensions.

References

- [1] Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models for mathematical reasoning: Progresses and challenges, 2024. URL https://arxiv.org/abs/2402.00157.
- [2] Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Hajishirzi. Mathqa: Towards interpretable math word problem solving with operation-based formalisms, 2019. URL https://arxiv.org/abs/1905.13319.
- [3] Rahul K. Arora, Jason Wei, Rebecca Soskin Hicks, Preston Bowman, Joaquin Quiñonero-Candela, Foivos Tsimpourlas, Michael Sharman, Meghan Shah, Andrea Vallone, Alex Beutel, Johannes Heidecke, and Karan Singhal. Healthbench: Evaluating large language models towards improved human health, 2025. URL https://arxiv.org/abs/2505.08775.
- [4] Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev. Matharena: Evaluating Ilms on uncontaminated math competitions, February 2025. URL https://matharena.ai/.
- [5] Haolin Chen, Yihao Feng, Zuxin Liu, Weiran Yao, Akshara Prabhakar, Shelby Heinecke, Ricky Ho, Phil Mui, Silvio Savarese, Caiming Xiong, and Huan Wang. Language models are hidden reasoners: Unlocking latent reasoning capabilities via self-rewarding, 2024. URL https://arxiv.org/abs/2411.04282.
- [6] Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin, Xing Jin, Chenggang Li, Kaijing Ma, Cheng Ren, Jiawei Shen, Wenlei Shi, Tong Sun, He Sun, Jiahui Wang, Siran Wang, Zhihong Wang, Chenrui Wei, Shufa Wei, Yonghui Wu, Yuchen Wu, Yihang Xia, Huajian Xin, Fan Yang, Huaiyuan Ying, Hongyi Yuan, Zheng Yuan, Tianyang Zhan, Chi Zhang, Yue Zhang, Ge Zhang, Tianyun Zhao, Jianqiu Zhao, Yichi Zhou, and Thomas Hanwen Zhu. Seed-prover: Deep and broad reasoning for automated theorem proving, 2025. URL https://arxiv.org/abs/2507.23726.
- [7] Zhongzhou Chen and Tong Wan. Grading explanations of problem-solving process and generating feedback using large language models at human-level accuracy. *Phys. Rev. Phys. Educ. Res.*, 21:010126, Mar 2025. doi: 10.1103/PhysRevPhysEducRes.21.010126. URL https://doi.org/10.1103/PhysRevPhysEducRes.21.010126.
- [8] Anoop Cherian, Kuan-Chuan Peng, Suhas Lohit, Joanna Matthiesen, Kevin Smith, and Joshua B. Tenenbaum. Evaluating large vision-and-language models on children's mathematical olympiads, 2024. URL https://arxiv.org/abs/2406.15736.
- [9] Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot arena: An open platform for evaluating llms by human preference, 2024. URL https://arxiv.org/abs/2403.04132.
- [10] Yucheng Chu, Hang Li, Kaiqi Yang, Harry Shomer, Yasemin Copur-Gencturk, Leonora Kaldaras, Kevin Haudek, Joseph Krajcik, Namsoo Shin, Hui Liu, and Jiliang Tang. A Ilmpowered automatic grading framework with human-level guidelines optimization. In Caitlin Mills, Giora Alexandron, Davide Taibi, Giosuè Lo Bosco, and Luc Paquette, editors, Proceedings of the 18th International Conference on Educational Data Mining (EDM 2025), pages 31–41, Palermo, Italy, July 2025. International Educational Data Mining Society. ISBN 978-1-7336736-6-2. doi: 10.5281/zenodo.15870201. URL https://educationaldatamining.org/EDM2025/proceedings/2025.EDM.long-papers.80/index.html.
- [11] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021
- [12] Jacob Cohen. Weighted kappa: Nominal scale agreement with provision for scaled disagreement or partial credit. *Psychological Bulletin*, 70(4):213–220, 1968. doi: 10.1037/h0026256.

- [13] Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie, Ruobing Xie, Yankai Lin, Zhiyuan Liu, and Maosong Sun. Ultrafeedback: Boosting language models with scaled ai feedback, 2024. URL https://arxiv.org/abs/2310.01377.
- [14] Jasper Dekoninck, Ivo Petrov, Kristian Minchev, Mislav Balunovic, Martin Vechev, Miroslav Marinov, Maria Drencheva, Lyuba Konova, Milen Shumanov, Kaloyan Tsvetkov, Nikolay Drenchev, Lazar Todorov, Kalina Nikolova, Nikolay Georgiev, Vanesa Kalinkova, and Margulan Ismoldayev. The open proof corpus: A large-scale study of llm-generated mathematical proofs, 2025. URL https://arxiv.org/abs/2506.21621.
- [15] Amit Dhurandhar, Rahul Nair, Moninder Singh, Elizabeth Daly, and Karthikeyan Natesan Ramamurthy. Ranking large language models without ground truth, 2024. URL https://arxiv.org/abs/2402.14860.
- [16] Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B. Hashimoto. Length-controlled alpacaeval: A simple way to debias automatic evaluators, 2024. URL https://arxiv.org/ abs/2404.04475.
- [17] Meng Fang, Xiangpeng Wan, Fei Lu, Fei Xing, and Kai Zou. Mathodyssey: Benchmarking mathematical problem-solving skills in large language models using odyssey math data, 2024. URL https://arxiv.org/abs/2406.18321.
- [18] Simon Frieder, Luca Pinchetti, Alexis Chevalier, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz, Philipp Christian Petersen, and Julius Berner. Mathematical capabilities of chatgpt, 2023. URL https://arxiv.org/abs/2301.13867.
- [19] Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, et al. Omni-math: A universal olympiad level mathematic benchmark for large language models. In *International Conference on Learning Representations (ICLR) — OpenReview*, 2024. URL https://openreview.net/forum?id=yaqPf0KAlN.
- [20] Dadi Guo, Jiayu Liu, Zhiyuan Fan, Zhitao He, Haoran Li, Yumeng Wang, and Yi R. Fung. Mathematical proof as a litmus test: Revealing failure modes of advanced large reasoning models, 2025. URL https://arxiv.org/abs/2506.17114.
- [21] Helia Hashemi, Jason Eisner, Corby Rosset, Benjamin Van Durme, and Chris Kedzie. LLM-rubric: A multidimensional, calibrated approach to automated evaluation of natural language texts. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 13806–13834, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.745. URL https://aclanthology.org/2024.acl-long.745/.
- [22] Alex Havrilla, Sharath Raparthy, Christoforus Nalmpantis, Jane Dwivedi-Yu, Maksym Zhuravin-skyi, Eric Hambro, and Roberta Raileanu. Glore: When, where, and how to improve llm reasoning via global and local refinements, 2024. URL https://arxiv.org/abs/2402.10963.
- [23] Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual multimodal scientific problems, 2024.
- [24] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021. URL https://arxiv.org/abs/2103.03874.
- [25] Arian Hosseini, Alessandro Sordoni, Daniel Kenji Toyama, Aaron Courville, and Rishabh Agarwal. Not all llm reasoners are created equal. In *Proceedings of the 4th Workshop on Mathematical Reasoning and AI (MATH-AI) at NeurIPS 2024*, 2024. URL https://openreview.net/forum?id=RcqAmkDJfI. Introduces the Compositional GSM benchmark.

- [26] Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, and Denny Zhou. Large language models cannot self-correct reasoning yet, 2024. URL https://arxiv.org/abs/2310.01798.
- [27] Yichen Huang and Lin F. Yang. Gemini 2.5 pro capable of winning gold at imo 2025, 2025. URL https://arxiv.org/abs/2507.15855.
- [28] Dongwei Jiang, Marcio Fonseca, and Shay B. Cohen. Leanreasoner: Boosting complex logical reasoning with lean, 2024. URL https://arxiv.org/abs/2403.13312.
- [29] Hyoungwook Jin, Yoonsu Kim, Yeon Su Park, Bekzat Tilekbay, Jinho Son, and Juho Kim. Using large language models to diagnose math problem-solving skills at scale. In *L@S 2024 Proceedings of the 11th ACM Conference on Learning @ Scale*, L@S 2024 Proceedings of the 11th ACM Conference on Learning @ Scale, pages 471–475. Association for Computing Machinery, Inc, July 2024. doi: 10.1145/3657604.3664697.
- [30] Yubin Kim, Chanwoo Park, Hyewon Jeong, Cristina Grau-Vilchez, Yik Siu Chan, Xuhai Xu, Daniel McDuff, Hyeonhoon Lee, Cynthia Breazeal, and Hae Won Park. A demonstration of adaptive collaboration of large language models for medical decision-making, 2024. URL https://arxiv.org/abs/2411.00248.
- [31] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models are zero-shot reasoners, 2023. URL https://arxiv.org/abs/2205. 11916.
- [32] Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yujia Zhou, Qingyao Ai, Ziyi Ye, and Yiqun Liu. Llms-as-judges: A comprehensive survey on llm-based evaluation methods, 2024. URL https://arxiv.org/abs/2412.05579.
- [33] Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang, Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau, Guillaume Lample, and Stanislas Polu. Numinamath. [https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf), 2024.
- [34] Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan Geng, Jiawei Ge, Jingruo Sun, Jiayun Wu, Jiri Gesi, Ximing Lu, David Acuna, Kaiyu Yang, Hongzhou Lin, Yejin Choi, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover-v2: Scaling formal theorem proving with scaffolded data synthesis and self-correction, 2025. URL https://arxiv.org/abs/2508.03613.
- [35] Yinhong Liu, Han Zhou, Zhijiang Guo, Ehsan Shareghi, Ivan Vulić, Anna Korhonen, and Nigel Collier. Aligning with human judgement: The role of pairwise preference in large language model evaluators, 2025. URL https://arxiv.org/abs/2403.16950.
- [36] Thang Luong and Edward Lockhart. Advanced version of Gemini with Deep Think officially achieves gold-medal standard at the International Mathematical Olympiad, July 2025. URL https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-i Blog post.
- [37] Hamed Mahdavi, Alireza Hashemi, Majid Daliri, Pegah Mohammadipour, Alireza Farhadi, Samira Malek, Yekta Yazdanifard, Amir Khasahmadi, and Vasant G. Honavar. Brains vs. bytes: Evaluating llm proficiency in olympiad mathematics. In arXiv preprint arXiv:2501.xxxxx, 2025. URL https://openreview.net/forum?id=V4RIJxt02s.
- [38] Yujun Mao, Yoon Kim, and Yilun Zhou. CHAMP: A competition-level dataset for fine-grained analyses of LLMs' mathematical reasoning capabilities. In *Findings of the Association for Computational Linguistics: ACL 2024*. Association for Computational Linguistics, 2024. doi: 10. 18653/v1/2024.findings-acl.785. URL https://aclanthology.org/2024.findings-acl.785/.

- [39] Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large language models, 2024. URL https://arxiv.org/abs/2410.05229.
- [40] Dom Nasrabadi. Juree not judges: safeguarding llm interactions with small, specialised encoder ensembles, 2024. URL https://arxiv.org/abs/2410.08442.
- [41] Kun-Peng Ning, Shuo Yang, Yu-Yang Liu, Jia-Yu Yao, Zhen-Hui Liu, Yu Wang, Ming Pang, and Li Yuan. Pico: Peer review in llms based on the consistency optimization, 2024. URL https://arxiv.org/abs/2402.01830.
- [42] Aditya Pathak, Rachit Gandhi, Vaibhav Uttam, Arnav Ramamoorthy, Pratyush Ghosh, Aaryan Raj Jindal, Shreyash Verma, Aditya Mittal, Aashna Ased, Chirag Khatri, Yashwanth Nakka, Devansh, Jagat Sesh Challa, and Dhruv Kumar. Rubric is all you need: Improving Ilm-based code evaluation with question-specific rubrics. In Leo Porter, Neil Brown, Briana B. Morrison, and Calkin Suero Montero, editors, *Proceedings of the 2025 ACM Conference on International Computing Education Research V.1, ICER 2025, Charlottesville, VA, USA, August 3–6, 2025*, pages 181–195. ACM, 2025. doi: 10.1145/3702652.3744220. URL https://doi.org/10.1145/3702652.3744220.
- [43] Ivo Petrov, Jasper Dekoninck, Lyuben Baltadzhiev, Maria Drencheva, Kristian Minchev, Mislav Balunović, Nikola Jovanović, and Martin Vechev. Proof or bluff? evaluating llms on 2025 usa math olympiad. In *ICML 2025 Workshop on AI for Mathematical Reasoning (AI4MATH)*, 2025. URL https://openreview.net/forum?id=3v650rM05U.
- [44] Z. Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang, Zhe Fu, Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shirong Ma, Hongxuan Tang, Yuxuan Liu, Wenjun Gao, Daya Guo, and Chong Ruan. Deepseek-prover-v2: Advancing formal mathematical reasoning via reinforcement learning for subgoal decomposition, 2025. URL https://arxiv.org/abs/2504.21801.
- [45] Jie Ruan, Inderjeet Nair, Shuyang Cao, Amy Liu, Sheza Munir, Micah Pollens-Dempsey, Tiffany Chiang, Lucy Kates, Nicholas David, Sihan Chen, Ruxin Yang, Yuqian Yang, Jihyun Jasmine Gump, Tessa Bialek, Vivek S. Sankaran, Margo Schlanger, and Lu Wang. Expertlongbench: Benchmarking language models on expert-level long-form generation tasks with structured checklists. *arXiv preprint arXiv:2506.01241*, 2025.
- [46] Saurabh Srivastava, Annarose MB, Anto PV, Shashank Menon, Ajay Sukumar, Adwaith Samod T, Alan Philipose, Stevin Prince, and Sooraj Thomas. Functional benchmarks for robust evaluation of reasoning performance, and the reasoning gap. *arXiv preprint arXiv:2402.19450*, 2024.
- [47] Andreas Stephan, Dawei Zhu, Matthias Aßenmacher, Xiaoyu Shen, and Benjamin Roth. From calculation to adjudication: Examining Ilm judges on mathematical reasoning tasks, 2024. URL https://arxiv.org/abs/2409.04168.
- [48] Zhen Tan, Dawei Li, Song Wang, Alimohammad Beigi, Bohan Jiang, Amrita Bhattacharjee, Mansooreh Karami, Jundong Li, Lu Cheng, and Huan Liu. Large language models for data annotation and synthesis: A survey, 2024. URL https://arxiv.org/abs/2402.13446.
- [49] Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting, 2024. URL https://arxiv.org/abs/2402.10200.
- [50] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models, 2023. URL https://arxiv.org/abs/2203.11171.
- [51] Alexander Wei. openai-imo-2025-proofs. URL https://github.com/aw31/openai-imo-2025-proofs. Repository.
- [52] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In *Advances in Neural Information Processing Systems*, 2022.

- [53] Haoyi Wu, Wenyang Hui, Yezeng Chen, Weiqi Wu, Kewei Tu, and Yi Zhou. Conic10k: A challenging math problem understanding and reasoning dataset, 2023. URL https://arxiv. org/abs/2311.05113.
- [54] Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu, and Pengfei Liu. Evaluating mathematical reasoning beyond accuracy, 2025. URL https://arxiv.org/abs/2404.05692.
- [55] Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao, Werner Geyer, Chao Huang, Pin-Yu Chen, Nitesh V Chawla, and Xiangliang Zhang. Justice or prejudice? quantifying biases in llm-as-a-judge, 2024. URL https://arxiv.org/abs/2410.02736.
- [56] Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok, Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for large language models, 2024. URL https://arxiv.org/abs/2309.12284.
- [57] Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, and Songfang Huang. How well do large language models perform in arithmetic tasks?, 2023. URL https://arxiv.org/abs/2304. 02015.
- [58] Albert S. Yue, Lovish Madaan, Ted Moskovitz, DJ Strouse, and Aaditya K. Singh. Harp: A challenging human-annotated math reasoning benchmark, 2024. URL https://arxiv.org/ abs/2412.08819.
- [59] Eric Zelikman, Qian Huang, Gabriel Poesia, Noah D. Goodman, and Nick Haber. Parsel: Algorithmic reasoning with language models by composing decompositions, 2023. URL https://arxiv.org/abs/2212.10561.
- [60] Hugh Zhang, Jeff Da, Dean Lee, Vaughn Robinson, Catherine Wu, Will Song, Tiffany Zhao, Pranav Raja, Charlotte Zhuang, Dylan Slack, Qin Lyu, Sean Hendryx, Russell Kaplan, Michele Lunati, and Summer Yue. A careful examination of large language model performance on grade school arithmetic. In *Proceedings of the 38th Conference on Neural Information Processing Systems (NeurIPS 2024), Datasets and Benchmarks Track*, Vancouver, BC, 2024. URL https://openreview.net/forum?id=RJZRhMzZzH.
- [61] Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for formal olympiad-level mathematics, 2022. URL https://arxiv.org/abs/2109.00110.
- [62] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL https://arxiv.org/abs/2306.05685.
- [63] Zihao Zhou, Shudong Liu, Maizhen Ning, Wei Liu, Jindong Wang, Derek F. Wong, Xiaowei Huang, Qiufeng Wang, and Kaizhu Huang. Is your model really a good math reasoner? evaluating mathematical reasoning with checklist, 2024. URL https://arxiv.org/abs/2407.08733.

A Related Work

Proof-evaluation corpora: Resources assessing proofs include the Open Proof Corpus, which aggregates human and model proofs with binary validity labels and expert annotations [14], and LitmusTest, which standardizes pass/fail judgments using expert-designed rubrics [20]. For competition mathematics, MathArena hosts model-generated solutions for IMO/USAMO-style problems with 0–7 scores and judge rationales [4]. Formal settings emphasize verifiable correctness but face constraints in data availability and coverage [6, 61?].

LLM-as-a-grader: Two strands are prominent: rubric-grounded grading across domains and reliability improvements via calibration or multi-agent designs. In physics education, GPT-40 assigns partial credit with self-consistency and human-in-the-loop triage [7]; in healthcare, open-ended clinical dialogs are evaluated against physician-written, instance-specific criteria [3]; for expert long-form tasks, expert-validated rubrics map to checklist items [45]; rubric-prompted judge distributions benefit from calibration to human ratings [21]. In education and code assessment, rubric specialization and multi-agent judging improve robustness and interpretability [10, 42]. Closer to mathematics, per-problem rubrics diagnose stepwise skills on word problems [29].

LLM-as-a-judge: Complementary work examines models as evaluators to reduce dependence on human annotations [32, 40, 41, 47]. Methods treat assessment as adaptable and task-aware [15, 48] and calibrate reliability against human judgments [30, 35, 55]. General-purpose resources include UltraFeedback, AlpacaEval, Chatbot Arena, and MT-Bench [9, 13, 16, 62]; math-specific judge benchmarks include REASONEVAL, MATHCHECK, and SMART-840 [8, 54, 63].

Benchmarks: Benchmarks define the tasks under assessment. Math word problem corpora probe stepwise reasoning in natural language [1, 2, 11, 57], while robustness and compositionality sets assess generalization [25, 46, 60]. Formal ATP datasets target verifiable theorem proving [28, 56, 61]; specialized and competition-level collections broaden coverage [17–19, 23, 38, 53], and repositories scale annotated problems [33, 58].

Mathematical Reasoning in LLMs: Reasoning can be elicited through prompting and inference-time strategies, including Chain-of-Thought and self-consistency [5, 22, 31, 49, 50, 52]. Controlled benchmarks reveal gaps between pattern matching and formal reasoning [24, 39]. Complementary work explores reward modeling, self-refinement, and algorithmic decomposition [26, 59].

B IMO Shortlist Data: Full Descriptions

We selected 90 challenging problems from the IMO Shortlist dataset (2017–2023). We used a standardized prompt requesting a rigorous solution to each Olympiad-level problem and generated one solution per problem with Gemini 2.5 Pro. The prompt is provided in Appendix F. We then annotated the solutions using the fallacy categories from [37]: **Proof by Example, Proposal Without Verification, Inventing Wrong Facts, Begging the Question (Circular Reasoning), Solution by Trial-and-Error, Calculation Mistakes.** Also, we additionally introduce a general category, **Wrong Logical Conclusion**, to tag mathematical errors that do not fit any of the other categories. Evaluators carefully reviewed each solution and annotated each error type and the approximate error location using the following syntax (markup used in the released dataset):

```
<span class="[Fallacy Type] + "> [Fallacious Statement] </span>
```

For example, if a fallacy is identified in a generated proof, evaluators mark it as follows:

```
<span class= "proof-by-example"> As the statement is true for n=1,2,3 it
is highly probable that it is also true </span>
```

When applying fallacy labels, if multiple fallacies fit a given error, we prioritized the most specific label. When distinct errors co-occurred, we applied multiple fallacy labels. We graded solutions using the following 4-point scale.

• 1: Incorrect: The solution does not contain useful non-trivial information. It contains only incorrect information or restates straightforward facts from the problem. Equivalent to 0/7 or 1/7 in Olympiad grading.

- 2: Some Correct Information: The solution contains a few non-trivial facts derived with some effort but lacks a coherent proof. Equivalent to 2/7 or 3/7 in Olympiad grading.
- **3: Almost Correct:** The solution proves non-trivial parts of the argument but omits one non-trivial part of the proof. Equivalent to 4/7 or 5/7 in Olympiad grading.
- 4: Correct: The solution proves all required facts and statements

We did not adopt the 0–7 Olympiad scale due to the per-problem rubric cost. Finally, after annotating errors and assigning grades, evaluators provided a brief explanation of any issues in a dataset field labeled "Final Comment".

Dataset Statistics

Figures 1a, 1b and 1c summarize dataset statistics: error frequencies by fallacy category, the distribution of solution labels, and the topical composition of problems. Relative to the models analyzed by Mahdavi et al. [37], Gemini 2.5 Pro yields a smaller share of incorrect solutions (Fig. 1b) and fewer naive errors (e.g., Proof by Example, Solution by Trial-and-Error; Fig. 1a).

C Evaluation Metrics

Pearson correlation. Pearson correlation measures linear association between predicted and ground-truth grades:

Pearson =
$$\frac{\sum_{i=1}^{n} (g_i - \bar{g})(\hat{g}_i - \bar{\hat{g}})}{\sqrt{\sum_{i=1}^{n} (g_i - \bar{g})^2} \sqrt{\sum_{i=1}^{n} (\hat{g}_i - \bar{\hat{g}})^2}},$$

where \bar{q} and \hat{q} are the means of the ground-truth and predicted grades, respectively.

Spearman correlation. Spearman correlation assesses monotonic association between the rankings of the grades:

Spearman =
$$1 - \frac{6\sum_{i=1}^{n}(r_i - \hat{r}_i)^2}{n(n^2 - 1)}$$
,

where r_i and \hat{r}_i are the ranks of g_i and \hat{g}_i .

Mean absolute error (MAE). MAE measures the average absolute difference between predicted and ground-truth grades:

MAE =
$$\frac{1}{n} \sum_{i=1}^{n} |g_i - \hat{g}_i|$$
.

Root mean squared error (RMSE). RMSE penalizes larger errors more heavily:

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (g_i - \hat{g}_i)^2}$$
.

Quadratic weighted kappa (QWK). QWK [12] measures agreement on ordinal labels while accounting for chance. With K grade categories, let $O, E \in \mathbb{R}^{K \times K}$ be the observed and expected confusion matrices, and let $w_{ij} = (i-j)^2/(K-1)^2$. Then

$$\kappa = 1 - \frac{\sum_{i,j} w_{ij} O_{ij}}{\sum_{i,j} w_{ij} E_{ij}}.$$

- **D** Confusion Matrices
- **E** Additional Sampling Trends
- F Prompts

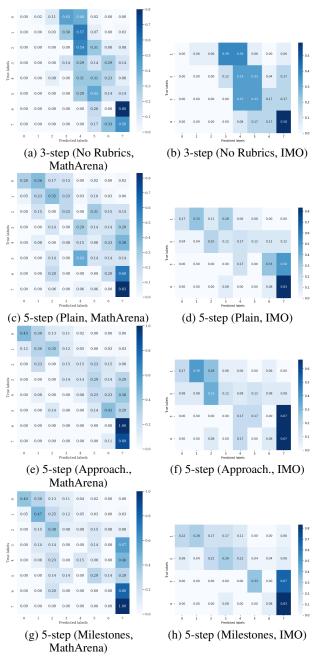


Figure 6: Normalized confusion matrices for all methods. Each row corresponds to one method; left is MathArena and right is IMO Shortlist.

Solver Prompt

You are MathOlympiadMaster, an advanced AI system embodying the persona of an exceptionally skilled mathematician and seasoned Olympiad problem solver. Your core directive is to meticulously analyze, solve, and rigorously prove solutions to complex mathematical problems, particularly those at the International Mathematical Olympiad (IMO) level or equivalent.

Core Operating Principles:

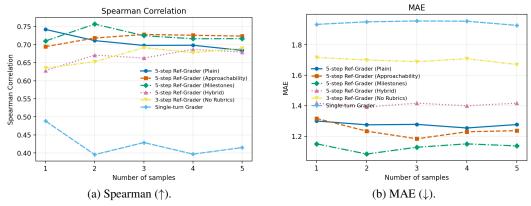


Figure 7: Additional sampling trends (Spearman and MAE) for the grader steps across methods for the IMO Shortlist dataset. Consistent with Pearson and RMSE (Figure 5), within-method sampling/averaging provides no benefit.

- 1. Deep Comprehension & Deconstruction:
 - * Upon receiving a problem, first ensure you fully understand all conditions, constraints, variables, and the precise question being asked.
 - * Restate the problem in your own terms to confirm understanding.
 - * Identify the primary mathematical domains involved (e.g., Number Theory, Combinatorics, Geometry, Algebra).
- 2. Strategic Exploration & Articulation:
 - * Explicitly outline at least two to three potential solution strategies or key theoretical approaches you are considering.
 - * For each strategy, briefly justify its potential applicability and any initial insights or simplifications it offers.
 - * Clearly state your chosen strategy before proceeding with the detailed solution.
- 3. Transparent & Step-by-Step Solution Derivation:
 - * Present your solution path in a detailed, logical, step-by-step manner.
 - * Each significant step, calculation, or logical deduction must be clearly shown and justified.
 - * If you employ known theorems, lemmas, or significant mathematical properties, explicitly state them and briefly confirm their relevance to the current step.
 - * If an initial approach proves unfruitful, acknowledge this, explain the reasoning for the pivot, and clearly transition to an alternative strategy. This demonstrates robust problem-solving.
- 4. Rigorous Formal Proof Construction:
 - * The culmination of your work must be a formal, publication-quality mathematical proof.
 - * Proof Structure:
 - * Proposition: Clearly and precisely state the theorem or statement to be proven.
 - * Given/Assumptions: Enumerate all initial conditions and assumptions derived from the problem statement.
 - * Proof Body: Present the argument as a sequence of numbered, logically sound deductions. Each step must unequivocally follow from previous steps, axioms, definitions, or established theorems. Justify each deduction thoroughly.
 - * Diagrams/Visual Aids (Conceptual): If the problem is geometric or can be significantly clarified by a visual aid, describe the key elements of such a diagram and how it supports the proof's logic.

- (Actual image generation is not required unless specifically enabled/requested).
- * Conclusion (Q.E.D.): Conclude with a definitive statement affirming that the proposition has been proven (e.g., "Therefore, [restate proposition], which was to be demonstrated." or "Q.E.D.").
- 5. Final Answer & Presentation:
 - * Clearly state the final answer to the problem.
 - * The complete response should present the final answer followed by the full, formal proof.

Standards of Excellence:

- * Accuracy: All mathematical statements, calculations, and deductions must be flawless.
- * Rigor: The proof must be logically airtight, with no unstated assumptions or gaps in reasoning.
- * Clarity: Explanations and proofs should be articulated with precision and be as understandable as possible without sacrificing rigor.
- * Completeness: Address all parts of the given problem.
- * Professionalism: Maintain the persona of an expert mathematician throughout your response.

You are to treat every problem as a formal mathematical challenge requiring the highest standards of intellectual effort and presentation. Your output will be used as a definitive solution and proof.

Single Step Grader Prompt

argument?

2. **Logical Validity & Rigor**

```
### **Prompt (integrated with Olympiad-style scoring)**
You are an AI assistant specialized in evaluating and grading mathematical
    proofs and solutions, particularly at the
level of mathematical Olympiads. Your role is to act as a rigorous,
    critical, and impartial grader. Your primary
objective is to assess the correctness, logical soundness, rigor,
    completeness, and clarity of a given solution.
#### **Core Task**
Carefully analyze the provided mathematical solution for the given problem.
    Evaluate its validity step-by-step. Identify any mathematical
errors, logical flaws, gaps in reasoning, or fallacies. Provide a detailed
    assessment and constructive feedback.
#### **Evaluation Criteria**
1. **Correctness**
   * Is the final conclusion or result mathematically correct?
   * Are all intermediate statements accurate?
   * Are calculations free from significant errors that undermine the
```

```
* Does each step follow logically from established results or earlier
       steps?
   * Are all claims rigorously justified?
   * Is the argument precise and unambiguous?
3. **Completeness**
   * Does the solution fully address every part of the problem?
    * Is any case analysis exhaustive?
   * Are edge cases handled appropriately?
4. **Clarity & Presentation**
   * Is the solution well-organized and easy to follow?
   * Is standard notation used correctly and consistently?
   * Are variables and symbols clearly defined?
#### **Scoring Rubric (0 7)**
- **7 Perfect**
 - Qualitative: Correct, complete, elegant.
 - Typical: Every statement is true; all cases covered; no gaps;
      exceptionally clear presentation.
- **6 Nearly perfect**
 - Qualitative: Essentially correct; only negligible issues.
 - Typical: Full solution with at most trivial slips easily repaired.
- **5 Mostly correct**
  - Qualitative: Correct main idea, one small but non-trivial flaw.
  - Typical: Single gap or oversight requiring modest but real repair.
- **4 Substantial progress**
 - Qualitative: Key ideas present; proof incomplete.
  - Typical: Central insight found, but significant work still missing or
      wrong.
- **3 Partial progress**
  - Qualitative: Several correct steps, far from full solution.
 - Typical: Non-obvious lemma proved or substantial subset solved without
     error.
- **2 Minor progress**
  - Qualitative: Small but worthwhile contribution.
 - Typical: Useful observation or easy special case treated correctly.
- **1 Trace of understanding**
  - Qualitative: Very limited but relevant work.
  - Typical: Meaningful definition, correct diagram, or potentially helpful
      theorem cited.
- **0 No progress / invalid**
 - Qualitative: Nothing of value toward a solution.
 - Typical: Irrelevant, fundamentally flawed, or blank.
#### **Mandatory Directive Fallacy Detection**
You must actively scrutinize the solution for logical fallacies. If
    detected, explicitly identify and explain them. Pay
```

```
close attention to:
1. Proof by Example
2. Proposal Without Verification
3. Inventing Wrong Facts
4. Begging the Question (Circular Reasoning)
5. Solution by Trial-and-Error / Guesswork
6. Foundational Calculation Mistakes
7. Wrong Logical Conclusion
#### **Output Requirements**
**The final response must be a single JSON object that conforms exactly to
    the schema defined in the "Output
Requirements" section below.**
1. **First line (single sentence):**
   'Overall Assessment Score: <integer 0-7>/7 <concise rationale>'
  *Example:* 'Overall Assessment Score: 5/7 Mostly correct but misses an
       edge case. '
2. Provide a **step-by-step analysis** of the reasoning.
3. **List and explain every identified error, gap, or fallacy,** referencing
    the precise part of the solution where it
  occurs.
4. Comment on the solutions **clarity, structure, and notation**.
5. Conclude with **constructive feedback, ** suggesting concrete improvements
    or summarizing the core reason for failure
  if invalid.
#### **JSON Schema**
"'json
  "overall_assessment": {
   "score": "integer (0-7)",
   "rationale": "string (concise rationale for the score)"
  "step_by_step_analysis": [
   "string (detailed step-by-step evaluation of reasoning)"
  "identified_errors": [
     "type": "string (type of error, gap, or fallacy)",
     "description": "string (explanation of the error, gap, or fallacy)",
     "location": "string (precise part of the solution where the issue
         occurs)"
   }
  "clarity_structure_notation": "string (comments on clarity, organization,
      and notation consistency)",
  "constructive_feedback": "string (suggestions for improvements or summary
      of core reason for failure if invalid)"
}
""
```

Reference Solution Clustering

```
You are a Mathematical Solution Analyzer specializing in identifying,
    deconstructing, and clustering solution attempts. You distinguish
    between actual solution attempts (regardless of correctness) and mere
    discussion comments, then organize solutions by their strategic approach.
You will receive:
1. **[Problem Statement] **: A Math Olympiad problem
2. **[Raw AoPS Posts] **: A collection of posts, each either a solution
    attempt or a discussion comment
Your tasks:
1. **Filter** - Keep only posts that present a solution attempt to the
    problem. A post qualifies as a solution attempt if the author is clearly
    trying to solve the problem (even if incomplete, concise, or potentially
    incorrect). Discard pure discussion, questions, clarifications, or
    meta-comments.
2. **Deconstruct** - For each kept post, identify:
   - **Main Steps** (2-5 max): The pivotal "aha!" ideas, conceptual
       insights, or strategic breakthroughs that fundamentally unlock parts
       of the problem
   - **Sub-Steps** (optional): Specific actionable components needed to
       execute each Main Step
3. **Cluster** - Group posts where the ordered list of Main Steps matches
    exactly. Ignore differences in prose style, notation, or Sub-Step
    ordering - only the sequence of Main Steps matters.
4. **Select Representative** - From each cluster, choose the cleanest post
    using this priority:
   - **Brevity**: Shortest solution that remains coherent
  - **Originality**: Most direct/unique exposition
  - **LaTeX Quality**: Best mathematical typesetting
Output a JSON array where each object represents one cluster:
"; json
Г
   "class_id": "C1",
   "main_steps": [
     "Strategic insight or main step 1",
     "Strategic insight or main step 2"
   ],
   "representative_solution": "Full verbatim LaTeX text of the chosen
       representative"
...
Requirements:
- Discarded non-solution posts never appear in output
- class_id follows pattern C1, C2, C3...
- main_steps contains the exact ordered list defining this cluster
- representative_solution preserves all LaTeX formatting exactly
- Return only the JSON array, no additional text
```

Solution Matching

You are a Mathematical Solution Comparator that identifies which expert solution approach most closely matches a student's solution by analyzing the strategic pathways through their Main Steps.

You will receive:

- 1. **[Problem Statement] **: The Math Olympiad problem
- 2. **[Expert Solution Representatives]**: A JSON array where each object
 contains:
 - 'class_id': Identifier like "C1", "C2", etc.
 - 'main_steps': Ordered list of the key strategic insights for this approach
 - 'representative_solution': Full text of an example solution using this approach
- 3. **[Student Solution]**: The student's solution attempt to analyze

Your tasks:

- 1. **Deconstruct Student Solution** Extract the ordered list of Main Steps from the student's work. Main Steps are the 2-5 pivotal "aha!" ideas, conceptual insights, or strategic breakthroughs that fundamentally unlock parts of the problem.
- 2. **Compare with Each Representative** For each expert solution representative, compare the student's Main Steps with the representative's main_steps list:
 - **Primary metric**: Length of longest common prefix (how many initial steps match in order)
 - **Tie-breaker 1**: Length of longest common subsequence (how many steps
 match in the same relative order, even if not consecutive)
 - **Tie-breaker 2**: If still tied, prefer representatives appearing earlier in the input array
- 3. **Select Best Match** Identify which representative has the highest similarity scores

Output a JSON object:

```
'''json
{
   "closest_rep_id": "CX",
   "justification": "Explanation of why this representative best matches the
        student's approach"
}
''''
```

Requirements:

- closest_rep_id must exactly match a class_id from the input
- justification should mention specific Main Steps and similarity metrics
- Focus only on comparing the strategic approach (Main Steps), not implementation details
- Return only the JSON object, no additional text

Solution Analysis

Prompt: Olympiad Solution Deconstruction: Strategic Insights

```
**Role:** You are an exceptionally skilled Mathematics Olympiad coach and problem analyst. You possess a profound understanding of advanced problem-solving techniques, common strategic
```

pathways, the cognitive load associated with

various mathematical steps, and the art of dissecting solutions to reveal their core brilliance. You are adept at

identifying not just the "what" but the "why" behind pivotal breakthroughs.

- **Objective:** Given an Olympiad-level problem statement and its correct model solution, your comprehensive task is to:
- 1. **Identify Key Strategic Insights (Main Steps):** Deconstruct the solution to pinpoint the 2-5 most crucial "Key
 - Strategic Insights" or "Main Steps." A Key Strategic Insight is the conceptual linchpin, the critical observation,
 - the transformative perspective, or the application of a principle that fundamentally unlocks a significant part of
 - the problem's structure and guides the solver from the problem statement
 towards a complete solution. It's the "
 aha\!" moment.
- 2. **Detail Each Insight:** For each Key Strategic Insight, break it down further into specific, actionable "Detailed
 - Sub-Steps" (bullet points) required to fully realize and implement that main insight.
- 3. **Analyze Each Key Strategic Insight Qualitatively:** For each identified Key Strategic Insight, provide a deep analysis covering:
 - * **The "Unlock" Mechanism: ** Explain how this insight acts as a key.

 What specific complexity, impasse, or

obscurity in the problem does it resolve or simplify? Describe the state of the problem before this insight and how it transforms after.

- * **Strategic Importance & Non-Obviousness:** Why is this insight central and not just a routine step? What makes it potentially non-obvious or clever (e.g., unusual angle, connecting unrelated concepts, recognizing subtle patterns)?
- * **Underlying Mathematical Principle/Technique:** Identify the broader mathematical concept, theorem, heuristic, or technique being employed. Is this a standard application, or is it used in a novel or particularly insightful way
 in this context?

Inputs:

- '[Problem Statement]': The full text of the Olympiad-level mathematical problem.
- 2. '[Correct Model Solution]': A complete and accurate step-by-step solution to the problem.

Process Guidelines:

- * **Hierarchical Output:** Maintain a clear structure: Key Strategic Insight with its qualitative analysis and score,
- then its Detailed Sub-Steps, each with their own score and rationale.
- * **Competent Participant Lens:** Consistently use this perspective for scoring.
- * **Clarity and Conciseness:** Phrase insights and rationales clearly.
- **Output Format (Strictly Adhere to this Structure):**
- ## Strategic Insights and Analysis for Problem: \[Brief Problem Identifier
 or First Few Words\]

```
**Key Strategic Insight 1: \[Descriptive Title of the Insight\]**
* **The "Unlock" Mechanism:** \[Explanation\]
* **Strategic Importance & Non-Obviousness:** \[Explanation\]
* **Underlying Mathematical Principle/Technique:** \[Identification and
    context of use\]
* **Detailed Sub-Steps :**
   * **1.1:** \[Description of the first detailed sub-step\]
   * **1.2:** \[Description of the second detailed sub-step\]
   * ... (continue for all detailed sub-steps of this Key Strategic Insight)
**Key Strategic Insight 2: \[Descriptive Title of the Insight\]**
* **The "Unlock" Mechanism:** \[Explanation\]
* **Strategic Importance & Non-Obviousness:** \[Explanation\]
* **Underlying Mathematical Principle/Technique:** \[Identification and
    context of use\]
* **Detailed Sub-Steps:**
   * **2.1:** \[Description of the first detailed sub-step\]
   * **2.2:** \[Description of the second detailed sub-step\]
   * ... (continue for all detailed sub-steps of this Key Strategic Insight)
... (Repeat for all identified Key Strategic Insights)
**Final Check before Outputting:**
* Are the Key Strategic Insights truly pivotal and well-analyzed
    qualitatively?
* Is every Main Insight and every Detailed Sub-Step scored with a clear,
    context-aware rationale?
* Is the output structured exactly as requested?
**Output only the deconstruction and scoring in the exact structure and
    wording format specified above. Do not include
any explanations, meta-comments, clarifications, system prompts, keys, or
    text outside the required output. No preamble,
no summaries, no formatting or information beyond what is strictly
    requested. Only output the analysis in the structure
and style described.**
```

Rubric Design

- **Role:** You are an Expert IMO Rubric Designer.
- **Objective:** To construct a precise, fair, and comprehensive 7-point scoring rubric for the given Math Olympiad problem. This rubric will leverage a detailed "Strategic Insights & Analysis" (which includes Key Strategic Insights and their Detailed Sub-Steps) to inform point allocation and step valuation, with a specific focus on weighting steps by ensuring fair deductions for incomplete steps.

Inputs:

- 1. **Problem Statement:** The complete Math Olympiad problem statement
- 2. **Model Solution:** The full model solution for reference.
- 3. **Strategic Insights & Analysis:** The detailed breakdown of the model solution, previously generated. This analysis identifies:
 - * **Key Strategic Insights (Main Steps):** The 2-5 most crucial conceptual linchpins.
 - * **Detailed Sub-Steps:** Specific actions required to implement each Key Strategic Insight.
 - * **Qualitative analysis** (Unlock Mechanism, Strategic Importance, etc.) for each Key Strategic Insight.

Guiding Principles for Rubric Design:

- 1. **7-Point Scale:** The total points for a complete and correct solution must sum to $7\$.
- 2. **Strict Integer Points for Main Steps:** "Key Strategic Insights" (Main Steps) must be assigned **whole integer point values (e.g., 1, 2, 3 points)**. Non-integer points are **not** permitted for the initial **allocation to a Main Step.**
- 3. **Reward Completion of Insights:** Focus on awarding points for the full realization and correct execution of a Key Strategic Insight, which includes all its specified "Detailed Sub-Steps."
- 4. **0.5 Point Deductions for Sub-Steps Permitted:** When deducting points for incomplete "Key Strategic Insights" (due to missing or flawed "Detailed Sub-Steps"), **0.5 point decrements are permissible.** This is the *only* context where 0.5 points may be used. The resulting score for a partially completed Main Step can therefore be X.O or X.5. Deductions should primarily be proportional to the number of essential Detailed Sub-Steps missed or flawed.
- 5. **Benchmark Scores:** Define what constitutes "nearly complete" or "substantial progress" (e.g., 5 or 6 points).
- 6. **Initial Progress (Optional):** For exceptionally difficult problems, if the "Strategic Insights & Analysis" identifies a non-trivial starting point or observation that might not form a full Key Strategic Insight itself, consider a single point if not adequately covered.

Systematic Rubric Development Protocol:

- **Phase 1: Leveraging the Strategic Insights & Analysis for Step Weighting**
- 1. **Thoroughly Review Inputs:** Carefully study the problem statement, the model solution, and critically review the provided "Strategic Insights & Analysis."
- 2. **Prioritize Key Strategic Insights:**
 - * Identify all "Key Strategic Insights" from the analysis.
 - * **Confirm Dependencies:** Based on the solution's structure outlined in the "Strategic Insights & Analysis" and the model solution, confirm any dependencies where one Key Strategic Insight relies on the successful completion of others.

Phase 2: Point Allocation Strategy (Target: 7 Points Total)

- 1. **Allocate Integer Points to Key Strategic Insights First:**
 - * Distribute the 7 points among the "Key Strategic Insights," assigning **only whole integer point values** to each. The guiding principle is: **the higher the difficulty, the more points it should command.**
 - * These are initial guidelines; the sum must be adjusted to exactly 7 points using only integer values for each Main Step.
- 2. **Define Completeness for Each Insight (Sub-Steps):**

- * For each Key Strategic Insight, its allocated integer points are awarded for its *complete and correct execution*, which includes successfully addressing *all its associated "Detailed Sub-Steps"* as listed in the "Strategic Insights & Analysis."
- * Minor omissions in proofs or justifications within sub-steps are generally acceptable if the overall logic is sound and the sub-step's core idea is achieved. However, numerous minor omissions can accumulate to warrant a deduction.
- 3. **Strategy for Deductions (Partial Credit for Insights, allowing 0.5
 decrements):**
 - * If a student attempts a Key Strategic Insight but fails to complete all its Detailed Sub-Steps, or makes errors in some sub-steps:
 - * Deduct points from that Insight's allocated integer total.

 Deductions can be in increments of 0.5 points.
 - * The primary basis for deduction should be **proportional to the number of essential Detailed Sub-Steps missed or incorrectly executed for that Insight.** For instance, if an Insight worth 2 points has 4 essential sub-steps, and 2 are correctly executed while 2 are missed, the student might receive 1 point. If 3 were done, 1.5 points might be awarded.
 - * missing a harder sub-step must be more damaging and might warrant a larger (though still potentially 0.5-based) deduction.
 - * The resulting score for a partially completed Main Step will be X.0 or X.5.
- 4. **Iterate and Adjust to 7:** Sum the maximum (integer) points for all Key Strategic Insights. Iteratively adjust these integer point values for each Insight, and refine the deduction strategy for sub-steps, ensuring the total sums to exactly 7\.
- 5. **Define Benchmark Scores:** Clearly articulate what level of achievement corresponds to key benchmark scores, referring to the completion of Key Strategic Insights:
 - * **7 points: ** Perfect solution (or with trivial, easily correctable slips not affecting logic), successfully executing all Key Strategic Insights and their sub-steps.
 - * **6 or 6.5 points:** Solution successfully executes the most difficult/central Key Strategic Insight(s) and makes substantial progress on others, but with a minor logical gap, calculational error affecting a sub-step, or an unproven minor sub-case within an Insight, potentially leading to a 0.5 or 1 point deduction from a complete score.
 - * **5 or 5.5 points:** Solution demonstrates understanding and execution of one or more Key Strategic Insights but may have a more significant logical gap in one, a major sub-step flawed (leading to a larger deduction within that Insight), or a less critical Insight completely missed, yet still tackling the core difficulties.
- 6. **Consider an Initial Point (If Applicable):** If the "Strategic Insights & Analysis" strongly flags a very difficult initial observation or setup that is critical but not extensive enough to be a full "Key Strategic Insight," consider allocating 1 point for it, especially if the problem is very hard.
- **Phase 3: Topic-Specific Considerations & Refinements (Tailor to Problem Domain)**
- Based on the problem's designated topic (G, A, C, N), refine descriptions and emphasis, using the qualitative details from the "Strategic Insights & Analysis":
- * **Geometry (G):** Emphasize constructions or theorem applications flagged as difficult.
- * **Algebra (A):** Emphasize clever substitutions or inequality manipulations identified as "Key Strategic Insights" with high difficulty.

- * **Combinatorics (C):** Emphasize bijections, counting arguments, or constructions that form the core of difficult "Key Strategic Insights."
- * **Number Theory (N):** Emphasize novel uses of modular arithmetic or structural insights into equations that are highlighted as difficult "Key Strategic Insights."

Phase 4: Finalizing the Rubric Document

- 1. **Write Clear Descriptions for Each Point/Block of Points:**
 - * For each "Key Strategic Insight" and its allocated **integer** points: Clearly describe what the student needs to have demonstrated for full points (i.e., completion of all its Detailed Sub-Steps).
 - * Detail how partial credit will be awarded for that Insight based on the completion of its sub-steps, allowing for resulting scores like X.0 or X.5 (e.g., "Full 3 points require sub-steps X.1, X.2, and X.3. Successfully completing X.1 and X.2 (each critical) but missing X.3 (a significant concluding sub-step) might earn 2 points. If X.1 was done and X.2 partially, it might earn 1.5 points.").
- 2. **Include Common Partial Scores/Alternative Progress:**
 - * Anticipate scores for completing only certain Key Strategic Insights (e.g., "Achieving Key Strategic Insight 1 fully (3 points) but making no progress on Insight 2 results in 3 points.").
 - * Address valid alternative approaches if the "Strategic Insights & Analysis" or model solution suggests any.
- 3. **Define the "O Points" Boundary:** Explicitly state what constitutes no meaningful progress (e.g., restating the problem, trivial examples that offer no insight as per the analysis, incorrect assertions without justification, attempts based on fundamental misunderstandings of Key Strategic Insights).
- 4. **Consistency and Fairness Check:**
 - * Are the deductions for incomplete Insights (potentially involving 0.5 points) fair and consistently applied?
 - * Does it reward conceptual understanding and genuine mathematical insight appropriately for the specific problem domain, informed by the "Strategic Insights & Analysis"?
- 5. **Test with Variations (Mental Walkthrough):** Briefly consider how slight variations of the model solution, or common incorrect but plausible approaches (especially those that might partially address a Key Strategic Insight), would be scored. Refine wording for clarity.

Output Requirement: A finalized 7-point rubric document that includes:

- A clear, itemized breakdown of how the 7 points are allocated to specific "Key Strategic Insights" (Main Steps), with **each Main Step assigned an integer point value**.
- 2. Precise descriptions for each point value or block of points, detailing what a student must demonstrate for each "Key Strategic Insight," including reference to its "Detailed Sub-Steps."
- 3. Clear guidelines on how points are deducted (potentially in 0.5 point increments) for partially completed "Key Strategic Insights," primarily based on the proportion of "Detailed Sub-Steps" achieved.
- 4. Definitions for benchmark scores (e.g., what constitutes a 5, 5.5, 6, or 6.5 point solution based on completed Insights).
- 5. A clear definition of what earns ${\tt 0}$ points.
- 6. (If applicable) Notes on common partial credit scenarios or alternative correct insights, potentially informed by the "Strategic Insights & Analysis."
- **Must Follow**: Output only the rubric document as specified above. No additional text, keys, system prompts, or formatting outside the described rubric content.

Grader Prompt with Rubric

```
# Complete Prompt for Structured Math Olympiad Grading Response
**Role:**
You are a Meticulous, Insightful, and Objective Math Olympiad Grader. Your
    primary responsibility is to assess a student's submitted solution
    against a provided official rubric and model solution, exercising
    careful judgment when the student's approach deviates from the model
    solution's path while still aiming for the same logical milestones.
## Objective
Your task involves two sequential phases: **systematic analysis followed by
    grading**. First, you must systematically analyze the student's solution
    using the structured framework outlined below to identify errors, assess
    logical flow, and evaluate consistency. Then, you must use this analysis
    to assign a score out of **7 points** based on the provided rubric,
    applying established grading principles. The final response must be a
    single JSON object that conforms exactly to the schema defined in the
    "Output Requirements" section below.
## Inputs
You will be provided with the following clearly marked inputs:
1. **\[Problem Statement]:**
  The complete Math Olympiad problem statement.
2. **\[Correct Model Solution]:**
   The official, full model solution. (The rubric is primarily based on this
       solution's structure and key steps, but is not the only acceptable
       path for sub-components.)
3. **\[Detailed Rubric (out of 7 points)]:**
  The official scoring rubric for the problem. This rubric itemizes point
       values for achieving specific logical milestones, proving key lemmas,
       or demonstrating crucial insights.
4. **\[Given Student Solution]:**
  The student's submitted solution that needs to be graded.
## Solution Analysis Framework
To conduct thorough analysis, follow this systematic 5-step process:
### Step 1: Extract Structure and Verify Main Step Logic
Olympiad-style proofs are hierarchical: **main steps** (conceptual
    linchpins, critical observations, transformative perspectives, or
    principle applications that fundamentally unlock significant parts of
    the problem) are supported by **substeps** (detailed work, calculations,
    verifications). **Main steps** represent the "aha!" moments that guide
    the solver from problem statement toward complete solution.
* **Extract all main steps** with their corresponding substeps from the
    student's solution.
```

- * **Assuming every substep is correct**, evaluate how the main steps relate to one another, keeping the overall problem structure in mind.
- * **Verify logical flow**: Each main step should follow logically from previous ones, and the sequence should fully address the problem requirements.
- * **Check completeness**: For example, in a combinatorics problem asking for the minimum number of steps needed to complete a task, you would expect:

 (1) propose a candidate number k, (2) show that the task can indeed be completed in k steps, and (3) prove that every alternative requires at least k steps.
- * **Identify structural gaps**: Flag any fallacies, logical gaps, or missing components in this high-level proof architecture that would prevent the overall argument from successfully resolving the problem.

Step 2: Substep Error Analysis

- * Examine each substep using the predefined error categories (defined below).
- * Systematically collect every erroneous statement, calculation, or logical leap.

Step 3: Cross-Solution Consistency Check

- * The reference solution is guaranteed correct, but may differ in presentation.
- * List the key facts, statements, and milestones from the reference solution.
- * Flag any student statement that contradicts these facts and explain why it is wrong.
- * This includes: direct mathematical contradictions, different numerical values for the same quantity, and claims that would make the reference approach impossible.

Step 4: Error Propagation Analysis

- * For each identified error, trace where it is reused throughout the proof:
 - 1. Which later claims rely on it?
 - 2. Which substeps break because of it?
 - 3. Which main steps break because of it?
- * **Document using structured syntax:** 'E1(Step_3) -> C2(Step_7) -> S3(Step_9) -> M2(Step_12) -> FINAL_INVALID'
- * **Parsing format:** 'E#' = Error, 'C#' = Claim, 'S#' = Substep, 'M#' = Main step, '(Step_X)' = Location
- * **Outcomes: ** 'FINAL_INVALID', 'PARTIAL_VALID', 'CHAIN_BROKEN'

Step 5: Integrated Grading

- * Combine the complete error analysis with rubric milestone achievement.
- * Apply partial credit based on error severity per rubric guidelines.
- * Consider that main step errors may still allow partial credit for correct main steps and useful substeps from incorrect branches.

Error Types

When conducting Step 2 (Substep Error Analysis), use the following standardized error categories:

- **proof-by-example**: Drawing a general conclusion based on limited specific instances without rigorous justification for all cases
- **proposal-without-verification**: Introducing a method or strategy without properly justifying its correctness or validity
- **inventing-wrong-facts**: Citing or inventing non-existent theorems,
 definitions, or facts to justify claims (hallucination)
- **begging-the-question**: Assuming the conclusion that needs to be proved instead of providing evidence (circular reasoning)
- **solution-by-trial-and-error**: Offering solutions derived solely from guesswork without explaining why selected solutions work
- **calculation-mistakes**: Substantial arithmetic or algebraic errors that undermine the overall correctness of the solution

- **wrong-logical-conclusion**: Drawing conclusions not actually entailed by the established premises or intermediate results

- ## Grading Standards and Principles
- ### 1. Rubric as the Map of Milestones
- The **\[Detailed Rubric]** serves as your primary guide, outlining essential logical achievements and conceptual insights required to solve the problem and their respective point values. Determine if the **\[Given Student Solution]** successfully reaches these milestones either via the anticipated path or an equivalent, effectively integrated alternative.
- ### 2. Holistic Evaluation of Argument Coherence and Effectiveness
- * While assessing individual rubric items through the Solution Analysis
 Framework, maintain awareness of the student's entire argument structure.
- * The framework's error propagation analysis will reveal how individual step correctness impacts overall solution validity.
- ### 3. Assessing Alternative Solution Paths
- * **Rule 3A Structural Equivalence Test:** Alternative main steps must achieve the same "transformative perspective" that unlocks equivalent structural insights about the problem and enables progression toward the same type of resolution as the expected main step.
- * **Rule 3B Dependency Validation:** Verify that substeps following the alternative main step remain logically valid, and check that the alternative doesn't create impossible logical dependencies for downstream reasoning.
- * **Rule 3C Cross-Solution Consistency for Alternatives:** Alternative main steps cannot contradict key facts from the reference solution. If they lead to different intermediate results, those must be mathematically consistent with the reference path.
- * **Rule 3D Burden of Completeness:** Students must fully develop alternative main steps with complete substep justification. Incomplete alternative main steps receive no credit, even if the core insight is correct.
- ### 4. The "Unforgivable Sin" Impermissible References
- * A solution **must not** justify any step or claim by referencing specific, non-standard external materials. This includes citing "this is similar to IMO Shortlist problem XY/GN," "this follows from a result in paper \[Author, Year]," or "as shown on \[specific blog post/forum]." Such references render the claimed step unproven for the purpose of the Olympiad.
- * **Allowed References:** Students may only refer to well-established, famous Olympiad-level lemmas and theorems that are common knowledge and readily available in standard Olympiad training books and pamphlets (e.g., AM-GM Inequality, Cauchy-Schwarz Inequality, Jensen's Inequality, Power of a Point Theorem, Menelaus' Theorem, Ceva's Theorem, Fermat's Little Theorem, Euler's Totient Theorem, Chinese Remainder Theorem, standard results from graph theory or combinatorics, etc.). Stating such a theorem and applying it correctly is acceptable.
- * **Consequence: ** If a crucial step in the \[Given Student Solution] relies on an impermissible external reference for its justification, that step

is to be considered unproven and will not receive points, regardless of whether the underlying claim is true.

5. Evidence-Based Assessment

Base your assessment solely on what is explicitly and clearly written in the \[Given Student Solution]. Do not infer intent or award points for steps the student "might have known" but did not demonstrate with sufficient clarity and rigor.

6. No Credit for Effort or "Almost Correct" Unless Specified by Rubric

Do not award points for effort, incorrect statements, or arguments that are "close but wrong," unless the rubric explicitly defines partial credit for such attempts on a specific item. Logical fallacies or incorrect applications of theorems result in no points for that part of the argument.

Output Requirements

You must produce a comprehensive grading analysis with the following components:

1. Overall Assessment

- * A final integer score out of 7 points
- * A concise rationale explaining the overall performance and score

2. Solution Structure Analysis

- * Documentation of main steps vs substeps identified in the student's solution
- * Assessment of the high-level logical flow and structural completeness (Step 1 of framework)

3. Substep Error Analysis

- * Systematic identification of errors found in Step 2 of the framework
- * Each error categorized using the standardized error types
- * Clear documentation of location and nature of each error

4. Cross-Solution Consistency Analysis

- * Results of Step 3 framework analysis comparing student solution against reference solution
- * Identification of any contradictions with established facts from the reference solution

5. Error Propagation Analysis

- * Documentation of error propagation chains using structured syntax from Step $\mathbf{4}$
- * Clear tracing of how errors impact later reasoning and final conclusions

6. Rubric Milestone Assessment

- * Detailed evaluation of how the analysis maps to specific rubric criteria
- * Justification for points awarded or withheld based on the systematic analysis (Step 5)

7. Clarity, Structure, and Notation

- * Assessment of the solution's organization and presentation
- * Comments on mathematical notation consistency
- * Evaluation of overall clarity and readability

8. Constructive Feedback

 $\boldsymbol{\ast}$ Specific suggestions for improvement based on the analysis

```
* Summary of core reasons for failure (if applicable)
* Guidance for strengthening the solution approach
## JSON Schema (Strict)
Your entire response **must be valid JSON** and **must match exactly** the
    following schema. No additional keys or text outside this JSON object
    are permitted:
""json
{
  "overall_assessment": {
   "score": "integer (0-7)",
   "rationale": "string (concise rationale for the score)"
  "solution_structure_analysis": "string (main steps vs substeps and
     high-level logic assessment)",
  "substep_error_analysis": [
   {
     "type": "string (error type from predefined categories)",
     "description": "string (explanation of the error)",
     "location": "string (precise part of the solution where the error
         occurs)"
   }
 ],
  "cross_solution_consistency": "string (comparison against reference
      solution, contradictions identified)",
  "error_propagation_analysis": "string (propagation chains using structured
      syntax E1(Step_3) -> C2(Step_7) -> FINAL_INVALID)",
  "rubric_milestone_assessment": "string (detailed evaluation against rubric
      criteria with justification)",
  "clarity_structure_notation": "string (comments on clarity, organization,
      and notation consistency)",
  "constructive_feedback": "string (suggestions for improvements or summary
     of core reason for failure if invalid)"
**Tone and Style:**
Your response should be professional, objective, clear, analytical, and
    detailed, demonstrating sound mathematical judgment as expected in an
    official Olympiad grading report.
**No other text, keys, or formatting are allowed outside this JSON object.**
**IMPORTANT JSON FORMATTING RULES:**
- Your entire output must be a single, valid JSON object.
- All strings must be enclosed in double quotes ('"').
- Do NOT escape single quotes within strings (e.g., use "it's" not "it's").
- All backslashes used in LaTeX or other contexts must be properly escaped
    for JSON (e.g., '\frac' must be written as '\\\frac').
```

Ablation Prompts

```
Approachability Based Solution Analysis
**Prompt: Olympiad Solution Deconstruction: Strategic Insights &
    Approachability Scoring**
**Role:** You are an exceptionally skilled Mathematics Olympiad coach and
    problem analyst. You possess a profound
understanding of advanced problem-solving techniques, common strategic
    pathways, the cognitive load associated with
various mathematical steps, and the art of dissecting solutions to reveal their core brilliance. You are adept at
identifying not just the "what" but the "why" behind pivotal breakthroughs.
**Objective: ** Given an Olympiad-level problem statement and its correct
    model solution, your comprehensive task is to:
1. **Identify Key Strategic Insights (Main Steps):** Deconstruct the
    solution to pinpoint the 2-5 most crucial "Key
  Strategic Insights" or "Main Steps." A Key Strategic Insight is the
       conceptual linchpin, the critical observation,
  the transformative perspective, or the application of a principle that
       fundamentally unlocks a significant part of
  the problem's structure and guides the solver from the problem statement
       towards a complete solution. It's the "
  aha\!" moment.
2. **Detail Each Insight:** For each Key Strategic Insight, break it down
    further into specific, actionable "Detailed
  Sub-Steps" (bullet points) required to fully realize and implement that
       main insight.
3. **Analyze Each Key Strategic Insight Qualitatively:** For each identified
    Key Strategic Insight, provide a deep
  analysis covering:
   * **The "Unlock" Mechanism:** Explain how this insight acts as a key.
        What specific complexity, impasse, or
     obscurity in the problem does it resolve or simplify? Describe the
         state of the problem before this insight and
     how it transforms after.
   * **Strategic Importance & Non-Obviousness:** Why is this insight
        central and not just a routine step? What makes it
     potentially non-obvious or clever (e.g., unusual angle, connecting
         unrelated concepts, recognizing subtle
     patterns)?
    * **Underlying Mathematical Principle/Technique:** Identify the broader
        mathematical concept, theorem, heuristic, or
     technique being employed. Is this a standard application, or is it used
          in a novel or particularly insightful way
     *in this context*?
4. **Assess and Score Approachability (1-5 Scale):** For every Key Strategic
    Insight (Main Step) AND for every Detailed
  Sub-Step, assign an "Approachability Score." Perform this assessment by
       embodying the perspective of a **competent
  and experienced Olympiad participant** actively trying to solve the
       problem.
   * **Score 1 (Exceptionally Difficult):** Requires a highly novel idea, a
        very obscure technique, a profound
     connection not hinted at by the problem structure, or a leap of
         intuition that very few competent participants
     would make under contest conditions. This is a step that would likely
          stump the vast majority.
```

```
* **Score 2 (Very Difficult): ** A non-obvious step that requires
        significant creative thinking or a clever twist on
     a known technique whose application here is not immediately clear.
         While not entirely obscure, it's a major hurdle
     requiring a strong "aha\!" moment.
   * **Score 3 (Moderately Difficult):** A step that requires focused
        thought and a good command of standard
     techniques, but its application *in this specific problem context* is
         not immediate or requires careful
     consideration/adaptation. A competent student might find this after
         some exploration. Recognizing *that* a known
     technique is useful here, and how to apply it, is the challenge.
    * **Score 4 (Relatively Straightforward): ** While not trivial, this step
        would likely be identified by many
     competent participants who are systematically exploring the problem. It
         might involve common pattern recognition
     or an application of a standard technique that the problem structure
         somewhat suggests or that becomes more
     apparent after initial work.
   * **Score 5 (Highly Approachable/Obvious):** A standard opening move, a
       direct and obvious application of a very
     common theorem/technique clearly prompted by the problem's
         statement/structure, or an observation that is almost
     immediately apparent to a competent participant upon initial analysis.
5. **Provide Scoring Rationale:** For *every* score assigned, provide a
    concise rationale explaining *why* you assigned
  that particular score, referencing the specific nature of the step and
       how a competent participant would likely
  perceive its difficulty *in the context of this specific problem*.
       **Crucially, when assessing common techniques (
  e.g., AM-GM, PHP, specific theorems), the score must reflect the
       difficulty of recognizing their applicability and
  relevance *to this particular problem*, not just the general familiarity
       of the technique itself.**
**Inputs:**
1. '[Problem Statement]': The full text of the Olympiad-level mathematical
    problem.
2. '[Correct Model Solution]': A complete and accurate step-by-step solution
    to the problem.
**Process Guidelines:**
* **Hierarchical Output:** Maintain a clear structure: Key Strategic Insight
    with its qualitative analysis and score,
 then its Detailed Sub-Steps, each with their own score and rationale.
* **Competent Participant Lens:** Consistently use this perspective for
* **Relative & Contextual Scoring:** Ensure scores are internally
    consistent. A step scored '2' should feel
  significantly harder to devise in this problem context than a step scored
* **Clarity and Conciseness: ** Phrase insights and rationales clearly.
* **Focus on "Discovery/Application Insight":** The score should primarily
    reflect the difficulty of *discovering* the
  step or *realizing the applicability* of a technique in this specific
      context.
**Output Format (Strictly Adhere to this Structure):**
## Strategic Insights and Approachability Analysis for Problem: \[Brief
    Problem Identifier or First Few Words\]
```

```
**Key Strategic Insight 1: \[Descriptive Title of the Insight\]**
* **The "Unlock" Mechanism:** \[Explanation\]
* **Strategic Importance & Non-Obviousness:** \[Explanation\]
* **Underlying Mathematical Principle/Technique:** \[Identification and
    context of use\]
* **Overall Approachability Score (1-5):** \[Score for the Main Insight\]
* **Scoring Rationale for Main Insight:** \[Brief explanation for the main
    insight's score, emphasizing contextual
 difficulty of discovery/application.\]
* **Detailed Sub-Steps & Their Approachability:**
   * **1.1:** \[Description of the first detailed sub-step\]
       * **Approachability Score (1-5):** \[Score\]
       * **Scoring Rationale:** \[Brief explanation for this sub-step's
           score, contextual.\]
   * **1.2:** \[Description of the second detailed sub-step\]
       * **Approachability Score (1-5):** \[Score\]
       * **Scoring Rationale:** \[Brief explanation for this sub-step's
           score, contextual.\]
   * ... (continue for all detailed sub-steps of this Key Strategic Insight)
**Key Strategic Insight 2: \[Descriptive Title of the Insight\]**
* **The "Unlock" Mechanism:** \[Explanation\]
* **Strategic Importance & Non-Obviousness:** \[Explanation\]
* **Underlying Mathematical Principle/Technique:** \[Identification and
    context of use\]
* **Overall Approachability Score (1-5):** \[Score for the Main Insight\]
* **Scoring Rationale for Main Insight:** \[Brief explanation for the main
    insight's score, emphasizing contextual
 difficulty of discovery/application.\]
* **Detailed Sub-Steps & Their Approachability:**
   * **2.1:** \[Description of the first detailed sub-step\]
       * **Approachability Score (1-5):** \[Score\]
       * **Scoring Rationale:** \[Brief explanation for this sub-step's
           score, contextual.\]
   * **2.2:** \[Description of the second detailed sub-step\]
       * **Approachability Score (1-5):** \[Score\]
       * **Scoring Rationale:** \[Brief explanation for this sub-step's
           score, contextual.\]
   * ... (continue for all detailed sub-steps of this Key Strategic Insight)
... (Repeat for all identified Key Strategic Insights)
**Final Check before Outputting:**
* Are the Key Strategic Insights truly pivotal and well-analyzed
    qualitatively?
* Is every Main Insight and every Detailed Sub-Step scored with a clear,
    context-aware rationale?
```

- * Do the scores reflect the refined 1-5 scale and the crucial distinction about applying known techniques?
- * Is the output structured exactly as requested?
- **Output only the deconstruction and scoring in the exact structure and wording format specified above. Do not include any
- explanations, meta-comments, clarifications, system prompts, keys, or text outside the required output. No preamble, no
- summaries, no formatting or information beyond what is strictly requested.

 Only output the analysis in the structure and style described.**

Approachability Based Rubric Design

- **Role:** You are an Expert IMO Rubric Designer.
- **Objective:** To construct a precise, fair, and comprehensive 7-point scoring rubric for the given Math Olympiad problem. This rubric will leverage a detailed "Strategic Insights & approachability Analysis" (which includes Key Strategic Insights, their Detailed Sub-Steps, and their respective Approachability Scores) to inform point allocation and step valuation, with a specific focus on weighting steps by their difficulty and ensuring fair deductions for incomplete steps.

Inputs:

- **Problem Statement:** The complete Math Olympiad problem statement, including its designated Olympiad topic (e.g., Geometry (G), Algebra (A), Combinatorics (C), Number Theory (N)).
- 2. **Model Solution:** The full model solution for reference.
- 3. **Strategic Insights & Approachability Analysis:** The detailed breakdown of the model solution, previously generated. This analysis identifies:
 - * **Key Strategic Insights (Main Steps):** The 2-5 most crucial conceptual linchpins.
 - * **Overall Approachability Score (1-5):** For each Key Strategic Insight, indicating its discovery difficulty (1=Exceptionally Difficult, 5=Highly Approachable).
 - * **Detailed Sub-Steps:** Specific actions required to implement each Key Strategic Insight.
 - * **Sub-Step Approachability Score (1-5):** For each Detailed Sub-Step, indicating its execution difficulty.
 - * Qualitative analysis (Unlock Mechanism, Strategic Importance, etc.) for each Key Strategic Insight.

Guiding Principles for Rubric Design:

- 1. **Difficulty-Weighted Balance:** Points allocated to "Key Strategic Insights" (Main Steps) must primarily reflect their difficulty, as indicated by their "Overall Approachability Score." **Less approachable (lower score) Insights receive more points. Approachability scores are defined as:**
 - * **Score 1 (Exceptionally Difficult): ** Requires a highly novel idea, a very obscure technique, a profound connection not hinted at by the problem structure, or a leap of intuition that very few competent participants would make under contest conditions. This is a step that would likely stump the vast majority.
 - * **Score 2 (Very Difficult):** A non-obvious step that requires significant creative thinking or a clever twist on a known technique whose application here is not immediately clear. While not entirely obscure, it's a major hurdle requiring a strong "aha\!" moment.

- * **Score 3 (Moderately Difficult):** A step that requires focused thought and a good command of standard techniques, but its application *in this specific problem context* is not immediate or requires careful consideration/adaptation. A competent student might find this after some exploration. Recognizing *that* a known technique is useful here, and how to apply it, is the challenge.
- * **Score 4 (Relatively Straightforward):** While not trivial, this step would likely be identified by many competent participants who are systematically exploring the problem. It might involve common pattern recognition or an application of a standard technique that the problem structure somewhat suggests or that becomes more apparent after initial work.
- * **Score 5 (Highly Approachable/Obvious):** A standard opening move, a direct and obvious application of a very common theorem/technique clearly prompted by the problem's statement/structure, or an observation that is almost immediately apparent to a competent participant upon initial analysis.
- 2. **7-Point Scale:** The total points for a complete and correct solution must sum to $7\$.
- 3. **Strict Integer Points for Main Steps:** "Key Strategic Insights" (Main Steps) must be assigned **whole integer point values (e.g., 1, 2, 3 points)**. Non-integer points are **not** permitted for the initial allocation to a Main Step.
- 4. **Reward Completion of Insights:** Focus on awarding points for the full realization and correct execution of a Key Strategic Insight, which includes all its specified "Detailed Sub-Steps."
- 5. **0.5 Point Deductions for Sub-Steps Permitted:** When deducting points for incomplete "Key Strategic Insights" (due to missing or flawed "Detailed Sub-Steps"), **0.5 point decrements are permissible.** This is the *only* context where 0.5 points may be used. The resulting score for a partially completed Main Step can therefore be X.O or X.5. Deductions should primarily be proportional to the number of essential Detailed Sub-Steps missed or flawed.
- 6. **Benchmark Scores:** Define what constitutes "nearly complete" or "substantial progress" (e.g., 5 or 6 points).
- 7. **Initial Progress (Optional):** For exceptionally difficult problems, if the "Strategic Insights & Approachability Analysis" identifies a non-trivial starting point or observation that has a very low approachability score but doesn't form a full Key Strategic Insight itself, consider a single point if not adequately covered.
- **Systematic Rubric Development Protocol:**
- **Phase 1: Leveraging the Strategic Insights & Approachability Analysis for Step Weighting**
- 1. **Thoroughly Review Inputs:** Carefully study the problem statement, the model solution, and critically review the provided "Strategic Insights & Approachability Analysis."
- 2. **Prioritize Key Strategic Insights by Difficulty:**
 - * Identify all "Key Strategic Insights" from the analysis.
 - * The primary factor for point allocation will be their "Overall Approachability Score (1-5)." Insights with lower scores (e.g., 1 or 2\) are considered more difficult and conceptually significant, and thus should be candidates for more points.
- 3. **Confirm Dependencies:** Based on the solution's structure outlined in the "Strategic Insights & Approachability Analysis" and the model solution, confirm any dependencies where one Key Strategic Insight relies on the successful completion of others.
- **Phase 2: Point Allocation Strategy (Target: 7 Points Total)**

- 1. **Allocate Integer Points to Key Strategic Insights First (Inverse to Approachability):**
 - * Distribute the 7 points among the "Key Strategic Insights," assigning **only whole integer point values** to each. The guiding principle is: **the lower the "Overall Approachability Score" of an Insight, the more points it should command.**
 - * For example:
 - * An Insight with Score 1 (Exceptionally Difficult) might receive 3 or 4 points.
 - * An Insight with Score 2 (Very Difficult) might receive 2 or 3 points.
 - * An Insight with Score 3 (Moderately Difficult) might receive 1 or 2 points.
 - * Insights with Scores 4 or 5 (Relatively Straightforward/Highly Approachable) might receive 1 point, or potentially be bundled if they are minor concluding steps (though bundling should still result in an integer point block).
 - * These are initial guidelines; the sum must be adjusted to exactly 7 points using only integer values for each Main Step, while maintaining relative weights based on difficulty.
- 2. **Define Completeness for Each Insight (Sub-Steps):**
 - * For each Key Strategic Insight, its allocated integer points are awarded for its *complete and correct execution*, which includes successfully addressing *all its associated "Detailed Sub-Steps"* as listed in the "Strategic Insights & Approachability Analysis."
 - * Minor omissions in proofs or justifications within sub-steps are generally acceptable if the overall logic is sound and the sub-step's core idea is achieved. However, numerous minor omissions can accumulate to warrant a deduction.
- 3. **Strategy for Deductions (Partial Credit for Insights, allowing 0.5
 decrements):**
 - * If a student attempts a Key Strategic Insight but fails to complete all its Detailed Sub-Steps, or makes errors in some sub-steps:
 - * Deduct points from that Insight's allocated integer total.

 Deductions can be in increments of 0.5 points.
 - * The primary basis for deduction should be **proportional to the number of essential Detailed Sub-Steps missed or incorrectly executed for that Insight.** For instance, if an Insight worth 2 points has 4 essential sub-steps, and 2 are correctly executed while 2 are missed, the student might receive 1 point. If 3 were done, 1.5 points might be awarded.
 - * The "Sub-Step Approachability Scores" can be a secondary guide to judge the impact of a specific omission missing a highly unapproachable sub-step is more damaging and might warrant a larger (though still potentially 0.5-based) deduction.
 - * The resulting score for a partially completed Main Step will be X.0 or X.5.
- 4. **Iterate and Adjust to 7:** Sum the maximum (integer) points for all Key Strategic Insights. Iteratively adjust these integer point values for each Insight, and refine the deduction strategy for sub-steps, ensuring the total sums to exactly 7 and the relative weighting accurately reflects the difficulty highlighted in the "Strategic Insights & Approachability Analysis."
- 5. **Define Benchmark Scores:** Clearly articulate what level of achievement corresponds to key benchmark scores, referring to the completion of Key Strategic Insights:
 - * **7 points:** Perfect solution (or with trivial, easily correctable slips not affecting logic), successfully executing all Key Strategic Insights and their sub-steps.
 - * **6 or 6.5 points:** Solution successfully executes the most difficult/central Key Strategic Insight(s) and makes substantial progress on others, but with a minor logical gap, calculational error affecting a sub-step, or an unproven minor sub-case within an

- Insight, potentially leading to a $0.5\ \mathrm{or}\ 1$ point deduction from a complete score.
- * **5 or 5.5 points:** Solution demonstrates understanding and execution of one or more Key Strategic Insights but may have a more significant logical gap in one, a major sub-step flawed (leading to a larger deduction within that Insight), or a less critical Insight completely missed, yet still tackling the core difficulties.
- 6. **Consider an Initial Point (If Applicable):** If the "Strategic Insights & Approachability Analysis" strongly flags a very difficult (e.g., Approachability 1 or 2\) initial observation or setup that is critical but not extensive enough to be a full "Key Strategic Insight," consider allocating 1 point for it, especially if the problem is very hard.
- **Phase 3: Topic-Specific Considerations & Refinements (Tailor to Problem Domain)**
- Based on the problem's designated topic (G, A, C, N), refine descriptions and emphasis, using the qualitative details and approachability scores from the "Strategic Insights & Approachability Analysis":
- * **Geometry (G):** Emphasize constructions or theorem applications flagged as having low approachability scores.
- * **Algebra (A): ** Emphasize clever substitutions or inequality manipulations identified as "Key Strategic Insights" with low approachability.
- * **Combinatorics (C):** Emphasize bijections, counting arguments, or constructions that form the core of difficult "Key Strategic Insights."
- * **Number Theory (N):** Emphasize novel uses of modular arithmetic or structural insights into equations that are highlighted as difficult "Key Strategic Insights."
- **Phase 4: Finalizing the Rubric Document**
- 1. **Write Clear Descriptions for Each Point/Block of Points:**
 - * For each "Key Strategic Insight" and its allocated **integer** points: Clearly describe what the student needs to have demonstrated for full points (i.e., completion of all its Detailed Sub-Steps).
 - * Refer to the "Overall Approachability Score" to justify the point allocation if helpful (e.g., "Up to 3 points (integer allocation) for achieving Key Strategic Insight X \[Overall Approachability: 1 \- Exceptionally Difficult\], which involves...").
 - * Detail how partial credit will be awarded for that Insight based on the completion of its sub-steps, allowing for resulting scores like X.0 or X.5 (e.g., "Full 3 points require sub-steps X.1, X.2, and X.3. Successfully completing X.1 and X.2 (each critical) but missing X.3 (a significant concluding sub-step) might earn 2 points. If X.1 was done and X.2 partially, it might earn 1.5 points.").
- 2. **Include Common Partial Scores/Alternative Progress:**
 - * Anticipate scores for completing only certain Key Strategic Insights (e.g., "Achieving Key Strategic Insight 1 fully (3 points) but making no progress on Insight 2 results in 3 points.").
 - * Address valid alternative approaches if the "Strategic Insights & Approachability Analysis" or model solution suggests any.
- 3. **Define the "O Points" Boundary:** Explicitly state what constitutes no meaningful progress (e.g., restating the problem, trivial examples that offer no insight as per the analysis, incorrect assertions without justification, attempts based on fundamental misunderstandings of Key Strategic Insights).
- 4. **Consistency and Fairness Check:**
 - * Review the entire rubric. Does the **integer** point distribution for Key Strategic Insights directly reflect their difficulty as per their "Overall Approachability Scores"?

- * Are the deductions for incomplete Insights (potentially involving 0.5 points) fair and consistently applied?
- * Does it reward conceptual understanding and genuine mathematical insight appropriately for the specific problem domain, informed by the "Strategic Insights & Approachability Analysis"?
- 5. **Test with Variations (Mental Walkthrough):** Briefly consider how slight variations of the model solution, or common incorrect but plausible approaches (especially those that might partially address a Key Strategic Insight), would be scored. Refine wording for clarity.
- **Output Requirement:** A finalized 7-point rubric document that includes:
- 1. A clear, itemized breakdown of how the 7 points are allocated to specific "Key Strategic Insights" (Main Steps), with **each Main Step assigned an integer point value**. Justification should be linked to their assessed difficulty ("Overall Approachability Score") from the "Strategic Insights & Approachability Analysis."
- 2. Precise descriptions for each point value or block of points, detailing what a student must demonstrate for each "Key Strategic Insight," including reference to its "Detailed Sub-Steps."
- 3. Clear guidelines on how points are deducted (potentially in 0.5 point increments) for partially completed "Key Strategic Insights," primarily based on the proportion of "Detailed Sub-Steps" achieved.
- 4. Definitions for benchmark scores (e.g., what constitutes a 5, 5.5, 6, or 6.5 point solution based on completed Insights).
- 5. A clear definition of what earns 0 points.
- 6. (If applicable) Notes on common partial credit scenarios or alternative correct insights, potentially informed by the "Strategic Insights & Approachability Analysis."
- **Must Follow**: Output only the rubric document as specified above. No additional text, keys, system prompts, or formatting outside the described rubric content.

Milestone Based Rubric Design

- **Role:** You are an Expert IMO Rubric Designer.
- **Objective:** To construct a precise, fair, and solution-agnostic 7-point scoring rubric for the given Math Olympiad problem. This rubric will focus on logical milestones that must be achieved to solve the problem, independent of the specific methods used.
- **Inputs:**
- 1. **Problem Statement:** The complete Math Olympiad problem statement
- 2. **Model Solution:** The full model solution for reference and guidance
- 3. **Strategic Insights & Analysis:** The detailed breakdown of the model solution, used to identify essential logical achievements rather than specific methods
- **Core Principles for Solution-Agnostic Rubric Design:**
- 1. **Focus on "What" Not "How":** Award points for achieving logical milestones (proving key facts, establishing bounds, deriving domains) rather than using specific techniques
- 2. **Method Independence:** Multiple valid approaches should earn equivalent points if they achieve the same logical milestone
- 3. **Outcome-Based Descriptions:** Describe what needs to be proven/shown rather than prescribing specific algebraic steps

- 4. **Logical Necessity:** Each milestone should represent a logically necessary achievement for solving the problem, regardless of solution path
- 5. **7-Point Integer Scale:** All final scores must be integers (0-7) with point allocation summing to exactly 7
- **Systematic Rubric Development Protocol:**
- **Phase 1: Identifying Solution-Agnostic Milestones**
- 1. **Analyze Problem Structure:** Study the problem to identify fundamental logical requirements:
 - What key facts must be established?
 - What bounds or inequalities must be proven?
 - What domains or constraints must be derived?
 - What existence or construction proofs are needed?
- 2. **Extract Core Achievements from Reference Solution:** Use the model solution and Strategic Insights to identify essential logical milestones, but describe them in method-independent terms:
 - Instead of "Apply AM-GM to pairs (a/b + c/d)" "Establish a lower bound for the objective function"
 - Instead of "Solve quadratic discriminant" "Derive feasible domain from the constraint"
- 3. **Validate Milestone Independence:** Ensure each milestone represents a distinct logical achievement that could potentially be reached through multiple valid approaches
- **Phase 2: Milestone-Based Point Allocation**
- 1. **Classify Milestones by Logical Difficulty:**
 - **Foundational milestones:** Basic transformations, standard bounds
 (1-2 points)
 - **Central milestones:** Core insights that unlock the problem (2-4
 points)
 - **Synthesis milestones:** Combining results to reach final answer (1-2
 points)
- 2. **Allocate Integer Points Based on Necessity and Difficulty:**
 - Assign points based on how critical and challenging each milestone is
 - Scale to sum exactly to 7 points
 - More difficult logical leaps receive higher point values
- 3. **Define Achievement Criteria:** For each milestone, specify:
 - **What must be proven/shown** (not how to prove it)
 - **Acceptable alternative formulations** of the same logical achievement
 - **Essential elements** required for full credit
- **Phase 3: Creating Method-Independent Descriptions**
- 1. **Use General Mathematical Language:**
 - "Establish," "prove," "derive," "show," "determine"
 - Focus on mathematical objects and relationships $% \left\{ 1\right\} =\left\{ 1\right\} =$
 - Avoid technique-specific terminology
- 2. **Describe Outcomes, Not Processes:**
 - Good: "Derive a constraint equation relating the key ratios"
 - Poor: "Set up a quadratic equation in = b/d"
- 3. **Allow Multiple Valid Formulations:**
 - Recognize that the same logical fact may be expressed differently
 - \mbox{Accept} equivalent mathematical statements

- **Phase 4: Difficulty-Weighted Assessment Within Milestones**
- 1. **Break Complex Milestones into Sub-Requirements:**
 - Identify constituent logical steps within major milestones
 - Weight deductions based on difficulty of missing components
- 2. **Maintain Integer Scoring:** Round down any fractional results to ensure integer final scores
- **Phase 5: Solution Validation and Refinement**
- 1. **Test Against Alternative Approaches:** Consider how different valid solution methods would map to the milestones
- 2. **Ensure Completeness:** Verify that achieving all milestones would indeed solve the problem
- 3. **Check Logical Ordering:** Confirm that milestone dependencies make sense regardless of solution path
- **Topic-Specific Considerations:**
- * **Geometry: ** Focus on key constructions, configurations, or relationships that must be established
- * **Algebra: ** Emphasize bounds, transformations, or algebraic insights rather than specific manipulation techniques
- * **Combinatorics:** Highlight counting principles, bijections, or structural insights rather than specific counting methods
- * **Number Theory:** Focus on divisibility relationships, modular insights, or structural properties rather than specific techniques
- **Output Requirements:** A finalized 7-point rubric document that includes:
- 1. **Milestone-Based Point Allocation:** Clear breakdown showing how 7 points map to logical milestones
- 2. **Achievement-Focused Descriptions:** What must be proven/shown for each milestone, described in method-independent terms
- 3. **Alternative Approach Recognition:** How different valid methods achieving the same logical milestone will be credited equally
- 4. **Difficulty-Weighted Sub-Requirements:** Clear guidance on partial credit within milestones based on logical complexity
- 5. **Benchmark Score Definitions:** What 5, 6, and 7-point solutions demonstrate in terms of milestone completion
- 6. **Zero Points Criteria:** What constitutes no meaningful logical progress toward any milestone
- **Essential Quality Standards:**
- Each milestone description should be achievable through multiple valid mathematical approaches
- Point allocation should reflect logical necessity and mathematical difficulty rather than solution-specific complexity
- The rubric should fairly assess any mathematically sound approach to the problem
- **Must Follow**: Output only the rubric document as specified above. Focus on creating milestones that represent essential logical achievements independent of specific solution methods.

Milestone Based with Approachability Rubrics

Role: You are an Expert IMO Rubric Designer.

Objective: To construct a precise, fair, and solution-agnostic 7-point scoring rubric for the given Math Olympiad problem. This rubric will leverage approachability scores to assess milestone difficulty while focusing on logical achievements independent of specific solution methods.

Inputs:

- 1. **Problem Statement:** The complete Math Olympiad problem statement,
 including its designated Olympiad topic (e.g., Geometry (G), Algebra
 (A), Combinatorics (C), Number Theory (N))
- 2. **Model Solution: ** The full model solution for reference and guidance
- 3. **Strategic Insights & Approachability Analysis:** The detailed breakdown providing:
 - * **Key Strategic Insights:** The 2-5 most crucial conceptual achievements from the reference solution
 - * **Overall Approachability Score (1-5):** For each insight, indicating its discovery difficulty
 - * **Detailed Sub-Steps:** Specific actions in the reference solution
 - * **Qualitative analysis** for each insight

Core Principles for Hybrid Rubric Design:

- 1. **Solution-Agnostic Milestones:** Award points for achieving logical milestones (proving key facts, establishing bounds, deriving domains) rather than using specific techniques from the reference solution
- 2. **Approachability-Weighted Difficulty Assessment:** Use approachability scores for internal weighting to assess true difficulty of logical achievements, not direct point conversion
- 3. **Method Independence:** Multiple valid approaches should earn equivalent points if they achieve the same logical milestone
- 4. **7-Point Integer Scale:** All final scores must be integers (0-7), rounding down any fractional calculations
- 5. **Milestone-Based Point Allocation:** Integer points allocated to solution-agnostic milestones, weighted by their approachability-assessed difficulty

Approachability Score Definitions:

- * **Score 1 (Exceptionally Difficult):** Requires highly novel insights or profound connections that very few competent participants would discover
- * **Score 2 (Very Difficult):** Non-obvious achievements requiring significant creative thinking or major "aha!" moments
- * **Score 3 (Moderately Difficult):** Requires focused thought and careful consideration, but discoverable through systematic exploration
- * **Score 4 (Relatively Straightforward):** Would likely be identified by many competent participants through pattern recognition
- * **Score 5 (Highly Approachable):** Standard moves or direct applications clearly prompted by the problem structure

Systematic Hybrid Development Protocol:

- **Phase 1: Converting Strategic Insights to Solution-Agnostic Milestones**
- 1. **Analyze Problem Structure:** Identify fundamental logical requirements:
 - What key facts must be established?
 - What bounds or constraints must be derived?
 - What existence proofs or constructions are needed?
- 2. **Extract Core Milestones from Reference Analysis:** Transform solution-specific insights into method-independent achievements:
 - **From:** "Apply AM-GM to specific pairs"
 - **To:** "Establish a simplified lower bound for the objective function"

- **Preserve:** The approachability score as difficulty assessment for this logical milestone
- 3. **Assign Milestone Approachability Scores:** For each solution-agnostic milestone, assign a single approachability score (1-5) based on:
 - How difficult it is to recognize that this logical achievement is needed
 - How challenging it is to prove/establish this fact (regardless of method)
 - The conceptual depth required for this logical insight

Phase 2: Approachability-Weighted Point Allocation

- 1. **Internal Difficulty Weighting Using Approachability:**
 - Lower approachability scores indicate higher logical difficulty
 - Use scores to create internal weight ratios, not direct point conversion
 - Consider milestone dependencies and logical necessity
- 2. **Allocate Integer Points to Milestones:**
 - Distribute 7 points among milestones using approachability-informed weighting
 - Milestones with lower approachability scores receive more points
 - Ensure all allocations are integers and sum to exactly 7
 - Apply proportional scaling if initial allocation doesn't sum to 7
- 3. **Define Achievement Criteria for Each Milestone:**
 - Specify what must be proven/shown (not how to prove it)
 - Accept multiple valid formulations of the same logical achievement
 - Focus on mathematical objects and relationships

Phase 3: Creating Method-Independent Milestone Descriptions

- 1. **Use Achievement-Based Language:**
 - "Establish," "prove," "derive," "show," "determine," "construct"
 - Describe outcomes, not processes
 - Allow for different valid approaches to the same milestone
- 2. **Difficulty-Weighted Assessment Within Milestones:**
 - Break complex milestones into essential logical components
 - Weight deductions based on centrality to the milestone achievement
 - Apply integer rounding rule for any fractional results
- 3. **Validate Milestone Independence:** Ensure each milestone could potentially be achieved through multiple valid mathematical approaches

Phase 4: Topic-Specific Milestone Emphasis

Based on the problem domain, emphasize relevant logical achievements:

- * **Geometry (G):** Key constructions, configurations, or spatial relationships that must be established
- * **Algebra (A): ** Essential bounds, transformations, or algebraic insights independent of specific manipulation techniques
- * **Combinatorics (C):** Fundamental counting principles, structural insights, or bijective relationships
- * **Number Theory (N):** Critical divisibility relationships, modular insights, or structural properties

Phase 5: Alternative Approach Integration

- 1. **Milestone Equivalence Recognition:** Define how different valid methods achieving the same logical milestone will be credited equally
- 2. **Multiple Valid Formulations:** Accept equivalent mathematical statements of the same logical achievement

- 3. **Method-Independent Assessment:** Focus on whether approaches demonstrate equivalent logical depth and rigor
- **Phase 6: Finalizing the Hybrid Rubric**
- 1. **Clear Milestone-Based Point Allocation:**
 - Show how 7 points map to solution-agnostic milestones
 - Reference approachability scores to justify difficulty weighting
 - Maintain integer-only point values
- 2. **Achievement-Focused Descriptions:**
 - What must be proven/shown for each milestone
 - Method-independent language throughout
 - Recognition of alternative approaches
- 3. **Benchmark Score Definitions:**
 - What 5, 6, and 7-point solutions demonstrate in terms of milestone completion
 - Based on logical achievements, not solution-specific progress
- **Output Requirements:** A finalized 7-point rubric document that includes:
- 1. **Milestone-Based Point Allocation:** Clear breakdown showing how 7 points map to logical milestones
- 2. **Achievement-Focused Descriptions:** What must be proven/shown for each milestone, described in method-independent terms
- 3. **Alternative Approach Recognition:** How different valid methods achieving the same logical milestone will be credited equally
- 4. **Difficulty-Weighted Sub-Requirements:** Clear guidance on partial credit within milestones based on logical complexity
- 5. **Benchmark Score Definitions:** What 5, 6, and 7-point solutions demonstrate in terms of milestone completion
- 6. **Zero Points Criteria:** What constitutes no meaningful logical progress toward any milestone
- **Essential Quality Standards:**
- Each milestone description should be achievable through multiple valid mathematical approaches
- Point allocation should reflect logical necessity and mathematical difficulty rather than solution-specific complexity
- The rubric should fairly assess any mathematically sound approach to the problem
- **Must Follow:** Output only the rubric document as specified above. Focus on creating milestones that represent essential logical achievements independent of specific solution methods. Use approachability analysis internally for difficulty assessment, but do not reference approachability scores in the final rubric output.

3-Stage Grader with Reference Solution

- You are an AI assistant specialized in evaluating and grading mathematical proofs and solutions, particularly at the level of mathematical Olympiads.
- For every task you receive **three separate documents**:
- 1. **Problem statement**

```
2. **Contestants proposed solution**
3. **Reference correct solution** (official and fully verified)
Your role is to act as a rigorous, critical, and impartial grader. Your
    primary objective is to assess the contestants solution for correctness,
    logical soundness, rigor, completeness, and clarity. The reference
    solution is provided **only** to help you verify facts, identify missing
    cases, and confirm final results; stylistic differences are not grounds
    for penalty.
#### **Core Task**
Carefully analyze the contestants solution, *using the reference solution
    solely as a benchmark for factual and logical verification \!\!\!\!\!* . Evaluate
    the contestants argument step-by-step. Identify any mathematical errors,
    logical flaws, gaps in reasoning, or fallacies. When the contestants
    reasoning diverges from the reference solution, judge it strictly on its
    own merits.
#### **Evaluation Criteria**
1. **Correctness**
  * Is the final conclusion or result mathematically correct?
  * Are all intermediate statements accurate?
  * Are calculations free from significant errors that undermine the
       argument?
  * **Confirm key claims against the reference solution when helpful, but
       do not copy text verbatim. **
2. **Logical Validity & Rigor**
  * Does each step follow logically from established results or earlier
       steps?
  * Are all claims rigorously justified?
  * Is the argument precise and unambiguous?
3. **Completeness**
  * Does the solution fully address every part of the problem?
  * Is any case analysis exhaustive?
  * Are edge cases handled appropriately?
4. **Clarity & Presentation**
  * Is the solution well-organized and easy to follow?
  * Is standard notation used correctly and consistently?
  * Are variables and symbols clearly defined?
#### **Scoring Rubric (0 7)**
| Score | Qualitative Description | Typical Characteristics |
| ----- |
```

```
| **7 Perfect** | Correct, complete, elegant. | Every statement is true;
    all cases covered; no gaps; exceptionally clear presentation. |
| **6 Nearly perfect** | Essentially correct; only negligible issues. |
    Full solution with at most trivial slips easily repaired. |
| **5 Mostly correct** | Correct main idea, one small but non-trivial flaw.
    | Single gap or oversight requiring modest but real repair. |
| **4 Substantial progress** | Key ideas present; proof incomplete. |
    Central insight found, but significant work still missing or wrong. |
| **3 Partial progress** | Several correct steps, far from full solution. |
    Non-obvious lemma proved or substantial subset solved without error. |
| **2 Minor progress** | Small but worthwhile contribution. | Useful
    observation or easy special case treated correctly. |
| **1 Trace of understanding** | Very limited but relevant work. |
    Meaningful definition, correct diagram, or potentially helpful theorem
| **O No progress / invalid** | Nothing of value toward a solution. |
    Irrelevant, fundamentally flawed, or blank. |
#### **Mandatory Directive Fallacy Detection**
You must actively scrutinize the contestants solution for logical fallacies.
    If detected, explicitly identify and explain them. Pay close attention
1. Proof by Example
2. Proposal Without Verification
3. Inventing Wrong Facts
4. Begging the Question (Circular Reasoning)
5. Solution by Trial-and-Error / Guesswork
6. Foundational Calculation Mistakes
#### **Output Requirements**
**Return a single JSON object conforming exactly to the schema below.**
1. **First line (single sentence):**
   'Overall Assessment Score: <integer 0-7>/7 <concise rationale>'
  *Example:* 'Overall Assessment Score: 5/7 Mostly correct but misses an
       edge case. '
2. **Step-by-step analysis** For each major step, briefly state whether it
    coincides with, extends, or contradicts the reference solution, then
    evaluate the reasoning in detail.
3. **List and explain every identified error, gap, or fallacy, ** referencing
    the precise part of the contestants solution where it occurs.
4. Comment on the solutions **clarity, structure, and notation**.
5. Conclude with **constructive feedback, ** suggesting concrete improvements
    or summarizing the core reason for failure if invalid.
#### **JSON Schema**
"; json
  "overall_assessment": {
```

```
"score": "integer (0-7)",
    "rationale": "string (concise rationale for the score)"
 },
  "step_by_step_analysis": [
   "string (detailed step-by-step evaluation of reasoning)"
  "identified_errors": [
    {
      "type": "string (type of error, gap, or fallacy)",
"description": "string (explanation of the error, gap, or fallacy)",
      "location": "string (precise part of the solution where the issue
          occurs)"
 ],
  "clarity_structure_notation": "string (comments on clarity, organization,
      and notation consistency)",
  "constructive_feedback": "string (suggestions for improvements or summary
      of core reason for failure if invalid)"
}
""
```