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Abstract

To address the challenges of improving the per-
formance of large language models in Text-to-
SQL tasks, we propose DFM-SQL, a frame-
work that integrates multiple innovative strate-
gies to significantly enhance the generation and
selection of candidate SQL statements. Specifi-
cally, we developed a multiple LLMs generator
system to produce a diverse and high-quality
set of candidate SQL queries. The generator
employs two core methods: firstly, a Divide-
and-conquer strategy that breaks down complex
queries into manageable sub-queries within a
single LLLM call, and secondly the construc-
tion of an In-domain Knowledge Base for the
database schema using LLMs to enhance con-
textual understanding. To ensure the quality of
the generated SQL statements, we also devel-
oped a dedicated selector agent to refine and se-
lect high-quality SQL queries produced by the
generator. Additionally, we employed a few-
shot learning approach, leveraging LLMs to
fine-tune and refine the candidate SQL queries
for improved accuracy and performance. Exper-
imental results demonstrate that the DFM-SQL
framework not only significantly enhances the
quality and diversity of SQL queries, but also
substantially narrows the gap between execu-
tion accuracy and exact match accuracy. In
benchmark tests on the Spider Text-to-SQL
dataset, DFM-SQL achieved groundbreaking
results: an execution accuracy of 85.3% and
an exact match accuracy of 86.3%, with only
a 1% difference between the two metrics. This
achievement marks a new milestone in the con-
sistency between execution accuracy and exact
match accuracy, while also pushing the exact
match accuracy to a new SOTA level.

1 Introduction

Text-to-SQL is a natural language processing

task that turns natural language into SQL queries.

NLP research has been transformed by the fast
growth of Large Language Models(LLMs)(Yao

Method EX(%) EM(%)
Single Query 70.1 64.6
framework Self-consistency  86.6 70.7
Upper-bound 84.3 85.3

Table 1: An integrated approach for evaluating single
query generation on the Spider test set with achievable
self-consistency and upper bounds, where EX stands for
Execution Accuracy and EM stands for Exact Match
Rate.

et al., 2023). LLMs act as versatile tools for solv-
ing language tasks and excel in many NLP applica-
tions, including math(Zheng et al., 2024), reason-
ing(Kojima et al., 2022), and coding(Jiang et al.,
2024). However, existing research(Pourreza and
Rafiei, 2023b; Liu et al., 2023) shows that LLMs us-
ing zero-shot or few-shot(Park et al., 2024) prompts
still struggle to surpass carefully optimized special-
ized models in Text-to-SQL tasks. This is because
the task requires meeting multiple complex de-
mands at once, such as semantic alignment, schema
understanding, and code generation. Studies have
shown that task decomposition is an effective strat-
egy for solving complex tasks with LLMs. This
involves breaking down a complex task into sim-
pler subtasks and guiding the LLMs to solve them
step by step(Kojima et al., 2022).

Recently, DIN-SQL(Pourreza and Rafiei, 2023a)
was proposed for Text-to-SQL, which decomposes
the Text-to-SQL task into four subtasks: schema
linking, categorization, SQL generation, and self-
correction. Then it solves these subtasks using a
Chain-of-Thought(COT) prompt. Although task
decomposition strategies show promise for com-
plex tasks, current methods like DIN-SQL still face
major limitations. For example, their schema link-
ing modules often fail to accurately match problem
keywords with relevant data fields, and their self-
learning mechanisms are inefficient at correcting er-
rors. Approaches like LPE-SQL’s(Chu et al., 2024)



self-consistency also suffer from performance gaps
as high as 14%. The notable gap between exe-
cution accuracy (EX 86%) and exact match rate
(EM 70.7%) in DAIL-SQL(Gao et al., 2024), the
current best method on the Spider benchmark(Yu
etal., 2018), suggests that the candidate query rank-
ing mechanism still has significant room for im-
provement. To address the above challenges, this
paper proposes the DFM-SQL framework, which
achieves performance breakthroughs through inno-
vative candidate generation and preference mech-
anisms. As shown in the upper bound in Table 1,
the accuracy of our EM is as high as 85%, and the
execution accuracy of EX reaches 84.3%.

Our goal is to create a diverse set of high-
quality candidate responses and select the best one
through an effective ranking mechanism. Specif-
ically, we propose two different candidate gener-
ation methods, each capable of producing high-
quality responses. (1)The first approach tackles
the schema linking problem by building an In-
domain Knowledge Base. We use leading LLMs
or manual methods to extract database entity rela-
tionships, then validate them manually. This cre-
ates a knowledge base with table structures, for-
eign key constraints, and field semantic annotations.
This knowledge base reduces the need for LLMs
to learn the database schema and helps manage
complex fields and foreign key relationships more
effectively. (2)Aiming at the logical nesting prob-
lem of complex SQL queries, we propose a COT
partitioning strategy, which is first applied to the
Text-to-SQL task. The method uses dependency
parsing to identify conditional relationships, breaks
down nested conditions into simple predicates, gen-
erates SQL queries step by step, and then combines
them into a complete query.

High-quality and diverse candidate responses are
essential for the scoring method, as low diversity
reduces comparability and weakens the selection
mechanism’s ability to assess candidate quality. To
address this, we introduce a selection agent that
builds a comparison matrix for candidate query
and selects the final response with the highest cu-
mulative score, leveraging the strengths of each
strategy to significantly boost overall performance.
Despite the near-perfect consideration of every de-
tail in our steps, syntax, field, or logic errors may
still occur when generating SQL queries. To ad-
dress this, we introduce a small set of manually
crafted correct and incorrect SQL query examples
to guide advanced LLMs in making fewer errors,

which is crucial for narrowing the gap between EX
and EM metrics. The correction program generates
queries through reflection, uses error feedback to
guide corrections, and applies this iterative process
at every critical step. We thoroughly evaluated the
DFM-SQL method in the Spider benchmark test.
The results show that DFM-SQL increases exact
match accuracy from 74% to 85.6% and achieves
86.0% execution accuracy, significantly narrowing
the gap with top-performing methods.

In summary, our three contributions are as follows:

* To address the challenge of understanding
complex database structures, we propose
an In-domain Knowledge Base that makes
database information easier for LLMs to learn
and manage. To optimize the Divide-and-
Conquer approach, we use more detailed
strategies for complex SQL queries, such as
nested, inferential, mathematical, and multi-
table linking, to address various complexity
challenges.

* Our selection process takes advantage of
the contextual learning abilities of advanced
LLMs, trained with different classification
goals, to handle the randomness of candidate
queries while minimizing SQL queries qual-
ity degradation. Errors like syntax, logic, and
linking issues are further corrected through
few-shot LLMs techniques.

* Experiments show that our system performs
well on the Spider dataset, with a precise
matching correct rate of 85.6%, exceeding the
current state-of-the-art system by 4.3 percent-
age points. Meanwhile, the precise execution
accuracy rate reaches 85.3%, which signifi-
cantly narrows the gap with the matching rate
and improves the consistency between theo-
retical and practical operations. This enhance-
ment reduces the cost and risk of incorrect
queries, and improves query accuracy and ef-
ficiency.

2 Related Work

The natural language problem of generating ac-
curate SQL queries, the initial progress involved
customizing templates(Zelle and Mooney, 1996),
which required a lot of manual work. Earlier
approaches utilized converter-based sequence-to-
sequence models(Sutskever et al., 2014), well



suited for tasks involving sequence generation, in-
cluding Text-to-SQL(Qin et al., 2022a), but the
models are still overstretched for generative tasks.
Initial sequence-to-sequence models, such as IR-
Net(Guo et al., 2019), use a bidirectional LSTM ar-
chitecture with self-attention to encode queries and
database schemas. For better integration of schema
information, models such as RAT-SQL(Wang et al.,
2020) and RASAT(Qi et al., 2022) incorporate
relation-aware self-attention, while SADGA(Cai
et al., 2021) and LGESQL(Cao et al., 2021) use
graph neural networks for schema querying re-
lations. Despite these advances, sequence-to-
sequence models still lack human-level understand-
ing and do not achieve more than 60% accurate
matches on the Spider retention test set.

Along with the growing use of LLMs in vari-
ous NLP fields, the Text-to-SQL domain has also
benefited from recent methodological innovations
that use LLMs to enhance performance. Some
scholars’ approaches(Tan et al., 2024) utilize the
zero-sample context learning capability of LLMs
to generate SQL. Building on this foundation, sub-
sequent models, including DIN-SQL, DAIL-SQL,
MAC-SQL(Wang et al., 2024) and C3(Dong et al.,
2023), and other subsequent models improve LLMs
performance through task decomposition. In ad-
dition to contextual learning, proposals in DAIL-
SQL, DTS-SQL(Pourreza and Rafiei, 2024), and
CodeS(Li et al., 2024) attempt to improve the capa-
bilities of open-source LL.Ms through supervised
fine-tuning. However, the biggest performance im-
provements were seen in proprietary LLMs that
use contextual learning methods(Li et al., 2023).
Unlike previous approaches, this paper introduces
an efficient hybrid method that accurately gener-
ates superior candidate SQL queries and proposes
small-sample correction techniques to leverage the
valuable, often overlooked, correct and error infor-
mation during SQL queries generation.

In addition, our method bridges the gap between
the accurate execution rate and the accurate match-
ing rate that was too large in previous methods.
In contrast to most previous work, the Distillery
approach(Maamari et al., 2024) demonstrates that
the latest LLMs can efficiently handle up to 200
columns of database schema information within a
hint, eliminating the need for a separate schema-
linking step that could introduce errors(Talaei et al.,
2024). In this study, we confirm that for bench-
marks like Spider, where patterns typically have
fewer than 200 columns, pattern linking is unnec-

essary. Independent of, but concurrent with, our
work, CHASESQL(Pourreza et al., 2025) intro-
duces methods that generate a large number of
candidate responses for a given problem during
inference. We modify the response methods for
these candidates so that we only focus on SQL
statements that cannot be correctly executed, rather
than modifying fully executable SQL statements
during training.

3 Methdology

This section outlines the DFM-SQL framework,
as shown in Figure 1. (1)Design In-domain knowl-
edge base: Parsing database schemas and build-
ing In-domain Knowledge Base. (2)Divide-and-
Conquer module breaks down complex queries into
subtasks. (3)Candidate Agent Selects Candidate
SQL queries via Comparison Matrix. (4)The Few-
shot(Park et al., 2024) Correction module itera-
tively correct syntax errors. During the candidate
generation phase, the correction phase ensures that
all candidates passed to the selection agent are syn-
tactically valid queries. Additionally, in the final
output phase step, it applies semantic corrections
to the selected results to resolve deeper issues like
field mapping errors.

3.1 In-domain Knowledge Base

Promising results have been achieved using the
M presentation for contextual learning with fewer
samples across a variety of related tasks(Pourreza
and Rafiei, 2023a). A large number of schemas and
fields in a database can be hard to understand, but
some are crucial, as they are used in various SQL
statements, such as retrieving Name and Population
from the City table. Building presentations with
relevant tables and columns can help the model
not only understand underlying data patterns but
also specify tasks and illustrate the step-by-step
process of deriving outputs. Figure 1 outlines a
construction method for generating table interpreta-
tions online, starting with generating initial schema
interpretations using Qwen2.5-Instruct, and then
manually verifying the templates to ensure that an
in-domain repository is formed based on the table
tables, its Prompt template is shown in Appendix
A. These steps allow schemas in SQL queries to be
extracted more accurately.

3.2 Divide-and-Conquer

This section explains the Divide-and-Conquer
module, which breaks down a complex problem
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Figure 1: Overview of the DFM-SQL framework for Suggested Text-to-SQL, which uses a candidate agent to pick
better answers from the candidate answers generated, while using a correction tools to provide feedback to improve

the output.

into smaller sub-problems, solves each separately,
and then merges the solutions for the final answer.
Along these lines, we propose a CoT hinting ap-
proach that first decomposes the given problem
into smaller subproblems using pseudo-SQL query
examples. The solutions to these sub-problems
are then aggregated to construct the final answer.
Finally, the constructed query is optimized to re-
move redundant terms and conditions. We have
found this approach particularly effective in han-
dling complex situations, such as nested queries,
including intricate WHERE or HAVING clauses,
and queries that involve advanced mathematical
operations. As in Appendix’s Figure 3, we provide
an example of a problem and its corresponding
SQL query successfully solved using this generator.
However, due to the complexity of the conditions
and SQL statements of this query, we first solved a
problem and a complex SQL query and designed it
step-by-step in a hint template as an example.

3.3 Candidate Agent

By using the two methods above to generate
SQL queries, we can produce multiple sets of can-
didate queries for any given problem. The key chal-
lenge in this step is selecting the correct SQL query
from the candidate pool. A simple approach is

to measure the consistency between candidates by
executing them, grouping them according to their
execution results, and selecting the query from the
largest group as the most likely correct answer. The
problem with this approach is that it assumes the
most consistent answer is the correct one, which
isn’t always true, as LLMs may learn the wrong fea-
tures and mistakenly classify a group of incorrect
SQL queries as correct, making this majority-based
or weighted voting method prone to misclassifica-
tion. We propose a finer-grained selection strategy,
which relies on a selection agent. Given a set of
candidate SQL queries C' ={cl, ¢2, . cnt,
the final response is selected by identifying the
candidate with the highest score, as determined
by a selection model. The model dp can take k
candidates and rank them according to the accu-
racy of each of them in answering a given question.
We learned from (Pourreza et al., 2025) about se-
lection agent equation, and we changed it when
Ea = Ece = ... = Eop = 0. Specifically, we
formalize the selection of the final response as:

C = argmax (Z(

ceC

C117C127--~«Clk) |quHu7D) (1)

Where (), refers to the user’s question, H, is
the prompt provided, and D is the target database



where the question was asked. We pass k candi-
dates to the selection model to be ranked, with k
between 1 and n. The model is not able to compare
the candidates. In the extreme case when k& = 1,
the model is unable to make comparisons between
candidates, which complicates the evaluation pro-
cess of the model. As k increases, comparing more
candidates makes the modeling process more chal-
lenging. However, having diverse results helps
in identifying the exact answer. For example, if
one candidate in the test benchmark successfully
passes (B¢ = 1,E.; = Eo = ... = Egi—1 =
Ecit1Ecn = 0), it is the only correct answer, elimi-
nating the need to compare it with incorrect ones,
though this is true for the vast majority of cases.
The most straightforward solution to ensuring a
high-quality and diverse set of candidates is us-
ing off-the-shelf LL.Ms for pairwise selection, but
since candidates are often very similar, a fine-tuned
model is needed to capture nuances and make more
accurate predictions. To train the selection agent,
we first train and generate candidate SQL queries
scaled on the training set (Text-to-SQL benchmark)
and categorize them into clusters based on their
execution results. We also consider that to avoid
order bias during training, we randomize the order
of correct and incorrect queries in each pair. Since
the number of cases with both correct and incorrect
candidates is limited, for cases where no correct
candidate exists, we include a basic real SQL query
as a hint to guide the model in generating the cor-
rect candidate.

3.4 Correcting

In some cases, LLMs may generate syntactically
incorrect queries. These queries are clear candi-
dates for corrections because they do not provide
the correct answer. To solve this problem, we apply
an LLM-based query correction tool that utilizes
a self-reflective approach(Shinn et al., 2023). We
use a small number of examples to guide the cor-
rection program, helping it learn from both correct
and incorrect previously generated queries. The
results of the Divide-and-Conquer and In-domain
Knowledge are fed into the query repairer, which
combines LLM’s own knowledge to correct syntax
or logic errors. Of course the final result is also
corrected after the third Candidate Agent step, and
details were shown in Appendix’s Figure 4. We
find that the type and number of examples affect
the correction results, and we will analyze their
impact in detail in the next section.

Methods Model EX(%) EM(%)
DIN-SQL GPT-4 74.2 60.1
PICARD T5-3B 75.1 71.9
GRAPHIX T5-3B 78.2 75.6
GRAPHIX+PICARD T5-3B 79.3 77.1
Self-Debugging code-davinci-002 84.1 717.1
DAIL-SQL GPT-4 86.2 -
DPG-SQL GPT4 85.6 -
DAIL-SQL GPT4 86.6 70.7
DFM-SQL(ours) Qwen2.5 85.3 85.6

Table 2: Execution accuracy (EX) and exact set match
accuracy (EM) on the holdout test set of Spider

4 Experiments

4.1 Baseline Models

In the experiments, since the base model needed
to demonstrate strong capabilities in mathemati-
cal, symbolic, and logical reasoning, we conducted
zero-shot inference tests to evaluate multiple can-
didate models. Detailed experimental records for
each model are provided in Appendix’s Table 7.
Ultimately, we selected the advanced Qwen?2.5-
Coder as the pre-trained model due to its superior
performance(Qwen et al., 2025), and the related
parameters is shown in Appendix’s Table 6. In the
process of constructing an in-domain knowledge
base, we use Qwen2.5-Instruct, which makes its
database have excellent and large internal knowl-
edge. In the correction phase, we use leading LLMs
in code or symbolic reasoning, such as DeepSeek
and Qwen2.5-Instruct.

4.2 Dataset

Spider contains 10,181 questions and 5,693
unique complex SQL queries across 200 databases,
covering 138 domains, each with multiple tables.
The standard protocol for this dataset divides it
into 8,659 training examples across 146 databases,
1,034 development examples across 20 databases,
and 2,147 test examples across 34 databases. The
databases used in these collections do not overlap.
Since language models without access to database
content often face schema linking challenges, our
hints for the Spider dataset include sample rows
from each table to assist the model in schema link-
ing. Additionally, we link the provided knowledge
of each field as hints, placed immediately after each
question. However, due to constraints like limited
context window size, available field knowledge,
and sample row inclusion, we had to reduce the
number of presentations in the dataset prompts.



Methods Correcting  EX(%) EM(%)
Baseline X 71.3 66.8
In-domain Knowledge X 727114 69.712.9
Divide-and-Conquer X 77.916.6  74.617.8
Baseline v 76.515.2  73.817.0
In-domain Knowledge v 777164  75.819.0
Divide-and-Conquer v 81.6110.0 80.1713.3
Candidate Agent X 82.8111.5 83.5716.7
Candidate Agent v 84.3113.0 85.3118.5

Table 3: Performance of Multiple Agent Integration
compared with Baselin

4.3 Evaluation Metrics

We use Execution Accuracy(Qin et al., 2022b)
as the evaluation metric for all experiments, cal-
culating the proportion of correct execution SQL
query results in the dataset, which reflects the per-
centage of predictions matching the golden SQL
queries execution results. We also use Execution
Match(Qin et al., 2022b) as an evaluation metric
to measure how well the model-generated SQL
queries matches the golden SQL queries, calcu-
lating the percentage of predictions that correctly
align with the golden SQL query results.

4.4 Results

We evaluated the generalizability of the pro-
posed DFM-SQL by conducting an end-to-end as-
sessment on the Spider test set, without modifying
the small sample size in the cue or training a new
selection model, meaning no data from the target
distribution was used. This approach enables us to
test DFM-SQL’s performance on unknown queries
and database distributions, in contrast to data from
the training distribution. Table 2 shows that DFM-
SQL achieves 84.3% execution accuracy and 85.3%
precise matching accuracy on the Spider test set,
ranking second in execution accuracy and first in
precise matching accuracy among methods specif-
ically trained or cued to optimize for the Spider
dataset. This highlights the strong versatility of
DFM-SQL and its ability to generate high-quality
Text-to-SQL for unknown samples from diverse
distributions and unique challenges.

domain Knowledge + Divide-and-Conquer To
validate the complex logic processing after knowl-
edge supplementation of In-domain Knowledge
data tables and Divide-and-Conquer disassembly,
we conducted ablation experiments in a more real-
istic scenario, using direct sample-less corrections
without the Candidate Agent, as shown in Table
3. We compared the performance of In-domain

Knowledge and Divide-and-Conquer in generat-
ing individual candidate queries versus raw Spi-
der hints as a baseline for evaluating the quality
of hints. The experimental results show that in
In-domain Knowledge, the constructed in-domain
knowledge base significantly improves generation
performance, boosting the Execute Match and Ex-
act Match metrics by about 2-3 percentage points
each. This result demonstrates In-domain Knowl-
edge’s ability to generate high-quality synthesized
examples by understanding structured knowledge,
effectively enhancing the performance of Large
Language Models. After splitting the complex
problem, the final SQL queries generated by sub-
SQL queries merging outperforms both the In-
domain Knowledge method and the Baseline (with
EX reaching 77.9 and EM reaching 74.6). This
indicates that LL.Ms excel at chain-of-thought rea-
soning, understanding the problem, and generating
high-quality candidate SQL queries. Our proposed
approach significantly improves SQL queries gen-
eration performance and helps us achieve our goal
of generating high-quality candidates while main-
taining diversity. Additionally, Correcting proves
its importance by enhancing the quality of the can-
didate pool SQL queries and boosting the perfor-
mance of all candidate generators by nearly 4%.

Candidate Agent + Correcting We analyze the
binary selection accuracy of the selection agent
in pairwise comparisons, where one candidate is
correct and the other is incorrect. For the correct
candidate SQL queries that can be executed accu-
rately, we prioritize its selection directly. For incor-
rect SQL queries, which have a very high number
of error factors, we used the pre-trained LLM of
the correct SQL for scoring, and filtered the SQL
queries with high scores as the final candidate SQL
queries. To evaluate the potential of efficiently
selecting the correct SQL queries from a candi-
date pool, we applied the Divide-and-Conquer and
In-domain Knowledge methods to all samples in
the Spider development set. For each method, we
generated m candidate SQL queries (totaling 2m
queries). We then combined the highest-scoring
and correctly executed SQL queries into a final
group for minimal correction. After selecting and
refining high-quality candidate SQL queries with
diverse characteristics, we found that an ensem-
ble approach is highly effective for extracting and
leveraging this knowledge.



Methods  Correcting Metric Easy Medium Hard Extra-hard All
dK EX 86.6 78.8 59.8 56.6 72.7
EM 877 77.6 56.8 44.0 69.7

DaC EX 88.7 82.1 70.6 66.1 78.4

. EM 904 8.0 665 515 758

EX 89.4 82.1 69.8 63.9 78.0

1dK + DaC EM 915 820 641 476 745
K v EX 84.9 80.2 66.7 63.0 75.5
EM  86.8 79.2 64.8 50.1 72.9

EX 89.1 85.1 76.2 70.3 81.6

DaC v EM 915 86.9 73.9 56.6 80.1
EX 88.9 86.0 74.7 71.4 81.8

1dK + DaC v EM  91.1 86.3 71.9 56.9 79.6

Table 4: Performance on three methods. IDK for the method In-domain Knowledge, DaC for the Divide-and-

Conquer, and v is that experiment is added Correcting method

Samples Models Metric Easy Medium Hard Extra-hard All
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Table 5: Performance of different difficulty levels with samples and models.

5 Analysis and Discussion

5.1 Comparison of Methods

Table 5 shows the performance of the In-
domain Knowledge prompt, the Divide-and-
Conquer prompt, and the In-domain Knowledge
and Divide-and-Conquer prompt on the Spider at
four levels of difficulty. As expected, the Divide-
and-Conquer hints performed better on tasks above
medium difficulty.The Divide-and-Conquer hints
performed better than the In-domain Knowledge
hints, showing that the model is more skilled at
reasoning and decomposing subproblems, improv-
ing its overall understanding and analysis. This
also poses a greater challenge in developing more
effective In-domain Knowledge methods.

5.2 Few-shot Correcting Comparison of
Samples

Table 5 shows the effect of different number of
samples on the error correction ability under the
condition of using Divide-and-Conquer hints. We
find that as the number of samples gradually in-
creases, LLLMs are able to learn more correct and
incorrect features, and the more effective it is for
candidate queries error correction. However, we
found that the number of samples also affects the
length of the context. If there are too many sam-
ples, the more features its LLM needs to memo-
rize, which may mislead the LLM to correct the
candidate SQL queries. It is verified that when
K = 5 will make the error correction performance
of LLMs better, especially we use Deepseek-V3 to
correct SQL queries.



6 Conclusion

We propose DFM-SQL, an innovative frame-
work that generates diverse, high-quality SQL
queries and precisely identifies the optimal query
during test-time computation. This framework
combines an in-domain knowledge base, a chain-of-
thought hinting approach, a hint correction method,
and a pairwise comparison mechanism to accu-
rately evaluate candidate statement quality. DFM-
SQL sets new benchmarks in text-to-SQL tasks,
highlighting the effectiveness of test-time compu-
tation in producing diverse queries and identifying
the best responses. DFM-SQL tackles the key is-
sues of query diversity and selection optimization,
paving the way for advancements in complex rea-
soning tasks for practical use.

7 Limitations

7.1 Limitations

DFM-SQL integrates multiple large language
models (LLMs) to generate candidate SQL queries
and combines a divide-and-conquer strategy with a
domain-specific knowledge base, significantly en-
hancing the quality and diversity of the generated
SQL. However, the introduction of multi-model
integration and complex strategies also results in
higher computational resource consumption, which
may limit its practical application in resource-
constrained environments. Future research could
explore model compression, knowledge distillation
techniques, or more efficient inference methods to
reduce computational costs and improve the frame-
work’s practicality. Additionally, DFM-SQL em-
ploys few-shot learning to fine-tune and optimize
the generated SQL queries, but its effectiveness
heavily relies on the representativeness and domain
relevance of the example data. If the example data
significantly differs from the target database’s do-
main, the performance of few-shot learning may
degrade considerably.

Although DFM-SQL achieves an impressive ex-
ecution accuracy of 85.3% and an exact match ac-
curacy of 86.3% on the Spider dataset, with only a
1% gap between the two metrics, this consistency
may be limited to specific datasets and task settings.
In the future, we plan to migrate the work to other
datasets for further validation. In other datasets or
more complex query scenarios, the framework’s
generalizability and robustness still require further
verification. To address this, external knowledge
bases or domain expert input could be incorporated

to enhance the coverage and accuracy of domain
knowledge, thereby further improving the frame-
work’s adaptability and performance.

7.2 Ethical Consideration

The DFM-SQL framework must strictly adhere
to data privacy protection principles when process-
ing databases and generating SQL queries. Any
data involving personal privacy or sensitive infor-
mation should be anonymized or desensitized be-
fore use to ensure that the privacy rights of data
subjects are not violated. Researchers, developers,
and users of the DFM-SQL framework are respon-
sible for its application scenarios and outcomes. If
the generated SQL queries lead to data leaks, incor-
rect decisions, or other negative consequences, the
relevant parties should take prompt measures and
assume corresponding responsibilities.
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setting parameter
train_epochs 5
learning_rate Se-5
cutoff_len 2048
Batch_size 2
Optimizer AdamW
Warm_up_ratio 0.05
Lr_scheduler Cosine
Gradient_accumulation_steps 8
LoRA_Rank 128
LoRA_Alpha 512

Table 6: Pretrained Models Parameters and LoRA Pa-
rameters
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You are now an expert in SQL statements. | will give you information about a
database. You need to describe the information about the database, including
the database, the tables that corresponds to that l|ibrary, and the columns that
correspond to that table. And return the description information to me in the
format. | will give you an example. \n

perpetrator database is about information of perpetrator.\n

people table records basic information about the person, and People ID
column records the person's identity ID...\n

\ perpetrator table records basic information about the crime,

Perpetrator_ID column records the crime number, and Perpetrator ID is a primary
key, and People ID is a foreign key intended to |ink people table...\n
In your response, you do not need to mention your intermediate steps. Do not
include any comments in your response. Do not need to start with the special
symbol. \n

tion \n

perpetrator database has perpetrator, people tables. \n

below are columns of table, primary _keys of table:\n1
The perpetrator table has Perpetrator_ ID, People ID, Date, Year, Location,
Country, Killed, Injured columns, and Perpetrator_ ID is primary_key. \n2
The people table has People ID, Name, Height, Weight, Home Town columns, and
People ID is primary_key. \n

\ below are foreign keys of tables:\nperpetrator.People ID to

people. People ID. \n"

First: perpetrator database is about information of perpetrators and

people. \n

Second: perpetrator table records basic information about the crimes, and
Perpetrator_ID column records the crime number, and Perpetrator ID is a
primary key, and People ID column is a foreign key intended to |ink the people
table... \n

Third: people table records basic information about the person, and People_ ID
column records the person's identity ID, and People ID is a primary key...,

perpetrator

Figure 2: An example of the In-domain Knowledge method
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You are now an expert in SQL statements. | will give you information about a
database and subsequently ask you a question. You need to help me parse the
question following the steps | gave you and answer a final SQL statement. \n
Question:xxx
t. It di | and conquered
‘ ;tion{asked question} :xxx
Analysis{The purpose is to break down the question, and to complete an
analysis} :xxx
lo SOL {The purpose is to give a predicted SOL} :xxx
led—ques {The purpose is to isaggregated the main question} :xxx
Analysis{The purpose is to perform an analysis based on the disassembled
problem} : xxx
Pseudo SQL {The purpose is to give a predicted SQL} :xxx
If the problem and SQL are more complex, you can break it down further....
led—qL | :xxx Analysis:xxx Pseudo SQL:xxx...\n
|. Assembl ing {You need to merge the above disassembled SQL and have
it executable.} :xxx
led—q n 2{} :xxx
Main Question(it is aim to combine the isaggregated SQLs) :xxx \n
vird. Sir fication and Optimi
al 1ized SQL Qu ixxx \n
nized SOL {best SQL} :xxx

1se | nation . follows:\n
perpetrator database has perpetrator, people tables. \n

nd: below are columns of table, primary_keys of table:\n1
The perpetrator table has Perpetrator_ID, People_ID, ... and Perpetrator_ID is
primary_key. .. \n2
The people table has People_ID, Name, Height...\n

it below are foreign_keys of tables:\nperpetrator.People_ID to

people. People_ID. \n"

SELECT count (*) FROM head WHERE age > 56.

perpetrator

Figure 3: An example of the Divide-and-Conquer method

12




Correcting Prompt

You are now an expert in fixing SQL and the SQL | have given you is wrong. The
types of errors are logical errors, table join errors, special word errors (not

in, except, group by improperly used), column name and table name error, having
clause errors etc. | will now give you an incorrect SQL along with data

information and query issues, please help me to fix it correctly and provide me
the correct SQL. \n

['"lIl give you some sample corrections: \n

ques!:What are the names of clubs, ordered descending by the average earnings
of players within each?\n

wrong sqgl1:SELECT T1.Name FROM club AS T1 JOIN player AS T2 ON T1.Club_ID...\n
correct sql1:SELECT T1.Name FROM club AS T1 JOIN player AS T2 ON T1.Club_ID...\
n

ques?:What are the first names of all buyers and what products did they buy?
List them in pairs.\n

wrong sql2:SELECT T3.customer_first_name , T2.product_name FROM(GIEEESHESHED
JOIN order_items. .. \n

correct sql2:SELECT T1.customer_first_name , T4.product_name FROM (Customers AS
T1 JOIN Orders. .. \n

ques3:List the order date of the orders who are placed by customers with at

least 2 payment methods. \n

wrong sql3:SELECT T1.date_order_placed FROM orders AS T1 JOIN GSECHCESHESEZD)
(ON T1. customer_id = T2.customer_id WHERE T2. customer_id. .. n

correct sql3:SELECT date_order_placed FROM Orders WHERE @ustomeridMINN(ISELECT)
~T1. customer_id FROM Customers AS T1 JOIN Customer_Payment_Methods A .. \n

In your response, you do not need to mention your intermediate steps. Do not

include any comments in your response. Do ont include |ine break. Do not need
to start with the Special symbol. Your fix answer should be concise and
efficient.

The database information is as follows:\n

First: perpetrator database has perpetrator, people tables. \n

Second: below are columns of table, primary_keys of table:\n1

The perpetrator table has Perpetrator_ID, People_ID, ... and Perpetrator_ID is
primary_key...\n2

The people table has People ID, Name, Height...\n

Third: below are foreign keys of tables:\nperpetrator.People ID to

people. People ID. \n"

***kassistant***
SELECT count (*) FROM head WHERE age > 56.

***db_jd***

perpetrator

Figure 4: An example of the Correcting method with three samples
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Models Metric Easy Medium Hard Extra-hard All
QuenSCokc B gy 3t 37 355 Do g
Qwen2.5-14B-Instruct gli(/l ;21 431421; gzg ﬁg ;gé
memm2ssn 5 S0 00 0T 0
Cldllms 3B By g7 30 204 109 359
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Table 7: Preformance on different large language models.
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