
DFM-SQL: A Multi-Approach Framework with Candidate Selection and
Correcting for Text-to-SQL

Anonymous ACL submission

Abstract001

To address the challenges of improving the per-002
formance of large language models in Text-to-003
SQL tasks, we propose DFM-SQL, a frame-004
work that integrates multiple innovative strate-005
gies to significantly enhance the generation and006
selection of candidate SQL statements. Specifi-007
cally, we developed a multiple LLMs generator008
system to produce a diverse and high-quality009
set of candidate SQL queries. The generator010
employs two core methods: firstly, a Divide-011
and-conquer strategy that breaks down complex012
queries into manageable sub-queries within a013
single LLM call, and secondly the construc-014
tion of an In-domain Knowledge Base for the015
database schema using LLMs to enhance con-016
textual understanding. To ensure the quality of017
the generated SQL statements, we also devel-018
oped a dedicated selector agent to refine and se-019
lect high-quality SQL queries produced by the020
generator. Additionally, we employed a few-021
shot learning approach, leveraging LLMs to022
fine-tune and refine the candidate SQL queries023
for improved accuracy and performance. Exper-024
imental results demonstrate that the DFM-SQL025
framework not only significantly enhances the026
quality and diversity of SQL queries, but also027
substantially narrows the gap between execu-028
tion accuracy and exact match accuracy. In029
benchmark tests on the Spider Text-to-SQL030
dataset, DFM-SQL achieved groundbreaking031
results: an execution accuracy of 85.3% and032
an exact match accuracy of 86.3%, with only033
a 1% difference between the two metrics. This034
achievement marks a new milestone in the con-035
sistency between execution accuracy and exact036
match accuracy, while also pushing the exact037
match accuracy to a new SOTA level.038

1 Introduction039

Text-to-SQL is a natural language processing040

task that turns natural language into SQL queries.041

NLP research has been transformed by the fast042

growth of Large Language Models(LLMs)(Yao043

Method EX(%) EM(%)
Single Query 70.1 64.6
framework Self-consistency 86.6 70.7
Upper-bound 84.3 85.3

Table 1: An integrated approach for evaluating single
query generation on the Spider test set with achievable
self-consistency and upper bounds, where EX stands for
Execution Accuracy and EM stands for Exact Match
Rate.

et al., 2023). LLMs act as versatile tools for solv- 044

ing language tasks and excel in many NLP applica- 045

tions, including math(Zheng et al., 2024), reason- 046

ing(Kojima et al., 2022), and coding(Jiang et al., 047

2024). However, existing research(Pourreza and 048

Rafiei, 2023b; Liu et al., 2023) shows that LLMs us- 049

ing zero-shot or few-shot(Park et al., 2024) prompts 050

still struggle to surpass carefully optimized special- 051

ized models in Text-to-SQL tasks. This is because 052

the task requires meeting multiple complex de- 053

mands at once, such as semantic alignment, schema 054

understanding, and code generation. Studies have 055

shown that task decomposition is an effective strat- 056

egy for solving complex tasks with LLMs. This 057

involves breaking down a complex task into sim- 058

pler subtasks and guiding the LLMs to solve them 059

step by step(Kojima et al., 2022). 060

Recently, DIN-SQL(Pourreza and Rafiei, 2023a) 061

was proposed for Text-to-SQL, which decomposes 062

the Text-to-SQL task into four subtasks: schema 063

linking, categorization, SQL generation, and self- 064

correction. Then it solves these subtasks using a 065

Chain-of-Thought(COT) prompt. Although task 066

decomposition strategies show promise for com- 067

plex tasks, current methods like DIN-SQL still face 068

major limitations. For example, their schema link- 069

ing modules often fail to accurately match problem 070

keywords with relevant data fields, and their self- 071

learning mechanisms are inefficient at correcting er- 072

rors. Approaches like LPE-SQL’s(Chu et al., 2024) 073

1

self-consistency also suffer from performance gaps074

as high as 14%. The notable gap between exe-075

cution accuracy (EX 86%) and exact match rate076

(EM 70.7%) in DAIL-SQL(Gao et al., 2024), the077

current best method on the Spider benchmark(Yu078

et al., 2018), suggests that the candidate query rank-079

ing mechanism still has significant room for im-080

provement. To address the above challenges, this081

paper proposes the DFM-SQL framework, which082

achieves performance breakthroughs through inno-083

vative candidate generation and preference mech-084

anisms. As shown in the upper bound in Table 1,085

the accuracy of our EM is as high as 85%, and the086

execution accuracy of EX reaches 84.3%.087

Our goal is to create a diverse set of high-088

quality candidate responses and select the best one089

through an effective ranking mechanism. Specif-090

ically, we propose two different candidate gener-091

ation methods, each capable of producing high-092

quality responses. (1)The first approach tackles093

the schema linking problem by building an In-094

domain Knowledge Base. We use leading LLMs095

or manual methods to extract database entity rela-096

tionships, then validate them manually. This cre-097

ates a knowledge base with table structures, for-098

eign key constraints, and field semantic annotations.099

This knowledge base reduces the need for LLMs100

to learn the database schema and helps manage101

complex fields and foreign key relationships more102

effectively. (2)Aiming at the logical nesting prob-103

lem of complex SQL queries, we propose a COT104

partitioning strategy, which is first applied to the105

Text-to-SQL task. The method uses dependency106

parsing to identify conditional relationships, breaks107

down nested conditions into simple predicates, gen-108

erates SQL queries step by step, and then combines109

them into a complete query.110

High-quality and diverse candidate responses are111

essential for the scoring method, as low diversity112

reduces comparability and weakens the selection113

mechanism’s ability to assess candidate quality. To114

address this, we introduce a selection agent that115

builds a comparison matrix for candidate query116

and selects the final response with the highest cu-117

mulative score, leveraging the strengths of each118

strategy to significantly boost overall performance.119

Despite the near-perfect consideration of every de-120

tail in our steps, syntax, field, or logic errors may121

still occur when generating SQL queries. To ad-122

dress this, we introduce a small set of manually123

crafted correct and incorrect SQL query examples124

to guide advanced LLMs in making fewer errors,125

which is crucial for narrowing the gap between EX 126

and EM metrics. The correction program generates 127

queries through reflection, uses error feedback to 128

guide corrections, and applies this iterative process 129

at every critical step. We thoroughly evaluated the 130

DFM-SQL method in the Spider benchmark test. 131

The results show that DFM-SQL increases exact 132

match accuracy from 74% to 85.6% and achieves 133

86.0% execution accuracy, significantly narrowing 134

the gap with top-performing methods. 135

In summary, our three contributions are as follows: 136

• To address the challenge of understanding 137

complex database structures, we propose 138

an In-domain Knowledge Base that makes 139

database information easier for LLMs to learn 140

and manage. To optimize the Divide-and- 141

Conquer approach, we use more detailed 142

strategies for complex SQL queries, such as 143

nested, inferential, mathematical, and multi- 144

table linking, to address various complexity 145

challenges. 146

• Our selection process takes advantage of 147

the contextual learning abilities of advanced 148

LLMs, trained with different classification 149

goals, to handle the randomness of candidate 150

queries while minimizing SQL queries qual- 151

ity degradation. Errors like syntax, logic, and 152

linking issues are further corrected through 153

few-shot LLMs techniques. 154

• Experiments show that our system performs 155

well on the Spider dataset, with a precise 156

matching correct rate of 85.6%, exceeding the 157

current state-of-the-art system by 4.3 percent- 158

age points. Meanwhile, the precise execution 159

accuracy rate reaches 85.3%, which signifi- 160

cantly narrows the gap with the matching rate 161

and improves the consistency between theo- 162

retical and practical operations. This enhance- 163

ment reduces the cost and risk of incorrect 164

queries, and improves query accuracy and ef- 165

ficiency. 166

2 Related Work 167

The natural language problem of generating ac- 168

curate SQL queries, the initial progress involved 169

customizing templates(Zelle and Mooney, 1996), 170

which required a lot of manual work. Earlier 171

approaches utilized converter-based sequence-to- 172

sequence models(Sutskever et al., 2014), well 173

2

suited for tasks involving sequence generation, in-174

cluding Text-to-SQL(Qin et al., 2022a), but the175

models are still overstretched for generative tasks.176

Initial sequence-to-sequence models, such as IR-177

Net(Guo et al., 2019), use a bidirectional LSTM ar-178

chitecture with self-attention to encode queries and179

database schemas. For better integration of schema180

information, models such as RAT-SQL(Wang et al.,181

2020) and RASAT(Qi et al., 2022) incorporate182

relation-aware self-attention, while SADGA(Cai183

et al., 2021) and LGESQL(Cao et al., 2021) use184

graph neural networks for schema querying re-185

lations. Despite these advances, sequence-to-186

sequence models still lack human-level understand-187

ing and do not achieve more than 60% accurate188

matches on the Spider retention test set.189

Along with the growing use of LLMs in vari-190

ous NLP fields, the Text-to-SQL domain has also191

benefited from recent methodological innovations192

that use LLMs to enhance performance. Some193

scholars’ approaches(Tan et al., 2024) utilize the194

zero-sample context learning capability of LLMs195

to generate SQL. Building on this foundation, sub-196

sequent models, including DIN-SQL, DAIL-SQL,197

MAC-SQL(Wang et al., 2024) and C3(Dong et al.,198

2023), and other subsequent models improve LLMs199

performance through task decomposition. In ad-200

dition to contextual learning, proposals in DAIL-201

SQL, DTS-SQL(Pourreza and Rafiei, 2024), and202

CodeS(Li et al., 2024) attempt to improve the capa-203

bilities of open-source LLMs through supervised204

fine-tuning. However, the biggest performance im-205

provements were seen in proprietary LLMs that206

use contextual learning methods(Li et al., 2023).207

Unlike previous approaches, this paper introduces208

an efficient hybrid method that accurately gener-209

ates superior candidate SQL queries and proposes210

small-sample correction techniques to leverage the211

valuable, often overlooked, correct and error infor-212

mation during SQL queries generation.213

In addition, our method bridges the gap between214

the accurate execution rate and the accurate match-215

ing rate that was too large in previous methods.216

In contrast to most previous work, the Distillery217

approach(Maamari et al., 2024) demonstrates that218

the latest LLMs can efficiently handle up to 200219

columns of database schema information within a220

hint, eliminating the need for a separate schema-221

linking step that could introduce errors(Talaei et al.,222

2024). In this study, we confirm that for bench-223

marks like Spider, where patterns typically have224

fewer than 200 columns, pattern linking is unnec-225

essary. Independent of, but concurrent with, our 226

work, CHASESQL(Pourreza et al., 2025) intro- 227

duces methods that generate a large number of 228

candidate responses for a given problem during 229

inference. We modify the response methods for 230

these candidates so that we only focus on SQL 231

statements that cannot be correctly executed, rather 232

than modifying fully executable SQL statements 233

during training. 234

3 Methdology 235

This section outlines the DFM-SQL framework, 236

as shown in Figure 1. (1)Design In-domain knowl- 237

edge base: Parsing database schemas and build- 238

ing In-domain Knowledge Base. (2)Divide-and- 239

Conquer module breaks down complex queries into 240

subtasks. (3)Candidate Agent Selects Candidate 241

SQL queries via Comparison Matrix. (4)The Few- 242

shot(Park et al., 2024) Correction module itera- 243

tively correct syntax errors. During the candidate 244

generation phase, the correction phase ensures that 245

all candidates passed to the selection agent are syn- 246

tactically valid queries. Additionally, in the final 247

output phase step, it applies semantic corrections 248

to the selected results to resolve deeper issues like 249

field mapping errors. 250

3.1 In-domain Knowledge Base 251

Promising results have been achieved using the 252

M presentation for contextual learning with fewer 253

samples across a variety of related tasks(Pourreza 254

and Rafiei, 2023a). A large number of schemas and 255

fields in a database can be hard to understand, but 256

some are crucial, as they are used in various SQL 257

statements, such as retrieving Name and Population 258

from the City table. Building presentations with 259

relevant tables and columns can help the model 260

not only understand underlying data patterns but 261

also specify tasks and illustrate the step-by-step 262

process of deriving outputs. Figure 1 outlines a 263

construction method for generating table interpreta- 264

tions online, starting with generating initial schema 265

interpretations using Qwen2.5-Instruct, and then 266

manually verifying the templates to ensure that an 267

in-domain repository is formed based on the table 268

tables, its Prompt template is shown in Appendix 269

A. These steps allow schemas in SQL queries to be 270

extracted more accurately. 271

3.2 Divide-and-Conquer 272

This section explains the Divide-and-Conquer 273

module, which breaks down a complex problem 274

3

...

...

...

...

...

...

...

...

...

...

...

...

...

Final SQL

Core-question

Sub-question 1

Sub-question 2

Combined SQL

Optimized SQL

A

B

Peft parameters

Transformer decoder layer

Transformer decoder layer

...

...

...

...40 layers

...

...

...

...

...

...

...

...

...

...

...

...

...

Department Ranking ... Employees Budget

ATDD

ISD

REU

AI DSD

PIST

...

3 ... 17 1,100,000

4 ... 28 1,323,400

2 ... 56 6,300,000

5 ... 22 7,00,000

1 ... 111 13,000,000

...

Department Ranking ... Employees Budget

ATDD

ISD

REU

AI DSD

PIST

...

3 ... 17 1,100,000

4 ... 28 1,323,400

2 ... 56 6,300,000

5 ... 22 7,00,000

1 ... 111 13,000,000

...

Divide Conquery

Data Source

SELECT T3.department_ID, T2.Name
FROM department where...

SELECT T1.department_ID, T3.Name
FROM department where...

SELECT T1.department_ID, T3.Name

FROM jon where...

...

Main Question:What are the

cities with populations ...

Population who have exactly

2000 thousand population...

Population who have exactly

1000 thousand population...

SELECT T1.Population,

T1.Name FROM City where...

SELECT T1.Population,

T1.Name FROM City where...

Few-Shot Fix

LLM SamplesCorrection

Divide-and-Conquer

Question

What are the cities with

populations of 1 million to 2

million and those with

populations of 2 million or more?

In-domain

Knowledge

Database Info

Table department Info

department_management:this database is about the
management of departments and their heads.

department_ID: This column records the department's
identity ID.
department: This column records the department's name.
creation: This column records when the department was
created.
ranking: This column records the department's ranking.
budget: This column records the department's budget in
billions.
 Employees: This column records the number of
employees in the department...

Core key Info
In table department department_ID is a primary key.
In table head head_ID is a primary key.
In table management department_ID is a primary key
and a foreign key linking to the department...

SQL

...

SELECT T3.department_ID, T4.Name
FROM job where...

Samples Details

ques1:What are the first names of all buyers
and what products did they buy?
wrong sql1:SELECT T3.customer_first_name ,
T2.product_name FROM orders AS T1 JOIN
order_items...
correct sql1:SELECT T1.customer_first_name ,
T4.product_name FROM Customers AS T1 JOIN
Orders…

ques2:xxx...

Figure 1: Overview of the DFM-SQL framework for Suggested Text-to-SQL, which uses a candidate agent to pick
better answers from the candidate answers generated, while using a correction tools to provide feedback to improve
the output.

into smaller sub-problems, solves each separately,275

and then merges the solutions for the final answer.276

Along these lines, we propose a CoT hinting ap-277

proach that first decomposes the given problem278

into smaller subproblems using pseudo-SQL query279

examples. The solutions to these sub-problems280

are then aggregated to construct the final answer.281

Finally, the constructed query is optimized to re-282

move redundant terms and conditions. We have283

found this approach particularly effective in han-284

dling complex situations, such as nested queries,285

including intricate WHERE or HAVING clauses,286

and queries that involve advanced mathematical287

operations. As in Appendix’s Figure 3, we provide288

an example of a problem and its corresponding289

SQL query successfully solved using this generator.290

However, due to the complexity of the conditions291

and SQL statements of this query, we first solved a292

problem and a complex SQL query and designed it293

step-by-step in a hint template as an example.294

3.3 Candidate Agent295

By using the two methods above to generate296

SQL queries, we can produce multiple sets of can-297

didate queries for any given problem. The key chal-298

lenge in this step is selecting the correct SQL query299

from the candidate pool. A simple approach is300

to measure the consistency between candidates by 301

executing them, grouping them according to their 302

execution results, and selecting the query from the 303

largest group as the most likely correct answer. The 304

problem with this approach is that it assumes the 305

most consistent answer is the correct one, which 306

isn’t always true, as LLMs may learn the wrong fea- 307

tures and mistakenly classify a group of incorrect 308

SQL queries as correct, making this majority-based 309

or weighted voting method prone to misclassifica- 310

tion. We propose a finer-grained selection strategy, 311

which relies on a selection agent. Given a set of 312

candidate SQL queries C ={c1, c2, cn}, 313

the final response is selected by identifying the 314

candidate with the highest score, as determined 315

by a selection model. The model θp can take k 316

candidates and rank them according to the accu- 317

racy of each of them in answering a given question. 318

We learned from (Pourreza et al., 2025) about se- 319

lection agent equation, and we changed it when 320

Ec1 = Ec2 = . . . = Ecn = 0. Specifically, we 321

formalize the selection of the final response as: 322

C = argmax
c∈C

(∑(n,k)
i=1 θp (ci1, ci2, . . . , cik) | Qµ,Hµ,D

)
(1) 323

Where Qµ refers to the user’s question, Hµ is 324

the prompt provided, and D is the target database 325

4

where the question was asked. We pass k candi-326

dates to the selection model to be ranked, with k327

between 1 and n. The model is not able to compare328

the candidates. In the extreme case when k = 1,329

the model is unable to make comparisons between330

candidates, which complicates the evaluation pro-331

cess of the model. As k increases, comparing more332

candidates makes the modeling process more chal-333

lenging. However, having diverse results helps334

in identifying the exact answer. For example, if335

one candidate in the test benchmark successfully336

passes (Eci = 1,Ec1 = Ec2 = . . . = Eci−1 =337

Eci+1Ecn = 0), it is the only correct answer, elimi-338

nating the need to compare it with incorrect ones,339

though this is true for the vast majority of cases.340

The most straightforward solution to ensuring a341

high-quality and diverse set of candidates is us-342

ing off-the-shelf LLMs for pairwise selection, but343

since candidates are often very similar, a fine-tuned344

model is needed to capture nuances and make more345

accurate predictions. To train the selection agent,346

we first train and generate candidate SQL queries347

scaled on the training set (Text-to-SQL benchmark)348

and categorize them into clusters based on their349

execution results. We also consider that to avoid350

order bias during training, we randomize the order351

of correct and incorrect queries in each pair. Since352

the number of cases with both correct and incorrect353

candidates is limited, for cases where no correct354

candidate exists, we include a basic real SQL query355

as a hint to guide the model in generating the cor-356

rect candidate.357

3.4 Correcting358

In some cases, LLMs may generate syntactically359

incorrect queries. These queries are clear candi-360

dates for corrections because they do not provide361

the correct answer. To solve this problem, we apply362

an LLM-based query correction tool that utilizes363

a self-reflective approach(Shinn et al., 2023). We364

use a small number of examples to guide the cor-365

rection program, helping it learn from both correct366

and incorrect previously generated queries. The367

results of the Divide-and-Conquer and In-domain368

Knowledge are fed into the query repairer, which369

combines LLM’s own knowledge to correct syntax370

or logic errors. Of course the final result is also371

corrected after the third Candidate Agent step, and372

details were shown in Appendix’s Figure 4. We373

find that the type and number of examples affect374

the correction results, and we will analyze their375

impact in detail in the next section.376

Methods Model EX(%) EM(%)
DIN-SQL GPT-4 74.2 60.1
PICARD T5-3B 75.1 71.9

GRAPHIX T5-3B 78.2 75.6
GRAPHIX+PICARD T5-3B 79.3 77.1

Self-Debugging code-davinci-002 84.1 77.1
DAIL-SQL GPT-4 86.2 -
DPG-SQL GPT-4 85.6 -
DAIL-SQL GPT-4 86.6 70.7

DFM-SQL(ours) Qwen2.5 85.3 85.6

Table 2: Execution accuracy (EX) and exact set match
accuracy (EM) on the holdout test set of Spider

4 Experiments 377

4.1 Baseline Models 378

In the experiments, since the base model needed 379

to demonstrate strong capabilities in mathemati- 380

cal, symbolic, and logical reasoning, we conducted 381

zero-shot inference tests to evaluate multiple can- 382

didate models. Detailed experimental records for 383

each model are provided in Appendix’s Table 7. 384

Ultimately, we selected the advanced Qwen2.5- 385

Coder as the pre-trained model due to its superior 386

performance(Qwen et al., 2025), and the related 387

parameters is shown in Appendix’s Table 6. In the 388

process of constructing an in-domain knowledge 389

base, we use Qwen2.5-Instruct, which makes its 390

database have excellent and large internal knowl- 391

edge. In the correction phase, we use leading LLMs 392

in code or symbolic reasoning, such as DeepSeek 393

and Qwen2.5-Instruct. 394

4.2 Dataset 395

Spider contains 10,181 questions and 5,693 396

unique complex SQL queries across 200 databases, 397

covering 138 domains, each with multiple tables. 398

The standard protocol for this dataset divides it 399

into 8,659 training examples across 146 databases, 400

1,034 development examples across 20 databases, 401

and 2,147 test examples across 34 databases. The 402

databases used in these collections do not overlap. 403

Since language models without access to database 404

content often face schema linking challenges, our 405

hints for the Spider dataset include sample rows 406

from each table to assist the model in schema link- 407

ing. Additionally, we link the provided knowledge 408

of each field as hints, placed immediately after each 409

question. However, due to constraints like limited 410

context window size, available field knowledge, 411

and sample row inclusion, we had to reduce the 412

number of presentations in the dataset prompts. 413

5

Methods Correcting EX(%) EM(%)
Baseline × 71.3 66.8

In-domain Knowledge × 72.7↑1.4 69.7↑2.9
Divide-and-Conquer × 77.9↑6.6 74.6↑7.8

Baseline ✓ 76.5↑5.2 73.8↑7.0
In-domain Knowledge ✓ 77.7↑6.4 75.8↑9.0
Divide-and-Conquer ✓ 81.6↑10.0 80.1↑13.3

Candidate Agent × 82.8↑11.5 83.5↑16.7
Candidate Agent ✓ 84.3↑13.0 85.3↑18.5

Table 3: Performance of Multiple Agent Integration
compared with Baselin

4.3 Evaluation Metrics414

We use Execution Accuracy(Qin et al., 2022b)415

as the evaluation metric for all experiments, cal-416

culating the proportion of correct execution SQL417

query results in the dataset, which reflects the per-418

centage of predictions matching the golden SQL419

queries execution results. We also use Execution420

Match(Qin et al., 2022b) as an evaluation metric421

to measure how well the model-generated SQL422

queries matches the golden SQL queries, calcu-423

lating the percentage of predictions that correctly424

align with the golden SQL query results.425

4.4 Results426

We evaluated the generalizability of the pro-427

posed DFM-SQL by conducting an end-to-end as-428

sessment on the Spider test set, without modifying429

the small sample size in the cue or training a new430

selection model, meaning no data from the target431

distribution was used. This approach enables us to432

test DFM-SQL’s performance on unknown queries433

and database distributions, in contrast to data from434

the training distribution. Table 2 shows that DFM-435

SQL achieves 84.3% execution accuracy and 85.3%436

precise matching accuracy on the Spider test set,437

ranking second in execution accuracy and first in438

precise matching accuracy among methods specif-439

ically trained or cued to optimize for the Spider440

dataset. This highlights the strong versatility of441

DFM-SQL and its ability to generate high-quality442

Text-to-SQL for unknown samples from diverse443

distributions and unique challenges.444

domain Knowledge + Divide-and-Conquer To445

validate the complex logic processing after knowl-446

edge supplementation of In-domain Knowledge447

data tables and Divide-and-Conquer disassembly,448

we conducted ablation experiments in a more real-449

istic scenario, using direct sample-less corrections450

without the Candidate Agent, as shown in Table451

3. We compared the performance of In-domain452

Knowledge and Divide-and-Conquer in generat- 453

ing individual candidate queries versus raw Spi- 454

der hints as a baseline for evaluating the quality 455

of hints. The experimental results show that in 456

In-domain Knowledge, the constructed in-domain 457

knowledge base significantly improves generation 458

performance, boosting the Execute Match and Ex- 459

act Match metrics by about 2-3 percentage points 460

each. This result demonstrates In-domain Knowl- 461

edge’s ability to generate high-quality synthesized 462

examples by understanding structured knowledge, 463

effectively enhancing the performance of Large 464

Language Models. After splitting the complex 465

problem, the final SQL queries generated by sub- 466

SQL queries merging outperforms both the In- 467

domain Knowledge method and the Baseline (with 468

EX reaching 77.9 and EM reaching 74.6). This 469

indicates that LLMs excel at chain-of-thought rea- 470

soning, understanding the problem, and generating 471

high-quality candidate SQL queries. Our proposed 472

approach significantly improves SQL queries gen- 473

eration performance and helps us achieve our goal 474

of generating high-quality candidates while main- 475

taining diversity. Additionally, Correcting proves 476

its importance by enhancing the quality of the can- 477

didate pool SQL queries and boosting the perfor- 478

mance of all candidate generators by nearly 4%. 479

Candidate Agent + Correcting We analyze the 480

binary selection accuracy of the selection agent 481

in pairwise comparisons, where one candidate is 482

correct and the other is incorrect. For the correct 483

candidate SQL queries that can be executed accu- 484

rately, we prioritize its selection directly. For incor- 485

rect SQL queries, which have a very high number 486

of error factors, we used the pre-trained LLM of 487

the correct SQL for scoring, and filtered the SQL 488

queries with high scores as the final candidate SQL 489

queries. To evaluate the potential of efficiently 490

selecting the correct SQL queries from a candi- 491

date pool, we applied the Divide-and-Conquer and 492

In-domain Knowledge methods to all samples in 493

the Spider development set. For each method, we 494

generated m candidate SQL queries (totaling 2m 495

queries). We then combined the highest-scoring 496

and correctly executed SQL queries into a final 497

group for minimal correction. After selecting and 498

refining high-quality candidate SQL queries with 499

diverse characteristics, we found that an ensem- 500

ble approach is highly effective for extracting and 501

leveraging this knowledge. 502

6

Methods Correcting Metric Easy Medium Hard Extra-hard All

IdK
EX 86.6 78.8 59.8 56.6 72.7
EM 87.7 77.6 56.8 44.0 69.7

DaC
EX 88.7 82.1 70.6 66.1 78.4
EM 90.4 83.0 66.5 51.5 75.8

IdK + DaC
EX 89.4 82.1 69.8 63.9 78.0
EM 91.5 82.0 64.1 47.6 74.5

IdK ✓
EX 84.9 80.2 66.7 63.0 75.5
EM 86.8 79.2 64.8 50.1 72.9

DaC ✓
EX 89.1 85.1 76.2 70.3 81.6
EM 91.5 86.9 73.9 56.6 80.1

IdK + DaC ✓
EX 88.9 86.0 74.7 71.4 81.8
EM 91.1 86.3 71.9 56.9 79.6

Table 4: Performance on three methods. IDK for the method In-domain Knowledge, DaC for the Divide-and-
Conquer, and ✓ is that experiment is added Correcting method

Samples Models Metric Easy Medium Hard Extra-hard All
EX 89.1 85.6 70.9 82.2 82.2

3 Deepseek-V3
EM 91.1 87.3 73.7 57.4 80.2
EX 88.9 86.0 74.7 71.4 81.8

4 Deepseek-V3
EM 91.1 86.9 71.9 56.6 79.6
EX 89.1 85.9 76.7 71.4 82.2

5 Deepseek-V3
EM 91.1 87.3 73.7 57.4 80.2
EX 89.1 86.1 76.2 70.9 82.1

7 Deepseek-V3
EM 91.1 87.5 72.8 55.7 79.8
EX 89.1 86.1 76.2 70.9 82.1

5 Qwen2.5-Coder
EM 91.1 87.5 72.8 55.7 79.8
EX 89.1 86.1 76.2 70.9 82.1

5 GPT-4o
EM 91.1 87.5 72.8 55.7 79.8

Table 5: Performance of different difficulty levels with samples and models.

5 Analysis and Discussion503

5.1 Comparison of Methods504

Table 5 shows the performance of the In-505

domain Knowledge prompt, the Divide-and-506

Conquer prompt, and the In-domain Knowledge507

and Divide-and-Conquer prompt on the Spider at508

four levels of difficulty. As expected, the Divide-509

and-Conquer hints performed better on tasks above510

medium difficulty.The Divide-and-Conquer hints511

performed better than the In-domain Knowledge512

hints, showing that the model is more skilled at513

reasoning and decomposing subproblems, improv-514

ing its overall understanding and analysis. This515

also poses a greater challenge in developing more516

effective In-domain Knowledge methods.517

5.2 Few-shot Correcting Comparison of 518

Samples 519

Table 5 shows the effect of different number of 520

samples on the error correction ability under the 521

condition of using Divide-and-Conquer hints. We 522

find that as the number of samples gradually in- 523

creases, LLMs are able to learn more correct and 524

incorrect features, and the more effective it is for 525

candidate queries error correction. However, we 526

found that the number of samples also affects the 527

length of the context. If there are too many sam- 528

ples, the more features its LLM needs to memo- 529

rize, which may mislead the LLM to correct the 530

candidate SQL queries. It is verified that when 531

K = 5 will make the error correction performance 532

of LLMs better, especially we use Deepseek-V3 to 533

correct SQL queries. 534

7

6 Conclusion535

We propose DFM-SQL, an innovative frame-536

work that generates diverse, high-quality SQL537

queries and precisely identifies the optimal query538

during test-time computation. This framework539

combines an in-domain knowledge base, a chain-of-540

thought hinting approach, a hint correction method,541

and a pairwise comparison mechanism to accu-542

rately evaluate candidate statement quality. DFM-543

SQL sets new benchmarks in text-to-SQL tasks,544

highlighting the effectiveness of test-time compu-545

tation in producing diverse queries and identifying546

the best responses. DFM-SQL tackles the key is-547

sues of query diversity and selection optimization,548

paving the way for advancements in complex rea-549

soning tasks for practical use.550

7 Limitations551

7.1 Limitations552

DFM-SQL integrates multiple large language553

models (LLMs) to generate candidate SQL queries554

and combines a divide-and-conquer strategy with a555

domain-specific knowledge base, significantly en-556

hancing the quality and diversity of the generated557

SQL. However, the introduction of multi-model558

integration and complex strategies also results in559

higher computational resource consumption, which560

may limit its practical application in resource-561

constrained environments. Future research could562

explore model compression, knowledge distillation563

techniques, or more efficient inference methods to564

reduce computational costs and improve the frame-565

work’s practicality. Additionally, DFM-SQL em-566

ploys few-shot learning to fine-tune and optimize567

the generated SQL queries, but its effectiveness568

heavily relies on the representativeness and domain569

relevance of the example data. If the example data570

significantly differs from the target database’s do-571

main, the performance of few-shot learning may572

degrade considerably.573

Although DFM-SQL achieves an impressive ex-574

ecution accuracy of 85.3% and an exact match ac-575

curacy of 86.3% on the Spider dataset, with only a576

1% gap between the two metrics, this consistency577

may be limited to specific datasets and task settings.578

In the future, we plan to migrate the work to other579

datasets for further validation. In other datasets or580

more complex query scenarios, the framework’s581

generalizability and robustness still require further582

verification. To address this, external knowledge583

bases or domain expert input could be incorporated584

to enhance the coverage and accuracy of domain 585

knowledge, thereby further improving the frame- 586

work’s adaptability and performance. 587

7.2 Ethical Consideration 588

The DFM-SQL framework must strictly adhere 589

to data privacy protection principles when process- 590

ing databases and generating SQL queries. Any 591

data involving personal privacy or sensitive infor- 592

mation should be anonymized or desensitized be- 593

fore use to ensure that the privacy rights of data 594

subjects are not violated. Researchers, developers, 595

and users of the DFM-SQL framework are respon- 596

sible for its application scenarios and outcomes. If 597

the generated SQL queries lead to data leaks, incor- 598

rect decisions, or other negative consequences, the 599

relevant parties should take prompt measures and 600

assume corresponding responsibilities. 601

References 602

Ruichu Cai, Jinjie Yuan, Boyan Xu, and Zhifeng Hao. 603
2021. SADGA: Structure-aware dual graph aggrega- 604
tion network for text-to-SQL. In Advances in Neural 605
Information Processing Systems. 606

Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao, 607
Su Zhu, and Kai Yu. 2021. LGESQL: Line graph 608
enhanced text-to-SQL model with mixed local and 609
non-local relations. In Proceedings of the 59th An- 610
nual Meeting of the Association for Computational 611
Linguistics and the 11th International Joint Confer- 612
ence on Natural Language Processing (Volume 1: 613
Long Papers), pages 2541–2555, Online. Association 614
for Computational Linguistics. 615

Zhibo Chu, Zichong Wang, and Qitao Qin. 2024. Lever- 616
aging prior experience: An expandable auxiliary 617
knowledge base for text-to-SQL. 618

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, 619
Yunjun Gao, lu Chen, Jinshu Lin, and Dongfang 620
Lou. 2023. C3: Zero-shot text-to-sql with chatgpt. 621
Preprint, arXiv:2307.07306. 622

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, 623
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024. 624
Text-to-sql empowered by large language models: 625
A benchmark evaluation. Proc. VLDB Endow., 626
17(5):1132–1145. 627

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian- 628
Guang Lou, Ting Liu, and Dongmei Zhang. 2019. To- 629
wards complex text-to-SQL in cross-domain database 630
with intermediate representation. In Proceedings of 631
the 57th Annual Meeting of the Association for Com- 632
putational Linguistics, pages 4524–4535, Florence, 633
Italy. Association for Computational Linguistics. 634

8

https://openreview.net/forum?id=NJg6R1ATGpe
https://openreview.net/forum?id=NJg6R1ATGpe
https://openreview.net/forum?id=NJg6R1ATGpe
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://openreview.net/forum?id=p97nsl3Fvq
https://openreview.net/forum?id=p97nsl3Fvq
https://openreview.net/forum?id=p97nsl3Fvq
https://openreview.net/forum?id=p97nsl3Fvq
https://openreview.net/forum?id=p97nsl3Fvq
https://arxiv.org/abs/2307.07306
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,635
and Sunghun Kim. 2024. A survey on large lan-636
guage models for code generation. arXiv preprint637
arXiv:2406.00515.638

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-639
taka Matsuo, and Yusuke Iwasawa. 2022. Large640
language models are zero-shot reasoners. In Pro-641
ceedings of the 36th International Conference on642
Neural Information Processing Systems, NIPS ’22,643
Red Hook, NY, USA. Curran Associates Inc.644

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-645
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,646
Cuiping Li, and Hong Chen. 2024. Codes: Towards647
building open-source language models for text-to-sql.648
Proc. ACM Manag. Data, 2(3).649

Jinyang Li, Binyuan Hui, GE QU, Jiaxi Yang, Binhua650
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying651
Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guo-652
liang Li, Kevin Chang, Fei Huang, Reynold Cheng,653
and Yongbin Li. 2023. Can LLM already serve as654
a database interface? a BIg bench for large-scale655
database grounded text-to-SQLs. In Thirty-seventh656
Conference on Neural Information Processing Sys-657
tems Datasets and Benchmarks Track.658

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S659
Yu. 2023. A comprehensive evaluation of chat-660
gpt’s zero-shot text-to-sql capability. arXiv preprint661
arXiv:2303.13547.662

Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz,663
and Amine Mhedhbi. 2024. The death of schema664
linking? text-to-SQL in the age of well-reasoned665
language models. In NeurIPS 2024 Third Table Rep-666
resentation Learning Workshop.667

Gyutae Park, Seojin Hwang, and Hwanhee Lee. 2024.668
Low-resource cross-lingual summarization through669
few-shot learning with large language models. In670
Proceedings of the Seventh Workshop on Technolo-671
gies for Machine Translation of Low-Resource Lan-672
guages (LoResMT 2024), pages 57–63, Bangkok,673
Thailand. Association for Computational Linguistics.674

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,675
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok676
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and677
Sercan O Arik. 2025. CHASE-SQL: Multi-path rea-678
soning and preference optimized candidate selection679
in text-to-SQL. In The Thirteenth International Con-680
ference on Learning Representations.681

Mohammadreza Pourreza and Davood Rafiei. 2023a.682
DIN-SQL: Decomposed in-context learning of text-683
to-SQL with self-correction. In Thirty-seventh Con-684
ference on Neural Information Processing Systems.685

Mohammadreza Pourreza and Davood Rafiei. 2023b.686
Evaluating cross-domain text-to-SQL models and687
benchmarks. In Proceedings of the 2023 Conference688
on Empirical Methods in Natural Language Process-689
ing, pages 1601–1611, Singapore. Association for690
Computational Linguistics.691

Mohammadreza Pourreza and Davood Rafiei. 2024. 692
DTS-SQL: Decomposed text-to-SQL with small 693
large language models. In Findings of the Associ- 694
ation for Computational Linguistics: EMNLP 2024, 695
pages 8212–8220, Miami, Florida, USA. Association 696
for Computational Linguistics. 697

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan, 698
Yu Cheng, Chenghu Zhou, Xinbing Wang, Quanshi 699
Zhang, and Zhouhan Lin. 2022. RASAT: Integrating 700
relational structures into pretrained Seq2Seq model 701
for text-to-SQL. In Proceedings of the 2022 Con- 702
ference on Empirical Methods in Natural Language 703
Processing, pages 3215–3229, Abu Dhabi, United 704
Arab Emirates. Association for Computational Lin- 705
guistics. 706

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang, 707
Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao, 708
Jian Sun, Luo Si, Fei Huang, and Yongbin Li. 2022a. 709
A survey on text-to-sql parsing: Concepts, methods, 710
and future directions. Preprint, arXiv:2208.13629. 711

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang, 712
Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao, 713
Jian Sun, Luo Si, Fei Huang, and Yongbin Li. 2022b. 714
A survey on text-to-sql parsing: Concepts, methods, 715
and future directions. ArXiv, abs/2208.13629. 716

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, 717
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, 718
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, 719
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, 720
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, 721
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, 722
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji 723
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang 724
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang 725
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru 726
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical 727
report. Preprint, arXiv:2412.15115. 728

Noah Shinn, Federico Cassano, Ashwin Gopinath, 729
Karthik R Narasimhan, and Shunyu Yao. 2023. Re- 730
flexion: language agents with verbal reinforcement 731
learning. In Thirty-seventh Conference on Neural 732
Information Processing Systems. 733

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. 734
Sequence to sequence learning with neural networks. 735
In Proceedings of the 28th International Conference 736
on Neural Information Processing Systems - Volume 737
2, NIPS’14, page 3104–3112, Cambridge, MA, USA. 738
MIT Press. 739

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen 740
Chang, Azalia Mirhoseini, and Amin Saberi. 2024. 741
Chess: Contextual harnessing for efficient sql synthe- 742
sis. Preprint, arXiv:2405.16755. 743

Zhao Tan, Xiping Liu, Qing Shu, Xi Li, Changxuan 744
Wan, Dexi Liu, Qizhi Wan, and Guoqiong Liao. 2024. 745
Enhancing text-to-SQL capabilities of large language 746
models through tailored promptings. In Proceedings 747

9

https://doi.org/10.1145/3654930
https://doi.org/10.1145/3654930
https://doi.org/10.1145/3654930
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=fglyh5pa7d
https://openreview.net/forum?id=fglyh5pa7d
https://openreview.net/forum?id=fglyh5pa7d
https://openreview.net/forum?id=fglyh5pa7d
https://openreview.net/forum?id=fglyh5pa7d
https://doi.org/10.18653/v1/2024.loresmt-1.6
https://doi.org/10.18653/v1/2024.loresmt-1.6
https://doi.org/10.18653/v1/2024.loresmt-1.6
https://openreview.net/forum?id=CvGqMD5OtX
https://openreview.net/forum?id=CvGqMD5OtX
https://openreview.net/forum?id=CvGqMD5OtX
https://openreview.net/forum?id=CvGqMD5OtX
https://openreview.net/forum?id=CvGqMD5OtX
https://openreview.net/forum?id=p53QDxSIc5
https://openreview.net/forum?id=p53QDxSIc5
https://openreview.net/forum?id=p53QDxSIc5
https://doi.org/10.18653/v1/2023.emnlp-main.99
https://doi.org/10.18653/v1/2023.emnlp-main.99
https://doi.org/10.18653/v1/2023.emnlp-main.99
https://doi.org/10.18653/v1/2024.findings-emnlp.481
https://doi.org/10.18653/v1/2024.findings-emnlp.481
https://doi.org/10.18653/v1/2024.findings-emnlp.481
https://doi.org/10.18653/v1/2022.emnlp-main.211
https://doi.org/10.18653/v1/2022.emnlp-main.211
https://doi.org/10.18653/v1/2022.emnlp-main.211
https://doi.org/10.18653/v1/2022.emnlp-main.211
https://doi.org/10.18653/v1/2022.emnlp-main.211
https://arxiv.org/abs/2208.13629
https://arxiv.org/abs/2208.13629
https://arxiv.org/abs/2208.13629
https://api.semanticscholar.org/CorpusID:251903737
https://api.semanticscholar.org/CorpusID:251903737
https://api.semanticscholar.org/CorpusID:251903737
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2405.16755
https://aclanthology.org/2024.lrec-main.539/
https://aclanthology.org/2024.lrec-main.539/
https://aclanthology.org/2024.lrec-main.539/

of the 2024 Joint International Conference on Compu-748
tational Linguistics, Language Resources and Eval-749
uation (LREC-COLING 2024), pages 6091–6109,750
Torino, Italia. ELRA and ICCL.751

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr752
Polozov, and Matthew Richardson. 2020. RAT-SQL:753
Relation-aware schema encoding and linking for text-754
to-SQL parsers. In Proceedings of the 58th Annual755
Meeting of the Association for Computational Lin-756
guistics, pages 7567–7578, Online. Association for757
Computational Linguistics.758

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-759
aqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen Zhang,760
Di Yin, Xing Sun, and Zhoujun Li. 2024. Mac-sql: A761
multi-agent collaborative framework for text-to-sql.762
Preprint, arXiv:2312.11242.763

Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Eric764
Sun, and Yue Zhang. 2023. A survey on large lan-765
guage model (llm) security and privacy: The good,766
the bad, and the ugly. ArXiv, abs/2312.02003.767

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,768
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-769
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir770
Radev. 2018. Spider: A large-scale human-labeled771
dataset for complex and cross-domain semantic pars-772
ing and text-to-SQL task. In Proceedings of the 2018773
Conference on Empirical Methods in Natural Lan-774
guage Processing, pages 3911–3921, Brussels, Bel-775
gium. Association for Computational Linguistics.776

John M. Zelle and Raymond J. Mooney. 1996. Learn-777
ing to parse database queries using inductive logic778
programming. In Proceedings of the Thirteenth Na-779
tional Conference on Artificial Intelligence - Volume780
2, AAAI’96, page 1050–1055. AAAI Press.781

Danna Zheng, Mirella Lapata, and Jeff Pan. 2024.782
Archer: A human-labeled text-to-SQL dataset with783
arithmetic, commonsense and hypothetical reasoning.784
In Proceedings of the 18th Conference of the Euro-785
pean Chapter of the Association for Computational786
Linguistics (Volume 1: Long Papers), pages 94–111,787
St. Julian’s, Malta. Association for Computational788
Linguistics.789

A Appendix790

setting parameter
train_epochs 5
learning_rate 5e-5
cutoff_len 2048
Batch_size 2
Optimizer AdamW
Warm_up_ratio 0.05
Lr_scheduler Cosine
Gradient_accumulation_steps 8
LoRA_Rank 128
LoRA_Alpha 512

Table 6: Pretrained Models Parameters and LoRA Pa-
rameters

10

https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://api.semanticscholar.org/CorpusID:265609409
https://api.semanticscholar.org/CorpusID:265609409
https://api.semanticscholar.org/CorpusID:265609409
https://api.semanticscholar.org/CorpusID:265609409
https://api.semanticscholar.org/CorpusID:265609409
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://aclanthology.org/2024.eacl-long.6/
https://aclanthology.org/2024.eacl-long.6/
https://aclanthology.org/2024.eacl-long.6/

system

You are now an expert in SQL statements. I will give you information about a
database. You need to describe the information about the database, including
the database, the tables that corresponds to that library, and the columns that
correspond to that table. And return the description information to me in the
format. I will give you an example.\n
Example\n
First: perpetrator database is about information of perpetrator.\n
Second: people table records basic information about the person, and People_ID
column records the person's identity ID...\n
Third: perpetrator table records basic information about the crime,
Perpetrator_ID column records the crime number, and Perpetrator_ID is a primary
key, and People_ID is a foreign key intended to link people table...\n
In your response, you do not need to mention your intermediate steps. Do not
include any comments in your response. Do not need to start with the special
symbol.\n

user

The database information is as follows:\n
First: perpetrator database has perpetrator, people tables.\n
Second: below are columns of table, primary_keys of table:\n1
The perpetrator table has Perpetrator_ID, People_ID, Date, Year, Location,
Country, Killed, Injured columns, and Perpetrator_ID is primary_key.\n2
The people table has People_ID, Name, Height, Weight, Home Town columns, and
People_ID is primary_key.\n
Third: below are foreign_keys of tables:\nperpetrator.People_ID to
people.People_ID.\n"

assistant

db_id

First: perpetrator database is about information of perpetrators and
people. \n
Second: perpetrator table records basic information about the crimes, and
Perpetrator_ID column records the crime number, and Perpetrator_ID is a
primary key, and People_ID column is a foreign key intended to link the people
table... \n
Third: people table records basic information about the person, and People_ID
column records the person's identity ID, and People_ID is a primary key...,

perpetrator

In-domain Knowledge Base Prompt

Figure 2: An example of the In-domain Knowledge method

11

Divide-and-Conquery Prompt
system

user

The database information is as follows:\n
First: perpetrator database has perpetrator, people tables.\n
Second: below are columns of table, primary_keys of table:\n1
The perpetrator table has Perpetrator_ID, People_ID, ... and Perpetrator_ID is
primary_key...\n2
The people table has People_ID, Name, Height...\n
Third: below are foreign_keys of tables:\nperpetrator.People_ID to
people.People_ID.\n"

assistant

db_id

SELECT count(*) FROM head WHERE age > 56.

perpetrator

You are now an expert in SQL statements. I will give you information about a
database and subsequently ask you a question. You need to help me parse the
question following the steps I gave you and answer a final SQL statement.\n
Question:xxx
First. It is divided and conquered:\n
Main Question{asked question}:xxx
Analysis{The purpose is to break down the question,and to complete an
analysis}:xxx
Pseudo SQL{The purpose is to give a predicted SQL}:xxx
Divided-question 1{The purpose is to isaggregated the main question}:xxx
Analysis{The purpose is to perform an analysis based on the disassembled
problem}:xxx
Pseudo SQL{The purpose is to give a predicted SQL}:xxx
If the problem and SQL are more complex, you can break it down further....
Divided-question 1.1:xxx Analysis:xxx Pseudo SQL:xxx...\n
Second. Assembling SQL{You need to merge the above disassembled SQL and have
it executable.}:xxx
Divided-question 2{}:xxx more..
Main Question(it is aim to combine the isaggregated SQLs):xxx \n
Third. Simplification and Optimization:
Final Optimized SQL Query:xxx \n
Optimized SQL{best SQL}:xxx

Figure 3: An example of the Divide-and-Conquer method

12

system

You are now an expert in fixing SQL and the SQL I have given you is wrong. The
types of errors are logical errors, table join errors, special word errors (not
in, except, group by improperly used), column name and table name error, having
clause errors etc. I will now give you an incorrect SQL along with data
information and query issues, please help me to fix it correctly and provide me
the correct SQL.\n
I'll give you some sample corrections：\n
ques1:What are the names of clubs, ordered descending by the average earnings
of players within each?\n
wrong sql1:SELECT T1.Name FROM club AS T1 JOIN player AS T2 ON T1.Club_ID...\n
correct sql1:SELECT T1.Name FROM club AS T1 JOIN player AS T2 ON T1.Club_ID...\
n
ques2:What are the first names of all buyers and what products did they buy?
List them in pairs.\n
wrong sql2:SELECT T3.customer_first_name , T2.product_name FROM orders AS T1
JOIN order_items...\n
correct sql2:SELECT T1.customer_first_name , T4.product_name FROM Customers AS
T1 JOIN Orders...\n
ques3:List the order date of the orders who are placed by customers with at
least 2 payment methods.\n
wrong sql3:SELECT T1.date_order_placed FROM orders AS T1 JOIN customers AS T2
ON T1.customer_id = T2.customer_id WHERE T2.customer_id...\n
correct sql3:SELECT date_order_placed FROM Orders WHERE customer_id IN (SELECT
T1.customer_id FROM Customers AS T1 JOIN Customer_Payment_Methods A...\n
In your response, you do not need to mention your intermediate steps. Do not
include any comments in your response. Do ont include line break. Do not need
to start with the Special symbol. Your fix answer should be concise and
efficient.

Correcting Prompt

user

The database information is as follows:\n
First: perpetrator database has perpetrator, people tables.\n
Second: below are columns of table, primary_keys of table:\n1
The perpetrator table has Perpetrator_ID, People_ID, ... and Perpetrator_ID is
primary_key...\n2
The people table has People_ID, Name, Height...\n
Third: below are foreign_keys of tables:\nperpetrator.People_ID to
people.People_ID.\n"

assistant

db_id

SELECT count(*) FROM head WHERE age > 56.

perpetrator

Figure 4: An example of the Correcting method with three samples

13

Models Metric Easy Medium Hard Extra-hard All
EX 80.0 45.6 41.5 22.4 48.4

Qwen2.5-Coder-14B
EM 78.1 39.7 35.2 12.6 42.6
EX 79.1 44.1 37.2 28.9 45.1

Qwen2.5-14B-Instruct
EM 75.1 32.5 31.8 11.2 23.8
EX 67.1 34.0 21.7 11.4 32.8

Internlm2.5-8B
EM 74.1 30.2 31.3 10.2 21.8
EX 68.3 45.6 43.4 29.7 47.5

CodeLlama-13B
EM 64.7 34.0 29.4 10.9 35.9
EX 69.1 42.2 36.2 28.9 40.1

CodeFuse-13B
EM 61.1 33.5 28.8 10.7 34.1

Table 7: Preformance on different large language models.

14

	Introduction
	Related Work
	Methdology
	In-domain Knowledge Base
	Divide-and-Conquer
	Candidate Agent
	Correcting

	Experiments
	Baseline Models
	Dataset
	Evaluation Metrics
	Results

	Analysis and Discussion
	Comparison of Methods
	Few-shot Correcting Comparison of Samples

	Conclusion
	Limitations
	Limitations
	Ethical Consideration

	Appendix

