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Abstract

While deep learning has revolutionized the prediction of rigid protein structures,1

modelling the conformational ensembles of Intrinsically Disordered Proteins (IDPs)2

remains a key frontier. Current AI paradigms present a trade-off: Protein Language3

Models (PLMs) capture evolutionary statistics but lack explicit physical grounding,4

while generative models trained to model full ensembles are computationally expen-5

sive. In this work we critically assess these limits and propose a path forward. We6

introduce GeoGraph, a simulation-informed surrogate trained to predict ensemble-7

averaged statistics of residue–residue contact-map topology directly from sequence.8

By featurizing coarse-grained molecular dynamics simulations into residue- and9

sequence-level graph descriptors, we create a robust and information-rich learning10

target. Our evaluation demonstrates that this approach yields representations that11

are more predictive of key biophysical properties than existing methods.12

1 Introduction13

Proteins are the cell’s molecular machines: sequence-encoded biopolymers which catalyze reactions,14

regulate processes, and shape cellular architecture. Recent years have witnessed a paradigm shift in15

protein modelling, driven by advances in experimental techniques and the maturation of deep learning.16

In particular, the rapid growth of high-throughput sequencing has been pivotal [41]. On the one17

hand it has enabled language-modelling approaches, especially Masked Language Modelling (MLM),18

to learn the statistical patterns of evolution directly from vast, unannotated sequence databases19

[34, 26]. On the other, Multiple Sequence Alignments (MSAs), coupled with decades of structure20

determination experiments [5], underpin deep learning models like AlphaFold [24] and RosettaFold21

[4], which now achieve near-experimental accuracy for a broad class of structured proteins.22

With static structures largely tractable, the frontier of computational structural biology is advancing23

toward a more fundamental problem: modelling the full conformational ensemble – the Boltzmann24

distribution of conformations under physiological solution conditions. To frame this challenge, we25

can identify three regimes along the structural order-disorder continuum: (i) proteins that adopt a26

single, highly stable fold; (ii) dynamic proteins that interconvert among a few metastable states;27

and (iii) Intrinsically Disordered Proteins (IDPs), which manifest a broad, heterogeneous set of28

rapidly fluctuating conformations [47, 43]. The first regime is where models trained on protein crystal29

structures excel. The second is well-captured by Markov State Models (MSM), which characterise30

the ensemble by the populations of metastable states and the kinetic rates between them, typically31

inferred from long Molecular Dynamics (MD) simulations [33, 9, 19]. The third regime of IDPs32

is, however, particularly challenging, and provides the focus for this work. Beyond the inherent33

complexity of modelling a heterogeneous ensemble, these proteins also face significant experimental34

and evolutionary hurdles. Experimentally, obtaining data is laborious, and their dynamic nature means35

measurements are typically averaged across the entire ensemble and/or over time. Evolutionarily,36
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they exhibit poor sequence conservation, a characteristic thought to derive from the lack of a stable37

structure required to maintain function [8].38

A recent line of work aims to use deep generative models, especially diffusion models, to map39

sequence directly to a full conformational distribution [25, 22, 20, 49]. While useful, this strategy40

faces practical and statistical hurdles: generating, storing, and analyzing thousands of conformers per41

protein is expensive, and for many downstream tasks such high-dimensional stochastic detail can42

obscure the underlying biophysical signal. From a statistical-physics perspective, fluctuations faster43

than the timescale of interest are effectively marginalized as entropy, making the explicit modelling of44

fine-grained, high-frequency detail counterproductive. Indeed timescale separation underpins MSM45

coarse-graining, which emphasizes slow, kinetically relevant transitions between states rather than46

the noisy internal motions within them [9, 19].47

Here we take a different approach: rather than modelling entire ensembles explicitly, we model their48

aggregate properties directly. Specifically, we propose to extract essential biophysical content of49

an IDP ensemble from the statistics of its transient residue–residue contacts [7, 3]. The power of50

this approach has recently been demonstrated by WARIO [15], which uses contact-based descriptors51

to cluster simulation trajectories of IDPs into structurally coherent states. Our work leverages this52

same insight for a different purpose: instead of post-hoc analysis of a single ensemble, our aim is53

high-throughput prediction directly from sequence. To achieve this, we convert conformations from54

simulation into residue-level contact-map graphs, compute a diverse set of graph-theoretic descriptors,55

and use their ensemble-averaged values as the direct prediction targets for our model. This approach56

acts as a deliberate information bottleneck, filtering high-frequency fluctuations while preserving the57

stable signature of the ensemble.58

A key design choice is resolution. We operate at the residue level–a natural middle ground between59

whole-sequence and all-atom representations. Unlike models that predict a few global aggregates and60

lose positional detail, we learn a rich vector of aggregate properties per residue, capturing biophysical61

characteristics across the protein sequence.62

Finally, our physics-driven residue-level objective allows a direct test of a core premise behind Protein63

Language Models (PLMs): that evolutionary co-variation provides a statistical proxy for underlying64

physics [31, 29, 26]. However, this premise relies on stable structural constraints that are largely65

absent in dynamic IDPs, limiting the effectiveness of purely evolutionary models. By constructing66

representations grounded in the explicit physical properties of conformational ensembles, our work67

offers a framework to directly compare what is learnable from the language of evolution versus the68

language of physics – or at least a coarse-grained MD version of it.69

2 Related work70

Our work lies at the intersection of modelling protein conformational ensembles, machine learning71

for intrinsically disordered proteins, and graph-theoretic representations of protein structure.72

Following the success of the third-generation AlphaFold3 structure prediction model employing73

a diffusion architecture [1], a growing line of work is addressing the challenge of modelling full74

conformational distributions directly from sequence. Prominently, BioEmu emulates equilibrium75

ensembles at scale from MD data, reporting agreement with thermodynamic readouts across diverse76

proteins [25]. P2DFlow employs SE(3) flow-matching for sequence-conditioned ensemble sampling77

[22]. However, these models rely on the quality of MSA and their capacity to capture co-evolutionary78

signal, which limits their performance for poorly-conserved IDPs.79

IDPs, owing to their intrinsic structural and sequential heterogeneity, remain challenging for such80

general models, and several works specialize directly in sampling IDP ensembles. STARLING81

employs a sequence-conditioned latent diffusion architecture acting on residue-residue distance maps,82

enabling rapid prediction of coarse-grained IDP ensembles [32]. idpGAN conditions a transformer-83

based GAN on sequence to generate coarse-grained IDP conformations [21], and idpSAM adopts a84

latent-diffusion formulation to improve transfer across sequences [20]. Diffusion-based conditional85

sampling has also been explored for IDPs at all-atom resolution in IDPFold [49]. Complementing86

these pure generators, bAIes integrates AlphaFold2 distograms with an atomistic random-coil prior87

in a Bayesian framework to sample atomic-resolution IDP ensembles with uncertainty modelling of88

restraints [35].89
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In line with the present work, several methods learn sequence-to-aggregate mappings for IDP90

ensemble statistics based on simulated training sets. ALBATROSS is a family of recurrent neural91

network (RNN) models which each separately predict the average radius of gyration, end-to-end92

distance, asphericity, and Flory scaling parameters from sequence [28]. Our work is closely aligned93

with this approach, but targets a richer set of residue-resolved and sequence-level statistics derived94

from transient contact patterns. From a PLM angle, IDP-BERT is a fine-tuning ProtBERT on the95

prediction of average radius of gyration, end-to-end decorrelation time, and heat capacity [30],96

without further language model training on IDP-specific sequences. In contrast, our IDP-ESM97

models, presented in Sec. 4.3, are first fine-tuned on the MLM objective using a curated dataset of98

IDP sequences before the prediction head is trained.99

Finally, residue interaction/contact networks have a long history as mesoscopic abstractions linking100

local contacts to global organization. Early studies established contact-graph formalisms and con-101

nected network topology to stability [7] and functional residues [3]. Closer to the theme of our work,102

WARIO employs contact maps for characterizing IDP ensembles [15]. They take a sophisticated103

approach to defining contacts, introducing a novel continuous function which incorporates residue104

type, sequence separation, and relative orientation. The focus of their work, clustering conformations105

of an individual ensemble so as to reveal rare functionally relevant patterns, is complementary to our106

ensemble-averaged approach.107

3 GeoGraph108

Our goal is to learn residue-level representations of IDPs directly from MD trajectory data. Our109

hope is that this will capture essential physical principles – principles that are missed by PLMs, and110

inaccessible to methods like AlphaFold3, which are trained on structured, folded proteins with deep111

MSAs.112

For a given protein sequence, a conformational ensemble can be sampled from a sufficiently long113

MD trajectory after an initial equilibration period. A key question, however, concerns the required114

accuracy of the simulation. While all-atom force fields produce a high-fidelity view of protein115

dynamics, their immense computational cost makes them unsuitable for generating the large datasets116

of equilibrated trajectories required for deep learning.117

Coarse-grained methods offer a pragmatic and powerful alternative. In particular, CALVADOS-118

2 is a state-of-the-art1, one-bead-per-residue coarse-grained force field specifically developed and119

parameterized to reproduce experimental data on IDPs [40]. This coarse-graining comes at a cost: fine120

details such as secondary structure are lost. Instead, CALVADOS takes a top-down approach, based121

on an effective description of non-bonded interactions designed to capture transient residue–residue122

contact patterns.123

Building on this, we hypothesise that these transient residue-residue contacts encode context-rich,124

robust, and generalizable physicochemical correlations. To formalize this, we analyze properties of125

these contacts aggregated across the conformational ensemble. For each conformation we construct126

a contact map graph, where residues are nodes and the edges connect pairs of residues within an127

8Å distance cutoff, but omitting edges between adjacent residues. From each graph, we then compute128

a diverse set of features at both the node level and the graph level (our selection is presented below in129

Sec. 3.2). Finally, these feature vectors are averaged across the full ensemble to produce a stable,130

statistical fingerprint of the protein’s dynamic structure.131

3.1 Architecture132

GeoGraph is a sequence-to-sequence model that maps a protein’s amino-acid sequence to feature133

vectors describing aggregate physical properties at both the sequence- and residue-level. The134

backbone is a transformer encoder [44], chosen for its ability to capture long-range dependencies and135

produce context-rich embeddings. We build on the Hugging Face implementation of ESM-2 [26, 46],136

which uses standard modern components such as Pre-Layer Normalization (Pre-LN) [48] and Rotary137

Position Embeddings (RoPE) [37].138

1We comment that its successor CALVADOS-3 is an adaptation to incorporate multi-domain proteins, and is
equivalent to CALVADOS-2 for IDPs.
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We use a 4-layer transformer with hidden size 256, 4 attention heads, and a feed-forward expansion139

factor of 2 (FFN dimension 512), for a total of ≈ 2.2M parameters. The output of the transformer is a140

sequence of residue-level embeddings. A single sequence-level embedding is then obtained by taking141

the mean of these residue-level embeddings across the sequence length.142

To predict targets, we attach separate heads for sequence-level and residue-level features. Each head143

is a shallow MLP with a single hidden layer of dimension 128 and a dropout probability of 0.1, so144

that performance primarily reflects the backbone’s context-aware embeddings.145

To ensure robust training, the transformer backbone is also regularized with dropout of 0.1 on both146

the FFN activations and the attention probabilities. We use the AdamW optimizer with a weight147

decay of 0.01 and a cosine learning rate scheduler with warmup. Full training details are presented in148

Appendix A.1.149

3.2 Ensemble descriptors150

In this work we consider two flavours of descriptors, which we refer to as geometric and graph-based.151

The geometric descriptors are all sequence-level features, while for the graph-based descriptors we152

consider both sequence- and residue-level features. For training our models we standardise all target153

features to have zero mean and unit variance.154

3.2.1 Geometric features155

The geometric features we consider are commonly employed measures of the conformational en-156

sembles of IDPs, and are computable from MD simulation frames as detailed in Appendix B. First,157

end-to-end distance (Re) is the Euclidean distance between the first and last residues. The radius158

of gyration (Rg) and asphericity (∆) are characteristics of a protein’s (mass-weighted) gyration159

tensor. Lastly, in line with polymer physics, IDPs exhibit Flory scaling. This describes a power-law160

relationship between a polymer’s size (e.g. Rg or Re) and its length N , which is parametrized by161

an exponent (ν) and a prefactor (A0), as in Rg ∝ A0N
ν [14]. In practice we compute the scaling162

parameters for a given IDP by fitting a power-law relationship between the Euclidean distance of163

residue pairs and their sequence separation.164

Both Rg and Re can be experimentally determined, and in turn used to determine the Flory prefactor165

and exponent [2]. Small Angle X-ray Scattering (SAXS) yields the ensemble-averaged radius of166

gyration ⟨Rg⟩, whereas Fluorescence resonance energy transfer (FRET) spectroscopy yields ⟨Re⟩, or167

even Re distributions in the case of single-molecule FRET [18].168

3.2.2 Graph-based features169

In selecting graph-based features for a conformations’s contact map graph we are non-discriminative,170

aiming for a diverse collection. Overall we selected 8 sequence-level features and 7 residue-level171

features as below. We compute these using python’s NetworkX package [17] (with default settings).172

Sequence-level: As not all graphs were connected we computed fragmentation index as the fraction173

of nodes in the Largest Connected Component (LCC); average shortest path length on the LCC174

and global efficiency on the full graph to quantify compactness/communication; average clustering175

and transitivity as measures of local triadic closure; and degree assortativity as well as charge176

assortativity and hydrophobicity assortativity to assess mixing patterns. The latter two were177

computed by endowing nodes with attribute values determined by corresponding amino acid identity.178

Residue-level: Here we included degree centrality (local contact density), betweenness centrality179

(bridging propensity), harmonic centrality (inverse-distance reachability), PageRank [6], core180

number, local clustering coefficient, and as well as an in-largest-connected-component indicator.181

3.3 MD training data182

To train and evaluate our models, we use the Human–IDRome dataset [39], containing simulated183

conformational ensembles for 28,058 intrinsically disordered regions from the human proteome. To184

our knowledge, this is the largest publicly available dataset of its kind. The ensembles were generated185

using the CALVADOS-2 coarse-grained force field, with each sequence represented by 1,000 weakly186

correlated conformational frames sampled from the simulation trajectory [39].187
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Re Rg ∆ ν A0

STARLING 0.914 0.951 -0.460 0.261 0.386
STARLING (retrained) 0.983 0.992 0.314 0.677 0.539
ALBATROSS 0.899 0.932 0.441 0.275* -0.471*
ALBATROSS (retrained) 0.970 0.984 0.790 0.698 0.513
GeoGraph 0.993 (0) 0.996 (0) 0.899 (5) 0.893 (6) 0.875 (16)
Geo 0.991 (2) 0.994 (1) 0.875 (13) 0.856 (14) 0.787 (30)
Geo-zero 0.596 (33) 0.603 (33) 0.584 (6) 0.505 (7) 0.389 (13)
Graph + GeoHead 0.992 (1) 0.996 (0) 0.864 (13) 0.854 (15) 0.793 (32)
ESM-8M + GeoHead 0.983 (1) 0.991 (1) 0.754 (8) 0.684 (8) 0.523 (19)
IDP-ESM-8M + GeoHead 0.982 (1) 0.987 (1) 0.783 (2) 0.767 (5) 0.643 (14)
ESM-150M + GeoHead 0.984 (1) 0.991 (1) 0.792 (2) 0.763 (4) 0.637 (5)
IDP-ESM-150M + GeoHead 0.980 (1) 0.986 (1) 0.786 (6) 0.777 (4) 0.660 (7)

Table 1: R2 scores for the IDP property prediction task on our Human–IDRome test set. Where
parentheses are shown, the results are the mean of 5 models with different random seeds, along with
the standard error on the final digits. We highlight with (*) that the R2 scores of the pretrained AL-
BATROSS models for ν and A0 are affected by differences in computation of the scaling parameters
between our work and theirs (see Appendix C.2.4).

We partitioned the dataset based on sequence similarity into 80/10/10 splits for training, validation,188

and testing. To ensure fair comparison with prior work, this split was performed using MMseqs2189

[36] with parameters (min_seq_id=0.7, coverage=0.8, cov_mode=1), identical to the parameters used190

by STARLING [32]. Finally, we filtered the dataset to sequences with a maximum length of 256191

residues.192

4 Evaluation193

We evaluate models on their ability to predict the five geometric features (Re, Rg,∆, ν, A0) described194

in Sec. 3.2.1, which are well-studied, experimentally relevant measures of IDP conformational195

ensembles.196

4.1 Baseline IDP models197

First, we evaluate two prominent methods for IDP property prediction: ALBATROSS [28] and198

STARLING [32]. ALBATROSS is a family of 5 recurrent neural network models, each trained to199

independently predict one of the ensemble-averaged geometric features {Re, Rg,∆, ν, A0} directly200

from sequence. STARLING is a generative diffusion model which generates a conformational201

ensemble of IDPs by denoising a latent representation of residue-residue distance maps for each202

conformation. We follow the method used by [32] for property prediction with STARLING: we203

sample 1000 conformations using 25 DDIM steps, then using the generated ensemble to calculate the204

ensemble-averaged geometric feature values for each sequence.205

We evaluate the publicly released models for both methods on our test set, however we also note that206

the IDP datasets used to train ALBATROSS and STARLING notably differ from our training dataset207

Human–IDRome. In particular, their datasets contain synthetic as well as biological IDP sequences,208

and the conformational ensembles were generated via coarse-grained MD using an adapted version209

of the Mpipi force field [23] rather than CALVADOS-2. We therefore additionally retrained these210

models from scratch on the Human–IDRome dataset, and report results using both the pretrained and211

retrained versions of these models in Table 1. We include additional details related to retraining and212

comparison in Appendix C.213

In addition to the results presented in Table 1, we evaluated the published IDP-BERT model [30] for214

predicting Rg on our test set, which achieved an R2 score of 0.949. For a more detailed evaluation of215

PLM embeddings we use the ESM-2 model and an IDP fine-tuning of it below in Sec. 4.3.216

We also attempted to evaluate BioEmu, a large-scale general-purpose ensemble emulator [25] which217

uses a diffusion model to generate conformational ensembles conditioned on the MSA of a sequence.218

Due to computational constraints, we were not able to generate sufficiently large ensembles with219
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Re Rg ∆ ν A0

GeoGraph (4 layers) 0.993 (0) 0.996 (0) 0.899 (5) 0.893 (6) 0.875 (16)
– 6 layers 0.993 (1) 0.996 (1) 0.897 (3) 0.891 (4) 0.872 (15)
– 2 layers 0.992 (1) 0.996 (0) 0.890 (6) 0.883 (3) 0.848 (10)
– 1 layer 0.991 (2) 0.994 (2) 0.864 (26) 0.859 (14) 0.794 (31)
– w/o sequence graph features 0.993 (1) 0.996 (1) 0.896 (9) 0.886 (9) 0.858 (15)
– w/o residue graph features 0.988 (2) 0.992 (2) 0.858 (10) 0.856 (15) 0.806 (34)
– w/o residue centralities 0.993 (1) 0.996 (0) 0.886 (8) 0.880 (12) 0.848 (26)
– w/o residue pagerank 0.993 (1) 0.996 (1) 0.896 (10) 0.889 (7) 0.868 (18)
– w/o residue clustering 0.993 (1) 0.996 (0) 0.897 (4) 0.886 (6) 0.861 (16)

Table 2: R2 scores on our Human–IDRome test set for several ablations on the GeoGraph model.
The results are the mean of 5 models with different random seeds, along with the standard error on
the final digits in parentheses.

BioEmu on our test set to make a fair comparison. In a small experiment where we generated 1000220

conformers/sequence for 100 randomly-sampled test sequences, we observed very poor performance221

(R2 < 0 for all features), which is consistent with recent work evaluating BioEmu for IDPs [35].222

4.2 GeoGraph models223

We trained multiple variants of our GeoGraph model so as to clearly dissect its behaviour. These can224

be grouped as follows:225

Main model226

• GeoGraph: trained with both sequence-level and residue-level prediction heads on the sets227

of geometric and graph features.228

Baselines229

• Geo: trained to predict only the sequence-level geometric features, i.e. those used as230

benchmarks. This serves as an analogue to ALBATROSS, up to the change in architecture231

and the use of a single model to predict all features.232

• Geo-zero: a greatly simplified variant of Geo where the transformer backbone has zero233

layers. This tests the performance of contextless token embeddings, and provides a minimal234

performance floor.235

Transferability Test236

• Graph + GeoHead: a variant designed to assess the transferability of the learned embed-237

dings. It is trained in two stages: first, the full backbone is trained to predict only the238

graph-based features; second, the backbone weights are frozen, and a new prediction head is239

trained to predict the geometric features from the resulting embeddings.240

In addition to these variants, we performed a set of feature ablations on the main GeoGraph model,241

presented in Table 2.242

4.3 Protein Language Model evaluation243

Finally, we evaluate the performance of the MLM model ESM-2 on our benchmark tasks. We test the244

model in two settings: first, using its general-purpose pre-trained embeddings, and second, after fine-245

tuning it on a large, curated dataset of biological IDP sequences. As we did for the Graph + GeoHead246

model above, we train a prediction head on the mean embeddings across the sequence to predict the247

geometric features. We report results for 8M and 150M models for each in Table 1.248

4.3.1 IDP fine-tuning249

For training our fine-tuned versions of ESM-2, IDP-ESM2-8M and IDP-ESM2-150M, we curated250

a large dataset of biological IDP sequences. Adopting the approach used by ALBATROSS [28] to251
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extract biological IDPs from multiple proteomes, we used Metapredict V3 [13] to annotate disordered252

regions in all 2,764 eukaryotic proteomes available in the UniProt [10] database, as detailed in253

Appendix A.2. We refined the resulting dataset by filtering out sequences shorter than 30 amino254

acids, a standard preprocessing step for IDPs [11], and then applied clustering at 90% sequence255

identity, following the UniRef90 protocol [38], resulting in a dataset of approximately 30 million256

IDP sequences, which we refer to as IDP-Euka-90.257

The fine-tuning leads to a significant performance improvement for the 8M model, while having258

little effect on the 150M model. We hypothesize that ESM2-150M already captures key properties of259

IDP sequences from its UniRef50 pretraining, and that additional fine-tuning does not significantly260

enhance its ability to model geometric features.261

5 Discussion262

From Table 1 we see that GeoGraph achieves highly competitive performance against leading methods263

for IDP ensemble property prediction. While the end-to-end distance (Re) and radius of gyration264

(Rg) appear to be relatively tractable tasks for most models, GeoGraph demonstrates a marked265

improvement in predicting the more challenging shape descriptors of asphericity (∆), the Flory266

scaling exponent (ν), and its prefactor (A0).267

We gain further insight into this success by comparing our model variants: the Geo model, which268

trains on geometric features alone, and the Graph + GeoHead model, which learns representations269

solely from graph topology. Both variants perform on par with each other, demonstrating that the rich270

biophysical information in the contact-map topology is sufficient to create representations as powerful271

as those learned by direct optimization. The value of these learned representations is confirmed by272

the far superior performance of Graph + GeoHead relative to our Geo-zero baseline, which lacks273

this contextual learning. Crucially, the main GeoGraph model outperforms both specialized variants,274

demonstrating a clear synergistic effect. This supports our central hypothesis: the auxiliary task of275

predicting contact map characteristics is a highly beneficial component for extracting transferable276

representations from MD simulation data. Furthermore, ablations in Table 2 reveal that the context-277

aware, residue-level graph features are the primary drivers of this learning.278

In comparing GeoGraph’s performance to reference IDP models, we must first highlight a key caveat:279

our model was trained on the Human–IDRome dataset generated with the CALVADOS-2 force280

field, whereas the original ALBATROSS and STARLING models were trained on data containing281

both biological and synthetic sequences, and generated using the Mpipi force field. This difference282

in training distributions means a direct comparison between the models is imperfect. To mitigate283

this, we retrained these models on the Human–IDRome dataset, which consistently improved the284

performance of both methods on our test set across all features.285

While the retrained STARLING model performs well on simpler metrics like Rg, its accuracy286

degrades significantly on the more challenging shape descriptors. Specifically on asphericity (∆), the287

generative model performs worse than our Geo-zero baseline, which lacks any contextual transformer288

layers. This suggests that while the generative model can capture the average size of an ensemble, it289

has struggled to capture the distribution of more complex descriptors. This suggests that the aggregate290

graph descriptors distill the essential information of an ensemble’s shape more effectively than the291

raw residue-residue distance maps used by STARLING.292

We find that the retrained ALBATROSS models underperform relative to our Geo model, which acts293

as an analogue of ALBATROSS. There are multiple factors which may contribute to this performance294

gap, the most prominent of which being that the ALBATROSS models were developed with a focus on295

enabling high-throughput inference by using very small model sizes (between 34K-107K parameters),296

whereas the Geo model has ≈2.2M parameters.297

Our final comparison is against the evolution-informed embeddings of ESM-2, and our MLM fine-298

tuned variants IDP-ESM-8M and IDP-ESM-150M. Here, the most direct comparison is with our299

Graph + GeoHead model, which isolates the quality of the embeddings pretrained on graph topology.300

We find that these simulation-informed embeddings provide a significantly stronger predictive signal301

for geometric properties than those learned by MLM. While a superior performance is expected when302

the training objective aligns with the evaluation task, the magnitude of the difference underscores a303
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key limitation of protein language models: the statistical patterns of evolution are an incomplete and304

often noisy proxy for the underlying physical properties when applied to IDPs [8].305

Overall, we find the results of our evaluation highly encouraging. Nevertheless, we emphasize that306

this is an exploratory study, and there are several limitations. Firstly, like all comparable methods,307

GeoGraph is fundamentally an emulator of the underlying coarse-grained simulation. It therefore308

inherits the limitations of the CALVADOS-2 force field, most notably the absence of all-atom detail.309

Importantly, we would not expect our current model to learn a meaningful signal for key fine-detail310

properties such as secondary structure propensity. Future work could address this by training on data311

from all-atom simulations, which, while computationally expensive, may provide a richer and more312

physically accurate training signal.313

Secondly, our methodological choices in featurizing the contact map graphs can be refined. We314

sought diverse sets of both residue-level (node) and sequence-level (graph) descriptors, but did not315

attempt to optimise these. In addition there are descriptors we did not consider, a notable example are316

community structures, which may help to capture modular organization within the ensembles [16].317

Our definition of the contact map itself, a hard 8Å cutoff, is also simplistic. It would be interesting318

to assess the impact of the cutoff distance, or more generally to adopt distribution-based contact319

definitions, such as that introduced recently by WARIO [15], which may provide a more nuanced320

learning target.321

Finally, our aggregation of features across the ensemble deserves mention. In this work, we focused on322

predicting the mean of each feature, a choice that imposes a powerful information bottleneck to filter323

the inherent stochasticity and extract a robust signal. A drawback is that this averaging necessarily324

loses information about the ensemble’s heterogeneity, such as rare functional conformations – often325

key in IDP biological functionality. A natural next step is to enrich our prediction targets by including326

higher-order statistics, such as the variance of each feature. This would allow the model to learn not327

just the average state but also the extent of conformational fluctuations, capturing a deeper layer of328

the ensemble’s physical character without incurring the full cost of a generative model.329

6 Conclusion330

In this work we introduce GeoGraph, a sequence-to-sequence model trained to predict aggregate331

properties of IDP conformational ensembles. It achieves this by first featurizing individual conforma-332

tions from MD simulations into contact-graph topologies, and then learning to predict the ensemble333

average of these features, at both a residue- and sequence-level. Our evaluation demonstrates that334

this approach not only achieves highly competitive performance on benchmark tasks but also yields335

embeddings that are more effective for predicting key experimentally relevant properties than existing336

methods. Our trained GeoGraph and IDP-ESM2 models, along with the IDP-Euka-90 training dataset,337

will be publicly released.338

Let us conclude by highlighting some directions for future work. Firstly, it is of interest to expand339

and refine the set of residue-level features that can be extracted from MD simulation data. If one340

extends the scope to all-atoms simulations one can expect that significantly richer features can be341

employed. Secondly, while we have focused here on contrasting our approach to MLM, establishing342

a solid baseline with our IDP fine-tuned IDP-ESM2-8M and IDP-ESM2-150M models, ultimately343

we anticipate a merging of the two approaches, so as to create powerful sequence representations344

that combine evolutionary covariance with underlying physics. Finally, we hope that these methods345

will lead to improved understanding of IDPs, for example serving as useful representations for346

characterising functional motifs [42].347
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A Additional details491

A.1 Training492

A.1.1 GeoGraph and GeoHead models493

All models presented in this paper are built with a backbone and a GeoHead: the backbone can494

either be a GeoGraph transformer encoder or a pretrained ESM2 model. The GeoHead is a regressor495

that takes as input the hidden representation from the backbone, and processes it with two fully496

connected layers with a hidden dimension equal to half the dimension of the backbone output (128497

for GeoGraph, 160 for ESM2-8M and 320 for ESM2-150M). The GeoHead is trained either with the498

backbone (GeoGraph, Geo models), or while the backbone is frozen (ESM-2 derived models, Graph499

+ GeoHead model). Joint backbone-GeoHead training is performed with a batch size of 512 and a500

learning rate of 5e-4, while GeoHead-only training uses the same batch size with a learning rate of501

3e-3.502

A.1.2 Finetuning ESM Models503

We fine-tuned ESM-2 models on the IDP-Euka-90 dataset, using a 1% randomly sampled subset for504

validation. Fine-tuning was performed on the masked language modeling (MLM) task using four505

H100 GPUs. We employed a learning rate of 4e-4, consistent with the original ESM pretraining setup.506

For ESM2-8M, we used a batch size of 700, and for ESM2-150M, a batch size of 96 with 10 gradient507

accumulation steps. Models were trained for a single epoch to preserve the representations learned508

during pretraining and avoid overfitting to the downstream dataset.509

A.2 IDP-Euka-90 dataset curation510

As suggested in the Metapredict V3 paper [27], eukaryotes have significantly more disordered511

regions than bacteria and euryarchaeota: we hence decided to focus on eukaryotes to extract IDRs.512

We downloaded all 2764 eukaryota proteomes from UniProt and ran Metapredict V3 command513

metapredict-predict-idrs [13] with default disorder threshold of 0.5 on each one of them. We removed514

sequences shorter than 30 amino acids and clustered the dataset with mmseqs2 linclust command,515

with minimum sequence identity threshold of 0.9, 0.8 coverage in coverage mode 1. This pipeline516

produced an IDP dataset consisting of 30,337,340 sequences.517

B Geometric feature calculation518

We explain here how all geometric features are calculated for a 3D protein structure containing N519

residues with Cartesian coordinates {ri}Ni=1, indexed according to the residue’s position in the protein520

sequence. The features (Re, Rg, ∆) are computed separately for each conformation then averaged521

over the ensemble, whereas the Flory scaling parameters (ν, A0) are fit using the full ensemble522

(details given below).523

As in [12], we calculate the radius of gyration and asphericity features using the mass-weighted524

Gyration tensor, T ∈ R3×3, computed as525

Tαβ =
1

M

N∑
i=1

mir̃iαr̃iβ (1)

where mi ∈ R is the mass of residue i, and r̃i ∈ R3 are its coordinates after subtracting the center of526

mass. We denote with {λj}3j=1 the eigenvalues of the gyration tensor T,527

End-to-end distance (Re) The distance between the first and last residue in the sequence:528

Re = |r1 − rN | (2)

Radius of gyration (Rg) A geometric property that describes how the protein’s mass is distributed529

about its center of mass. Equivalent to the root mean square distance of all atoms from the protein’s530
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center of mass, and calculated using T as531

Rg =
√

tr(T) (3)

Asphericity (∆) Characterises the degree to which a protein’s three-dimensional shape deviates532

from a perfect sphere. Calculated using T as533

∆ =
3

2

∑3
j=1(λj − λ̄)2

(tr(T))2
(4)

Flory scaling exponent and prefactor (ν, A0) Parametrise the power-scaling-law relationship534

describing how the Cartesian distance between residues scales as a function of their spacing in535

sequence. Following the implementation used by [39], we fit this relationship to residues spaced at536

least 5 amino acids apart:537

|ri − rj | = A0|i− j|ν ; |i− j| > 5 (5)

Unlike the other geometric features which are calculated for each conformation separately and then538

averaged, the Flory scaling parameters are calculated by first averaging the inter-residue distances539

observed for each spacing across the whole ensemble, then using the optimize.curve_fit function540

provided by SciPy [45] to fit the (ν, A0) parameters.541

C Comparisons with IDP models542

C.1 STARLING543

C.1.1 Retraining544

Following the preprocessing in STARLING [32], we first downsampled the frames for each sequence545

in our Human–IDRome dataset to reduce the correlation between conformers. We found that keeping546

every 20th frame was sufficient to stabilise model training, resulting in 50 conformers for each547

sequence. After downsampling, we used the same hyperparameters and methodology as in [32]548

to sequentially retrain the STARLING VAE and DDPM models from scratch using our train and549

validation splits.550

C.2 ALBATROSS551

C.2.1 Model versions552

In our evaluation of the pretrained ALBATROSS models, we use the default (V2) models available553

via the SPARROW GitHub repository (https://github.com/idptools/sparrow). For predicting Rg and554

Re with ALBATROSS, we used the "scaled" versions of these models as recommended.555

C.2.2 Retraining556

We use the same model architecture hyperparameters (number of hidden layers, hidden size) for each557

feature as used in the published V2 models. We found that we could improve training stability and558

performance by replacing the loss function used by [28] with the mean of the L1 loss over a batch559

rather than the sum, and performing a grid search over batch sizes {64, 128, 256} and learning rates560

{1e-3, 5e-3, 1e-2} for each model. We report the best test R2 score achieved over the grid search for561

each feature in Table 1, and the hyperparameters used for each model in Table 3.562

C.2.3 R2 score calculation563

The R2 scores attained in our evaluation of ALBATROSS are notably lower than those reported in564

the original ALBATROSS work [28]. This discrepancy can be partly explained by a difference in the565

definition of R2 used between our work and theirs. In [28], the authors define the R2 score as the566

square of the Pearson correlation coefficient between the true and predicted values, whereas here we567

define R2 as the coefficient of determination.568
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For targets and predictions {(yi, fi)}Ni=1 with target mean ȳ = 1
N

∑N
i=1 yi, we calculate the coeffi-569

cient of determination (R2) as570

R2 = 1−
∑

i(yi − fi)
2∑

i(yi − ȳ)2
(6)

which, in general, is lower than the square of the Pearson correlation coefficient - and can even be571

negative.572

C.2.4 Flory scaling parameters573

We compute the Flory scaling parameters by fitting a power-law relationship between the Euclidean574

distance of residue pairs and their sequence separation. Following the methodology of the Human-575

IDRome paper [39], we exclude residue pairs with a sequence separation of less than five, as these576

short-range interactions are governed by local chain stiffness and deviate from the global scaling577

law. This approach differs from that used by ALBATROSS [28], which does not place a minimum578

distance constraint on residues included in its calculation.579

Predictor Number of layers Hidden size Learning rate Batch size # Parameters
Re 1 55 1e-2 128 34K
Rg 1 55 5e-3 128 34K
∆ 2 55 1e-2 128 107K
ν 2 35 5e-3 64 46K
A0 1 70 1e-3 128 52K

Table 3: Hyperparameters used for the ALBATROSS (retrained) models.
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