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Abstract

While deep learning has revolutionized the prediction of rigid protein structures,
modelling the conformational ensembles of Intrinsically Disordered Proteins (IDPs)
remains a key frontier. Current Al paradigms present a trade-off: Protein Language
Models (PLMs) capture evolutionary statistics but lack explicit physical grounding,
while generative models trained to model full ensembles are computationally expen-
sive. In this work we critically assess these limits and propose a path forward. We
introduce GeoGraph, a simulation-informed surrogate trained to predict ensemble-
averaged statistics of residue—residue contact-map topology directly from sequence.
By featurizing coarse-grained molecular dynamics simulations into residue- and
sequence-level graph descriptors, we create a robust and information-rich learning
target. Our evaluation demonstrates that this approach yields representations that
are more predictive of key biophysical properties than existing methods.

1 Introduction

Proteins are the cell’s molecular machines: sequence-encoded biopolymers which catalyze reactions,
regulate processes, and shape cellular architecture. Recent years have witnessed a paradigm shift in
protein modelling, driven by advances in experimental techniques and the maturation of deep learning.
In particular, the rapid growth of high-throughput sequencing has been pivotal [41]. On the one
hand it has enabled language-modelling approaches, especially Masked Language Modelling (MLM),
to learn the statistical patterns of evolution directly from vast, unannotated sequence databases
[34,126]. On the other, Multiple Sequence Alignments (MSAs), coupled with decades of structure
determination experiments [5], underpin deep learning models like AlphaFold [24] and RosettaFold
[4], which now achieve near-experimental accuracy for a broad class of structured proteins.

With static structures largely tractable, the frontier of computational structural biology is advancing
toward a more fundamental problem: modelling the full conformational ensemble — the Boltzmann
distribution of conformations under physiological solution conditions. To frame this challenge, we
can identify three regimes along the structural order-disorder continuum: (i) proteins that adopt a
single, highly stable fold; (ii) dynamic proteins that interconvert among a few metastable states;
and (iii) Intrinsically Disordered Proteins (IDPs), which manifest a broad, heterogeneous set of
rapidly fluctuating conformations [47} 43]]. The first regime is where models trained on protein crystal
structures excel. The second is well-captured by Markov State Models (MSM), which characterise
the ensemble by the populations of metastable states and the kinetic rates between them, typically
inferred from long Molecular Dynamics (MD) simulations [33} (9} [19]. The third regime of IDPs
is, however, particularly challenging, and provides the focus for this work. Beyond the inherent
complexity of modelling a heterogeneous ensemble, these proteins also face significant experimental
and evolutionary hurdles. Experimentally, obtaining data is laborious, and their dynamic nature means
measurements are typically averaged across the entire ensemble and/or over time. Evolutionarily,
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they exhibit poor sequence conservation, a characteristic thought to derive from the lack of a stable
structure required to maintain function [S§].

A recent line of work aims to use deep generative models, especially diffusion models, to map
sequence directly to a full conformational distribution [25} 22 |20l 49]. While useful, this strategy
faces practical and statistical hurdles: generating, storing, and analyzing thousands of conformers per
protein is expensive, and for many downstream tasks such high-dimensional stochastic detail can
obscure the underlying biophysical signal. From a statistical-physics perspective, fluctuations faster
than the timescale of interest are effectively marginalized as entropy, making the explicit modelling of
fine-grained, high-frequency detail counterproductive. Indeed timescale separation underpins MSM
coarse-graining, which emphasizes slow, kinetically relevant transitions between states rather than
the noisy internal motions within them [9} [19].

Here we take a different approach: rather than modelling entire ensembles explicitly, we model their
aggregate properties directly. Specifically, we propose to extract essential biophysical content of
an IDP ensemble from the statistics of its transient residue—residue contacts [7, 13]. The power of
this approach has recently been demonstrated by WARIO [15]], which uses contact-based descriptors
to cluster simulation trajectories of IDPs into structurally coherent states. Our work leverages this
same insight for a different purpose: instead of post-hoc analysis of a single ensemble, our aim is
high-throughput prediction directly from sequence. To achieve this, we convert conformations from
simulation into residue-level contact-map graphs, compute a diverse set of graph-theoretic descriptors,
and use their ensemble-averaged values as the direct prediction targets for our model. This approach
acts as a deliberate information bottleneck, filtering high-frequency fluctuations while preserving the
stable signature of the ensemble.

A key design choice is resolution. We operate at the residue level-a natural middle ground between
whole-sequence and all-atom representations. Unlike models that predict a few global aggregates and
lose positional detail, we learn a rich vector of aggregate properties per residue, capturing biophysical
characteristics across the protein sequence.

Finally, our physics-driven residue-level objective allows a direct test of a core premise behind Protein
Language Models (PLMs): that evolutionary co-variation provides a statistical proxy for underlying
physics [31} 29, 26]. However, this premise relies on stable structural constraints that are largely
absent in dynamic IDPs, limiting the effectiveness of purely evolutionary models. By constructing
representations grounded in the explicit physical properties of conformational ensembles, our work
offers a framework to directly compare what is learnable from the language of evolution versus the
language of physics — or at least a coarse-grained MD version of it.

2 Related work

Our work lies at the intersection of modelling protein conformational ensembles, machine learning
for intrinsically disordered proteins, and graph-theoretic representations of protein structure.

Following the success of the third-generation AlphaFold3 structure prediction model employing
a diffusion architecture [1]], a growing line of work is addressing the challenge of modelling full
conformational distributions directly from sequence. Prominently, BioEmu emulates equilibrium
ensembles at scale from MD data, reporting agreement with thermodynamic readouts across diverse
proteins [25]. P2DFlow employs SE(3) flow-matching for sequence-conditioned ensemble sampling
[22]. However, these models rely on the quality of MSA and their capacity to capture co-evolutionary
signal, which limits their performance for poorly-conserved IDPs.

IDPs, owing to their intrinsic structural and sequential heterogeneity, remain challenging for such
general models, and several works specialize directly in sampling IDP ensembles. STARLING
employs a sequence-conditioned latent diffusion architecture acting on residue-residue distance maps,
enabling rapid prediction of coarse-grained IDP ensembles [32]. idpGAN conditions a transformer-
based GAN on sequence to generate coarse-grained IDP conformations [21]], and idpSAM adopts a
latent-diffusion formulation to improve transfer across sequences [20]. Diffusion-based conditional
sampling has also been explored for IDPs at all-atom resolution in IDPFold [49]]. Complementing
these pure generators, bAles integrates AlphaFold2 distograms with an atomistic random-coil prior
in a Bayesian framework to sample atomic-resolution IDP ensembles with uncertainty modelling of
restraints [35]].
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In line with the present work, several methods learn sequence-to-aggregate mappings for IDP
ensemble statistics based on simulated training sets. ALBATROSS is a family of recurrent neural
network (RNN) models which each separately predict the average radius of gyration, end-to-end
distance, asphericity, and Flory scaling parameters from sequence [28]. Our work is closely aligned
with this approach, but targets a richer set of residue-resolved and sequence-level statistics derived
from transient contact patterns. From a PLM angle, IDP-BERT is a fine-tuning ProtBERT on the
prediction of average radius of gyration, end-to-end decorrelation time, and heat capacity [30],
without further language model training on IDP-specific sequences. In contrast, our IDP-ESM
models, presented in Sec. are first fine-tuned on the MLLM objective using a curated dataset of
IDP sequences before the prediction head is trained.

Finally, residue interaction/contact networks have a long history as mesoscopic abstractions linking
local contacts to global organization. Early studies established contact-graph formalisms and con-
nected network topology to stability [[7] and functional residues [3]]. Closer to the theme of our work,
WARIO employs contact maps for characterizing IDP ensembles [[15]. They take a sophisticated
approach to defining contacts, introducing a novel continuous function which incorporates residue
type, sequence separation, and relative orientation. The focus of their work, clustering conformations
of an individual ensemble so as to reveal rare functionally relevant patterns, is complementary to our
ensemble-averaged approach.

3 GeoGraph

Our goal is to learn residue-level representations of IDPs directly from MD trajectory data. Our
hope is that this will capture essential physical principles — principles that are missed by PLMs, and
inaccessible to methods like AlphaFold3, which are trained on structured, folded proteins with deep
MSAs.

For a given protein sequence, a conformational ensemble can be sampled from a sufficiently long
MD trajectory after an initial equilibration period. A key question, however, concerns the required
accuracy of the simulation. While all-atom force fields produce a high-fidelity view of protein
dynamics, their immense computational cost makes them unsuitable for generating the large datasets
of equilibrated trajectories required for deep learning.

Coarse-grained methods offer a pragmatic and powerful alternative. In particular, CALVADOS-
2isa state—of—the-artE]> one-bead-per-residue coarse-grained force field specifically developed and
parameterized to reproduce experimental data on IDPs [40]. This coarse-graining comes at a cost: fine
details such as secondary structure are lost. Instead, CALVADOS takes a top-down approach, based
on an effective description of non-bonded interactions designed to capture transient residue—residue
contact patterns.

Building on this, we hypothesise that these transient residue-residue contacts encode context-rich,
robust, and generalizable physicochemical correlations. To formalize this, we analyze properties of
these contacts aggregated across the conformational ensemble. For each conformation we construct
a contact map graph, where residues are nodes and the edges connect pairs of residues within an
8A distance cutoff, but omitting edges between adjacent residues. From each graph, we then compute
a diverse set of features at both the node level and the graph level (our selection is presented below in
Sec.[3.2). Finally, these feature vectors are averaged across the full ensemble to produce a stable,
statistical fingerprint of the protein’s dynamic structure.

3.1 Architecture

GeoGraph is a sequence-to-sequence model that maps a protein’s amino-acid sequence to feature
vectors describing aggregate physical properties at both the sequence- and residue-level. The
backbone is a transformer encoder [44], chosen for its ability to capture long-range dependencies and
produce context-rich embeddings. We build on the Hugging Face implementation of ESM-2 [26, 46],
which uses standard modern components such as Pre-Layer Normalization (Pre-LN) [48] and Rotary
Position Embeddings (RoPE) [37].

'We comment that its successor CALVADOS-3 is an adaptation to incorporate multi-domain proteins, and is
equivalent to CALVADOS-2 for IDPs.
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We use a 4-layer transformer with hidden size 256, 4 attention heads, and a feed-forward expansion
factor of 2 (FFN dimension 512), for a total of ~ 2.2M parameters. The output of the transformer is a
sequence of residue-level embeddings. A single sequence-level embedding is then obtained by taking
the mean of these residue-level embeddings across the sequence length.

To predict targets, we attach separate heads for sequence-level and residue-level features. Each head
is a shallow MLP with a single hidden layer of dimension 128 and a dropout probability of 0.1, so
that performance primarily reflects the backbone’s context-aware embeddings.

To ensure robust training, the transformer backbone is also regularized with dropout of 0.1 on both
the FFN activations and the attention probabilities. We use the AdamW optimizer with a weight
decay of 0.01 and a cosine learning rate scheduler with warmup. Full training details are presented in

Appendix [A.T]
3.2 Ensemble descriptors

In this work we consider two flavours of descriptors, which we refer to as geometric and graph-based.
The geometric descriptors are all sequence-level features, while for the graph-based descriptors we
consider both sequence- and residue-level features. For training our models we standardise all target
features to have zero mean and unit variance.

3.2.1 Geometric features

The geometric features we consider are commonly employed measures of the conformational en-
sembles of IDPs, and are computable from MD simulation frames as detailed in Appendix [B] First,
end-to-end distance (R, ) is the Euclidean distance between the first and last residues. The radius
of gyration (12,) and asphericity (A) are characteristics of a protein’s (mass-weighted) gyration
tensor. Lastly, in line with polymer physics, IDPs exhibit Flory scaling. This describes a power-law
relationship between a polymer’s size (e.g. R, or R.) and its length N, which is parametrized by
an exponent () and a prefactor (Ap), as in R, oc AgN” [14]. In practice we compute the scaling
parameters for a given IDP by fitting a power-law relationship between the Euclidean distance of
residue pairs and their sequence separation.

Both R, and R, can be experimentally determined, and in turn used to determine the Flory prefactor
and exponent [2]. Small Angle X-ray Scattering (SAXS) yields the ensemble-averaged radius of
gyration (R,), whereas Fluorescence resonance energy transfer (FRET) spectroscopy yields (R.), or
even R, distributions in the case of single-molecule FRET [18].

3.2.2 Graph-based features

In selecting graph-based features for a conformations’s contact map graph we are non-discriminative,
aiming for a diverse collection. Overall we selected 8 sequence-level features and 7 residue-level
features as below. We compute these using python’s NetworkX package [[17] (with default settings).

Sequence-level: As not all graphs were connected we computed fragmentation index as the fraction
of nodes in the Largest Connected Component (LCC); average shortest path length on the LCC
and global efficiency on the full graph to quantify compactness/communication; average clustering
and transitivity as measures of local triadic closure; and degree assortativity as well as charge
assortativity and hydrophobicity assortativity to assess mixing patterns. The latter two were
computed by endowing nodes with attribute values determined by corresponding amino acid identity.

Residue-level: Here we included degree centrality (local contact density), betweenness centrality
(bridging propensity), harmonic centrality (inverse-distance reachability), PageRank [6]], core
number, local clustering coefficient, and as well as an in-largest-connected-component indicator.

3.3 MD training data

To train and evaluate our models, we use the Human-IDRome dataset [|39]], containing simulated
conformational ensembles for 28,058 intrinsically disordered regions from the human proteome. To
our knowledge, this is the largest publicly available dataset of its kind. The ensembles were generated
using the CALVADOS-2 coarse-grained force field, with each sequence represented by 1,000 weakly
correlated conformational frames sampled from the simulation trajectory [39].
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Re Rg A v A()
STARLING 0.914 0.951 -0.460 0.261 0.386
STARLING (retrained) 0.983 0.992 0.314 0.677 0.539
ALBATROSS 0.899 0.932 0.441 0.275% -0.471*
ALBATROSS (retrained) 0.970 0.984 0.790 0.698 0.513
GeoGraph 0.993(0) 0.996(0) 0.899(5) 0.893(6) 0.875(16)
Geo 0.991(2) 0994 (1) 0.875(13) 0.856(14) 0.787 (30)
Geo-zero 0.596 (33) 0.603 (33) 0.584(6) 0.505(7) 0.389 (13)
Graph + GeoHead 0.992(1)  0.996(0) 0.864 (13) 0.854(15) 0.793 (32)
ESM-8M + GeoHead 0983 (1) 0991 (1) 0.754(8) 0.684(8) 0.523(19)
IDP-ESM-8M + GeoHead 0.982 (1) 0.987 (1) 0.783 (2) 0.767 (5) 0.643 (14)
ESM-150M + GeoHead 0984 (1) 0991 (1) 0.792(2) 0.763(4)  0.637 (5)
IDP-ESM-150M + GeoHead | 0.980 (1)  0.986(1) 0.786 (6)  0.777(4)  0.660 (7)

Table 1: R? scores for the IDP property prediction task on our Human—IDRome test set. Where
parentheses are shown, the results are the mean of 5 models with different random seeds, along with
the standard error on the final digits. We highlight with (*) that the R? scores of the pretrained AL-
BATROSS models for v and Ag are affected by differences in computation of the scaling parameters
between our work and theirs (see Appendix [C.2.4).

We partitioned the dataset based on sequence similarity into 80/10/10 splits for training, validation,
and testing. To ensure fair comparison with prior work, this split was performed using MMseqs2
[36] with parameters (min_seq_id=0.7, coverage=0.8, cov_mode=1), identical to the parameters used
by STARLING [32]. Finally, we filtered the dataset to sequences with a maximum length of 256
residues.

4 Evaluation

We evaluate models on their ability to predict the five geometric features (R., Ry, A, v, Ag) described
in Sec. [3.2.1] which are well-studied, experimentally relevant measures of IDP conformational
ensembles.

4.1 Baseline IDP models

First, we evaluate two prominent methods for IDP property prediction: ALBATROSS [28] and
STARLING [32]]. ALBATROSS is a family of 5 recurrent neural network models, each trained to
independently predict one of the ensemble-averaged geometric features { R, Ry, A, v, Ao} directly
from sequence. STARLING is a generative diffusion model which generates a conformational
ensemble of IDPs by denoising a latent representation of residue-residue distance maps for each
conformation. We follow the method used by [32] for property prediction with STARLING: we
sample 1000 conformations using 25 DDIM steps, then using the generated ensemble to calculate the
ensemble-averaged geometric feature values for each sequence.

We evaluate the publicly released models for both methods on our test set, however we also note that
the IDP datasets used to train ALBATROSS and STARLING notably differ from our training dataset
Human-IDRome. In particular, their datasets contain synthetic as well as biological IDP sequences,
and the conformational ensembles were generated via coarse-grained MD using an adapted version
of the Mpipi force field [23] rather than CALVADOS-2. We therefore additionally retrained these
models from scratch on the Human—-IDRome dataset, and report results using both the pretrained and
retrained versions of these models in Table|I| We include additional details related to retraining and
comparison in Appendix [C]

In addition to the results presented in Table[I] we evaluated the published IDP-BERT model [30] for
predicting R, on our test set, which achieved an R? score of 0.949. For a more detailed evaluation of
PLM embeddings we use the ESM-2 model and an IDP fine-tuning of it below in Sec.[4.3]

We also attempted to evaluate BioEmu, a large-scale general-purpose ensemble emulator [25]] which
uses a diffusion model to generate conformational ensembles conditioned on the MSA of a sequence.
Due to computational constraints, we were not able to generate sufficiently large ensembles with
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R. R, A v Ao

GeoGraph (4 Tayers) 0.993 (0) 0.996 (0) 0.899 (5)  0.893(6) _ 0.875 (16
_ 6 layers 0.993 (1) 0.996(1) 0.897(3) 0.891(4) 0.872(15)
— 2 layers 0.992 (1) 0.996 (0) 0.890 (6) 0.883(3)  0.848 (10)
1 layer 0.991 (2) 0.994(2) 0.864(26) 0.859 (14) 0.794 (31)

— w/o sequence graph features | 0.993 (1) 0.996 (1) 0.896 (9) 0.886 (9) 0.858 (15)
— w/o residue graph features 0988 (2) 0.992(2) 0.858 (10) 0.856 (15) 0.806 (34)

— w/o residue centralities 0.993 (1) 0.996 (0) 0.886(8) 0.880 (12) 0.848 (26)
— w/o residue pagerank 0.993 (1) 0.996 (1) 0.896(10) 0.889(7) 0.868 (18)
— w/o residue clustering 0.993 (1) 0.996(0) 0.897 (4) 0.886 (6) 0.861 (16)

Table 2: R? scores on our Human—IDRome test set for several ablations on the GeoGraph model.
The results are the mean of 5 models with different random seeds, along with the standard error on
the final digits in parentheses.

BioEmu on our test set to make a fair comparison. In a small experiment where we generated 1000
conformers/sequence for 100 randomly-sampled test sequences, we observed very poor performance
(R? < 0 for all features), which is consistent with recent work evaluating BioEmu for IDPs [33].

4.2 GeoGraph models

We trained multiple variants of our GeoGraph model so as to clearly dissect its behaviour. These can
be grouped as follows:

Main model

* GeoGraph: trained with both sequence-level and residue-level prediction heads on the sets
of geometric and graph features.

Baselines

* Geo: trained to predict only the sequence-level geometric features, i.e. those used as
benchmarks. This serves as an analogue to ALBATROSS, up to the change in architecture
and the use of a single model to predict all features.

* Geo-zero: a greatly simplified variant of Geo where the transformer backbone has zero
layers. This tests the performance of contextless token embeddings, and provides a minimal
performance floor.

Transferability Test

* Graph + GeoHead: a variant designed to assess the transferability of the learned embed-
dings. It is trained in two stages: first, the full backbone is trained to predict only the
graph-based features; second, the backbone weights are frozen, and a new prediction head is
trained to predict the geometric features from the resulting embeddings.

In addition to these variants, we performed a set of feature ablations on the main GeoGraph model,
presented in Table

4.3 Protein Language Model evaluation

Finally, we evaluate the performance of the MLM model ESM-2 on our benchmark tasks. We test the
model in two settings: first, using its general-purpose pre-trained embeddings, and second, after fine-
tuning it on a large, curated dataset of biological IDP sequences. As we did for the Graph + GeoHead
model above, we train a prediction head on the mean embeddings across the sequence to predict the
geometric features. We report results for 8M and 150M models for each in Table[T}

4.3.1 IDP fine-tuning

For training our fine-tuned versions of ESM-2, IDP-ESM2-8M and IDP-ESM2-150M, we curated
a large dataset of biological IDP sequences. Adopting the approach used by ALBATROSS [28]] to
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extract biological IDPs from multiple proteomes, we used Metapredict V3 [[13] to annotate disordered
regions in all 2,764 eukaryotic proteomes available in the UniProt [10] database, as detailed in
Appendix [A.2] We refined the resulting dataset by filtering out sequences shorter than 30 amino
acids, a standard preprocessing step for IDPs [11]], and then applied clustering at 90% sequence
identity, following the UniRef90 protocol [38], resulting in a dataset of approximately 30 million
IDP sequences, which we refer to as IDP-Euka-90.

The fine-tuning leads to a significant performance improvement for the 8M model, while having
little effect on the 150M model. We hypothesize that ESM2-150M already captures key properties of
IDP sequences from its UniRef50 pretraining, and that additional fine-tuning does not significantly
enhance its ability to model geometric features.

5 Discussion

From Table[T] we see that GeoGraph achieves highly competitive performance against leading methods
for IDP ensemble property prediction. While the end-to-end distance (R.) and radius of gyration
(I2y) appear to be relatively tractable tasks for most models, GeoGraph demonstrates a marked
improvement in predicting the more challenging shape descriptors of asphericity (A), the Flory
scaling exponent (v), and its prefactor (A4p).

We gain further insight into this success by comparing our model variants: the Geo model, which
trains on geometric features alone, and the Graph + GeoHead model, which learns representations
solely from graph topology. Both variants perform on par with each other, demonstrating that the rich
biophysical information in the contact-map topology is sufficient to create representations as powerful
as those learned by direct optimization. The value of these learned representations is confirmed by
the far superior performance of Graph + GeoHead relative to our Geo-zero baseline, which lacks
this contextual learning. Crucially, the main GeoGraph model outperforms both specialized variants,
demonstrating a clear synergistic effect. This supports our central hypothesis: the auxiliary task of
predicting contact map characteristics is a highly beneficial component for extracting transferable
representations from MD simulation data. Furthermore, ablations in Table 2|reveal that the context-
aware, residue-level graph features are the primary drivers of this learning.

In comparing GeoGraph’s performance to reference IDP models, we must first highlight a key caveat:
our model was trained on the Human—-IDRome dataset generated with the CALVADOS-2 force
field, whereas the original ALBATROSS and STARLING models were trained on data containing
both biological and synthetic sequences, and generated using the Mpipi force field. This difference
in training distributions means a direct comparison between the models is imperfect. To mitigate
this, we retrained these models on the Human—IDRome dataset, which consistently improved the
performance of both methods on our test set across all features.

While the retrained STARLING model performs well on simpler metrics like R, its accuracy
degrades significantly on the more challenging shape descriptors. Specifically on asphericity (A), the
generative model performs worse than our Geo-zero baseline, which lacks any contextual transformer
layers. This suggests that while the generative model can capture the average size of an ensemble, it
has struggled to capture the distribution of more complex descriptors. This suggests that the aggregate
graph descriptors distill the essential information of an ensemble’s shape more effectively than the
raw residue-residue distance maps used by STARLING.

We find that the retrained ALBATROSS models underperform relative to our Geo model, which acts
as an analogue of ALBATROSS. There are multiple factors which may contribute to this performance
gap, the most prominent of which being that the ALBATROSS models were developed with a focus on
enabling high-throughput inference by using very small model sizes (between 34K-107K parameters),
whereas the Geo model has ~2.2M parameters.

Our final comparison is against the evolution-informed embeddings of ESM-2, and our MLM fine-
tuned variants IDP-ESM-8M and IDP-ESM-150M. Here, the most direct comparison is with our
Graph + GeoHead model, which isolates the quality of the embeddings pretrained on graph topology.
We find that these simulation-informed embeddings provide a significantly stronger predictive signal
for geometric properties than those learned by MLM. While a superior performance is expected when
the training objective aligns with the evaluation task, the magnitude of the difference underscores a
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key limitation of protein language models: the statistical patterns of evolution are an incomplete and
often noisy proxy for the underlying physical properties when applied to IDPs [§].

Overall, we find the results of our evaluation highly encouraging. Nevertheless, we emphasize that
this is an exploratory study, and there are several limitations. Firstly, like all comparable methods,
GeoGraph is fundamentally an emulator of the underlying coarse-grained simulation. It therefore
inherits the limitations of the CALVADOS-2 force field, most notably the absence of all-atom detail.
Importantly, we would not expect our current model to learn a meaningful signal for key fine-detail
properties such as secondary structure propensity. Future work could address this by training on data
from all-atom simulations, which, while computationally expensive, may provide a richer and more
physically accurate training signal.

Secondly, our methodological choices in featurizing the contact map graphs can be refined. We
sought diverse sets of both residue-level (node) and sequence-level (graph) descriptors, but did not
attempt to optimise these. In addition there are descriptors we did not consider, a notable example are
community structures, which may help to capture modular organization within the ensembles [16]].
Our definition of the contact map itself, a hard 8A cutoff, is also simplistic. It would be interesting
to assess the impact of the cutoff distance, or more generally to adopt distribution-based contact
definitions, such as that introduced recently by WARIO [15], which may provide a more nuanced
learning target.

Finally, our aggregation of features across the ensemble deserves mention. In this work, we focused on
predicting the mean of each feature, a choice that imposes a powerful information bottleneck to filter
the inherent stochasticity and extract a robust signal. A drawback is that this averaging necessarily
loses information about the ensemble’s heterogeneity, such as rare functional conformations — often
key in IDP biological functionality. A natural next step is to enrich our prediction targets by including
higher-order statistics, such as the variance of each feature. This would allow the model to learn not
just the average state but also the extent of conformational fluctuations, capturing a deeper layer of
the ensemble’s physical character without incurring the full cost of a generative model.

6 Conclusion

In this work we introduce GeoGraph, a sequence-to-sequence model trained to predict aggregate
properties of IDP conformational ensembles. It achieves this by first featurizing individual conforma-
tions from MD simulations into contact-graph topologies, and then learning to predict the ensemble
average of these features, at both a residue- and sequence-level. Our evaluation demonstrates that
this approach not only achieves highly competitive performance on benchmark tasks but also yields
embeddings that are more effective for predicting key experimentally relevant properties than existing
methods. Our trained GeoGraph and IDP-ESM?2 models, along with the IDP-Euka-90 training dataset,
will be publicly released.

Let us conclude by highlighting some directions for future work. Firstly, it is of interest to expand
and refine the set of residue-level features that can be extracted from MD simulation data. If one
extends the scope to all-atoms simulations one can expect that significantly richer features can be
employed. Secondly, while we have focused here on contrasting our approach to MLM, establishing
a solid baseline with our IDP fine-tuned IDP-ESM2-8M and IDP-ESM2-150M models, ultimately
we anticipate a merging of the two approaches, so as to create powerful sequence representations
that combine evolutionary covariance with underlying physics. Finally, we hope that these methods
will lead to improved understanding of IDPs, for example serving as useful representations for
characterising functional motifs [42].
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A Additional details

A.1 Training
A.1.1 GeoGraph and GeoHead models

All models presented in this paper are built with a backbone and a GeoHead: the backbone can
either be a GeoGraph transformer encoder or a pretrained ESM2 model. The GeoHead is a regressor
that takes as input the hidden representation from the backbone, and processes it with two fully
connected layers with a hidden dimension equal to half the dimension of the backbone output (128
for GeoGraph, 160 for ESM2-8M and 320 for ESM2-150M). The GeoHead is trained either with the
backbone (GeoGraph, Geo models), or while the backbone is frozen (ESM-2 derived models, Graph
+ GeoHead model). Joint backbone-GeoHead training is performed with a batch size of 512 and a
learning rate of 5e-4, while GeoHead-only training uses the same batch size with a learning rate of
3e-3.

A.1.2 Finetuning ESM Models

We fine-tuned ESM-2 models on the IDP-Euka-90 dataset, using a 1% randomly sampled subset for
validation. Fine-tuning was performed on the masked language modeling (MLM) task using four
H100 GPUs. We employed a learning rate of 4e-4, consistent with the original ESM pretraining setup.
For ESM2-8M, we used a batch size of 700, and for ESM2-150M, a batch size of 96 with 10 gradient
accumulation steps. Models were trained for a single epoch to preserve the representations learned
during pretraining and avoid overfitting to the downstream dataset.

A.2 IDP-Euka-90 dataset curation

As suggested in the Metapredict V3 paper [27], eukaryotes have significantly more disordered
regions than bacteria and euryarchaeota: we hence decided to focus on eukaryotes to extract IDRs.
We downloaded all 2764 eukaryota proteomes from UniProt and ran Metapredict V3 command
metapredict-predict-idrs [[13] with default disorder threshold of 0.5 on each one of them. We removed
sequences shorter than 30 amino acids and clustered the dataset with mmseqs2 linclust command,
with minimum sequence identity threshold of 0.9, 0.8 coverage in coverage mode 1. This pipeline
produced an IDP dataset consisting of 30,337,340 sequences.

B Geometric feature calculation

We explain here how all geometric features are calculated for a 3D protein structure containing N
residues with Cartesian coordinates {r;}¥,, indexed according to the residue’s position in the protein
sequence. The features (R., R , A) are computed separately for each conformation then averaged
over the ensemble, whereas the Flory scaling parameters (v, Ag) are fit using the full ensemble
(details given below).

As in [12]], we calculate the radius of gyration and asphericity features using the mass-weighted
Gyration tensor, T € R3*3, computed as

1 N
Tog = 57 D_ MifiaTig ()
i=1

where m; € R is the mass of residue 7, and ¥; € R3 are its coordinates after subtracting the center of
mass. We denote with {)\; };’?:1 the eigenvalues of the gyration tensor T,

End-to-end distance (R.) The distance between the first and last residue in the sequence:

Re = |r1 —ry| @

Radius of gyration (R,) A geometric property that describes how the protein’s mass is distributed
about its center of mass. Equivalent to the root mean square distance of all atoms from the protein’s
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center of mass, and calculated using T as
Ry, = +/tr(T) 3)

Asphericity (A) Characterises the degree to which a protein’s three-dimensional shape deviates
from a perfect sphere. Calculated using T as

_ §Z?:1()‘j —A)?

A= T ()2

“

Flory scaling exponent and prefactor (v, Ay) Parametrise the power-scaling-law relationship
describing how the Cartesian distance between residues scales as a function of their spacing in
sequence. Following the implementation used by [39]], we fit this relationship to residues spaced at
least 5 amino acids apart:

|ri — 5] = Aoli — j|” ; li —j| >5 &)

Unlike the other geometric features which are calculated for each conformation separately and then
averaged, the Flory scaling parameters are calculated by first averaging the inter-residue distances
observed for each spacing across the whole ensemble, then using the optimize.curve_fit function
provided by SciPy [45] to fit the (v, Ag) parameters.

C Comparisons with IDP models

C.1 STARLING
C.1.1 Retraining

Following the preprocessing in STARLING [32], we first downsampled the frames for each sequence
in our Human-IDRome dataset to reduce the correlation between conformers. We found that keeping
every 20th frame was sufficient to stabilise model training, resulting in 50 conformers for each
sequence. After downsampling, we used the same hyperparameters and methodology as in [32]
to sequentially retrain the STARLING VAE and DDPM models from scratch using our train and
validation splits.

C.2 ALBATROSS
C.2.1 Model versions

In our evaluation of the pretrained ALBATROSS models, we use the default (V2) models available
via the SPARROW GitHub repository (https://github.com/idptools/sparrow). For predicting R, and
R, with ALBATROSS, we used the "scaled" versions of these models as recommended.

C.2.2 Retraining

We use the same model architecture hyperparameters (number of hidden layers, hidden size) for each
feature as used in the published V2 models. We found that we could improve training stability and
performance by replacing the loss function used by [28] with the mean of the L1 loss over a batch
rather than the sum, and performing a grid search over batch sizes {64, 128, 256} and learning rates
{1e-3, 5e-3, 1e-2} for each model. We report the best test R? score achieved over the grid search for
each feature in Table|l] and the hyperparameters used for each model in Table

C.2.3 RZ? score calculation

The R? scores attained in our evaluation of ALBATROSS are notably lower than those reported in
the original ALBATROSS work [28]]. This discrepancy can be partly explained by a difference in the
definition of R? used between our work and theirs. In [28]], the authors define the R? score as the
square of the Pearson correlation coefficient between the true and predicted values, whereas here we
define R? as the coefficient of determination.
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For targets and predictions {(y;, f;)}_, with target mean j = + 25\7:1 y;, we calculate the coeffi-
cient of determination (R2) as

>y — fi)?
Zi(yi - ?j)2

which, in general, is lower than the square of the Pearson correlation coefficient - and can even be
negative.

R*=1- (6)

C.2.4 Flory scaling parameters

We compute the Flory scaling parameters by fitting a power-law relationship between the Euclidean
distance of residue pairs and their sequence separation. Following the methodology of the Human-
IDRome paper [39], we exclude residue pairs with a sequence separation of less than five, as these
short-range interactions are governed by local chain stiffness and deviate from the global scaling
law. This approach differs from that used by ALBATROSS [28]], which does not place a minimum
distance constraint on residues included in its calculation.

Predictor | Number of layers Hidden size Learning rate  Batch size | # Parameters
R, 1 55 le-2 128 34K
R, 1 55 5e-3 128 34K
A 2 55 le-2 128 107K
v 2 35 5e-3 64 46K
Ag 1 70 le-3 128 52K

Table 3: Hyperparameters used for the ALBATROSS (retrained) models.
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