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Abstract

While deep learning has revolutionized the prediction of rigid protein structures,
modelling the conformational ensembles of Intrinsically Disordered Proteins (IDPs)
remains a key frontier. Current Al paradigms present a trade-off: Protein Language
Models (PLMs) capture evolutionary statistics but lack explicit physical grounding,
while generative models trained to model full ensembles are computationally expen-
sive. In this work we critically assess these limits and propose a path forward. We
introduce GeoGraph, a simulation-informed surrogate trained to predict ensemble-
averaged statistics of residue-residue contact-map topology directly from sequence.
By featurizing coarse-grained molecular dynamics simulations into residue- and
sequence-level graph descriptors, we create a robust and information-rich learning
target. Our evaluation demonstrates that this approach yields representations that
are more predictive of key biophysical properties than existing methods.

1 Introduction

Proteins are the cell’s molecular machines: sequence-encoded biopolymers which catalyze reactions,
regulate processes, and shape cellular architecture. Recent years have witnessed a paradigm shift in
protein modelling, driven by advances in experimental techniques and the maturation of deep learning.
In particular, the rapid growth of high-throughput sequencing has been pivotal [33]. On the one
hand it has enabled language-modelling approaches, especially Masked Language Modelling (MLM),
to learn the statistical patterns of evolution directly from vast, unannotated sequence databases
[27, 21]. On the other, Multiple Sequence Alignments (MSAs), coupled with decades of structure
determination experiments [4], underpin deep learning models like AlphaFold [[19] and RosettaFold
[3]], which now achieve near-experimental accuracy for a broad class of structured proteins.

With static structures largely tractable, the frontier of computational structural biology is advancing
toward a more fundamental problem: modelling the full conformational ensemble — the Boltzmann
distribution of conformations under physiological solution conditions. To frame this challenge, we
can identify three regimes along the structural order-disorder continuum: (i) proteins that adopt a
single, highly stable fold; (ii) dynamic proteins that interconvert among a few metastable states;
and (iii) Intrinsically Disordered Proteins (IDPs), which manifest a broad, heterogeneous set of
rapidly fluctuating conformations [38,134]. The first regime is where models trained on protein crystal
structures excel. The second is well-captured by Markov State Models (MSM), which characterise
the ensemble by the populations of metastable states and the kinetic rates between them, typically
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inferred from long Molecular Dynamics (MD) simulations [26} |8, [14]. The third regime of IDPs
is, however, particularly challenging, and provides the focus for this work. Beyond the inherent
complexity of modelling a heterogeneous ensemble, these proteins also face significant experimental
and evolutionary hurdles. Experimentally, obtaining data is laborious, and their dynamic nature means
measurements are typically averaged across the entire ensemble and/or over time. Evolutionarily,
they exhibit poor sequence conservation, a characteristic thought to derive from the lack of a stable
structure required to maintain function [7].

A recent line of work aims to use deep generative models, especially diffusion models, to map
sequence directly to a full conformational distribution [20} [17, |15 140]. While useful, this strategy
faces practical and statistical hurdles: generating, storing, and analyzing thousands of conformers per
protein is expensive, and for many downstream tasks such high-dimensional stochastic detail can
obscure the underlying biophysical signal. From a statistical physics perspective, fluctuations faster
than the timescale of interest are effectively marginalized as entropy, making the explicit modelling of
fine-grained, high-frequency detail counterproductive. Indeed timescale separation underpins MSM
coarse-graining, which emphasizes slow, kinetically relevant transitions between metastable states,
rather than the noisy internal motions within them [8 [14].

Here we take a different approach: rather than modelling entire ensembles explicitly, we model their
aggregate properties directly. Specifically, we propose to extract essential biophysical content of
an IDP ensemble from the statistics of its transient residue-residue contacts [6} 2]. The power of
this approach has recently been demonstrated by WARIO [[11]], which uses contact-based descriptors
to cluster simulation trajectories of IDPs into structurally coherent states. Our work leverages this
same insight for a different purpose: instead of post-hoc analysis of a single ensemble, our aim is
high-throughput prediction directly from sequence. To achieve this, we convert conformations from
simulation into residue-level contact-map graphs, compute a diverse set of graph-theoretic descriptors,
and use their ensemble-averaged values as the direct prediction targets for our model. This approach
acts as a deliberate information bottleneck, filtering high-frequency fluctuations while preserving the
stable signature of the ensemble.

A key design choice is resolution. We operate at the residue level—a natural middle ground between
whole-sequence and all-atom representations. Unlike models that predict a few global aggregates and
lose positional detail, we learn a rich vector of aggregate properties per residue, capturing biophysical
characteristics across the protein sequence.

2 Related work

Our work builds on several research threads at the intersection of machine learning and protein science.
One major line of work uses deep generative models to sample full conformational ensembles from
sequence, for both general proteins [20, [17? ] and specifically for IDPs [25] (16} 15 40]. While
powerful, these methods can be computationally expensive, and general-purpose models often rely on
co-evolutionary signals from MSAs that are absent in IDPs. An alternative approach, more aligned
with our own, is to predict ensemble-averaged aggregate properties directly from sequence. For
example, ALBATROSS [23] predicts five global geometric properties of IDPs, while IDP-BERT
[24]] fine-tunes a protein language model for similar tasks. We extend this strategy by introducing
GeoGraph, a model that learns a richer representation by predicting a diverse set of residue-level
geometric and graph-theoretic descriptors. This method is inspired by the long history of using
residue contact networks to analyze protein structure and stability [6, 2] and is complementary to the
recent method WARIO [[L1] which uses contact maps for post-hoc characterization of individual IDP
ensembles.

3 GeoGraph

Our goal is to learn residue-level representations of IDPs from molecular dynamics (MD) simulations
to capture essential physical principles missed by protein language models (PLMs) and methods
trained on static, folded proteins.

Generating the vast simulation data required for deep learning is computationally prohibitive with
high-fidelity all-atom force fields. We therefore use CALVADOS-2 [32]], a state-of-the-art one-bead-
per-residue coarse-grained force field designed for IDPs, and experimentally validated on SAXS



and FRET measurements. While this approach sacrifices fine-grained detail, its design is based on
an effective description of non-bonded interactions, which enables it to excel at capturing transient
residue-residue contact patterns.

We hypothesise that these transient contacts encode rich physicochemical information, which we
formalize by analyzing their aggregate properties. For each conformation, we construct a residue-
contact graph (8A cutoff), compute a diverse set of node- and graph-level features, and average these
across the full ensemble. This yields a stable statistical fingerprint of the protein’s dynamic structure
which serves as a direct prediction target.

Our model, GeoGraph, employs a sequence-to-sequence architecture with a 4-layer transformer
encoder backbone (~ 2M parameters) that maps an amino acid sequence to residue-level embeddings.
These embeddings are fed as input to separate shallow MLP heads to predict properties at both the
sequence- and residue-level. For full details see Appendix

We consider two flavours of descriptors, which we refer to as geometric and graph-based. The
geometric descriptors are commonly-employed sequence-level measures of IDP conformational
ensembles: end-to-end distance (R.), radius of gyration (), asphericity (A), and the Flory scaling
exponent (v) and prefactor (A). Both R, and R, can be experimentally determined, and in turn used
to determine the Flory prefactor and exponent [1]]. Small Angle X-ray Scattering (SAXS) yields the
ensemble-averaged radius of gyration (R,), whereas Fluorescence resonance energy transfer (FRET)
spectroscopy yields (R.), or even R, distributions in the case of single-molecule FRET [13].

For the graph-based descriptors we consider both sequence- and residue-level features, which capture
diverse properties such as network compactness (global efficiency), mixing patterns (assortativity),
and residue importance (degree and betweenness centrality), providing a rich, physics-informed
learning signal. For full details see Appendix [A.2]

We consider multiple variants of GeoGraph so as to clearly dissect its behaviour. Our main model is:

* GeoGraph: the full architecture described above, containing the transformer backbone with
both sequence-level and residue-level prediction heads, and trained end-to-end to predict the
full suite of geometric and graph-based features.

We complement this with baseline variants as follows:

* Geo: abaseline model trained to predict only the sequence-level geometric features, i.e. those
used as benchmarks. I.e. the prediction of the graph-based features is omitted from the
training. This serves as an analogue to ALBATROSS, up to the change in architecture and
the use of a single model to predict all features.

* Geo-zero: a greatly simplified variant of the Geo model where the transformer backbone
has zero layers. This tests the performance of contextless token embeddings, and provides a
naive minimal performance floor.

* Graph: a variant of GeoGraph designed to assess the transferability of the learned embed-
dings. Trained in two stages: first, the full model is trained end-to-end to predict only the
graph-based features; second, the backbone weights are frozen, and a new sequence-level
prediction head (GeoHead) is trained to predict the geometric features from the learned
embeddings.

We train and evaluate our models on the Human—-IDRome dataset [31]], containing simulated con-
formational ensembles for 28,058 intrinsically disordered regions from the human proteome. This
is the largest publicly available dataset of its kind, which makes it ideal for benchmarking differing
approaches. The ensembles were generated using the CALVADOS-2 coarse-grained force field,
with each sequence represented by 1,000 weakly correlated conformational frames sampled from
the simulation trajectory [31]. We partition the dataset using a 80/10/10 split based on sequence
similarity, see Appendix [A.3]

4 Evaluation

To benchmark performance we evaluate models on their ability to predict the five geometric features
(Re, Ry, A, v, Ag), which are well-studied, experimentally relevant measures of IDP conformational
ensembles. Results are presented in Table |1} and ablation on the GeoGraph model is provided in



Re Rg A v A()
GeoGraph 0.993(0) 0996 (0) 0.899(5) 0.893(6) 0.875(16)
Geo 0.991(2) 0994 (1) 0.875(13) 0.856(14) 0.787 (30)
Geo-zero 0.596 (33) 0.603 (33) 0.584(6) 0.505(7) 0.389 (13)
Graph — GeoHead 0.992 (1) 0996 (0) 0.864 (13) 0.854(15) 0.793 (32)
STARLING 0914 0.951 -0.460 0.261 0.386
STARLING (retrained) 0.983 0.992 0.314 0.677 0.539
ALBATROSS 0.899 0.932 0.441 0.275% -0.471*
ALBATROSS (retrained) | 0.970 0.984 0.790 0.698 0.513
ESM2-8M 0983 (1) 0991(1) 0.754(8) 0.684(3) 0.523(19)
IDP-ESM2-8M 0982 (1) 0987(1) 0.783(2) 0.767(5) 0.643 (14)
ESM2-150M 0.984(1) 0991 (1) 0.792(2) 0.763(4)  0.637 (5)
IDP-ESM2-150M 0.980 (1) 0.986(1) 0.786(6) 0.777(4)  0.660 (7)

Table 1: R? scores for the IDP property prediction task on our Human—IDRome test set. Where
parentheses are shown, the results are the mean of 5 models with different random seeds, along
with the standard error on the final digits. We highlight with (¥) that the R? scores of the pretrained
ALBATROSS models for v and Ag may be affected by differences in computation of the scaling
parameters between our work and theirs (see Appendix [D.2.4).

Table We highlight that while scores for R, and R, are high across the board, the true test is the
performance on the more complex shape descriptors (A, v, Ag), on which GeoGraph excels.

We compare against two leading IDP methods: STARLING [235]], a generative diffusion model, and
ALBATROSS [23]], an RNN-based direct predictor. Since the original models were trained on data
generated with a different force field, we retrained them on our dataset for a fair comparison. See
Appendix [D]for further details.

We also compare the sequence-to-sequence backbone against Protein Language Model (PLM)
embeddings. We use ESM-2 [21] and test the model in two settings. Firstly, we used the general-
purpose pre-trained embeddings of the 8M and 150M models. Secondly, we curated a dataset
of 30 million IDP sequences, which we refer to as IDP-Euka-90, and used this to fine-tune two
corresponding versions of ESM-2, IDP-ESM2-8M and IDP-ESM2-150M, see Appendix [B] for further
details. In both cases, we freeze the backbone model and train a sequence-level prediction head for
predicting the geometric features — as we did for the Graph model above.

Finally, we attempted to evaluate BioEmu, a large-scale general-purpose ensemble emulator [20]
which uses a diffusion model to generate conformational ensembles conditioned on the MSA of
a sequence. Due to computational constraints, we were not able to generate sufficiently large
ensembles with BioEmu on our test set to make a fair comparison. In a small experiment where we
generated 1000 conformers/sequence for 100 randomly-sampled test sequences, we observed very
poor performance (R? < 0 for all features), which is consistent with recent work evaluating BioEmu
for IDPs [28]], and may be explained by the poor sequence conservation of IDPs.

R, R, A v A,
GeoGraph (4 layers) 0.993(0) 0.996 (0) 0.899 (5) 0.893(6) 0.875(16)
— 6 layers 0.993 (1) 0.996(1) 0.897(3) 0.891(4) 0.872(15)
2 layers 0.992 (1) 0.996 (0) 0.890(6) 0.883(3)  0.848 (10)
1 layer 0.991 (2) 0.994(2) 0.864(26) 0.859 (14) 0.794 (31)

— w/o sequence graph features | 0.993 (1) 0.996 (1) 0.896 (9) 0.886 (9) 0.858 (15)
— w/o residue graph features 0988 (2) 0.992(2) 0.858(10) 0.856(15) 0.806 (34)

— w/o residue centralities 0.993 (1) 0.996 (0) 0.886(8) 0.880 (12) 0.848 (26)
— w/o residue pagerank 0.993 (1) 0996 (1) 0.896(10) 0.889 (7) 0.868 (18)
— w/o residue clustering 0.993 (1) 0.996 (0) 0.897 (4) 0.886 (6) 0.861 (16)

Table 2: R? scores on our Human-IDRome test set for several ablations on the GeoGraph model.
The results are the mean of 5 models with different random seeds, along with the standard error on
the final digits in parentheses. For each task the best performing results (within error) are in bold.



5 Discussion

As shown in Table[I] GeoGraph achieves highly competitive performance against leading methods for
IDP ensemble property prediction, in particular on the more complex shape descriptors (A, v, Ay).
Critically, our model predicts these descriptors several orders of magnitude faster than it takes to
run the CALVADOS-2 simulator that it emulates: GeoGraph can process the entire test set of 2,388
sequences in approximately 1 second on a single GPU (H100), whereas simulation of these ensembles
on Google Colab takes on the order of 10 days [31].

The source of GeoGraph'’s strong performance can be seen by comparing our model variants: the Geo
model, which trains on geometric features alone, and the Graph model, which learns representations
solely from graph topology (and is evaluated on the GeoHead trained on these). Both variants perform
on par with each other, demonstrating that the rich biophysical information in the contact-map
topology is sufficient to create representations as powerful as those learned by direct optimization. The
value of these learned representations is confirmed by the far superior performance of Graph relative
to our Geo-zero baseline, which lacks this contextual learning. Crucially, the main GeoGraph model
outperforms both specialized variants, demonstrating a clear synergistic effect. This supports our
central hypothesis: the auxiliary task of predicting contact map characteristics is a highly beneficial
component for extracting transferable representations from MD simulation data. Furthermore, the
ablation in Table [2] reveals that the context-aware, residue-level graph features are the primary drivers
of this learning.

When compared to the generative baseline of STARLING, our direct-prediction approach appears
more robust for capturing complex shape descriptors. This suggests that inferring these aggregate
properties from a generated ensemble can be a less effective approach. The improved performance
over ALBATROSS, an analogous direct predictor, can be attributed to our model’s larger capacity
and richer, residue-level feature set.

For the comparison against PLM embeddings, the most direct reference point is with our Graph —
GeoHead model. We see that our simulation-informed embeddings provide a significantly stronger
predictive signal for geometric properties, even after fine-tuning ESM-2 on a large corpus of IDP
sequences. While a superior performance may be expected when the training objective aligns with
the evaluation task, the magnitude of the difference underscores a key limitation of protein language
models when applied to IDPs: their reliance on evolutionary patterns, which serve as a noisy and
incomplete proxy for the physical properties that govern dynamic ensembles [7].

We observe that the IDP fine-tuning of ESM-2 leads to a significant performance improvement for
the 8M model, while having little effect on the 150M model. We hypothesize that ESM2-150M
already captures key properties of IDP sequences from its UniRef50 pretraining, and that additional
fine-tuning does not significantly enhance its ability to model geometric features.

While the results of our evaluation are highly encouraging, this exploratory study has several key
limitations. GeoGraph is fundamentally an emulator of the CALVADOS-2 coarse-grained simulation,
inheriting its lack of all-atom detail. Furthermore, our contact map featurization is simplistic, and
by predicting only the mean of each descriptor, we lose valuable information about the ensemble’s
heterogeneity. Future work could directly address these points by training on all-atom data and
enriching the prediction targets to include higher-order statistics like variance. A next iteration of the
GeoGraph approach could learn an optimal graph construction and its most relevant features directly
from the data.

6 Conclusion

In this work we introduce GeoGraph, a sequence-to-sequence model trained to predict aggregate
properties of IDP conformational ensembles. It achieves this by first featurizing individual conforma-
tions from MD simulations into contact-graph topologies, and then learning to predict the ensemble
average of these features, at both a residue- and sequence-level. Our evaluation demonstrates that
this approach not only achieves highly competitive performance on benchmark tasks but also yields
embeddings that are more effective for predicting key experimentally relevant properties than existing
methods. Our trained GeoGraph and IDP-ESM?2 models, along with the IDP-Euka-90 training dataset,
will be publicly released.
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A Additional details

A.1 GeoGraph

GeoGraph is a sequence-to-sequence model that maps a protein’s amino-acid sequence to feature
vectors describing aggregate physical properties at both the sequence- and residue-level. The
backbone is a transformer encoder [35]], chosen for its ability to capture long-range dependencies and
produce context-rich embeddings. We build on the Hugging Face implementation of ESM-2 [21] [37]],
which uses Pre-Layer Normalization (Pre-LN) [39] and Rotary Position Embeddings (RoPE) [30].

We use a 4-layer transformer with hidden size 256, 4 attention heads, and a feed-forward expansion
factor of 2 (FFN dimension 512), for a total of ~ 2.2M parameters. The output of the transformer is
a sequence of residue-level embeddings. We obtain a single sequence-level embedding by taking
the mean of these residue-level embeddings, a simple yet robust method for creating a global
representation.

To predict targets, we attach separate heads for sequence-level and residue-level features. Each head
is a shallow MLP with a single hidden layer of dimension 128 and a dropout probability of 0.1, so
that performance primarily reflects the backbone’s context-aware embeddings.

To ensure robust training, the transformer backbone is also regularized with dropout of 0.1 on both
the FFN activations and the attention probabilities. We use the Adam optimizer and a cosine learning
rate scheduler with warmup, with peak a learning rate of 5e-4, and a batch size of 512.

For the Graph model, where we train the prediction head for the geometric features in a second stage
on a frozen backbone, we used the same batch size with a peak learning rate of 3e-3.



A.2 Features

We consider two flavours of descriptors, which we refer to as geometric and graph-based. The
geometric descriptors all sequence-level features, while for the graph-based descriptors we consider
both sequence- and residue-level features. Graph features are computed using python’s NetworkX
package (default settings) [12]], and for training our models we standardise all target features to have
zero mean and unit variance.

Geometric, sequence-level: We consider commonly employed measures of IDP conformational
ensembles of computable from MD simulation frames: end-to-end distance (R, ), radius of gyration
(Rg), asphericity (A), and the Flory scaling exponent () and prefactor (Ay).

Graph, sequence-level: As not all graphs were connected we computed fragmentation index as
the fraction of nodes in the Largest Connected Component (LCC); average shortest path length on
the LCC and global efficiency on the full graph to quantify compactness/communication; average
clustering and transitivity as measures of local triadic closure; and degree assortativity as well as
charge assortativity and hydrophobicity assortativity to assess mixing patterns.

Graph, residue-level: Here we included degree centrality (local contact density), betweenness
centrality (bridging propensity), harmonic centrality (inverse-distance reachability), PageRank
[S]], core number, local clustering coefficient, and as well as an in-largest-connected-component
indicator.

A.3 Human-IDRome dataset

We partitioned the Human—-IDRome dataset [31]] based on sequence similarity into 80/10/10 splits for
training, validation, and testing. To ensure fair comparison with prior work, this split was performed
using MMseqs?2 [29] with parameters (min_seq_id=0.7, coverage=0.8, cov_mode=1), identical to
the parameters used by STARLING [25]]. Additionally, we filtered the dataset to sequences with a
maximum length of 256 residues.

B IDP-ESM

For training our fine-tuned versions of ESM-2, IDP-ESM2-8M and IDP-ESM2-150M, we curated
a large dataset of biological IDP sequences, which we call IDP-Euka-90. As suggested in the
Metapredict V3 paper [22], eukaryotes have significantly more disordered regions than bacteria and
euryarchaeota: we hence decided to focus on eukaryotes to extract IDRs. We downloaded all 2764
eukaryota proteomes from UniProt and ran Metapredict V3 command metapredict-predict-idrs [10]
with default disorder threshold of 0.5 on each one of them. We removed sequences shorter than 30
amino acids and clustered the dataset with mmseqs2 linclust command, with minimum sequence
identity threshold of 0.9, 0.8 coverage in coverage mode 1. This pipeline produced an IDP dataset
consisting of 30,337,340 sequences.

We fine-tuned ESM-2 models on the IDP-Euka-90 dataset, using a 1% randomly sampled subset for
validation. Fine-tuning was performed on the masked language modeling (MLM) task using four
H100 GPUs. We employed a learning rate of 4e-4, consistent with the original ESM pretraining setup.
For ESM2-8M, we used a batch size of 700, and for ESM2-150M, a batch size of 96 with 10 gradient
accumulation steps. Models were trained for a single epoch to preserve the representations learned
during pretraining and avoid overfitting to the downstream dataset.

C Geometric feature calculation

We explain here how all geometric features are calculated for a 3D protein structure containing N
residues with Cartesian coordinates {r;}¥ ,, indexed according to the residue’s position in the protein
sequence. The features (R., Ry, A) are computed separately for each conformation then averaged
over the ensemble, whereas the Flory scaling parameters (v, Ag) are fit using the full ensemble
(details given below).



As in [9], we calculate the radius of gyration and asphericity features using the mass-weighted
Gyration tensor, T € R3*3, computed as

LN
Tog = i Z M;T5aTig (D

i=1

where m; € R is the mass of residue 4, and ¥; € R? are its coordinates after subtracting the center of
mass. We denote with {); }5?:1 the eigenvalues of the gyration tensor T,

End-to-end distance (R.) The Euclidean distance between the first and last residue in the sequence:

R, =|ri —rn]| 2

Radius of gyration (R;) A geometric property that describes how the protein’s mass is distributed
about its center of mass - equivalent to the root-mean-square distance of all atoms from the protein’s
center of mass. It can be calculated using T as

Ry = \/tr(iT) ©)

Asphericity (A) Characterises the degree to which a protein’s three-dimensional shape deviates
from a perfect sphere. Calculated using T as

=2 (wm)? @

Flory scaling exponent and prefactor (v, Ay) Parametrise the power-scaling-law relationship
describing how the Euclidean distance between residues scales as a function of their spacing in
sequence. Following the implementation used by [31]], we fit this relationship to residues spaced at
least 5 amino acids apart:

|ri — 15| = Aoli — 4" ; li —j] > 5 (5)

Unlike the other geometric features which are calculated for each conformation separately and then
averaged, the Flory scaling parameters are calculated by first averaging the inter-residue distances
observed for each spacing across the whole ensemble, then using the optimize.curve_£fit function
provided by SciPy [36] to fit the (v, Ag) parameters.

D Comparisons with existing IDP models

We evaluate two prominent methods for IDP property prediction: ALBATROSS [23] and STARLING
[25]. ALBATROSS is a family of 5 recurrent neural network models, each trained to independently
predict one of the ensemble-averaged geometric features { R., Ry, A, v, A} directly from sequence.
STARLING is a generative diffusion model which generates a conformational ensemble of IDPs by
denoising a latent representation of residue-residue distance maps for each conformation. We follow
the method used by [25] for property prediction with STARLING: we sample 1000 conformations us-
ing 25 DDIM steps, then using the generated ensemble to calculate the ensemble-averaged geometric
feature values for each sequence.

We evaluate the publicly released models for both methods on our test set, however we also note that
the IDP datasets used to train ALBATROSS and STARLING notably differ from our training dataset
Human-IDRome. In particular, their datasets contain synthetic as well as biological IDP sequences,
and the conformational ensembles were generated via coarse-grained MD using an adapted version
of the Mpipi force field [[18] rather than CALVADOS-2. We therefore additionally retrained these
models from scratch on the Human—-IDRome dataset, and report results using both the pretrained and
retrained versions of these models in Table
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Predictor | Number of layers Hidden size Learning rate  Batch size | # Parameters
R, 1 55 le-2 128 34K
R, 1 55 5e-3 128 34K
A 2 55 le-2 128 107K
v 2 35 5e-3 64 46K
Ap 1 70 le-3 128 52K

Table 3: Hyperparameters used for the ALBATROSS (retrained) models.

D.1 STARLING

Following the preprocessing in STARLING [25], we first downsampled the frames for each sequence
in our Human—-IDRome dataset to reduce the correlation between conformers. We found that keeping
every 20th frame was sufficient to stabilise model training, resulting in 50 conformers for each
sequence. After downsampling, we used the same hyperparameters and methodology as in [23]]
to sequentially retrain the STARLING VAE and DDPM models from scratch using our train and
validation splits.

D.2 ALBATROSS
D.2.1 Model versions

In our evaluation of the pretrained ALBATROSS models, we use the default (V2) models available
via the SPARROW GitHub repository (https://github.com/idptools/sparrow). For predicting R, and
R, with ALBATROSS, we used the "scaled" versions of these models as recommended.

D.2.2 Retraining

We use the same model architecture hyperparameters (number of hidden layers, hidden size) for each
feature as used in the published V2 models. We found that we could improve training stability and
performance by replacing the loss function used by [23]] with the mean of the L1 loss over a batch
rather than the sum, and performing a grid search over batch sizes {64, 128, 256} and learning rates
{le-3, 5e-3, le-2} for each model. We report the best test R? score achieved over the grid search for
each feature in Table[I] and the hyperparameters used for each model in Table [3]

D.2.3 RZ? score calculation

The R? scores attained in our evaluation of ALBATROSS are notably lower than those reported in
the original ALBATROSS work [23]]. This discrepancy can be partly explained by a difference in the
definition of R? used between our work and theirs. In [23]], the authors define the R? score as the
square of the Pearson correlation coefficient between the true and predicted values, whereas here we
define R? as the coefficient of determination.

For targets and predictions {(y;, f;)};*, with target mean § = + Zf\il i, we calculate the coeffi-
cient of determination (R?) as

2 _Zi(yi_fi)Q
=l wi—ae

which, in general, is lower than the square of the Pearson correlation coefficient - and can even be
negative.

(6)

D.2.4 Flory scaling parameters

We compute the Flory scaling parameters by fitting a power-law relationship between the Euclidean
distance of residue pairs and their sequence separation. Following the methodology of the Human-
IDRome paper [31]], we exclude residue pairs with a sequence separation of less than five, as these
short-range interactions are governed by local chain stiffness and deviate from the global scaling law,
which may differ from that used by ALBATROSS [23].
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