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Abstract

Accurate prediction of RNA properties, such as stability and interactions, is cru-
cial for advancing our understanding of biological processes and developing RNA-
based therapeutics. RNA structures can be represented as 1D sequences, 2D
topological graphs, or 3D all-atom models, each offering different insights into
its function. Existing works predominantly focus on 1D sequence-based models,
which overlook the geometric context provided by 2D and 3D geometries. This
study presents the first systematic evaluation of incorporating explicit 2D and 3D
geometric information into RNA property prediction, considering not only per-
formance but also real-world challenges such as limited data availability, partial
labeling, sequencing noise, and computational efficiency. To this end, we intro-
duce a newly curated set of RNA datasets with enhanced 2D and 3D structural
annotations, providing a resource for model evaluation on RNA data. Our find-
ings reveal that models with explicit geometry encoding generally outperform
sequence-based models, with an average prediction RMSE reduction of around
12% across all various RNA tasks and excelling in low-data and partial labeling
regimes, underscoring the value of explicitly incorporating geometric context. On
the other hand, geometry-unaware sequence-based models are more robust un-
der sequencing noise but often require around 2 − 5× training data to match the
performance of geometry-aware models. Our study offers further insights into
the trade-offs between different RNA representations in practical applications and
addresses a significant gap in evaluating deep learning models for RNA tasks.

1 Introduction

RNA plays a central role in the machinery of life, serving as a crucial intermediary between nu-
cleotide and amino acid worlds [39]. Beyond its messenger role, RNA is involved in diverse bio-
logical processes, including gene regulation, catalytic activity, and structural support within ribo-
somes [44, 50]. This versatility makes RNA a key target for fundamental biological research and
therapeutic interventions. As our understanding of RNA complexity grows, so does the need for
advanced computational tools for its analysis.

Modeling RNA is challenging due to its intricate secondary and tertiary structures, dynamic con-
formational changes, and interactions with cellular components [19]. Furthermore, RNA analysis is
hindered by the practical challenges of RNA data acquisition which include sequencing errors [33],
batch effects [53], incomplete sequencing [2], partial labeling [60], and high costs of obtaining
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Figure 1: Overview of the study. (a) Left panel: RNA sequences represented in 1D, 2D, and
3D structures, processed by 1D sequence, 2D GNN, and 3D GNN models. Our analysis includes
prediction error, robustness and generalization to sequencing noise, and performance under limited
training data and partial labels. (b) Right panel: Comparative performance of 1D, 2D, and 3D meth-
ods across experimental conditions. Histograms show RMSE performance, relative RMSE changes
with increasing noise, and data requirements for optimal performance. Lower values indicate better
performance in all metrics.

large labeled datasets [7]. Moreover, RNA molecules can be represented in different ways: as a 1D
nucleotide sequence, a 2D graph of base pairings, or a 3D atomic structure. Each representation
highlights different aspects of RNA, presenting both opportunities and challenges for model design
and selection (Fig. 1).

In this work, we systematically study the performance of various machine learning models for RNA
property prediction, extending beyond traditional sequence-based approaches [20, 49, 15] to include
methods that process RNA with its 2D or 3D geometry. While 2D and 3D RNA representations
offer potentially richer information, they also present unique challenges. In the absence of high-
quality experimental data, accessing 2D or 3D RNA structures requires running structure prediction
algorithms prone to noise and mistakes, especially in the presence of sequencing errors [41, 57].
A few mutations in the nucleotide sequence owing to sequencing mistakes can hugely alter the
2D and 3D structure (Fig. 4), potentially undermining the benefit of using additional geometric
context. Furthermore, real-world RNA datasets often suffer from partial labeling [60] and scarcity of
training samples [62], which may affect geometry-aware methods differently than sequence-based
approaches. These challenges raise a fundamental question: to what extent does explicit 2D and
3D geometry contribute to RNA property prediction, and under what circumstances might it offer
advantages over geometry-free sequence models?

In this study, we seek to answer this question by making the following contributions:

• We introduce a diverse collection of RNA datasets, including newly annotated 2D and 3D struc-
tures, covering various prediction tasks at nucleotide and sequence levels across multiple species.

• We provide a unified testing environment to evaluate different types of machine learning models
for RNA property prediction, including sequence models for 1D, graph neural networks for 2D,
and equivariant geometric networks for 3D RNA representations.

• We conduct a comprehensive analysis of how different models perform under various conditions,
such as limited data and labels, different types of sequencing errors, and out-of-distribution scenar-
ios. We highlight the trade-offs and contexts in which each modeling approach is most effective,
guiding researchers in selecting suitable models for specific RNA analysis challenges.
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• We also introduce novel modifications to existing 3D geometric models based on biological prior,
specifically optimizing them for handling large-scale point cloud RNA data, thus improving the
efficiency and performance of 3D models significantly.

Our study reveals several key insights: (i) 2D models generally outperform 1D models, with spec-
tral GNNs reducing prediction error by about 12% on average across all datasets, highlighting the
importance of explicitly considering RNA structural information; (ii) 3D equivariant GNNs outper-
form 1D and some 2D methods in the noise-free scenario but are sensitive to noise, exhibiting up to
a 56% decrease in prediction quality under high sequencing error rates; (iii) geometry-free sequence
models remain the most robust to sequencing noise, showing only a 14-27% increase in prediction
error compared to noise-free conditions, however, they require around 2− 5× more training data to
match the performance of geometry-aware models.

2 Datasets and Models

Here, we discuss datasets selected for our study with RNA-level prediction labels. These datasets
are selected to vary from small to large-scale and to encompass both nucleotide-level tasks and
sequence-level tasks. We perform an extensive evaluation across these datasets, leveraging three
different model families (1D, 2D, 3D) spanning 9 representative models in total.

2.1 Datasets

The datasets vary in size based on the number of sequences and sequence lengths: the small dataset
Tc-Riboswitches [17], the medium datasets Open Vaccine COVID-19 [60] and Ribonanza-2k [22],
and the large dataset Fungal [62]. All datasets provide regression labels. Detailed statistics for these
datasets are provided in Appendix C.1.

1. Tc-Riboswitches: 355 mRNA sequences (67-73 nucleotides) with sequence-level labels for
tetracycline-dependent riboswitch switching behavior, important for optimizing gene regulation
in synthetic biology and gene therapy.

2. Open Vaccine COVID-19: 4,082 RNA sequences (each of 107 nucleotides) with nucleotide-
level degradation rate labels, crucial for predicting RNA stability in mRNA vaccine development.

3. Ribonanza-2k: 2,260 RNA sequences (each of 120 nucleotides) with nucleotide-level experi-
mental reactivity labels, supporting RNA structure modeling and RNA-based drug design.

4. Fungal: 7,056 coding and tRNA sequences (150-3,000 nucleotides) from 450 fungal species,
used for sequence-level protein expression prediction.

2.2 Data Preprocessing and Curation

For the OpenVaccine COVID-19 dataset, we filter out sequences with a signal-to-noise ratio (SNR)
below 1, as recommended by the dataset authors [60], to ensure that only sequences with a significant
signal relative to background noise are included, thereby enhancing the reliability of modeling. For
the other datasets, we use the original sequences since no SNR annotations are available.

Since all the RNA datasets come with sequences only, we employ EternaFold [59] and RhoFold [45]
to infer 2D and 3D molecular structures respectively. We selected EternaFold and RhoFold due to
their state-of-the-art performances acknowledged in recent works [58, 60, 22] Additionally, RhoFold
typically runs in seconds to a minute per sequence, unlike other 3D structure prediction tools which
usually take hours, and hence not suitable for large datasets.

For 1D modeling, we use the original RNA sequences without structural augmentation which
equates to processing a plain string of nucleotides. The 2D datasets represent each RNA sequence
as a graph with nodes for nucleotides and edges for bonds between nucleotides. The node features
are six-dimensional, incorporating one-hot nucleotide identity (‘A’, ‘C’, ‘G’, ‘U’) alongside the sum
and mean base-pairing probabilities (BPP), which are available from 2D structure prediction tools.
In 3D, each RNA molecule is represented as a graph, with nodes corresponding to individual atoms.
Node features represent one-hot atom identity.
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2.3 Models

We select well-established model architectures recognized for their state-of-the-art performance for
molecular property prediction tasks in various domains. 1D Model: Transformer1D [24, 20]; 2D
Models: GCN [27, 61], GAT [55, 67], ChebNet [11, 28], Transformer1D2D [21], Graph Trans-
former [47, 31], and GraphGPS [38, 70]; 3D Models: SchNet [42, 18] and EGNN [40].

1. Transformer1D: The Transformer1D model is a standard Transformer architecture adopted for
RNA sequence processing. It includes an embedding layer to convert input tokens into dense
vectors, positional encoding (PE) to retain sequence order, and a multi-layer Transformer encoder
to capture long-range dependencies within the sequence.

2. Transformer1D2D: An adaptation of Transformer1D that integrates sequence and 2D graph
structure information. The model encodes each nucleotide and incorporates BPP features, com-
bining standard Transformer with positional encoding and a convolutional layer on the graph
adjacency matrix. This convolutional output is added to the attention matrix, enabling the model
to capture both sequential and structural dependencies.

3. Graph Convolutional Network (GCN): A basic model in graph learning that aggregates and
processes node features from local neighborhoods to capture both node characteristics and graph
structure, making it effective for tasks like node classification.

4. Graph Attention Network (GAT): Enhances graph convolutions by assigning different impor-
tance to neighboring nodes through local attention mechanisms, allowing the model to focus on
more relevant nodes during feature aggregation.

5. ChebNet: A spectral GNN that utilizes Chebyshev polynomials to approximate the graph Lapla-
cian, enabling graph convolutions with global structural context. This approach allows ChebNet
to approximate global graph features with lower computational complexity.

6. Graph Transformer: This model uses Laplacian positional encoding to integrate structural in-
formation from the graph’s Laplacian into node features, which are then processed by Trans-
former layers. This enables aligning the sequential nature of transformer layers with graph topol-
ogy.

7. GraphGPS: A hybrid model combining GNNs with transformers to capture both local and global
graph information. It uses GNNs for local feature aggregation and transformers for long-range
dependencies, making it effective for complex graph tasks requiring both local and global context.

8. SchNet: An SE(3)-invariant network designed for molecular property prediction on geometric
graphs of atomic systems. It operates by modeling interactions through continuous-filter con-
volutional layers. Since the continuous-filter in Schnet is conditioned on distance features, it
maintains invariance to rotations and translations of atom coordinates.

9. E(n)-Equivariant Graph Neural Network (EGNN): An equivariant network for geometric
graphs with rotations, translations, and reflections symmetry. The EGNN operates by as a non-
linear message passing between scalar-invariant and vector equivariant quantities.

Training and evaluation All models were trained on a NVIDIA A100 GPU. To ensure hyper-
parameter parity for each baseline, hyperparameters were optimized using Optuna [1], restricting
the search to models with fewer than 10 million parameters that fit within the GPU memory con-
straint of 80GB. All model hyperparameters, training, and evaluation details are reported in Ap-
pendix E. We ran all models for 5 random data splits (train:val:test split of 70:15:15) and we report
average performance with a standard deviation across splits. The mean column-wise root mean
squared error (MCRMSE), introduced in [58], is used as the evaluation metric. It is defined as

MCRMSE(f,D) =
√

1
n

∑n
i=1 (ŷi − yi)

2, where f represents a model, D is the dataset, and ŷi and
yi are the predicted and true values for data point i.

3 Task Definitions

Here, we introduce the downstream tasks for evaluating models for RNA property prediction. Each
task is designed to quantify specific behaviors under various real-world experimental conditions.
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Task 1: Impact of structural information on prediction performance This task aims to evaluate
how incorporating RNA structural information affects prediction quality. We compare the perfor-
mance of models using 1D (sequence-only), 2D, and 3D RNA representations to determine if and to
what extent geometric data improves property prediction.

Task 2: Model efficiency in limited training data settings Acquiring high-quality comprehen-
sive RNA datasets is often challenging and resource-intensive thus limiting the amount of labeled
data for training [51, 7]. This task aims to investigate how model performance depends on the
amount of training data used, evaluating the sample efficiency of each family of models. In other
words, given a dataset D = {X,Y }, let Dα = {Xα, Yα} be a subset where the training set is
reduced to a fraction α. We train models on different sets of Dα datasets with decreasing α.

Task 3: Performance with partial sequence labeling Due to the high cost of measuring proper-
ties for every nucleotide in RNA sequence, real-world datasets often contain partial annotations [60]
where labels are only available for the first small part of the sequence. This task is relevant for
nucleotide-level datasets and it aims to investigate how well a model can generalize to a whole RNA
sequence when labels are only available for a portion of it.

Task 4: Robustness to sequencing noise Acquiring RNA data requires sequencing. In practice
sequencing procedures may introduce sequencing errors (random mutations of nucleotides) that
vary depending on the sequencing technology and platform [33, 14]. These errors affect the raw
sequence data and propagate to structural noise in 2D and 3D. The goal of this task is to assess how
well models can maintain reliable performance when trained and tested under the same distribution
of realistic levels of sequencing noise observed in practice, ensuring robustness across a consistent
noise environment. This reflects real-world cases where a specific sequencing method produces
noisy data, but the noise characteristics are stable across training and deployment.

Task 5: Generalization to Out-of-Distribution (OOD) data This task focuses on a different
practical challenge: models trained on high-quality RNA sequences are often deployed in conditions
where the data exhibits different noise characteristics due to batch effect [53] or the use of different
sequencing platforms [52]. Here, the objective is to evaluate how well models generalize to OOD
datasets with different levels of sequencing noise, assessing the extent of performance degradation
as noise levels increase. This task simulates the scenario where a model encounters noisier data than
it was trained on, highlighting its ability to adapt to unexpected experimental conditions.

4 Experiments and Results

4.1 Impact of explicit geometry learning on model performance

We begin by addressing Task 1, where we compare the performance of model families when trained
and evaluated on the downstream RNA datasets. Additionally, we provide runtime and memory
comparison in Appendix B.

2D models consistently outperform 1D model Results in Table 1 reveal that 2D methods consis-
tently outperform the 1D sequence model across all datasets. Notably, the Transformer1D2D model,
which simply augments the attention matrix with adjacency features alongside, achieves around 10%
lower prediction MCRMSE on average across datasets than its geometry-free counterpart. This sug-
gests that explicitly incorporating structural information is crucial, as learning from sequence data
alone proves to be insufficient. Further experiments, detailed in the Appendix C.4, investigate the
learned attention maps of both the Transformer1D2D and the Transformer1D model and their corre-
lation with structural information and reveal that Transformer1D2D attention maps are much more
closely aligned with the topological structure of nucleotide graph, reinforcing the conclusion that
explicit encoding of structural information is essential for improved performance.

Spectral GNN outperforms spatial GNNs in 2D ChebNet, a spectral method, outperforms
spatial methods such as GCN, GAT, Graph Transformer, and GraphGPS, achieving a prediction
MCRMSE 2.5% lower than the next best 2D model across datasets. Spatial GNNs aggregate node
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Table 1: Comparison of 1D, 2D, and 3D models across datasets. Bold indicates the best, underline
the second-best. ‘OOM’ means out-of-memory. ChebNet excels by capturing global graph informa-
tion. Overall, 2D models outperform 1D models, highlighting the value of structural information.
Although 3D models face challenges with scalability and noisy predictions, our nucleotide pooling
strategy, based on biological prior, enhances their performance on shorter sequences, allowing 3D
encoding to occasionally surpass 1D models. See Sec. 4.1 for details on nucleotide pooling strategy.

Model COVID Ribonanza Tc-Ribo Fungal
1D model

Transformer1D 0.361±0.017 0.705±0.015 0.705±0.079 1.417±0.005

2D model

Transformer1D2D 0.305±0.012 0.514±0.004 0.633±0.001 OOM
GCN 0.359±0.009 0.595±0.006 0.701±0.004 1.192±0.077
GAT 0.315±0.006 0.534±0.006 0.685±0.024 1.112±0.035
ChebNet 0.279±0.007 0.468±0.002 0.621±0.022 0.973±0.003
Graph Transformer 0.318±0.008 0.515±0.001 0.710±0.041 1.317±0.002
GraphGPS 0.332±0.013 0.523±0.003 0.715±0.012 1.025±0.081

3D model

EGNN (w/o pooling) 0.480±0.025 0.808±0.023 0.725±0.002 OOM
SchNet (w/o pooling) 0.499±0.003 0.843±0.004 0.696±0.008 OOM
EGNN (nuc. pooling) 0.364±0.003 0.619±0.007 0.663±0.010 OOM
SchNet (nuc. pooling) 0.390±0.006 0.685±0.006 0.655±0.038 OOM

features layer by layer, emphasizing local information within a fixed distance. While computation-
ally efficient, these methods are limited by the 1-Weisfeiler-Lehman (WL) test, which constrains the
expressive power of node-based updates [63]. In addition, spatial GNNs may suffer from a limited
receptive field while spectral methods approximate global graph features, enabling a global recep-
tive field since the first layer. This allows ChebNet to effectively process global information which
is important for RNA data due to potential long-range interaction between nucleotides.

Challenges of modeling geometric context in all-atom resolution Contrary to our expectations,
3D models at all-atom resolution (EGNN w/o pooling and SchNet w/o pooling in Table 1) show rela-
tively high prediction MCRMSE across datasets, underperforming compared to 1D and 2D methods.
We hypothesize this is due to two factors.

First, all-atom SchNET and EGNN rely on a limited local neighborhood of adjacent atoms, limiting
their receptive fields and preventing them from capturing long-range dependencies (see Appendix
Table C.1), which can be crucial for determining RNA properties [46, 3]. Expanding the local
neighborhood for these methods turns challenging due to the overwhelming scale of large molecular
systems in all-atom resolution. Second, the performance of 3D models is often limited by the inher-
ent inaccuracies in 3D structure prediction tools, which are generally less reliable compared to 2D
structure prediction methods [37].

To address the receptive field limitation of all-atom methods, we employ a biological prior by pool-
ing atomic features into nucleotide-level representations after a few layers of all-atom operations.
This strategy is aligned with RNA’s natural secondary structure, where atoms group into nucleotides,
and nucleotides form the complete RNA molecule [12]. This novel strategy allows us to maintain
all-atom resolution in the initial layers while increasing the receptive field via pooling. By balancing
the number of all-atom and nucleotide layers as hyperparameters, we can balance fine- and coarse-
grained all-atom and nucleotide resolution. We call 3D models with pooling EGNN (nuc. pooling)
and SchNet (nuc. pooling). This strategy significantly enhances 3D model performance, reducing
prediction MCRMSE by ∼10% compared to the original EGNN and SchNet, and outperforming
1D models on the Ribonanza-2k and Tc-Riboswitches datasets by 5% on average. On the COVID
dataset, EGNN (nuc. pooling) matches the Transformer1D model but still trails behind 2D models.
All subsequent experiments report results using nucleotide-pooled versions of the 3D models.

Next, we investigated the second hypothesis regarding higher noise in 3D structures by quantifying
variability in predicted structures across different 3D prediction tools in Appendix D. We observe
substantial variability (between 11-45Å RMSD across structures given by different 3D structure
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prediction tools), suggesting considerable noise in 3D predictions, which likely contributes to the
poorer performance of 3D models.

4.2 Model efficiency under limited data and partial sequence labeling

In this section, we combine the analysis of Tasks 2 and 3, assessing model performance in scenarios
with limited training data or partial labels.

To analyze how the amount of training data influences model performance, we run experiments with
varying portions of the full datasets (25%, 50%, 75%, and 100%) on the medium- and large-scale
datasets: COVID, Ribonanza-2k, and Fungal (Appendix Fig. 8(a) for illustration). The small size
of the Tc-Riboswitches dataset is excluded from the analysis, as training with lower ratios would
have resulted in inadequate sample sizes for meaningful evaluation. Additionally, GPU memory
constraints prevent the application of Transformer1D2D and 3D models on the Fungal dataset due
to its large sequence length.

We also evaluate the impact of partial property labels for nucleotide-level tasks, a common occur-
rence owing to costly experimental measurements [58] to identify which models are best suited to
handle the challenges of incomplete labels in RNA property prediction. For this, we use the COVID
and Ribonanza datasets as these datasets contain nucleotide-level labels. We train the models using
all training data but with varying proportions of labeled nucleotides (20%, 40%, 60%, 80%, and
100%) per sequence, thus simulating incomplete or sparse labeling, while testing on fully labeled
test sets (Appendix Fig. 8(b) for illustration).
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Figure 2: Performance versus fraction of training data across various datasets. Model perfor-
mance improves with increasing data, with lower MCRMSE across all models. 2D models consis-
tently outperform 1D models, particularly in low-data regimes, underscoring the value of structural
information for generalization. Dotted, solid, and dashed lines denote 1D, 2D, and 3D methods,
respectively, which apply consistently throughout all figures in this paper.
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models consistently outperform 1D models with sparse labeling, while Transformer1D and Trans-
former1D2D improve rapidly with denser supervision, emphasizing the need for more labels in
transformer-based models.
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More training data improves performance Unsurprisingly, across all models and datasets, a
clear trend emerges: increasing the amount of available data, whether through higher number of
training data points or greater proportion of available labels leads to improved performance (Fig. 2,
Fig. 3, Appendix Tables in Sec. F.1, F.2). However, the degree of performance improvement varies
significantly between model types, as analyzed next.

2D models excel in low data and partial label regimes Evaluating model performance at differ-
ent training and label ratios reveals a notable trend: 2D models consistently outperform 1D and 3D
models under low data and incomplete labeling regimes. Between 20-50% training data and label
levels, 2D models such as ChebNet, Transformer1D2D, GraphGPS, and GAT significantly outper-
form Transformer1D, highlighting the role of additional structural information for model sample
efficiency. Interestingly, Transformer1D and Transformer1D2D exhibit a faster rate of improvement
when more labels are available (Fig. 3), suggesting that transformer-based architectures benefit from
denser supervision. Notably, Transformer1D requires 2− 5× more training data/labels to match the
performance of the least effective 2D models, which achieve comparable results using only 20% to
50% of the training data needed by Transformer1D when trained on the full dataset.

3D models outperform 1D model in limited data regime despite structural noise For the
medium-scale datasets (COVID and Ribonanza), where 3D models can be evaluated, we observe
that the 3D models generally outperform or are on par with the Transformer1D, even for lower
data and labeling regimes. This suggests that despite the noise introduced by inaccuracies in 3D
structure predictions, the explicit geometric encoding in 3D models still provides an advantage over
1D models. EGNN, in particular, is consistently better than or on par with Transformer1D across
all training and label ratios. This further emphasizes that models incorporating explicit geometric
encoding (whether 2D or 3D) are more data-efficient than those relying solely on sequence informa-
tion. However, it is important to note that 3D models do not match the efficiency of 2D models in
these scenarios, likely due to their susceptibility to noise as discussed in Section 4.1.
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Figure 4: Visualization of 1D, 2D, and 3D structures under varying noise ratios (mutation
errors during sequencing). Each column represents a different noise ratio, showcasing the impact
of noise on the structures across different dimensions.

4.3 Model Robustness and Generalization Under Sequencing Noise

Tasks 4 and 5 both deal with model performance with noise in the data, but focus on different aspects,
robustness to noise, and ability to generalize across unseen noise distributions. As explained in
Sec. 3, sequencing noise is common depending on the sequencing method and platform used [14],
thereby introducing errors in sequences that propagate into 2D and 3D structures. Additionally
one of the deployment scenarios involves models trained on high-quality clean data applied for
datasets acquired under noisy conditions owing to different sequencing platforms or experimental
batch effects [52].

To explore these practical aspects, we design two sets of experiments:
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• Robustness: We introduce sequencing noise into the training, validation, and test sequences to
simulate realistic sequencing errors. Nucleotide mutations are applied with probabilities {0.05,
0.1, 0.15, 0.2, 0.25, 0.3}, mirroring typical sequencing error rates [36] which also propagates to
the 2D and 3D structures (Fig. 4) via structure prediction tools. Importantly, these mutations are
not random; the likelihood of a particular nucleotide mutating into another varies, as is well doc-
umented in sequencing studies [36]. Our noise model reflects these real-world mutation profiles.
Crucially, while the input training, validation, and test sequences contain noise, the property labels
remain clean. This again reflects practical scenarios where labels are experimentally determined
independent of sequencing and thus unaffected by sequencing errors.

• Generalization: Here, models are trained on clean, noise-free data corresponding to high-quality
sequencing experiments but are tested on datasets with varying levels of noise simulated by se-
quencing mutation probabilities in {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. This setup reflects the real-
world scenario where models trained on high-quality data will be deployed on OOD data that may
come from different sequencers or have been affected by batch effects.
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Figure 5: Robustness experiments. Transformer1D shows the least performance drop under in-
creasing noise, maintaining the highest accuracy, with Transformer1D2D following closely. In con-
trast, 2D and 3D models, particularly ChebNet and 3D models, are more impacted by noise.

Transformer architectures demonstrate superior robustness and generalization under se-
quencing noise Expectedly, across both tasks, increased noise levels generally lead to worse test
MCRMSE for all models, indicating a decline in prediction performance (Fig. 5, Fig. 6 and Ap-
pendix Tables in Sec. F.3, F.4).

Among all models, Transformer1D demonstrates the highest robustness and generalization, exhibit-
ing the least performance degradation as noise levels increase. Notably, in generalization exper-
iments, Transformer1D achieves the best prediction MCRMSE on the COVID, Ribonanza, and
Tc-Riboswitches datasets under higher noise levels (Fig. 6 and Appendix F.4). The reliance of
Transformer1D on sequence-only information without considering geometric context, while being
a weakness in other scenarios, becomes a strength in case of noisy sequences as minor sequenc-
ing errors may severely alter the predicted RNA structures (Fig. 4). While its performance on the
Fungal dataset is worse overall, Transformer1D maintains remarkably consistent performance as
noise increases. Transformer1D2D ranks just behind Transformer1D outperforming other 2D and
3D models. This can be attributed to Transformer1D2D’s ability to selectively focus on sequence
information for noisy data rather than relying on structural data alone as the self-attention is only
weakly conditioned on the graph topology.

More elaborated 2D and 3D models, which rigidly rely on structural information, are significantly
more affected by noise, underperforming compared to plain sequence baseline in both robustness
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Figure 6: Generalization experiments. Transformer1D outperforms other models on noisy se-
quences, achieving the lowest RMSE at higher noise levels, particularly on COVID, Ribonanza, and
Tc-Riboswitches. Transformer1D2D follows closely, showing that transformer-based models gener-
alize better under noise than 2D and 3D models, especially in tasks with geometric representations.

and generalization experiments. Interestingly, ChebNet shows the worst generalization among 2D
models, although it performs on par with other methods in robustness experiments. This suggests
that while ChebNet struggles with OOD noise, its performance gets better when it is also trained on
the same noise level used during testing, highlighting the need for retraining for different experimen-
tal data batches/noise levels in real-world applications. Across both experiments, 3D models have
poor performance for more noisy conditions, particularly with the COVID and Ribonanza datasets,
due to their dependence on 3D structures which are also sensitive to the propagation of sequencing
errors (Fig.4 bottom). In the smaller Tc-Riboswitches dataset, model performances vary more, likely
due to limited data size, but transformer models still consistently demonstrate greater robustness to
noise.

Across both settings, as the noise ratio rises, the 1D model demonstrates the greatest resilience to
noise, showing an average test MCRMSE increase of approximately 14% and 27%, respectively,
relative to the train and test on clean data. In contrast, 2D models exhibit the highest sensitivity,
with test MCRMSE increasing from 30% to 82%. Meanwhile, 3D models show intermediate per-
formance, with MCRMSE increases of 29% and 56%. Our results reveal a higher vulnerability of
2D and 3D models to sequencing noise where geometric context becomes unreliable at a faster rate
than a plain sequence of nucleotides.

5 Conclusion

We present the first comprehensive study on the benefits and challenges of the effect of geometric
context for RNA property prediction models. By providing a curated set of RNA datasets with anno-
tated 2D and 3D structures, we systematically evaluate the performance of 1D, 2D, and 3D models
under various real-world conditions, such as limited data, partial labeling, sequencing errors, and
out-of-distribution generalization. Our results reveal that 2D models outperform 1D and 3D models,
with spectral graph neural networks excelling even in low-data and partial labeling scenarios. For
3D models, we find that their potential benefits are hindered by the limited receptive field, compu-
tational complexity, and structural noise from RNA structure prediction tools. At the same time, 1D
models demonstrate better robustness compared to 2D and 3D models in noisy and OOD conditions.
This study highlights the value and limitations of using geometric context for RNA modeling. Fu-
ture work could focus on ensembling 1D, 2D, and 3D models for complementary strengths, and on
improving 2D and 3D models to better handle noise from structure prediction tools.
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A Related Work

RNA property prediction RNA-specific models remain scarce, likely due to limited specialized
datasets. Recent advancements in sequence modeling have shown promise, particularly with foun-
dation models like RNA-FM [8], UTRBERT [66], and RINALMO [35], which use transformer-
based architectures pre-trained on large RNA sequence corpora to predict various RNA functions
and structures. While RNNs and CNNs have been applied to tasks like RNA methylation and
protein binding [56], they struggle with long-range dependencies. Hybrid models like RNAdeg-
former [21], combining convolutional layers with self-attention, improve predictions by capturing
both local and global dependencies. Although some efforts integrate 2D structures with transform-
ers, explicit 2D and 3D geometric modeling for RNA remains underexplored, with graph-based
models mainly focusing on RNA-protein and RNA-drug interaction tasks rather than property pre-
diction [29, 65, 4, 69].

RNA structure prediction RNA 2D structure prediction has progressed from dynamic program-
ming methods like Vienna RNAfold [23] to deep learning-based tools like SPOT-RNA2 [48] and
UFold [16], which enhance accuracy by using neural networks and evolutionary data. Models such
as E2Efold [9] and RNA-FM [8] employ transformer architectures to achieve state-of-the-art results
in secondary structure prediction.

RNA 3D structure prediction has progressed through ab initio, template-based, and deep learning
approaches. Ab initio methods (e.g., iFoldRNA [43], SimRNA [6]) balance detail and efficiency
but struggle with non-canonical interactions. Template-based models (e.g., FARNA/FARFAR [10],
3dRNA [68]) depend on existing structures but are limited by available data. Deep learning models
like DeepFoldRNA [34], RhoFold [45], RoseTTAFoldNA [5], and trRosettaRNA [57] show promise
in predicting 3D structures from sequence data but face challenges with novel RNA families due to
RNA’s conformational flexibility [30].

Despite these advances, there is a gap in applying 2D and 3D modeling techniques to RNA property
prediction. Most works focus on 1D representations and overlook the potential of geometric infor-
mation from 2D and 3D structures. This study is the first to systematically explore the benefits and
limitations of incorporating explicit structural data in deep learning-based RNA property prediction.

B Memory and Computational Constraints

In this section, we compare the models based on run times and GPU memory. Both Trans-
former1D2D and 3D models (even with nucleotide pooling) encounter out-of-memory (OOM) is-
sues when processing longer sequences, such as those in the Fungal dataset (Table 1). This high-
lights the need for optimization to handle longer sequences. Figure 7 shows that Transformer1D
scales poorly in both runtime and memory due to its expensive attention mechanism, and Trans-
former1D2D faces additional challenges by processing the sequence and adjacency matrix simulta-
neously. In contrast, simpler 2D models like GCN, GAT, and ChebNet are more efficient. 3D models
also scale poorly with sequence length due to the increasing number of atoms. Overall, 2D models
provide a good balance between computational demands and performance for encoding structural
information.
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Figure 7: Running time and memory usage comparison across models. (1) Running time vs.
sequence length (left): Transformer1D and Transformer1D2D scale poorly with sequence length
due to expensive attention mechanisms and simultaneous processing of sequences and adjacency
matrices, while simpler 2D models like GCN, GAT, and ChebNet are more efficient. (2) Memory
usage vs. sequence length (right): Transformer1D2D and 3D models face out-of-memory issues
with longer sequences, especially in the largest Fungal dataset, whereas 2D models use memory
more efficiently, balancing computational demands and structural encoding.

C Additional Experimental Information

C.1 Dataset Statistics

Here, we present the statistics for each dataset used in the paper in Table 2. The datasets are catego-
rized as small, medium, or large based on the number of sequences and sequence length. “Target”
refers to the task the dataset is designed to predict, and “# Avg. Atoms” indicates the average number
of atoms used in 3D models.

Table 2: The statistics of Tc-Riboswitches, Ribonanza, COVID, and Fungal datasets.
Tc-Riboswitches Ribonanza COVID Fungal

Dataset Size Small Medium Medium Large
Target Switching Factor Degradation Degradation Expression

# Sequences 355 2260 4082 7089
Sequence Length 66 - 75 177 107 - 130 150 - 3063

# Labels 1 2 3 1
# Avg. Atoms

(for 3D models) 1531 3791 2598 N/A

C.2 Comparison of partial training data and partial sequence labeling

To clarify the differences and provide a more detailed explanation, we illustrate two experiments:
partial training data and partial sequence labeling (Figure 8).

C.3 Details of noisy experiments: robustness and generalization

To create the noisy datasets, we vary the noise ratio r across the values {0.05, 0.1, 0.15, 0.2, 0.25,
0.3}. For each given noise ratio, we independently mutate the nucleotide at each position in a
sequence with probability r, as illustrated in Figure 9. The resulting mutated sequence is then
passed to the 2D and 3D prediction tools to generate the corresponding structures. Figure 4 gives a
comprehensive illustration of getting noisy 1D, 2D, and 3D structures.
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Figure 8: Comparison of partial training data and partial sequence labeling. The orange arrows
indicate the varying components. (a) utilizes full nucleotide labels but trains on varying fractions of
RNA sequences (0.25, 0.5, 0.75, 1.0). (b) uses all training sequences but with varying fractions of
nucleotide labels (0.2, 0.4, 0.6, 0.8, 1.0). Therefore, (b) is only for nucleotide-level tasks.

For the robustness experiments, all training, validation, and testing are conducted on the noisy
datasets. In contrast, for the generalization experiments, the model is trained and validated on clean
datasets, and its performance is tested on noisy datasets with varying noise ratios.

𝑟

Figure 9: Mutation the nucleotide at each position independently with the probability r.

C.4 Analysis of Transformer1D and Transformer1D2D

To further validate that incorporating structural information contributes to the final results, we an-
alyze the attention maps generated by Transformer1D and Transformer1D2D. Fig. 10 illustrates
the average attention maps across all heads before the final output layer for both the models for
a randomly selected RNA sequence. The attention maps of Transformer1D2D exhibit a striking
similarity to both the adjacency matrix and the BPP matrix, whereas the attention maps from the
standard Transformer model seem to suggest that the model does not learn to attend to the structural
features. Moreover, we quantify this observation by computing the cosine similarity between the
attention maps of the models and the true adjacency matrix and BPP for all sequences in the COVID
dataset. The results, reported in Table 3 show that Transformer1D2D achieves much higher sim-
ilarity scores compared to the 1D Transformer alone. This reinforces the conclusion that explicit
encoding of structural information is essential for improved model performance.
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(a) Transformer1D attention matrix.
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(b) Transformer1D2D attention matrix.
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(c) Base pair probability matrix.
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(d) Graph adjacency matrix.

Figure 10: The heatmaps of matrices in Transformer1D and Transformer1D2D. Attention maps
from Transformer1D2D exhibit a striking resemblance to both the adjacency matrix and BPP matrix,
highlighting the model’s ability to learn structural features. In contrast, the standard Transformer
struggles with this task, as shown by lower cosine similarity scores, reinforcing the conclusion that
explicitly encoding structural information is crucial for enhanced model performance.

Table 3: Cosine similarity values for different models. Cosine similarity scores between the
attention maps and the true adjacency and BPP matrices for all sequences in the COVID dataset
demonstrate that Transformer1D2D significantly outperforms the standard Transformer. These re-
sults underscore the importance of explicitly encoding structural information for superior model
performance.

Model Cosine similarity adjacency Cosine similarity BPP
Transformer1D 0.107 0.090
Transformer1D2D 0.448 0.672

D Analysis of Noise in 3D Structures

As mentioned in the main context, predicted 3D structures consistently exhibit noise. In this section,
we analyze this issue from two perspectives: sensitivity to sequence length and variability across
different prediction tools.
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D.1 Impact of Sequence Length on 3D Structure Prediction Noise

To investigate the hypothesis that longer sequences result in greater noise in 3D structure predic-
tions, we randomly selected a COVID and Tc-Riboswitches dataset sequence and generated struc-
tures using four state-of-the-art 3D structure prediction tools: RhoFold [45], RNAComposer [64],
trRosetta [5], and SimRNA [6]. High variability among these predicted structures would indicate
significant uncertainty in absolute atom positions. We quantified this noise by aligning the struc-
tures using the Kabsch algorithm [26] and computing the pairwise RMSD values, resulting in a
4x4 matrix showing structural deviations between each pair of tools (see Table 4). The observed
pairwise RMSD values ranged from 16 to 45 Å for the COVID dataset and from 11 to 15 Å for
the Tc-Riboswitches dataset, reflecting substantial variability and suggesting considerable noise in
the 3D predictions. This level of structural inaccuracy likely contributes to the poorer performance
of 3D models. However, we found that 3D models outperform 1D models for shorter sequences,
such as those in the Tc-Riboswitches dataset (67 to 73 nucleotides long). This improved perfor-
mance is due to the lower noise in 3D predictions for shorter sequences, a phenomenon supported
by previous studies [32, 37] and also exhibited by the comparatively smaller RMSD values reported
in Table 4 for Tc-Riboswitches dataset. The reduced complexity of shorter sequences allows 3D
models to capture structural details more accurately, thereby enhancing performance and validating
that accurate 3D structure encoding can outperform 1D models.

Table 4: Pairwise RMSD values (in Å) between 3D structure prediction tools for the COVID
dataset (left) and Tc-Riboswitches dataset (right). The results indicate larger noise in predictions
for longer COVID sequences.

COVID RhoFold trRosetta SimRNA Composer
RhoFold 0 39.05192 44.76146 45.45994
trRosetta 39.05192 0 22.54974 18.17359
SimRNA 44.76146 22.54974 0 16.73399

Composer 45.45994 18.17359 16.73399 0

Tc-Ribo RhoFold trRosetta SimRNA Composer
RhoFold 0 14.338 11.996 15.056
trRosetta 14.338 0 12.932 14.916
SimRNA 11.996 12.932 0 14.243

Composer 15.056 14.916 14.243 0

D.2 Impact of different 3D prediction tools

In this section, we demonstrate the significant differences in 3D structures predicted by various tools.
We compare the 3D structure obtained from RhoFold [45], which serves as our default method, with
those predicted by RNAComposer [64], trRosetta [5], and SimRNA [6]. Each structure is visualized
side by side with RhoFold in Figure 11 to facilitate a more intuitive comparison. As observed, these
structures predicted by each tool vary considerably.

E Reproduction

This section outlines the necessary details to reproduce all experiments discussed in this paper. The
code will be made publicly available upon acceptance.

E.1 Training details

All experiments were conducted on a single NVIDIA A100 GPU. For each baseline, hyperparam-
eters were optimized using Optuna [1], restricting the search to models with fewer than 10 million
parameters that fit within the memory constraints of an 80GB NVIDIA A100 GPU. Most base-
line implementations were sourced from PyTorch Geometric [13]. The Transformer1D model was
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(a) RhoFold vs. RNAComposer (b) RhoFold vs. SimRNA (c) RhoFold vs. trRosetta

Figure 11: Comparison of RhoFold against other 3D structure prediction tools on an example se-
quence from Tc-Riboswitches dataset.

adapted to Transformer1D2D as detailed in the paper. For EGNN, we utilized the authors’ imple-
mentation [40], and for SchNet, the implementation from [25] was used.

E.2 Hyperparameters

This section provides a comprehensive overview of the hyperparameters used in each baseline
model, facilitating reproducibility and understanding of the model configurations.

Common hyperparameters across these models include in channels, which specifies the number
of input features, hidden, which determines the number of hidden units in each hidden layer, and
out channels, which defines the number of output features. The L parameter controls the number
of layers in the network, and the dropout parameter sets the dropout rate for regularization. The lr
parameter specifies the learning rate, and weight decay sets the weight decay for regularization of
the optimizer. For graph-level tasks, the pool parameter specifies the pooling method, which can be
mean, max, or add.

Transformer1D is a standard Transformer architecture for RNA sequence processing. It includes
an embedding layer to convert input tokens into dense vectors, positional encoding (PE) to retain
sequence order, and a multi-layer Transformer encoder to capture complex dependencies within the
sequence. There are some hyperparameters from the original transformer [54]. nhead, which defines
the number of attention heads in each Transformer layer; num encoder layers, which controls the
number of encoder layers in the Transformer; d model, which determines the dimensionality of the
embeddings and the model; dim feedforward, which sets the dimensionality of the feedforward
network model. To shrink the search space, we set d model and dim feedforward as the same
with a new hyperparameter hidden.

Transformer1D2D is an adaptation of Transformer1D that integrates both sequence and 2D graph
structure information. In addition to encoding each nucleotide, the model incorporates base pair
probabilities (BPP) features for each nucleotide. It combines a standard Transformer with positional
encoding and a convolutional layer applied to the graph adjacency matrix. This convolutional out-
put is added to the Transformer’s attention matrix, allowing the model to incorporate graph structure
into its attention mechanism. This design captures both the sequential and structural dependen-
cies in RNA data, improving predictive performance. The unique hyperparameter for this model is
kernel size, which specifies the size of the convolutional kernel.

GAT includes the unique hyperparameters gat heads, which specify the number of attention
heads in each GAT layer.

ChebNet model has the unique hyperparameter power, which specifies the polynomial order for
the Chebyshev convolution.

GraphGPS and Graph Transformer includes heads, which specifies the number of attention
heads in each layer, and pe dim, which defines the dimensionality of positional encoding.
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EGNN and SchNet are 3D models that operate at two granularities within the network: atom
layers and nucleotide layers. The two types of layers are connected through nucleotide pooling.
Atom layers use atoms as nodes, while nucleotide layers use nucleotides as nodes. Both the atom
layer and nucleotide layer employ a point cloud setting and calculate edges based on the distance
between two nodes. An edge is considered to exist if the distance is smaller than a certain threshold.
Therefore, EGNN and SchNet share the following hyperparameters: L atom, which denotes the
number of atom layers; L nt, which specifies the number of nucleotide layers; threshold atom,
which is the threshold for edges in atom layers; and threshold nt, which is the threshold for edges
in nucleotide layers.
For SchNet, the unique hyperparameters include num filters, which refers to the number of filters
used in convolutional layers, and num gaussians, which indicates the number of Gaussian func-
tions used for radial filters. For a more detailed explanation of these hyperparameters, please refer
to [42].
To ensure a fair comparison, the best hyperparameter configuration for each method was selected
based on validation set performance. We report the mean performance and standard deviation across
5 random splits on the test set. For the COVID and Ribonanza datasets, we performed hyperparam-
eter searching only on the COVID dataset and applied the same configuration to Ribonanza, as the
two datasets share similar properties. The optimal hyperparameters are shown in Table 5.

F Additional Results
In this section, we present the additional results supporting Figures 2, 3, 5, and 6 in main text.

F.1 Impact of data availability
The detailed results of partial training data from Figure 2 are shown in Tables 6, 7, and 8.

F.2 Impact of partial labeling
The detailed results of the partial labeling sequence from Figure 3 are shown in Tables 9 and 10.

F.3 Robustness to sequencing noise
The results of the robustness experiment from Figure 5 are shown in Tables 11, 12, 13, and 14.

F.4 Generalization to OOD data
The results of the generalization experiment from Figure 6 are shown in Tables 15, 16, 17, and 18.
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Hyperparameter COVID & Ribonanza Tc-riboswitches Fungal

Transformer1D

lr 0.001 0.0005 0.001
weight decay 0 0.0005 0.0005

hidden 128 64 32
nhead 8 8 8

num encoder layers 8 6 6
pool / mean mean

Transformer1D2D

lr 0.001 0.005

OOM

weight decay 0 0
hidden 256 32
nhead 16 4

num encoder layers 8 4
pool mean mean

kernel size 5 5

GCN

lr 0.001 0.0001 0.0001
weight decay 0 0 0

hidden 1024 512 512
L 7 5 3

dropout 0.3 0.1 0.7
pool / max add

ChebNet

lr 0.001 0.005 0.0001
weight decay 0 0.0005 0

hidden 512 256 256
L 5 7 5

dropout 0.3 0.3 0.3
power 6 2 2
pool / max mean

GAT

lr 0.001 0.005 0.0005
weight decay 0 0 0.0005

hidden 256 1024 256
L 7 3 7

dropout 0.1 0.1 0.3
heads 4 2 1
pool / add add

Graph
Transformer

lr 0.001 0.005 0.005
weight decay 0 0 0.0005

hidden 128 64 256
L 7 5 7

heads 4 1 2
pool / add mean

GraphGPS

lr 0.001 1e-5 0.0005
weight decay 0 0.0005 0.0005

hidden 256 256 512
L 5 7 5

heads 2 1 2
pool / add max

EGNN

lr 0.0005 0.001

OOM

weight decay 0 0
hidden 256 256
L atom 3 3

L nt 2 1
threshold atom 1.6 1.6

threshold nt 22 22

SchNet

lr 0.0005 0.001

OOM

weight decay 0 0
hidden 128 128
L atom 1 1

L nt 2 4
threshold atom 1.6 1.8

threshold nt 44 88
num filters 128 256

num gaussians 50 50
Table 5: Best hyperparameters for each model and dataset. Hyperparameters are searched by Op-
tuna. COVID and Ribonanza share the same hyperparameters.
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Table 6: Performance (MCRMSE) of different models across various training data (mean ± standard
deviation) fractions on COVID dataset.

COVID 0.25 0.50 0.75 1.00
Transformer1D 0.429 ± 0.018 0.410 ± 0.016 0.375 ± 0.018 0.361 ± 0.017
Transformer1D2D 0.345 ± 0.010 0.330 ± 0.011 0.306 ± 0.014 0.305 ± 0.012
GCN 0.389 ± 0.008 0.377 ± 0.009 0.358 ± 0.014 0.359 ± 0.009
GAT 0.352 ± 0.011 0.342 ± 0.009 0.320 ± 0.014 0.315 ± 0.006
ChebNet 0.320 ± 0.011 0.309 ± 0.009 0.286 ± 0.018 0.279 ± 0.007
Graph Transformer 0.356 ± 0.008 0.344 ± 0.007 0.324 ± 0.016 0.318 ± 0.008
GraphGPS 0.367 ± 0.018 0.362 ± 0.005 0.344 ± 0.010 0.332 ± 0.013
EGNN 0.398 ± 0.001 0.391 ± 0.013 0.368 ± 0.013 0.364 ± 0.003
SchNet 0.419 ± 0.003 0.414 ± 0.011 0.392 ± 0.011 0.390 ± 0.006

Table 7: Performance (MCRMSE) of different models across various fractions of training data
(mean ± standard deviation) on Ribonanza dataset.

Ribonanza 0.25 0.50 0.75 1.00
Transformer1D 0.777 ± 0.014 0.740 ± 0.005 0.739 ± 0.001 0.705 ± 0.015
Transformer1D2D 0.630 ± 0.016 0.553 ± 0.015 0.541 ± 0.018 0.514 ± 0.004
GCN 0.668 ± 0.018 0.618 ± 0.017 0.612 ± 0.013 0.595 ± 0.006
GAT 0.600 ± 0.018 0.553 ± 0.026 0.544 ± 0.012 0.534 ± 0.006
ChebNet 0.537 ± 0.019 0.494 ± 0.022 0.499 ± 0.007 0.468 ± 0.002
Graph Transformer 0.567 ± 0.019 0.529 ± 0.013 0.529 ± 0.010 0.515 ± 0.001
GraphGPS 0.581 ± 0.021 0.529 ± 0.015 0.540 ± 0.004 0.523 ± 0.003
EGNN 0.694 ± 0.010 0.650 ± 0.010 0.632 ± 0.015 0.619 ± 0.007
SchNet 0.768 ± 0.008 0.724 ± 0.013 0.715 ± 0.015 0.685 ± 0.006

Table 8: Performance (MCRMSE) of different models across various fractions of training data
(mean ± standard deviation) on Fungal dataset.

Fungal 0.25 0.50 0.75 1.00
Transformer1D 1.510 ± 0.006 1.446 ± 0.014 1.475 ± 0.035 1.417 ± 0.005
GCN 1.243 ± 0.064 1.244 ± 0.128 1.151 ± 0.077 1.192 ± 0.077
GAT 1.211 ± 0.125 1.168 ± 0.033 1.146 ± 0.109 1.112 ± 0.035
ChebNet 1.125 ± 0.097 1.011 ± 0.010 1.008 ± 0.009 0.973 ± 0.003
Graph Transformer 1.415 ± 0.014 1.331 ± 0.163 1.306 ± 0.127 1.317 ± 0.002
GraphGPS 1.289 ± 0.071 1.377 ± 0.127 1.357 ± 0.106 1.025 ± 0.081

Table 9: Performance (MCRMSE) of different models across various fractions of sequence labeling
(mean ± standard deviation) on COVID dataset.

COVID 0.2 0.4 0.6 0.8 1.0
Transformer1D 0.654 ± 0.040 0.559 ± 0.011 0.480 ± 0.004 0.429 ± 0.034 0.361 ± 0.017
Transformer1D2D 0.502 ± 0.002 0.470 ± 0.052 0.374 ± 0.007 0.325 ± 0.006 0.305 ± 0.012
GCN 0.450 ± 0.012 0.416 ± 0.012 0.397 ± 0.012 0.378 ± 0.011 0.359 ± 0.009
GAT 0.411 ± 0.010 0.376 ± 0.012 0.360 ± 0.012 0.336 ± 0.009 0.315 ± 0.006
ChebNet 0.380 ± 0.007 0.344 ± 0.008 0.325 ± 0.009 0.299 ± 0.007 0.279 ± 0.007
Graph Transformer 0.415 ± 0.012 0.379 ± 0.011 0.362 ± 0.011 0.338 ± 0.004 0.318 ± 0.008
GraphGPS 0.428 ± 0.015 0.400 ± 0.017 0.376 ± 0.013 0.351 ± 0.007 0.332 ± 0.013
EGNN 0.436 ± 0.014 0.421 ± 0.010 0.407 ± 0.004 0.385 ± 0.006 0.364 ± 0.003
SchNet 0.442 ± 0.004 0.429 ± 0.005 0.413 ± 0.001 0.407 ± 0.005 0.390 ± 0.006
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Table 10: Performance (MCRMSE) of different models across various fractions of sequence labeling
(mean ± standard deviation) on Ribonanza dataset.

Ribonanza 0.2 0.4 0.6 0.8 1.0
Transformer1D 1.137 ± 0.163 0.929 ± 0.023 0.823 ± 0.018 0.742 ± 0.013 0.705 ± 0.015
Transformer1D2D 0.859 ± 0.025 0.638 ± 0.013 0.632 ± 0.028 0.568 ± 0.013 0.514 ± 0.004
GCN 1.191 ± 0.031 1.026 ± 0.079 1.111 ± 0.206 1.070 ± 0.137 0.595 ± 0.006
GAT 0.703 ± 0.015 0.632 ± 0.025 0.612 ± 0.030 0.560 ± 0.010 0.534 ± 0.006
ChebNet 0.614 ± 0.013 0.546 ± 0.008 0.540 ± 0.008 0.514 ± 0.006 0.468 ± 0.002
Graph Transformer 0.719 ± 0.043 0.607 ± 0.020 0.584 ± 0.015 0.552 ± 0.013 0.515 ± 0.001
GraphGPS 0.743 ± 0.058 0.663 ± 0.026 0.627 ± 0.024 0.651 ± 0.026 0.523 ± 0.003
EGNN 0.882 ± 0.010 0.722 ± 0.021 0.687 ± 0.008 0.665 ± 0.013 0.619 ± 0.007
SchNet 0.810 ± 0.002 0.781 ± 0.009 0.750 ± 0.009 0.725 ± 0.004 0.685 ± 0.006

Table 11: Performance (MCRMSE) of various models in robustness experiments on the COVID
dataset (mean ± standard deviation).

Model 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transformer1D 0.361 ± 0.017 0.386 ± 0.015 0.400 ± 0.010 0.409 ± 0.006 0.428 ± 0.005 0.435 ± 0.003 0.449 ± 0.011
Transformer1D2D 0.305 ± 0.012 0.373 ± 0.007 0.403 ± 0.007 0.428 ± 0.011 0.444 ± 0.015 0.457 ± 0.009 0.463 ± 0.009
GCN 0.359 ± 0.009 0.436 ± 0.009 0.464 ± 0.011 0.481 ± 0.010 0.491 ± 0.012 0.497 ± 0.009 0.501 ± 0.009
GAT 0.315 ± 0.006 0.409 ± 0.009 0.448 ± 0.011 0.471 ± 0.010 0.484 ± 0.012 0.494 ± 0.011 0.500 ± 0.010
ChebNet 0.279 ± 0.007 0.368 ± 0.003 0.423 ± 0.009 0.456 ± 0.007 0.471 ± 0.009 0.481 ± 0.010 0.487 ± 0.008
Graph Transformer 0.318 ± 0.008 0.403 ± 0.008 0.441 ± 0.012 0.467 ± 0.011 0.480 ± 0.012 0.487 ± 0.010 0.494 ± 0.011
GraphGPS 0.332 ± 0.013 0.408 ± 0.012 0.441 ± 0.010 0.464 ± 0.014 0.475 ± 0.012 0.484 ± 0.012 0.487 ± 0.008
EGNN 0.364 ± 0.003 0.432 ± 0.012 0.467 ± 0.009 0.486 ± 0.009 0.499 ± 0.011 0.505 ± 0.012 0.511 ± 0.011
SchNet 0.390 ± 0.006 0.447 ± 0.012 0.477 ± 0.011 0.496 ± 0.009 0.507 ± 0.014 0.513 ± 0.012 0.517 ± 0.010

Table 12: Performance (MCRMSE) of various models in robustness experiments on the Ribonanza
dataset (mean ± standard deviation).

Model 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transformer1D 0.705 ± 0.015 0.733 ± 0.010 0.769 ± 0.014 0.782 ± 0.005 0.794 ± 0.010 0.805 ± 0.017 0.823 ± 0.005
Transformer1D2D 0.514 ± 0.004 0.635 ± 0.004 0.714 ± 0.014 0.763 ± 0.008 0.790 ± 0.009 0.811 ± 0.014 0.830 ± 0.008
GCN 0.595 ± 0.006 0.750 ± 0.014 0.846 ± 0.008 0.893 ± 0.003 0.912 ± 0.005 0.924 ± 0.005 0.929 ± 0.005
GAT 0.534 ± 0.006 0.691 ± 0.015 0.785 ± 0.006 0.850 ± 0.003 0.877 ± 0.001 0.904 ± 0.007 0.915 ± 0.007
ChebNet 0.468 ± 0.002 0.611 ± 0.012 0.720 ± 0.006 0.802 ± 0.011 0.841 ± 0.003 0.876 ± 0.007 0.897 ± 0.008
Graph Transformer 0.515 ± 0.001 0.670 ± 0.011 0.768 ± 0.011 0.833 ± 0.008 0.870 ± 0.006 0.893 ± 0.010 0.908 ± 0.007
GraphGPS 0.523 ± 0.003 0.677 ± 0.017 0.772 ± 0.006 0.832 ± 0.006 0.872 ± 0.004 0.896 ± 0.011 0.912 ± 0.006
EGNN 0.619 ± 0.007 0.764 ± 0.003 0.847 ± 0.003 0.889 ± 0.005 0.904 ± 0.003 0.917 ± 0.000 0.922 ± 0.002
SchNet 0.685 ± 0.006 0.814 ± 0.006 0.873 ± 0.004 0.897 ± 0.004 0.908 ± 0.004 0.918 ± 0.005 0.922 ± 0.005

Table 13: Performance (MCRMSE) of various models in robustness experiments on the Fungal
dataset (mean ± standard deviation).

Model 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transformer1D 1.417 ± 0.005 1.545 ± 0.045 1.546 ± 0.044 1.546 ± 0.046 1.543 ± 0.048 1.543 ± 0.051 1.550 ± 0.041
GCN 1.192 ± 0.077 1.222 ± 0.044 1.255 ± 0.002 1.277 ± 0.014 1.269 ± 0.011 1.328 ± 0.026 1.294 ± 0.025
GAT 1.112 ± 0.035 1.244 ± 0.074 1.391 ± 0.155 1.334 ± 0.099 1.468 ± 0.056 1.444 ± 0.094 1.446 ± 0.092
ChebNet 0.978 ± 0.000 1.031 ± 0.003 1.091 ± 0.007 1.108 ± 0.009 1.243 ± 0.005 1.210 ± 0.014 1.269 ± 0.007
Graph Transformer 1.342 ± 0.087 1.267 ± 0.116 1.409 ± 0.046 1.426 ± 0.051 1.442 ± 0.038 1.413 ± 0.020 1.450 ± 0.018
GraphGPS 1.083 ± 0.131 1.048 ± 0.095 1.133 ± 0.057 1.109 ± 0.040 1.173 ± 0.071 1.256 ± 0.016 1.328 ± 0.041

Table 14: Performance (MCRMSE) of various models in robustness experiments on the Tc-
riboswitches dataset (mean ± standard deviation).

Model 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transformer1D 0.705 ± 0.079 0.698 ± 0.071 0.736 ± 0.004 0.672 ± 0.003 0.739 ± 0.008 0.694 ± 0.011 0.675 ± 0.047
Transformer1D2D 0.633 ± 0.001 0.697 ± 0.031 0.742 ± 0.003 0.708 ± 0.008 0.681 ± 0.001 0.762 ± 0.022 0.738 ± 0.016
GCN 0.701 ± 0.004 0.758 ± 0.003 0.747 ± 0.005 0.744 ± 0.004 0.733 ± 0.013 0.740 ± 0.011 0.765 ± 0.009
GAT 0.685 ± 0.024 0.749 ± 0.017 0.770 ± 0.047 0.734 ± 0.021 0.737 ± 0.009 0.753 ± 0.001 0.747 ± 0.011
ChebNet 0.621 ± 0.022 0.766 ± 0.014 0.754 ± 0.021 0.738 ± 0.014 0.763 ± 0.039 0.778 ± 0.048 0.739 ± 0.004
Graph Transformer 0.703 ± 0.054 0.754 ± 0.005 0.754 ± 0.006 0.773 ± 0.008 0.810 ± 0.087 0.742 ± 0.004 0.754 ± 0.005
GraphGPS 0.702 ± 0.028 0.785 ± 0.053 0.805 ± 0.092 0.750 ± 0.006 0.755 ± 0.060 0.769 ± 0.031 1.078 ± 0.469
EGNN 0.663 ± 0.010 0.750 ± 0.001 0.739 ± 0.002 0.749 ± 0.005 0.749 ± 0.001 0.749 ± 0.001 0.756 ± 0.013
SchNet 0.655 ± 0.038 0.762 ± 0.005 0.742 ± 0.002 0.771 ± 0.037 0.746 ± 0.005 0.791 ± 0.016 0.730 ± 0.016
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Table 15: Performance (MCRMSE) of various models in generalization experiments on the
COVID dataset (mean ± standard deviation).

Model 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transformer1D 0.361 ± 0.017 0.382 ± 0.022 0.402 ± 0.018 0.436 ± 0.015 0.461 ± 0.021 0.478 ± 0.015 0.494 ± 0.016
Transformer1D2D 0.305 ± 0.012 0.406 ± 0.016 0.466 ± 0.017 0.513 ± 0.016 0.545 ± 0.027 0.581 ± 0.025 0.596 ± 0.018
GCN 0.359 ± 0.009 0.459 ± 0.011 0.508 ± 0.011 0.550 ± 0.014 0.572 ± 0.016 0.601 ± 0.014 0.612 ± 0.008
GAT 0.315 ± 0.006 0.437 ± 0.013 0.490 ± 0.013 0.528 ± 0.008 0.555 ± 0.013 0.580 ± 0.015 0.592 ± 0.012
ChebNet 0.279 ± 0.007 0.415 ± 0.017 0.483 ± 0.023 0.538 ± 0.025 0.571 ± 0.029 0.604 ± 0.030 0.621 ± 0.028
Graph Transformer 0.318 ± 0.008 0.449 ± 0.015 0.501 ± 0.018 0.543 ± 0.015 0.571 ± 0.019 0.596 ± 0.014 0.609 ± 0.014
GraphGPS 0.332 ± 0.013 0.443 ± 0.011 0.496 ± 0.006 0.536 ± 0.005 0.559 ± 0.010 0.586 ± 0.007 0.593 ± 0.005
EGNN 0.365 ± 0.011 0.458 ± 0.014 0.504 ± 0.018 0.530 ± 0.020 0.549 ± 0.021 0.565 ± 0.022 0.572 ± 0.022
SchNet 0.390 ± 0.006 0.457 ± 0.011 0.491 ± 0.008 0.515 ± 0.007 0.531 ± 0.010 0.543 ± 0.009 0.556 ± 0.002

Table 16: Performance (MCRMSE) of various models in generalization experiments on the Ribo-
nanza dataset (mean ± standard deviation).

Model 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transformer1D 0.705 ± 0.015 0.747 ± 0.005 0.796 ± 0.006 0.828 ± 0.008 0.860 ± 0.013 0.886 ± 0.013 0.899 ± 0.003
Transformer1D2D 0.514 ± 0.004 0.685 ± 0.014 0.857 ± 0.008 0.986 ± 0.015 1.055 ± 0.007 1.142 ± 0.020 1.192 ± 0.034
GCN 0.595 ± 0.006 0.857 ± 0.018 0.993 ± 0.012 1.054 ± 0.034 1.094 ± 0.043 1.129 ± 0.061 1.139 ± 0.075
GAT 0.534 ± 0.006 0.778 ± 0.021 0.919 ± 0.030 1.003 ± 0.056 1.047 ± 0.073 1.076 ± 0.082 1.093 ± 0.091
ChebNet 0.468 ± 0.002 0.699 ± 0.005 0.881 ± 0.038 1.025 ± 0.095 1.083 ± 0.111 1.165 ± 0.185 1.200 ± 0.220
Graph Transformer 0.515 ± 0.001 0.752 ± 0.005 0.930 ± 0.013 1.067 ± 0.036 1.124 ± 0.033 1.194 ± 0.080 1.224 ± 0.104
GraphGPS 0.523 ± 0.003 0.771 ± 0.026 0.958 ± 0.068 1.087 ± 0.142 1.116 ± 0.195 1.154 ± 0.202 1.165 ± 0.196
EGNN 0.691 ± 0.006 0.815 ± 0.004 0.975 ± 0.026 1.138 ± 0.078 1.228 ± 0.079 1.350 ± 0.173 1.395 ± 0.187
SchNet 0.685 ± 0.006 0.844 ± 0.006 0.949 ± 0.022 1.068 ± 0.035 1.157 ± 0.069 1.270 ± 0.049 1.342 ± 0.117

Table 17: Performance (MCRMSE) of various models in generalization experiments on the Fungal
dataset (mean ± standard deviation).

Model 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transformer1D 1.417 ± 0.005 1.575 ± 0.002 1.575 ± 0.002 1.575 ± 0.002 1.575 ± 0.002 1.575 ± 0.002 1.575 ± 0.002
GCN 1.192 ± 0.077 1.230 ± 0.061 1.256 ± 0.050 1.280 ± 0.052 1.290 ± 0.044 1.328 ± 0.032 1.333 ± 0.046
GAT 1.112 ± 0.035 1.262 ± 0.115 1.284 ± 0.102 1.312 ± 0.092 1.334 ± 0.087 1.364 ± 0.080 1.373 ± 0.072
ChebNet 0.973 ± 0.003 1.118 ± 0.008 1.257 ± 0.018 1.382 ± 0.022 1.525 ± 0.020 1.686 ± 0.030 1.777 ± 0.033
Graph Transformer 1.317 ± 0.002 1.407 ± 0.053 1.418 ± 0.046 1.427 ± 0.040 1.439 ± 0.033 1.447 ± 0.029 1.456 ± 0.028
GraphGPS 1.025 ± 0.081 1.083 ± 0.011 1.160 ± 0.006 1.217 ± 0.012 1.316 ± 0.026 1.405 ± 0.040 1.463 ± 0.052

Table 18: Performance (MCRMSE) of various models in generalization experiments on the Tc-
riboswitches dataset (mean ± standard deviation).

Model 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transformer1D 0.705 ± 0.079 0.711 ± 0.038 0.732 ± 0.007 0.753 ± 0.019 0.815 ± 0.091 0.803 ± 0.062 0.796 ± 0.079
Transformer1D2D 0.633 ± 0.001 0.705 ± 0.007 0.745 ± 0.008 0.749 ± 0.017 0.800 ± 0.034 0.766 ± 0.017 0.754 ± 0.014
GCN 0.701 ± 0.004 0.774 ± 0.026 0.781 ± 0.051 0.782 ± 0.062 0.825 ± 0.093 0.845 ± 0.072 0.858 ± 0.126
GAT 0.685 ± 0.024 0.829 ± 0.074 0.958 ± 0.131 0.926 ± 0.152 1.037 ± 0.297 0.998 ± 0.213 1.036 ± 0.392
ChebNet 0.621 ± 0.022 0.824 ± 0.185 0.862 ± 0.251 0.888 ± 0.302 0.997 ± 0.439 0.983 ± 0.412 1.045 ± 0.514
Graph Transformer 0.710 ± 0.041 0.759 ± 0.035 0.770 ± 0.047 0.776 ± 0.054 0.815 ± 0.101 0.795 ± 0.085 0.822 ± 0.115
GraphGPS 0.715 ± 0.012 0.751 ± 0.016 0.801 ± 0.023 0.795 ± 0.014 0.833 ± 0.025 0.814 ± 0.022 0.830 ± 0.018
EGNN 0.663 ± 0.010 0.760 ± 0.043 0.898 ± 0.134 0.901 ± 0.123 0.849 ± 0.053 1.058 ± 0.239 1.192 ± 0.453
SchNet 0.655 ± 0.038 1.368 ± 0.449 1.099 ± 0.320 1.419 ± 0.491 0.900 ± 0.119 1.957 ± 0.858 2.025 ± 0.779
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