

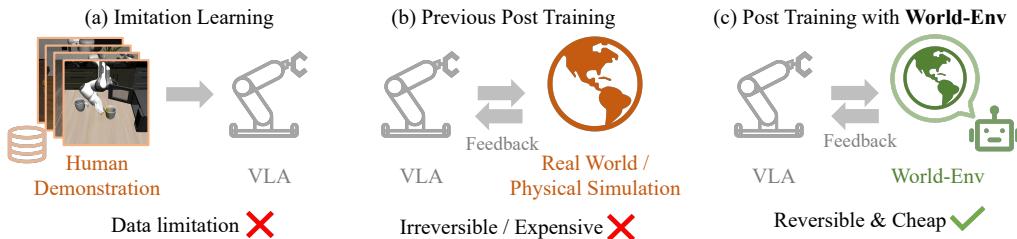
000 WORLD-ENV: LEVERAGING WORLD MODEL AS A 001 VIRTUAL ENVIRONMENT FOR VLA POST-TRAINING 002

003 **Anonymous authors**

004 Paper under double-blind review

005 ABSTRACT

006 Vision-Language-Action (VLA) models trained via imitation learning suffer from
007 significant performance degradation in data-scarce scenarios due to their reliance
008 on large-scale demonstration datasets. Although reinforcement learning (RL)-
009 based post-training has proven effective in addressing data scarcity, its application
010 to VLA models is hindered by the non-resettable nature of real-world environ-
011 ments. This limitation is particularly critical in high-risk domains such as indus-
012 trial automation, where interactions often induce state changes that are costly or
013 infeasible to revert. Furthermore, existing VLA approaches lack a reliable mech-
014 anism for detecting task completion, leading to redundant actions that reduce over-
015 all task success rates. To address these challenges, we propose World-Env, an RL-
016 based post-training framework that replaces physical interaction with a low-cost,
017 world model-based virtual simulator. World-Env consists of two key components:
018 (1) a video-based world simulator that generates temporally consistent future vi-
019 sual observations, and (2) a vision-language model (VLM)-guided instant reflector
020 that provides continuous reward signals and predicts action termination. This sim-
021 ulated environment enables VLA models to safely explore and generalize beyond
022 their initial imitation learning distribution. Our method achieves notable perfor-
023 mance gains with as few as five expert demonstrations per task. Experiments on
024 complex robotic manipulation tasks demonstrate that World-Env effectively over-
025 comes the data inefficiency, safety constraints, and inefficient execution of con-
026 ventional VLA models that rely on real-world interaction, offering a practical and
027 scalable solution for post-training in resource-constrained settings.



041 Figure 1: Comparison of three VLA training paradigms: (a) Imitation learning suffers from poor
042 generalization under data scarcity. (b) Prior RL-based post-training methods require real-world
043 interaction, which is often infeasible due to non-resettable state transitions (e.g., object drop or
044 collision). (c) Our proposed World-Env enables post-training via simulated rollouts using a world
045 model, eliminating the need for physical interaction and supporting safe, efficient exploration even
046 with minimal expert demonstrations.

047 1 INTRODUCTION

048 Vision-Language-Action (VLA) models have emerged as a central paradigm for autonomous agents,
049 enabling end-to-end mapping from high-level language instructions to low-level motor commands
050 by integrating vision, language, and control. These models have demonstrated considerable promise
051 in robotic manipulation (Kim et al., 2024; Black et al., 2024), autonomous driving (Yurtsever et al.,
052

054 2020), and navigation (Hong et al., 2021). Most existing approaches rely on supervised fine-tuning
 055 through imitation learning, building upon pre-trained vision-language models (Touvron et al., 2023a)
 056 to align semantic intent with physical execution via cross-modal representations.
 057

058 However, imitation learning methods (Kim et al., 2025) are inherently constrained by the limited
 059 availability of high-quality demonstrations. In many real-world scenarios, collecting diverse and
 060 safe human demonstrations is prohibitively expensive and often infeasible due to safety concerns and
 061 environmental complexity. Furthermore, such methods generalize poorly to novel tasks or unseen
 062 objects, and their performance degrades under few-shot conditions.
 063

064 To overcome these shortcomings, recent works (Tan et al., 2025; Lu et al., 2025) have turned to rein-
 065 forcement learning (RL) (Rafailov et al., 2023) to enable agents to learn through interaction. Current
 066 RL strategies fall into two categories. The first involves real-world learning with human feedback,
 067 which captures realistic environmental dynamics but suffers from non-resettable interactions, high
 068 trial costs, and limited reproducibility, rendering it unsuitable for safety-critical applications. The
 069 second relies on simulator-based learning, which avoids physical risks but introduces other chal-
 070 lenges, including substantial development effort, limited sim-to-real transfer, and difficulty adapting
 071 to new objects or dynamic scene changes, thereby restricting its practical applicability.
 072

073 These limitations motivate us to think about a question: *Is there an “ideal testbed” that avoids real-
 074 world risks while providing greater flexibility and richer semantic understanding than conventional
 075 simulators?* We find that video-based world model offers a promising solution. Equipped with
 076 action-conditioned future prediction and a persistent latent scene representation, world model can
 077 generate visually plausible future image sequences, allowing safe, low-cost simulation of action
 078 outcomes, as well as policy exploration and refinement without physical interaction.
 079

080 In this work, we introduce World-Env, a world model-based reinforcement learning framework that
 081 improves policy generalization under data scarcity while respecting real-world safety constraints, as
 082 shown in Figure 1. World-Env consists of two components. The first is a video-based world sim-
 083 ular that functions as an interactive future-frame predictor, synthesizing action-conditioned image
 084 sequences that capture post-interaction object states and surrounding scene structure. The second is
 085 a VLM-guided instant reflector that functions as a semantics-aware reward module. It provides con-
 086 tinuous reward signals by evaluating the semantic alignment between predicted visual frames and
 087 the input language instruction. This assessment supports policy optimization and enables real-time
 088 detection of task completion. Upon confirming successful execution (e.g., when the goal state is
 089 reached), the reflector immediately terminates the action sequence to prevent redundant or disrupt-
 090ive subsequent actions. The framework delivers three principal benefits: (1) efficient generalization
 091 from minimal expert demonstrations, (2) safe controllability through risk-free virtual exploration,
 092 and (3) language-aligned termination via VLM-driven reasoning.
 093

094 In summary, our contributions are:
 095

- 096 • We propose World-Env, a world model-based framework that enables low-cost, safe reinforce-
 097 ment learning post-training for VLA policies under extreme data scarcity, eliminating the need
 098 for real-world interaction.
- 099 • World-Env integrates a video-based world simulator and a VLM-guided instant reflector to
 100 jointly provide temporally consistent visual observations and continuous reward signals, form-
 101 ing a self-contained virtual environment that supports effective policy exploration.
- 102 • We introduce a real-time termination mechanism via the instant reflector, which dynamically
 103 assesses task completion by evaluating semantic alignment between predicted visual trajec-
 104 tories and language instructions, thereby preventing redundant post-success actions.

105 2 RELATED WORK

106 **Vision-Language-Action Models.** Leveraging advancements in pre-trained vision foundation
 107 models (Radford et al., 2021; Oquab et al., 2023; Dosovitskiy et al., 2020), large language models
 108 (LLMs) (Brown et al., 2020; Touvron et al., 2023b; Bai et al., 2023), and vision-language models
 109 (VLMs) (Alayrac et al., 2022; Li et al., 2022; 2023; Dai et al., 2023; Liu et al., 2023c;b), Vision-
 110 Language-Action (VLA) frameworks (Chi et al., 2023; Team et al., 2024; Kim et al., 2024; Bu et al.,
 111

2025) have emerged as a powerful approach for embodied intelligence. These models bridge the gap between high-dimensional sensory inputs and physical-world actions by processing multimodal signals, such as camera feeds, sensor data, and natural language instructions, and translating them into actionable outputs for robotic systems. DiffusionPolicy (Chi et al., 2023) proposes a diffusion-based policy that generates robot actions through a conditional denoising diffusion process in the action space, iteratively refining actions based on visual observations. OpenVLA (Kim et al., 2024) integrates robotic actions into a language modeling framework by mapping action sequences to discrete tokens within a large language model. The recent work OpenVLA-OFT (Kim et al., 2025) further converts discrete action sequences into continuous representations, achieving improved inference efficiency and task performance.

Reinforcement Learning for VLA Systems. Recent advances in reinforcement learning (RL) (Schulman et al., 2017; Rafailov et al., 2023) have demonstrated considerable potential in enhancing decision-making capabilities of large language models (LLMs) (Guo et al., 2025; Lightman et al., 2023; Ouyang et al., 2022; Lee et al., 2023). This progress has spurred growing interest in applying RL to Vision-Language-Action (VLA) systems (Tan et al., 2025; Lu et al., 2025; Chandra et al., 2025; Jiang et al., 2025a), where adaptive behavior is essential. Unlike supervised fine-tuning (SFT), which replicates static demonstrations, RL enables agents to refine policies through interaction, optimizing actions to maximize task-oriented rewards. This paradigm supports autonomous exploration, reward-driven adaptation, and improved robustness to partial observability, allowing VLA models to generalize to unseen scenarios while reducing reliance on costly human demonstrations. However, existing RL-based VLA methods typically require real-world interaction, which is often infeasible in high-risk or non-resettable scenarios.

World Models. World models (Assran et al., 2025; Ball et al., 2025), which are learned dynamical simulators that approximate environmental dynamics, have become foundational for safe and sample-efficient agent training. Early works (Hafner et al., 2019; 2020; 2025) demonstrated the effectiveness of model-based reinforcement learning in virtual environments, enabling agents to plan via imagined trajectories without real-world interaction. Recent advances, such as TD-MPC2 (Hansen et al., 2024), have improved scalability and policy learning efficiency across multi-task and multi-domain settings. Similarly, PWM (Georgiev et al., 2025) leverages pre-trained world models and first-order optimization to handle high-dimensional action spaces in multi-task RL. However, these methods typically rely on on-policy data, limiting their generalization to specific environments and downstream tasks. Building on advances in diffusion-based video generation (Ho et al., 2020; Rombach et al., 2022; Blattmann et al., 2023; Yang et al., 2024; Wan et al., 2025; Xing et al., 2024), we propose a framework that trains a world model on offline demonstration data and keeps it fixed during policy learning to predict future visual observations for VLA models. This decouples world model training from policy exploration, enabling broader applicability in resource-constrained or high-risk scenarios.

3 PRELIMINARY

Vision-Language-Action Models. Vision-language-action (VLA) models bridge natural language instructions with robotic control by translating semantic goals into low-level actions while grounding language in multimodal observations. Following recent VLA frameworks such as OpenVLA-OFT (Kim et al., 2025), the policy is implemented as a deterministic mapping that leverages a pretrained vision-language model to extract multimodal features, followed by a lightweight action head for continuous control. Specifically, given a history of RGB observations $\mathbf{o}_{1:t}$, proprioceptive states $\mathbf{s}_{1:t}$ (e.g., joint angles or end-effector poses), and a language instruction \mathbf{g} , the policy predicts a deterministic action $\mathbf{a}_t \in \mathbb{R}^D$ as:

$$\mathbf{a}_t = \pi_\theta(\mathbf{o}_{1:t}, \mathbf{s}_{1:t}, \mathbf{g}), \quad (1)$$

where π_θ denotes a deterministic policy parameterized by a finetuned foundation model and a trainable action head.

Reinforcement Learning. Reinforcement learning (RL) formulates decision-making as a Markov Decision Process (MDP): $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma)$, where \mathcal{S} is the state space (comprising visual observations \mathbf{o}_t and proprioceptive states \mathbf{s}_t), \mathcal{A} is the action space (e.g., continuous control commands

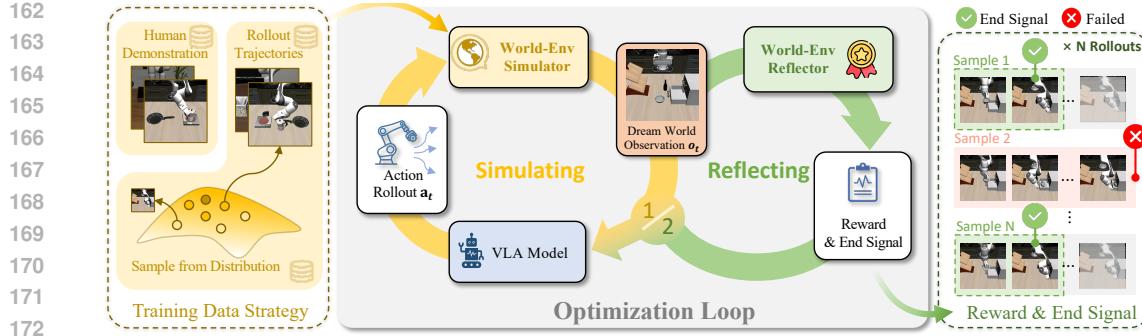


Figure 2: **Overview of World-Env.** Our framework comprises: (1) a *Training Data Strategy* that augments human demonstrations trajectories with VLA self-explored trajectories to train the World-Env Simulator; (2) an *Optimization Loop* where the VLA model generates actions, the simulator predicts future observations, and the World-Env Reflector generates feedback; and (3) *Reward & End Signal* provides trajectory-wise reward and end signals for RL optimization.

$\mathbf{a}_t \in \mathbb{R}^D$), \mathcal{P} denotes the transition dynamics, \mathcal{R} is the reward function, and $\gamma \in [0, 1]$ is the discount factor. The objective is to learn a policy $\pi_\theta(\mathbf{o}_{1:t}, \mathbf{s}_{1:t}, \mathbf{g})$ that maximizes the expected return:

$$J(\pi_\theta) = \mathbb{E}_{\pi_\theta} \left[\sum_{t=0}^T \gamma^t r_t \right],$$

where $r_t = \mathcal{R}(\mathbf{o}_{1:t}, \mathbf{g})$. In practice, policy gradient methods often introduce stochasticity during training to enable exploration. The policy is updated using gradients of the form:

$$\nabla_\theta J(\pi_\theta) = \mathbb{E}_{\mathbf{a}_t \sim \pi_\theta} [\nabla_\theta \pi_\theta(\mathbf{o}_{1:t}, \mathbf{s}_{1:t}, \mathbf{g}) \cdot A(\mathbf{o}_{1:t}, \mathbf{a}_{1:t})], \quad (2)$$

where $A(\cdot)$ is the advantage function that evaluates action quality relative to a baseline.

4 METHOD

Figure 2 presents the overview of our framework. Prior VLA approaches (Kim et al., 2024; 2025) typically rely on either real-world interaction or conventional simulators to provide observations for action prediction. In contrast, our framework eliminates the need for physical interaction by leveraging a **video-based world simulator** that generates temporally consistent future visual observations at low cost. Specifically, the deterministic VLA policy π_θ maps the current RGB observation \mathbf{o}_t , language instruction \mathbf{g} , and proprioceptive state \mathbf{s}_t (comprising the 6D end-effector pose and 1D gripper state) to a continuous action \mathbf{a}_t . The next proprioceptive state \mathbf{s}_{t+1} is then computed deterministically from \mathbf{s}_t and \mathbf{a}_t using forward kinematics. The world simulator takes the executed action \mathbf{a}_t and the resulting proprioceptive state \mathbf{s}_{t+1} as inputs and predicts the subsequent visual observation \mathbf{o}_{t+1} . This imagined observation, together with \mathbf{s}_{t+1} , is fed back into the VLA policy to predict the next action \mathbf{a}_{t+1} . The rollout terminates either when the maximum timestep is reached or when the **VLM-guided instant reflector**, which evaluates semantic alignment between the predicted visual trajectory and the language instruction, confirms task success and issues a termination signal. During training, we collect N simulated trajectories from this virtual environment and use them for reinforcement learning (RL) optimization of the VLA policy within World-Env.

4.1 VIDEO-BASED WORLD SIMULATOR

Our world simulator is built upon the EVAC framework (Jiang et al., 2025b). During rollout, the simulator takes the executed action \mathbf{a}_t and the resulting proprioceptive state \mathbf{s}_{t+1} as inputs to predict the next visual observation \mathbf{o}_{t+1} . The proprioceptive state \mathbf{s}_{t+1} comprises a 3D position vector $\mathbf{x}_{t+1} \in \mathbb{R}^3$, a 3D rotation vector $\mathbf{q}_{t+1} \in \mathbb{R}^3$ (represented in axis-angle format), and a 1D gripper state $p_{t+1} \in [0, 1]$.

Following Jiang et al. (2025b), we render an action map by projecting the proprioceptive state \mathbf{s}_{t+1} onto the image plane. This action map consists of a foreground marker indicating the projected

pose and a black background to enhance visual contrast. The action map, together with the history observation, is injected into the EVAC world model as pixel-level conditioning. The EVAC model then generates the future observation \mathbf{o}_{t+1} using a diffusion-based image generation module. For further architectural details, we refer readers to Jiang et al. (2025b).

To train the world model, we find that relying solely on expert demonstrations from the LIBERO benchmark (Liu et al., 2023a) limits generalization to unseen state-action sequences. To address this, we augment the training data by enabling autonomous exploration in the LIBERO simulator. Specifically, we deploy the supervised fine-tuned OpenVLA-OFT policy (Kim et al., 2025) to predict actions and execute them in the simulator, which yields the corresponding next proprioceptive state \mathbf{s}_{t+1} and observation \mathbf{o}_{t+1} . To further enhance data diversity, we introduce controlled stochasticity by training a scale head that predicts the log-scale parameter β_t of a Laplace distribution, with the OpenVLA-OFT action μ_t as the location parameter: $\mathbf{a}_t \sim \text{Laplace}(\mu_t, \beta_t)$. These perturbed actions are executed to collect additional $(\mathbf{o}_t, \mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1}, \mathbf{o}_{t+1})$ transition tuples. Finally, we combine these autonomously collected trajectories with the original human-demonstrated successful trajectories from LIBERO (Liu et al., 2023a) to form a diverse and robust training dataset for the world simulator. Additional analysis of the world simulator and network architecture are provided in the supplementary material.

4.2 VLM-GUIDED INSTANT REFLECTOR

Previous methods (Tan et al., 2025; Lu et al., 2025) rely on simulators to provide binary task success signals, using sparse discrete rewards for RL post-training. These approaches suffer from a key limitation: the lack of termination-aware feedback, causing policies to often continue executing redundant actions after task completion (e.g., over-scooping after object placement). To address this, we propose a VLM-guided instant reflector that leverages LLaVA (Liu et al., 2023c), a pretrained vision-language model, to provide a continuous-valued reward signal.

Given a video of imagined observations $\mathbf{o}_{1:t}$ and a language instruction \mathbf{g} , the instant reflector predicts a step-wise reward $R(\mathbf{o}_{1:t}, \mathbf{g}) \in [0, 1]$ for each time step t , which estimates the probability that the task has been successfully completed by time t . The architecture consists of a frozen vision encoder $\mathcal{E}_{\text{vision}}$ that extracts patch embeddings from video frames, a frozen LLM \mathcal{E}_{LLM} that performs cross-modal reasoning over the visual-language sequence, and a lightweight reward head \mathcal{R}_θ that computes:

$$R(\mathbf{o}_{1:t}, \mathbf{g}) = \sigma(\mathcal{R}_\theta(h_t)), \quad (3)$$

where σ is the sigmoid function and h_t is the pooled multimodal embedding from the LLM at time t . The termination signal is triggered at the timestep t where $R(\mathbf{o}_{1:t}, \mathbf{g}) > \eta$, with threshold $\eta = 0.5$.

For training, we utilize per-frame binary success labels: for each trajectory, every timestep t is annotated with $y_t \in \{0, 1\}$, indicating whether the task is completed at or before t . These labels are derived from two sources: (1) expert trajectories from the LIBERO dataset (Liu et al., 2023a), where success is determined by task-specific criteria, and (2) policy-generated trajectories collected in simulator (Section 4.1), labeled using an oracle that monitors ground-truth task states in the simulator. The reward head \mathcal{R}_θ is trained with binary cross-entropy (BCE) loss:

$$\mathcal{L} = \text{BCE}(R(\mathbf{o}_{1:t}, \mathbf{g}), y_t).$$

This supervision enables the reflector to recognize task completion as soon as it occurs, rather than relying on trajectory-level signals. During RL, we use the reward sparsely: the return is computed using a single reward assigned at the termination timestep (or at T if no termination occurs), ensuring compatibility with standard policy gradient methods. This design allows World-Env to simultaneously support real-time termination and efficient policy learning, effectively addressing the execution inefficiency of prior VLA post-training approaches (Tan et al., 2025; Lu et al., 2025). More details can be found in the supplementary material.

4.3 POST TRAINING OF VLA MODEL

Our reinforcement learning pipeline employs a PPO-style objective with continuous reward signals; the full algorithm is provided in the supplementary material. Following Tan et al. (2025), training proceeds in three stages: rollout generation, advantage estimation, and policy optimization.

270 **Table 1: Success rate comparison on the LIBERO benchmark.** We report success rates for each
 271 method using the same setting with only 5 demonstrations per task.

Method	LIBERO-Goal	LIBERO-Object	LIBERO-Spatial	LIBERO-Long	Average
π_0 (Black et al., 2024)	67.6	68.4	80.2	28.2	61.1
π_0 +FAST (Pertsch et al., 2025)	59.2	76.8	59.2	24.8	55.0
OpenVLA (Kim et al., 2024)	73.2	55.0	82.4	32.2	60.7
UniVLA (Bu et al., 2025)	82.0	76.2	84.4	56.4	74.75
OpenVLA-OFT (Kim et al., 2025)	84.0	74.2	84.2	57.0	74.85
OpenVLA-OFT + Post-training (Ours)	86.4	86.6	87.6	57.8	79.6

280 During rollout, we generate trajectories $\tau = (\mathbf{o}_{1:T}, \mathbf{s}_{1:T}, \mathbf{g}, \mathbf{a}_{1:T})$ using the world simulator (Section
 281 4.1). Starting from an initial observation \mathbf{o}_1 , proprioceptive state \mathbf{s}_1 , and language instruction
 282 \mathbf{g} , the deterministic VLA policy π_θ predicts a base action $\mathbf{a}_t = \pi_\theta(\mathbf{o}_{1:t}, \mathbf{s}_{1:t}, \mathbf{g})$. A separate scale
 283 head, trained to model action uncertainty, outputs a log-scale parameter β_t . Together, they define a
 284 factorized Laplace distribution, from which the executed action \mathbf{a}_t is sampled. This enables adaptive,
 285 uncertainty-aware exploration. The world simulator then predicts the next observation \mathbf{o}_{t+1}
 286 using proprioceptive state \mathbf{s}_{t+1} . The VLM-guided instant reflector evaluates the partial visual
 287 trajectory $\mathbf{o}_{1:t+1}$ and outputs a step-wise reward $R(\mathbf{o}_{1:t+1}, \mathbf{g}) \in [0, 1]$. Rollout terminates either at the
 288 maximum timestep T or when $R(\mathbf{o}_{1:t+1}, \mathbf{g}) > \eta$. For RL, we assign a single trajectory-wise reward
 289 $R_n = R(\mathbf{o}_{1:t_{\text{end}}}, \mathbf{g})$, where t_{end} is the termination or final timestep.

290 We adopt Leave-One-Out Proximal Policy Optimization (LOOP) (Chen et al., 2025) that combines
 291 RLOO (Ahmadian et al., 2024) based advantage estimation and PPO (Schulman et al., 2017) for
 292 policy updating. For each initial state, we generate N rollouts $\{\tau_1, \dots, \tau_N\}$ using a fixed behavior
 293 policy π_ϕ (the policy at the beginning iteration). Each trajectory receives a scalar reward R_n from
 294 the instant reflector. The RLOO baseline for trajectory n is the average reward of the other $N - 1$
 295 rollouts:

$$296 \quad b_n = \frac{1}{N-1} \sum_{j \neq n} R_j, \quad A_n = R_n - b_n, \quad (4)$$

298 where A_n is the trajectory-wise advantage.

299 To update the policy, we treat both the current and behavior policies as inducing stochastic action
 300 distributions via their action and scale heads. The importance ratio at timestep t of trajectory n is
 301 computed as:

$$302 \quad r_{t,n} = \frac{p_\theta(\mathbf{a}_{t,n} \mid \mathbf{o}_{t,n}, \mathbf{s}_{t,n}, \mathbf{g}_n)}{p_\phi(\mathbf{a}_{t,n} \mid \mathbf{o}_{t,n}, \mathbf{s}_{t,n}, \mathbf{g}_n)},$$

304 where p_θ and p_ϕ denote the action distributions induced by the current policy π_θ and behavior
 305 policy π_ϕ , respectively, each modeled as a product of independent Laplace distributions over action
 306 dimensions. The policy is optimized via the clipped PPO objective:

$$308 \quad \mathcal{L}_{\text{PPO}} = - \frac{1}{\sum_n T_n} \sum_{n=1}^N \sum_{t=1}^{T_n} \min(r_{t,n} A_n, \text{clip}(r_{t,n}, 1 - \epsilon, 1 + \epsilon) A_n), \quad (5)$$

311 with T_n denotes the length of trajectory n and ϵ refers to the clipping threshold. Note that the
 312 advantage A_n is broadcasted to all timesteps within trajectory.

313 Unlike prior methods that use binary rewards ($R \in \{0, 1\}$) and require balanced success/failure roll-
 314 outs for stable training, our continuous reward signal ($R \in [0, 1]$) provides finer-grained feedback.
 315 This helps enhance rollout efficiency and training stability, particularly in data-scarce settings.

317 4.4 IMPLEMENTATION DETAILS

319 All our experiments are conducted on 8 NVIDIA H20 GPUs (96 GB memory each). We adopt
 320 LoRA (Hu et al., 2022) with rank 32 for parameter-efficient fine-tuning of the vision-language back-
 321 bone, while the action head and scale head are trained with full parameters. We use a batch size of
 322 4. The LoRA adapters are optimized with a learning rate of 1×10^{-4} , and the action/scale heads are
 323 trained with a learning rate of 1×10^{-5} . We set the number of rollouts per iteration to $N = 8$ and
 the PPO clipping threshold to $\epsilon = 0.1$.

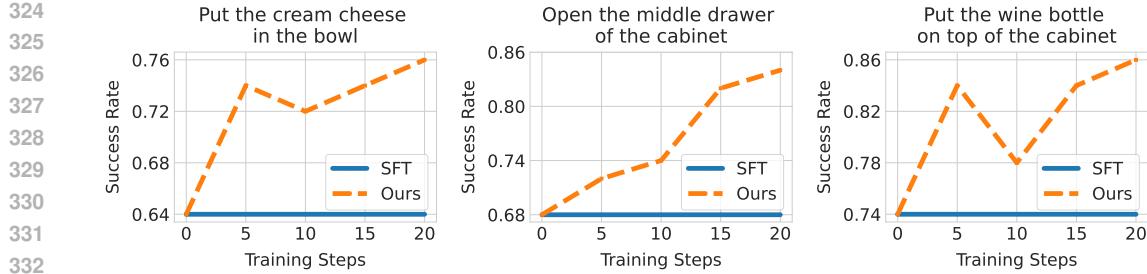


Figure 3: **Comparison between our method and SFT on multi-goal tasks.** Note, all results are collected every 5 training steps for three distinct goals.

Figure 4: **Rendering comparison of world simulator trained with and without extra data.**

5 EXPERIMENTS

Table 2: **Ablation studies.** We evaluate how the extra training data for world simulator learning and the reward head for trajectory scoring affect the performance of our method.

Extra Data	Reward Head	LIBERO Goal	LIBERO Object	LIBERO Spatial	LIBERO Long
✓		68.4	75.2	73.2	42.2
	✓	79.8	81.8	78.4	44.6
	✓	68.8	76.4	74.4	43.8
✓	✓	86.4	86.6	87.6	57.8

Benchmark. We evaluate our model on the LIBERO benchmark (Liu et al., 2023a), a simulation-based robotic learning platform designed for vision-language manipulation tasks. The benchmark includes four task suites targeting distinct cognitive challenges: LIBERO-Spatial focusing on spatial reasoning via object arrangement; LIBERO-Goal assessing goal-conditioned planning with end-state requirements; LIBERO-Object testing object-centric manipulation across categories; LIBERO-10 (LIBERO-Long) addressing prolonged sequential decision-making. Each suite contains 10 tasks with 50 trajectories for training and 50 for testing per task; we train OpenVLA-OFT using only 5 trajectories from the training split to validate performance under extreme data scarcity, while evaluating on the full trajectory test split to demonstrate the generalization capability.

378
 379
 380
 381
 382
 383
 384
 385 **Figure 5: Real-world rendering results of world simulator.** We show a video sequence generated
 386 by our world simulator in real-world scene.
 387
 388
 389

390 **Baselines.** We compare our method with five state-of-the-art VLA frameworks including π_0
 391 (Black et al., 2024), π_0 + FAST (Pertsch et al., 2025), OpenVLA (Kim et al., 2024), UniVLA (Bu
 392 et al., 2025), and OpenVLA-OFT (Kim et al., 2025). All methods are trained with standard super-
 393 vised fine-tuning (SFT). For fair evaluation, all baselines are retrained under identical 5-trajectory
 394 per-task constraints, with performance metrics reported on the complete test set.
 395
 396

5.1 COMPARISON WITH STATE-OF-THE-ART METHODS

397 Table 1 presents success rate comparison between our method and the baseline models. As shown,
 398 our method gains higher task success rate, demonstrating the effectiveness of our proposed post-
 399 training strategy. Figure 3 further compares our method and the supervised fine-tuning (SFT) base-
 400 line on multi-goal tasks, where we can see that our approach achieves superior performance within
 401 only 20 training steps, clearly outperforming the compared SFT model. This rapid convergence and
 402 early dominance highlight the efficiency and effectiveness of our method in learning conditioned
 403 policies with minimal training iterations.
 404
 405

5.2 ABLATION STUDIES

406 **Effect of World Simulator.** We investigate how the generative capabilities of world simulator af-
 407 fect the performance of our method. Figure 4 evaluates two world simulator variants: (1) w/o extra:
 408 trained solely on human-annotated successful trajectories, (2) w/ extra: enhanced with our collected
 409 data containing both successful and failed trajectories. As shown, the model trained without extra
 410 data struggles with object tracking, particularly when the VLA model’s action predictions deviate
 411 from ideal trajectories. This is because the world simulator only observes successful interactions
 412 during training, making it unable to simulate complex object states caused by suboptimal actions.
 413 In contrast, our model demonstrates significant improvements in robotic arm tracking precision and
 414 object interaction fidelity. Table 2 quantitatively validates these observations: when the world sim-
 415 ulator generates low-quality images, VLA training effectiveness drops. This correlation highlights
 416 the importance of diverse training data in building robust world simulator that can handle real-world
 417 action variations. Figure 5 further manifests the simulator’s ability to generate photorealistic obser-
 418 vations with accurate physical interactions, showing that our method can be adopted in real-world
 419 scene application. Please see also the supplementary material for video results.
 420
 421

422 **Effect of Instant Reflector.** We investigate the effect of instant reflector on our framework’s per-
 423 formance. As summarized in Table 2, we perform evaluation for two strategies: (1) w/o reward
 424 head: Direct use of pre-trained VLMs with prompt-based binary classification (yes/no) (2) w/ re-
 425 ward head: We integrate a trainable reward head that scores action sequences on a continuous scale.
 426 The difference lies in how each approach assesses alignment between generated video sequences and
 427 text instructions. While the baseline leverages VLMs’ inherent language understanding capabilities
 428 through fixed prompts, our method explicitly trains the reward head to quantify task completion
 429 progress via scalar scores. Experimental validation demonstrates that a naive use of pre-trained
 430 VLMs brings weak performance gains and may degrade VLA model learning in complex scenar-
 431 os. This limitation stems from the mismatch between VLMs’ general language vision alignment
 432 and the specific action evaluation requirements. In contrast, our reward head, trained on diverse
 433 success/failure trajectories, achieves higher accuracy in distinguishing successful actions.
 434

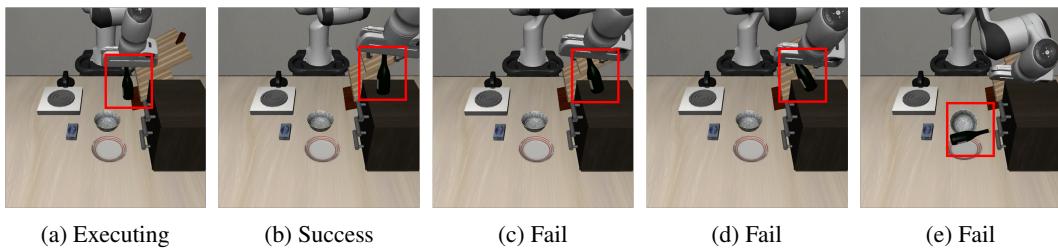


Figure 6: **Post-success failure in VLA execution.** An illustrative example for “put the wine bottle on top of the cabinet” shows the VLA model completes the task (frames a-b), but fails due to delayed termination (frames c-e), validating the necessity of dynamic termination mechanism.

Table 3: **Comparison of task termination strategy under realistic feedback constraints.** Note, all compared methods are evaluated under the setting where ground-truth termination feedback is unavailable, while our method autonomously detects task completion via the proposed reward model. Success rates are measured when reaching the maximum action steps.

Method	LIBERO-Goal	LIBERO-Object	LIBERO-Spatial	LIBERO-Long	Average
π_0 (Black et al., 2024)	55.4	71.0	72.6	20.6	54.9
π_0 +FAST (Pertsch et al., 2025)	21.2	74.0	44.8	15.0	38.75
OpenVLA (Kim et al., 2024)	68.4	47.4	59.8	26.6	50.55
UniVLA (Bu et al., 2025)	72.0	75.2	66.4	48.0	65.4
OpenVLA-OFT (Kim et al., 2025)	67.4	73.8	71.2	39.8	63.05
OpenVLA-OFT + Post-training (Ours)	85.0	78.4	78.4	57.8	74.9

Effect of Termination Signals. Table 3 further validates the effectiveness of our task success detection capability. While conventional methods rely on simulator-provided termination signals due to their inability to assess task completion, our approach employs a VLM-guided instant reflector that dynamically evaluates task success and enables early termination upon achievement. To verify this advantage, we set all compared baseline methods to strictly follow the maximum step limit for termination, whereas our framework utilizes instant reflector predictions as stopping criteria. As shown in Table 3, the compared baseline methods exhibit clear performance degradation under this setting because redundant post-success actions from delayed termination may disrupt object states after task completion (see Figure 6). In contrast, our method avoids such interference by terminating execution immediately upon detecting success signals, demonstrating our instant reflector’s capacity to preserve task outcomes through timely stopping decisions.

5.3 LIMITATIONS AND FUTURE WORK

Despite the effectiveness of our method in enhancing VLA manipulation capabilities, it still has the following limitations. First, the performance of both world simulator and instant reflector depends on massive training data to achieve high-fidelity simulation and accurate task evaluation. Second, our VLA model optimization is slower than concurrent methods due to world simulator generation bottlenecks. In the future, we will focus on addressing these limitations.

6 CONCLUSION

We present a post-training framework World-Env for Vision-Language-Action (VLA) models that eliminates reliance on physical environment interaction. We introduce three core innovations: (1) RL post-training by exploration in World-Env enables policy refinement, achieving strong performance with only 5 demonstrations per task; (2) exploration in World-Env reduces physical experimentation costs; and (3) dynamic termination via VLM-guided instant reflector prevents redundant post-success actions. Experimental validation on complex manipulation tasks demonstrates our method’s superiority in low-data regimes.

486 ETHICS STATEMENT
487488 The adoption of world models in Vision-Language-Action systems raises practical considerations.
489 While these models reduce reliance on real-world data collection and mitigate safety risks by en-
490 abling virtual training, they often demand substantial computational resources for training and in-
491 ference. Large-scale video prediction and cross-modal alignment typically require extensive GPU
492 usage over long durations, contributing to significant energy consumption and carbon emissions.
493 This raises concerns about environmental sustainability, particularly when such systems are scaled
494 or replicated across research groups without shared infrastructure or efficiency-aware design.
495496 REPRODUCIBILITY STATEMENT
497498 All implementation details regarding hyperparameter configurations and training protocols are de-
499 tailed in Appendix B. To ensure full reproducibility of our experiments, we will make publicly
500 available both the source code for model training and evaluation procedures, as well as pre-trained
501 model checkpoints specifically trained on the LIBERO dataset. These resources are provided to
502 facilitate direct replication of the experimental results presented in this work while enabling future
503 research extensions.
504505 REFERENCES
506507 Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
508 Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-
509 ing from human feedback in llms. *arXiv preprint arXiv:2402.14740*, 2024.510 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
511 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
512 model for few-shot learning. In *NeurIPS*, 2022.513 Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Matthew Muckley, Am-
514 mar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, et al. V-jepa 2: Self-supervised video
515 models enable understanding, prediction and planning. *arXiv preprint arXiv:2506.09985*, 2025.516 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
517 Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
518 Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
519 Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
520 Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
521 Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
522 Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. *arXiv preprint*
523 *arXiv:2309.16609*, 2023.
524525 Philip J. Ball, Jakob Bauer, Frank Belletti, Bethanie Brownfield, Ariel Ephrat, Shlomi Fruchter,
526 Agrim Gupta, Kristian Holsheimer, Aleksander Holynski, Jiri Hron, Christos Kaplanis, Marjorie
527 Limont, Matt McGill, Yanko Oliveira, Jack Parker-Holder, Frank Perbet, Guy Scully, Jeremy
528 Shar, Stephen Spencer, Omer Tov, Ruben Villegas, Emma Wang, Jessica Yung, Cip Baetu,
529 Jordi Berbel, David Bridson, Jake Bruce, Gavin Buttmore, Sarah Chakera, Bilva Chandra, Paul
530 Collins, Alex Cullum, Bogdan Damoc, Vibha Dasagi, Maxime Gazeau, Charles Gbadamosi,
531 Woohyun Han, Ed Hirst, Ashyana Kachra, Lucie Kerley, Kristian Kjems, Eva Knoepfel, Vika
532 Koriakin, Jessica Lo, Cong Lu, Zeb Mehring, Alex Moufarek, Henna Nandwani, Valeria Oliveira,
533 Fabio Pardo, Jane Park, Andrew Pierson, Ben Poole, Helen Ran, Tim Salimans, Manuel Sanchez,
534 Igor Saprykin, Amy Shen, Sailesh Sidhwani, Duncan Smith, Joe Stanton, Hamish Tomlinson,
535 Dimple Vijaykumar, Luyu Wang, Piers Wingfield, Nat Wong, Keyang Xu, Christopher Yew,
536 Nick Young, Vadim Zubov, Douglas Eck, Dumitru Erhan, Koray Kavukcuoglu, Demis Hassabis,
537 Zoubin Gharamani, Raia Hadsell, Aäron van den Oord, Inbar Mosseri, Adrian Bolton, Satinder
538 Singh, and Tim Rocktäschel. Genie 3: A new frontier for world models. 2025.539 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke,

- 540 Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi,
 541 James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. π_0 : A vision-
 542 language-action flow model for general robot control. *arXiv preprint arXiv:2410.24164*, 2024.
- 543
- 544 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
 545 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
 546 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.
- 547
- 548 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 549 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 550 few-shot learners. In *NeurIPS*, 2020.
- 551
- 552 Qingwen Bu, Yanting Yang, Jisong Cai, Shenyuan Gao, Guanghui Ren, Maoqing Yao, Ping Luo,
 553 and Hongyang Li. Univla: Learning to act anywhere with task-centric latent actions. In *RSS*,
 2025.
- 554
- 555 Akshay L Chandra, Iman Nematollahi, Chenguang Huang, Tim Welschehold, Wolfram Burgard,
 556 and Abhinav Valada. Diwa: Diffusion policy adaptation with world models. *arXiv preprint
 557 arXiv:2508.03645*, 2025.
- 558
- 559 Kevin Chen, Marco Cusumano-Towner, Brody Huval, Aleksei Petrenko, Jackson Hamburger,
 560 Vladlen Koltun, and Philipp Krähenbühl. Reinforcement learning for long-horizon interactive
 llm agents. *arXiv preprint arXiv:2502.01600*, 2025.
- 561
- 562 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
 563 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. In *RSS*, 2023.
- 564
- 565 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li,
 566 Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models
 567 with instruction tuning. In *NeurIPS*, 2023.
- 568
- 569 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 570 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
 571 arXiv:2010.11929*, 2020.
- 572
- 573 Ignat Georgiev, Varun Giridhar, Nicklas Hansen, and Animesh Garg. Pwm: Policy learning with
 574 multi-task world models. In *ICLR*, 2025.
- 575
- 576 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 577 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 578 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- 579
- 580 Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
 581 Davidson. Learning latent dynamics for planning from pixels. In *ICML*, 2019.
- 582
- 583 Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
 584 crete world models. *arXiv preprint arXiv:2010.02193*, 2020.
- 585
- 586 Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks
 587 through world models. *Nature*, pp. 1–7, 2025.
- 588
- 589 Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for contin-
 590 uous control. In *ICLR*, 2024.
- 591
- 592 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*,
 593 2020.
- 594
- 595 Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-Opazo, and Stephen Gould. Vln bert: A
 596 recurrent vision-and-language bert for navigation. In *CVPR*, 2021.
- 597
- 598 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 599 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. In *ICLR*, 2022.

- 594 Anqing Jiang, Yu Gao, Yiru Wang, Zhigang Sun, Shuo Wang, Yuwen Heng, Hao Sun, Shichen Tang,
 595 Lijuan Zhu, Jinhao Chai, et al. Irl-vla: Training an vision-language-action policy via reward world
 596 model. *arXiv preprint arXiv:2508.06571*, 2025a.
- 597
- 598 Yuxin Jiang, Shengcong Chen, Siyuan Huang, Liliang Chen, Pengfei Zhou, Yue Liao, Xindong
 599 He, Chiming Liu, Hongsheng Li, Maoqing Yao, and Guanghui Ren. Enerverse-ac: Envisioning
 600 embodied environments with action condition. *arXiv preprint arXiv:2505.09723*, 2025b.
- 601 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 602 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong, Thomas Kollar, Ben-
 603 jamin Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn.
 604 Openvla: An open-source vision-language-action model. In *CoRL*, 2024.
- 605
- 606 Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
 607 mizing speed and success. In *RSS*, 2025.
- 608
- 609 Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Ren Lu, Thomas Mesnard, Johan Ferret,
 610 Colton Bishop, Ethan Hall, Victor Carbune, and Abhinav Rastogi. Rlaif: Scaling reinforcement
 learning from human feedback with ai feedback. In *ICML*, 2023.
- 611
- 612 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 613 training for unified vision-language understanding and generation. In *ICML*, 2022.
- 614
- 615 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 pre-training with frozen image encoders and large language models. In *ICML*, 2023.
- 616
- 617 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 618 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *ICLR*, 2023.
- 619
- 620 Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
 Benchmarking knowledge transfer for lifelong robot learning. In *NeurIPS*, 2023a.
- 621
- 622 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 623 tuning. *arXiv preprint arXiv:2310.03744*, 2023b.
- 624
- 625 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *NeurIPS*,
 626 2023c.
- 627
- 628 Guanxing Lu, Wenkai Guo, Chubin Zhang, Yuheng Zhou, Haonan Jiang, Zifeng Gao, Yansong
 629 Tang, and Ziwei Wang. Vla-rl: Towards masterful and general robotic manipulation with scalable
 reinforcement learning. *arXiv preprint arXiv:2505.18719*, 2025.
- 630
- 631 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 632 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.
- 633
- 634 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 635 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 instructions with human feedback. In *NeurIPS*, 2022.
- 636
- 637 Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
 638 Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
 639 models. *arXiv preprint arXiv:2501.09747*, 2025.
- 640
- 641 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 642 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 643 models from natural language supervision. In *ICML*, 2021.
- 644
- 645 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 646 Finn. Direct preference optimization: Your language model is secretly a reward model. In
 647 *NeurIPS*, 2023.
- 648
- 649 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 650 resolution image synthesis with latent diffusion models. In *CVPR*, 2022.

- 648 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 649 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 650
- 651 Shuhan Tan, Kairan Dou, Yue Zhao, and Philipp Krähenbühl. Interactive post-training for vision-
 652 language-action models. *arXiv preprint arXiv:2505.17016*, 2025.
 653
- 654 Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
 655 Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, Jianlan Luo, You Liang Tan, Lawrence Yunliang
 656 Chen, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine.
 657 Octo: An open-source generalist robot policy. *arXiv preprint arXiv:2405.12213*, 2024.
 658
- 659 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 660 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
 661 mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
 662 language models. *arXiv preprint arXiv:2302.13971*, 2023a.
 663
- 664 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 665 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 666 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.
 667
- 668 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 669 Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai
 670 Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi
 671 Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang,
 672 Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng
 673 Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan
 674 Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You
 675 Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen
 676 Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models.
 677 *arXiv preprint arXiv:2503.20314*, 2025.
 678
- 679 Jinbo Xing, Menghan Xia, Yong Zhang, Haoxin Chen, Wangbo Yu, Hanyuan Liu, Gongye Liu,
 680 Xintao Wang, Ying Shan, and Tien-Tsin Wong. Dynamicrafter: Animating open-domain images
 681 with video diffusion priors. In *ECCV*, 2024.
 682
- 683 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 684 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
 685 with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024.
 686
- 687 Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A survey of autonomous
 688 driving: Common practices and emerging technologies. *IEEE Access*, 8:58443–58469, 2020. doi:
 689 10.1109/ACCESS.2020.2983149.
 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701

702 A LANGUAGE MODEL USAGE STATEMENT
703704 This paper was refined using the Qwen (Bai et al., 2023) large language model to enhance linguistic
705 clarity, grammatical precision, and cross-disciplinary readability. No unattributed content was gen-
706 erated by the model; all scientific claims, data interpretations, and conclusions were independently
707 validated by the authors.
708709 **Algorithm 1** World-Env Training Algorithm
710

711 **Input:** Pretrained VLA policy π_θ , scale head β_θ , VLM-based reward function $R(\mathbf{o}_{1:t}, \mathbf{g})$, context
712 dataset $\mathcal{D}_{\text{context}}$

713 1: **for** training iteration = 1 to M **do**

714 2: Set behavior policy: $\pi_\phi \leftarrow \pi_\theta$, $\beta_\phi \leftarrow \beta_\theta$ ▷ Fix old policy and scale head

715 3: Initialize rollout buffer $\mathcal{D}_{\text{rollout}} \leftarrow \emptyset$

716 4: **while** $|\mathcal{D}_{\text{rollout}}| < B$ **do** ▷ Rollout Collection

717 5: Sample context $\mathbf{c} = (\mathbf{g}, \mathbf{o}_1, \mathbf{s}_1) \sim \mathcal{D}_{\text{context}}$

718 6: **for** $n = 1$ to N **do** ▷ Generate N rollouts per context

719 7: Initialize trajectory $\tau_n \leftarrow (\mathbf{o}_1, \mathbf{s}_1)$

720 8: **for** $t = 1$ to T **do**

721 9: Predict base action: $\mu_t \leftarrow \pi_\phi(\mathbf{o}_{1:t}, \mathbf{s}_{1:t}, \mathbf{g})$

722 10: Predict log-scale: $\beta_t \leftarrow \beta_\phi(\mathbf{o}_{1:t}, \mathbf{s}_{1:t}, \mathbf{g})$

723 11: Sample action: $\mathbf{a}_t \sim \text{Laplace}(\mu_t, \exp(\beta_t))$

724 12: Compute next proprioceptive state: $\mathbf{s}_{t+1} \leftarrow \text{FK}(\mathbf{s}_t, \mathbf{a}_t)$

725 13: Predict next observation: $\mathbf{o}_{t+1} \leftarrow \text{WorldSim}(\mathbf{o}_t, \mathbf{s}_{t+1})$

726 14: Append $(\mathbf{a}_t, \mathbf{o}_{t+1}, \mathbf{s}_{t+1})$ to τ_n

727 15: **if** $R(\mathbf{o}_{1:t+1}, \mathbf{g}) > \eta$ **then** ▷ Termination check ($\eta = 0.5$)

728 16: $t_{\text{end}} \leftarrow t + 1$; **break**

729 17: **end if**

730 18: **end for**

731 19: Set trajectory reward: $R_n \leftarrow R(\mathbf{o}_{1:t_{\text{end}}}, \mathbf{g})$

732 20: Store log-probabilities $\log p_\phi(\mathbf{a}_{1:t_{\text{end}}} \mid \cdot)$ for importance weighting

733 21: **end for**

734 22: Compute RLOO baselines: $b_n \leftarrow \frac{1}{N-1} \sum_{j \neq n} R_j$ for all n

735 23: Compute advantages: $A_n \leftarrow R_n - b_n$

736 24: Add $\{(\tau_n, A_n, \log p_\phi(\cdot))\}_{n=1}^N$ to $\mathcal{D}_{\text{rollout}}$

737 25: **end while**

738 26: **for** optimization step = 1 to K **do**

739 27: Sample batch from $\mathcal{D}_{\text{rollout}}$

740 28: Compute current log-probabilities $\log p_\theta(\mathbf{a} \mid \cdot)$

741 29: Compute importance ratios: $r_t \leftarrow \exp(\log p_\theta - \log p_\phi)$

742 30: Update π_θ and β_θ by minimizing PPO loss (Eq. 5)

743 31: **end for**

32: **end for**

744 B MORE IMPLEMENTATION DETAILS
745746 B.1 DEATILS OF SCALE HEAD
747748 Our method builds upon OpenVLA-OFT (Kim et al., 2025), which predicts continuous actions via
749 an action head that takes hidden states $f \in \mathbb{R}^d$ as input and employs L1 loss for action regression:

750
$$\mathcal{L}_{\text{L1}} = \|\mathbf{a}_{\text{gt}} - \boldsymbol{\mu}\|_1 \quad \text{where } \boldsymbol{\mu} = \text{MLP}_{\text{action}}(f). \quad (6)$$

751 To model heteroscedastic uncertainty in action prediction, we introduce a scale head with the same
752 MLP architecture as the action head, as shown in Figure 7. This scale head outputs log-scale param-
753 eters β through:
754

755
$$\boldsymbol{\beta} = \text{MLP}_{\text{scale}}(h), \quad (7)$$

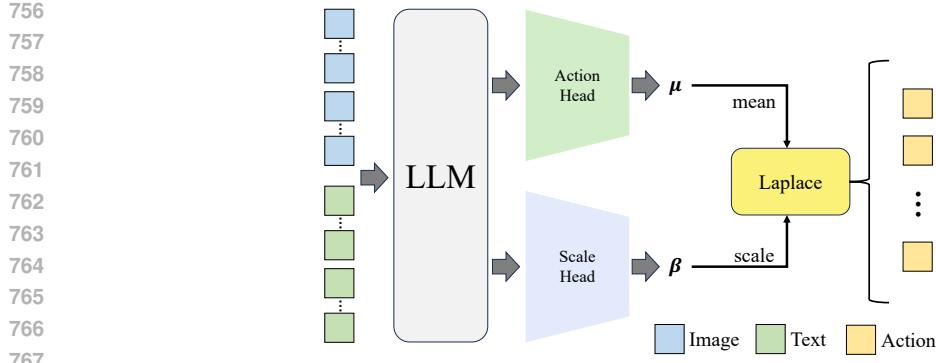


Figure 7: **Architecture for uncertainty-aware action generation.** The deterministic action output of the VLA policy is augmented with a parallel Laplace scale head to model action uncertainty.

and is trained with negative log-likelihood (NLL) loss under a Laplace distribution assumption:

$$\mathcal{L}_{\text{NLL}} = \underbrace{|\mathbf{a}_{\text{gt}} - \mu| \cdot e^{-\beta}}_{\text{Data fit}} + \underbrace{\beta}_{\text{Uncertainty penalty}} + \log 2. \quad (8)$$

The scale head is trained using a batch size of 8 and a learning rate of 5×10^{-4} over 1,000 training iterations.

B.2 DEATILS OF WORLD SIMULATOR

We adopt the original implementation of the EVAC world model (Jiang et al., 2025b) and retain its training configuration. We show an overview in Figure 8. The generation process starts from a reference image, whose CLIP (Radford et al., 2021) features provide style guidance. This signal is integrated into the diffusion model via cross-attention. Action information is encoded as a spatial action map and concatenated with visual features at the feature level. The fused representation drives the diffusion network to generate future frames through iterative denoising, followed by a video decoder to produce the final output. The EVAC model was originally designed for dual-arm robotic platforms with 14-dimensional (14D) action vectors (7D per arm). In contrast, the LIBERO benchmark employs a single-arm robot with 7D actions (6D end-effector pose + 1D gripper state). To maintain compatibility with the EVAC architecture, we zero-pad the unused 7D action dimensions during training, preserving the input interface while adapting to the target hardware.

B.3 DETAILS OF REWARD HEAD

Our VLM-guided instant reflector integrates a pretrained vision-language model (LLaVA (Liu et al., 2023c)) with a lightweight reward head that predicts continuous reward signals, see Figure 9 for an overview. The VLM backbone is kept frozen to preserve its semantic capabilities, and only the reward head is trained. Given a video sequence $\{f_1, \dots, f_N\}$ generated by the world simulator, we uniformly sample 32 frames as visual input. The language prompt is formatted as: “*Watch the video and determine whether it completes the task: {g} — answer only ‘Yes’ or ‘No’.*” The VLM processes this input and extracts a pooled embedding, which is projected by the reward head to a scalar. A sigmoid activation yields a continuous reward $R \in [0, 1]$, interpreted as the task completion probability. The reward head is trained with binary cross-entropy loss, using a batch size of 8, learning rate 1×10^{-4} , Adam optimizer, and 50 epochs, with input frames center-cropped to 384×384 resolution.

C ANALYSIS OF WORLD SIMULATOR

C.1 DATA ANALYSIS AND DISTRIBUTION

We provide a statistical analysis of the training data for the world simulator and instant reflector in Figure 10, including: (a) length distributions for successful vs. failed trajectories, (b) cumulative

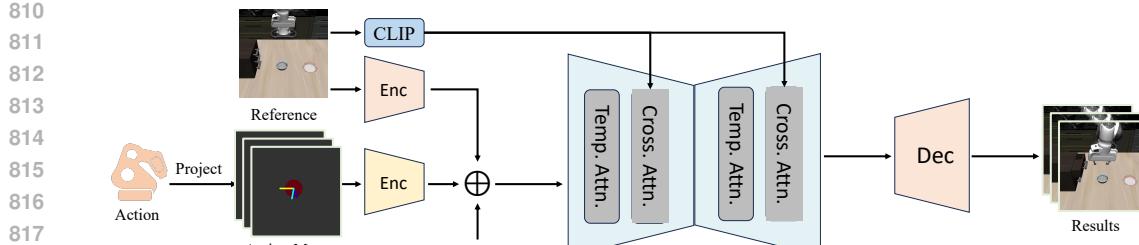


Figure 8: Overview of the world simulator.

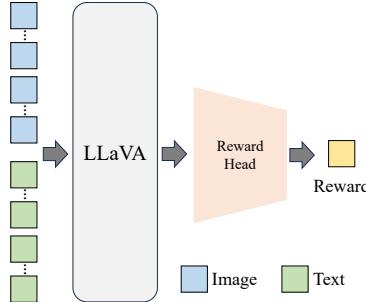


Figure 9: Network architecture of instance reflector.

distribution functions by outcome, and (c) task outcome proportions. The bimodal distribution in successful trajectories motivated our dynamic termination mechanism, while the long-tailed length distribution informed our curriculum sampling strategy.

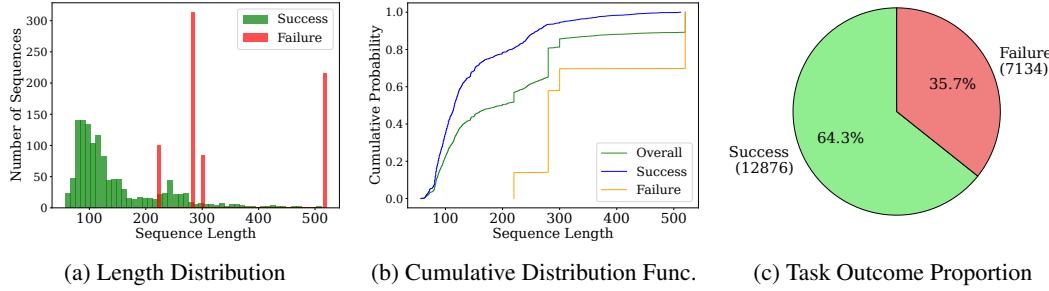


Figure 10: Training data analysis and distribution.

C.2 MORE RESULTS OF WORLD SIMULATOR

Figures 11 and 12 show additional trajectories generated by the world simulator, demonstrating its ability to synthesize both successful and failed task executions.



Figure 11: Failure trajectories synthesized by the world simulator.

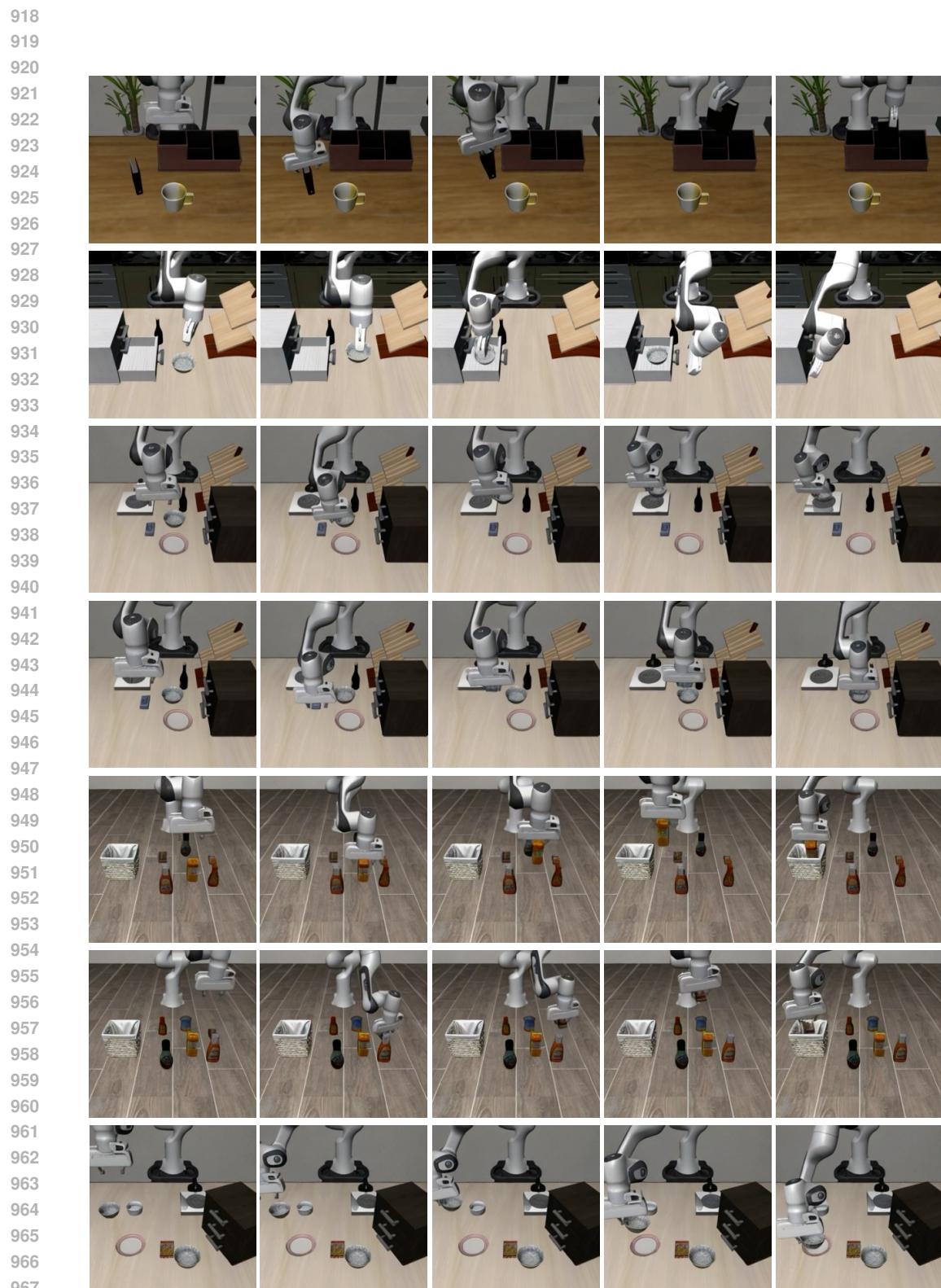


Figure 12: Success trajectories synthesized by the world simulator.