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ABSTRACT

Vision-Language-Action (VLA) models trained via imitation learning suffer from
significant performance degradation in data-scarce scenarios due to their reliance
on large-scale demonstration datasets. Although reinforcement learning (RL)-
based post-training has proven effective in addressing data scarcity, its application
to VLA models is hindered by the non-resettable nature of real-world environ-
ments. This limitation is particularly critical in high-risk domains such as indus-
trial automation, where interactions often induce state changes that are costly or
infeasible to revert. Furthermore, existing VLA approaches lack a reliable mecha-
nism for detecting task completion, leading to redundant actions that reduce over-
all task success rates. To address these challenges, we propose World-Env, an RL-
based post-training framework that replaces physical interaction with a low-cost,
world model-based virtual simulator. World-Env consists of two key components:
(1) a video-based world simulator that generates temporally consistent future vi-
sual observations, and (2) a vision-language model (VLM)-guided instant reflector
that provides continuous reward signals and predicts action termination. This sim-
ulated environment enables VLA models to safely explore and generalize beyond
their initial imitation learning distribution. Our method achieves notable perfor-
mance gains with as few as five expert demonstrations per task. Experiments on
complex robotic manipulation tasks demonstrate that World-Env effectively over-
comes the data inefficiency, safety constraints, and inefficient execution of con-
ventional VLA models that rely on real-world interaction, offering a practical and
scalable solution for post-training in resource-constrained settings.

(b) Previous Post Training

Real World /
Physical SimulationVLA

Feedback

Irreversible / Expensive

(c) Post Training withWorld-Env

Reversible & Cheap

World-EnvVLA

Feedback

(a) Imitation Learning

Data limitation

Human 
Demonstration VLA

Figure 1: Comparison of three VLA training paradigms: (a) Imitation learning suffers from poor
generalization under data scarcity. (b) Prior RL-based post-training methods require real-world
interaction, which is often infeasible due to non-resettable state transitions (e.g., object drop or
collision). (c) Our proposed World-Env enables post-training via simulated rollouts using a world
model, eliminating the need for physical interaction and supporting safe, efficient exploration even
with minimal expert demonstrations.

1 INTRODUCTION

Vision-Language-Action (VLA) models have emerged as a central paradigm for autonomous agents,
enabling end-to-end mapping from high-level language instructions to low-level motor commands
by integrating vision, language, and control. These models have demonstrated considerable promise
in robotic manipulation (Kim et al., 2024; Black et al., 2024), autonomous driving (Yurtsever et al.,
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2020), and navigation (Hong et al., 2021). Most existing approaches rely on supervised fine-tuning
through imitation learning, building upon pre-trained vision-language models (Touvron et al., 2023a)
to align semantic intent with physical execution via cross-modal representations.

However, imitation learning methods (Kim et al., 2025) are inherently constrained by the limited
availability of high-quality demonstrations. In many real-world scenarios, collecting diverse and
safe human demonstrations is prohibitively expensive and often infeasible due to safety concerns and
environmental complexity. Furthermore, such methods generalize poorly to novel tasks or unseen
objects, and their performance degrades under few-shot conditions.

To overcome these shortcomings, recent works (Tan et al., 2025; Lu et al., 2025) have turned to rein-
forcement learning (RL) (Rafailov et al., 2023) to enable agents to learn through interaction. Current
RL strategies fall into two categories. The first involves real-world learning with human feedback,
which captures realistic environmental dynamics but suffers from non-resettable interactions, high
trial costs, and limited reproducibility, rendering it unsuitable for safety-critical applications. The
second relies on simulator-based learning, which avoids physical risks but introduces other chal-
lenges, including substantial development effort, limited sim-to-real transfer, and difficulty adapting
to new objects or dynamic scene changes, thereby restricting its practical applicability.

These limitations motivate us to think about a question: Is there an “ideal testbed” that avoids real-
world risks while providing greater flexibility and richer semantic understanding than conventional
simulators? We find that video-based world model offers a promising solution. Equipped with
action-conditioned future prediction and a persistent latent scene representation, world model can
generate visually plausible future image sequences, allowing safe, low-cost simulation of action
outcomes, as well as policy exploration and refinement without physical interaction.

In this work, we introduce World-Env, a world model-based reinforcement learning framework that
improves policy generalization under data scarcity while respecting real-world safety constraints, as
shown in Figure 1. World-Env consists of two components. The first is a video-based world simu-
lator that functions as an interactive future-frame predictor, synthesizing action-conditioned image
sequences that capture post-interaction object states and surrounding scene structure. The second is
a VLM-guided instant reflector that functions as a semantics-aware reward module. It provides con-
tinuous reward signals by evaluating the semantic alignment between predicted visual frames and
the input language instruction. This assessment supports policy optimization and enables real-time
detection of task completion. Upon confirming successful execution (e.g., when the goal state is
reached), the reflector immediately terminates the action sequence to prevent redundant or disrup-
tive subsequent actions. The framework delivers three principal benefits: (1) efficient generalization
from minimal expert demonstrations, (2) safe controllability through risk-free virtual exploration,
and (3) language-aligned termination via VLM-driven reasoning.

In summary, our contributions are:

• We propose World-Env, a world model-based framework that enables low-cost, safe reinforce-
ment learning post-training for VLA policies under extreme data scarcity, eliminating the need
for real-world interaction.

• World-Env integrates a video-based world simulator and a VLM-guided instant reflector to
jointly provide temporally consistent visual observations and continuous reward signals, form-
ing a self-contained virtual environment that supports effective policy exploration.

• We introduce a real-time termination mechanism via the instant reflector, which dynamically
assesses task completion by evaluating semantic alignment between predicted visual trajecto-
ries and language instructions, thereby preventing redundant post-success actions.

2 RELATED WORK

Vision-Language-Action Models. Leveraging advancements in pre-trained vision foundation
models (Radford et al., 2021; Oquab et al., 2023; Dosovitskiy et al., 2020), large language models
(LLMs) (Brown et al., 2020; Touvron et al., 2023b; Bai et al., 2023), and vision-language models
(VLMs) (Alayrac et al., 2022; Li et al., 2022; 2023; Dai et al., 2023; Liu et al., 2023c;b), Vision-
Language-Action (VLA) frameworks (Chi et al., 2023; Team et al., 2024; Kim et al., 2024; Bu et al.,
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2025) have emerged as a powerful approach for embodied intelligence. These models bridge the gap
between high-dimensional sensory inputs and physical-world actions by processing multimodal sig-
nals, such as camera feeds, sensor data, and natural language instructions, and translating them into
actionable outputs for robotic systems. DiffusionPolicy (Chi et al., 2023) proposes a diffusion-based
policy that generates robot actions through a conditional denoising diffusion process in the action
space, iteratively refining actions based on visual observations. OpenVLA (Kim et al., 2024) inte-
grates robotic actions into a language modeling framework by mapping action sequences to discrete
tokens within a large language model. The recent work OpenVLA-OFT (Kim et al., 2025) further
converts discrete action sequences into continuous representations, achieving improved inference
efficiency and task performance.

Reinforcement Learning for VLA Systems. Recent advances in reinforcement learning (RL)
(Schulman et al., 2017; Rafailov et al., 2023) have demonstrated considerable potential in enhanc-
ing decision-making capabilities of large language models (LLMs) (Guo et al., 2025; Lightman
et al., 2023; Ouyang et al., 2022; Lee et al., 2023). This progress has spurred growing interest in
applying RL to Vision-Language-Action (VLA) systems (Tan et al., 2025; Lu et al., 2025; Chandra
et al., 2025; Jiang et al., 2025a), where adaptive behavior is essential. Unlike supervised fine-tuning
(SFT), which replicates static demonstrations, RL enables agents to refine policies through interac-
tion, optimizing actions to maximize task-oriented rewards. This paradigm supports autonomous
exploration, reward-driven adaptation, and improved robustness to partial observability, allowing
VLA models to generalize to unseen scenarios while reducing reliance on costly human demonstra-
tions. However, existing RL-based VLA methods typically require real-world interaction, which is
often infeasible in high-risk or non-resettable scenarios.

World Models. World models (Assran et al., 2025; Ball et al., 2025), which are learned dynam-
ical simulators that approximate environmental dynamics, have become foundational for safe and
sample-efficient agent training. Early works (Hafner et al., 2019; 2020; 2025) demonstrated the
effectiveness of model-based reinforcement learning in virtual environments, enabling agents to
plan via imagined trajectories without real-world interaction. Recent advances, such as TD-MPC2
(Hansen et al., 2024), have improved scalability and policy learning efficiency across multi-task and
multi-domain settings. Similarly, PWM (Georgiev et al., 2025) leverages pre-trained world models
and first-order optimization to handle high-dimensional action spaces in multi-task RL. However,
these methods typically rely on on-policy data, limiting their generalization to specific environments
and downstream tasks. Building on advances in diffusion-based video generation (Ho et al., 2020;
Rombach et al., 2022; Blattmann et al., 2023; Yang et al., 2024; Wan et al., 2025; Xing et al., 2024),
we propose a framework that trains a world model on offline demonstration data and keeps it fixed
during policy learning to predict future visual observations for VLA models. This decouples world
model training from policy exploration, enabling broader applicability in resource-constrained or
high-risk scenarios.

3 PRELIMINARY

Vision-Language-Action Models. Vision-language-action (VLA) models bridge natural lan-
guage instructions with robotic control by translating semantic goals into low-level actions while
grounding language in multimodal observations. Following recent VLA frameworks such as
OpenVLA-OFT (Kim et al., 2025), the policy is implemented as a deterministic mapping that lever-
ages a pretrained vision-language model to extract multimodal features, followed by a lightweight
action head for continuous control. Specifically, given a history of RGB observations o1:t, proprio-
ceptive states s1:t (e.g., joint angles or end-effector poses), and a language instruction g, the policy
predicts a deterministic action at ∈ RD as:

at = πθ(o1:t, s1:t,g), (1)

where πθ denotes a deterministic policy parameterized by a finetuned foundation model and a train-
able action head.

Reinforcement Learning. Reinforcement learning (RL) formulates decision-making as a Markov
Decision Process (MDP):M = (S,A,P,R, γ), where S is the state space (comprising visual ob-
servations ot and proprioceptive states st),A is the action space (e.g., continuous control commands

3
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Figure 2: Overview of World-Env. Our framework comprises: (1) a Training Data Strategy that
augments human demonstrations trajectories with VLA self-explored trajectories to train the World-
Env Simulator; (2) an Optimization Loop where the VLA model generates actions, the simulator
predicts future observations, and the World-Env Reflector generates feedback; and (3) Reward &
End Signal provides trajectory-wise reward and end signals for RL optimization.

at ∈ RD), P denotes the transition dynamics,R is the reward function, and γ ∈ [0, 1] is the discount
factor. The objective is to learn a policy πθ(o1:t, s1:t,g) that maximizes the expected return:

J(πθ) = Eπθ

[
T∑

t=0

γtrt

]
,

where rt = R(o1:t,g). In practice, policy gradient methods often introduce stochasticity during
training to enable exploration. The policy is updated using gradients of the form:

∇θJ(πθ) = Eat∼πθ
[∇θπθ(o1:t, s1:t,g) ·A(o1:t,a1:t)] , (2)

where A(·) is the advantage function that evaluates action quality relative to a baseline.

4 METHOD

Figure 2 presents the overview of our framework. Prior VLA approaches (Kim et al., 2024; 2025)
typically rely on either real-world interaction or conventional simulators to provide observations for
action prediction. In contrast, our framework eliminates the need for physical interaction by leverag-
ing a video-based world simulator that generates temporally consistent future visual observations
at low cost. Specifically, the deterministic VLA policy πθ maps the current RGB observation ot,
language instruction g, and proprioceptive state st (comprising the 6D end-effector pose and 1D
gripper state) to a continuous action at. The next proprioceptive state st+1 is then computed de-
terministically from st and at using forward kinematics. The world simulator takes the executed
action at and the resulting proprioceptive state st+1 as inputs and predicts the subsequent visual
observation ot+1. This imagined observation, together with st+1, is fed back into the VLA policy to
predict the next action at+1. The rollout terminates either when the maximum timestep is reached
or when the VLM-guided instant reflector, which evaluates semantic alignment between the pre-
dicted visual trajectory and the language instruction, confirms task success and issues a termination
signal. During training, we collect N simulated trajectories from this virtual environment and use
them for reinforcement learning (RL) optimization of the VLA policy within World-Env.

4.1 VIDEO-BASED WORLD SIMULATOR

Our world simulator is built upon the EVAC framework (Jiang et al., 2025b). During rollout, the
simulator takes the executed action at and the resulting proprioceptive state st+1 as inputs to predict
the next visual observation ot+1. The proprioceptive state st+1 comprises a 3D position vector
xt+1 ∈ R3, a 3D rotation vector qt+1 ∈ R3 (represented in axis-angle format), and a 1D gripper
state pt+1 ∈ [0, 1].

Following Jiang et al. (2025b), we render an action map by projecting the proprioceptive state st+1

onto the image plane. This action map consists of a foreground marker indicating the projected

4
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pose and a black background to enhance visual contrast. The action map, together with the history
observation, is injected into the EVAC world model as pixel-level conditioning. The EVAC model
then generates the future observation ot+1 using a diffusion-based image generation module. For
further architectural details, we refer readers to Jiang et al. (2025b).

To train the world model, we find that relying solely on expert demonstrations from the LIBERO
benchmark (Liu et al., 2023a) limits generalization to unseen state-action sequences. To address
this, we augment the training data by enabling autonomous exploration in the LIBERO simulator.
Specifically, we deploy the supervised fine-tuned OpenVLA-OFT policy (Kim et al., 2025) to pre-
dict actions and execute them in the simulator, which yields the corresponding next proprioceptive
state st+1 and observation ot+1. To further enhance data diversity, we introduce controlled stochas-
ticity by training a scale head that predicts the log-scale parameter βt of a Laplace distribution, with
the OpenVLA-OFT action µt as the location parameter: at ∼ Laplace(µt,βt). These perturbed ac-
tions are executed to collect additional (ot, st,at, st+1,ot+1) transition tuples. Finally, we combine
these autonomously collected trajectories with the original human-demonstrated successful trajec-
tories from LIBERO (Liu et al., 2023a) to form a diverse and robust training dataset for the world
simulator. Additional analysis of the world simulator and network architecture are provided in the
supplementary material.

4.2 VLM-GUIDED INSTANT REFLECTOR

Previous methods (Tan et al., 2025; Lu et al., 2025) rely on simulators to provide binary task success
signals, using sparse discrete rewards for RL post-training. These approaches suffer from a key
limitation: the lack of termination-aware feedback, causing policies to often continue executing
redundant actions after task completion (e.g., over-scooping after object placement). To address this,
we propose a VLM-guided instant reflector that leverages LLaVA (Liu et al., 2023c), a pretrained
vision-language model, to provide a continuous-valued reward signal.

Given a video of imagined observations o1:t and a language instruction g, the instant reflector pre-
dicts a step-wise reward R(o1:t,g) ∈ [0, 1] for each time step t, which estimates the probability
that the task has been successfully completed by time t. The architecture consists of a frozen vision
encoder Evision that extracts patch embeddings from video frames, a frozen LLM ELLM that performs
cross-modal reasoning over the visual-language sequence, and a lightweight reward head Rθ that
computes:

R(o1:t,g) = σ(Rθ(ht)), (3)

where σ is the sigmoid function and ht is the pooled multimodal embedding from the LLM at time t.
The termination signal is triggered at the timestep t where R(o1:t,g) > η, with threshold η = 0.5.

For training, we utilize per-frame binary success labels: for each trajectory, every timestep t is
annotated with yt ∈ {0, 1}, indicating whether the task is completed at or before t. These labels
are derived from two sources: (1) expert trajectories from the LIBERO dataset (Liu et al., 2023a),
where success is determined by task-specific criteria, and (2) policy-generated trajectories collected
in simulator (Section 4.1), labeled using an oracle that monitors ground-truth task states in the
simulator. The reward headRθ is trained with binary cross-entropy (BCE) loss:

L = BCE
(
R(o1:t,g), yt

)
.

This supervision enables the reflector to recognize task completion as soon as it occurs, rather than
relying on trajectory-level signals. During RL, we use the reward sparsely: the return is com-
puted using a single reward assigned at the termination timestep (or at T if no termination occurs),
ensuring compatibility with standard policy gradient methods. This design allows World-Env to
simultaneously support real-time termination and efficient policy learning, effectively addressing
the execution inefficiency of prior VLA post-training approaches (Tan et al., 2025; Lu et al., 2025).
More details can be found in the supplementary material.

4.3 POST TRAINING OF VLA MODEL

Our reinforcement learning pipeline employs a PPO-style objective with continuous reward signals;
the full algorithm is provided in the supplementary material. Following Tan et al. (2025), training
proceeds in three stages: rollout generation, advantage estimation, and policy optimization.

5
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Table 1: Success rate comparison on the LIBERO benchmark. We report success rates for each
method using the same setting with only 5 demonstrations per task.

Method LIBERO-Goal LIBERO-Object LIBERO-Spatial LIBERO-Long Average

π0 (Black et al., 2024) 67.6 68.4 80.2 28.2 61.1
π0+FAST (Pertsch et al., 2025) 59.2 76.8 59.2 24.8 55.0
OpenVLA (Kim et al., 2024) 73.2 55.0 82.4 32.2 60.7
UniVLA (Bu et al., 2025) 82.0 76.2 84.4 56.4 74.75
OpenVLA-OFT (Kim et al., 2025) 84.0 74.2 84.2 57.0 74.85
OpenVLA-OFT + Post-training (Ours) 86.4 86.6 87.6 57.8 79.6

During rollout, we generate trajectories τ = (o1:T , s1:T ,g,a1:T ) using the world simulator (Sec-
tion 4.1). Starting from an initial observation o1, proprioceptive state s1, and language instruction
g, the deterministic VLA policy πθ predicts a base action µt = πθ(o1:t, s1:t,g). A separate scale
head, trained to model action uncertainty, outputs a log-scale parameter βt. Together, they define a
factorized Laplace distribution, from which the executed action at is sampled. This enables adap-
tive, uncertainty-aware exploration. The world simulator then predicts the next observation ot+1

using proprioceptive state st+1. The VLM-guided instant reflector evaluates the partial visual tra-
jectory o1:t+1 and outputs a step-wise reward R(o1:t+1,g) ∈ [0, 1]. Rollout terminates either at the
maximum timestep T or when R(o1:t+1,g) > η. For RL, we assign a single trajectory-wise reward
Rn = R(o1:tend ,g), where tend is the termination or final timestep.

We adopt Leave-One-Out Proximal Policy Optimization (LOOP) (Chen et al., 2025) that combines
RLOO (Ahmadian et al., 2024) based advantage estimation and PPO (Schulman et al., 2017) for
policy updating. For each initial state, we generate N rollouts {τ1, . . . , τN} using a fixed behavior
policy πϕ (the policy at the beginning iteration). Each trajectory receives a scalar reward Rn from
the instant reflector. The RLOO baseline for trajectory n is the average reward of the other N − 1
rollouts:

bn =
1

N − 1

∑
j ̸=n

Rj , An = Rn − bn, (4)

where An is the trajectory-wise advantage.

To update the policy, we treat both the current and behavior policies as inducing stochastic action
distributions via their action and scale heads. The importance ratio at timestep t of trajectory n is
computed as:

rt,n =
pθ(at,n | ot,n, st,n,gn)

pϕ(at,n | ot,n, st,n,gn)
,

where pθ and pϕ denote the action distributions induced by the current policy πθ and behavior
policy πϕ, respectively, each modeled as a product of independent Laplace distributions over action
dimensions. The policy is optimized via the clipped PPO objective:

LPPO = − 1∑
n Tn

N∑
n=1

Tn∑
t=1

min (rt,nAn, clip(rt,n, 1− ϵ, 1 + ϵ)An) , (5)

with Tn denotes the length of trajectory n and ϵ refers to the clipping threshold. Note that the
advantage An is broadcasted to all timesteps within trajectory.

Unlike prior methods that use binary rewards (R ∈ {0, 1}) and require balanced success/failure roll-
outs for stable training, our continuous reward signal (R ∈ [0, 1]) provides finer-grained feedback.
This helps enhance rollout efficiency and training stability, particularly in data-scarce settings.

4.4 IMPLEMENTATION DETAILS

All our experiments are conducted on 8 NVIDIA H20 GPUs (96 GB memory each). We adopt
LoRA (Hu et al., 2022) with rank 32 for parameter-efficient fine-tuning of the vision-language back-
bone, while the action head and scale head are trained with full parameters. We use a batch size of
4. The LoRA adapters are optimized with a learning rate of 1× 10−4, and the action/scale heads are
trained with a learning rate of 1 × 10−5. We set the number of rollouts per iteration to N = 8 and
the PPO clipping threshold to ϵ = 0.1.
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Figure 3: Comparison between our method and SFT on multi-goal tasks. Note, all results are
collected every 5 training steps for three distinct goals.
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Figure 4: Rendering comparison of world simulator trained with and without extra data.

5 EXPERIMENTS

Table 2: Ablation studies. We evaluate how the extra training data for world simulator learning and
the reward head for trajectory scoring affect the performance of our method.

Extra Data Reward Head LIBERO Goal LIBERO Object LIBERO Spatial LIBERO Long

68.4 75.2 73.2 42.2
✓ 79.8 81.8 78.4 44.6

✓ 68.8 76.4 74.4 43.8
✓ ✓ 86.4 86.6 87.6 57.8

Benchmark. We evaluate our model on the LIBERO benchmark (Liu et al., 2023a), a simulation-
based robotic learning platform designed for vision-language manipulation tasks. The benchmark
includes four task suites targeting distinct cognitive challenges: LIBERO-Spatial focusing on spatial
reasoning via object arrangement; LIBERO-Goal assessing goal-conditioned planning with end-
state requirements; LIBERO-Object testing object-centric manipulation across categories; LIBERO-
10 (LIBERO-Long) addressing prolonged sequential decision-making. Each suite contains 10 tasks
with 50 trajectories for training and 50 for testing per task; we train OpenVLA-OFT using only
5 trajectories from the training split to validate performance under extreme data scarcity, while
evaluating on the full trajectory test split to demonstrate the generalization capability.

7
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Figure 5: Real-world rendering results of world simulator. We show a video sequence generated
by our world simulator in real-world scene.

Baselines. We compare our method with five state-of-the-art VLA frameworks including π0

(Black et al., 2024), π0 + FAST (Pertsch et al., 2025), OpenVLA (Kim et al., 2024), UniVLA (Bu
et al., 2025), and OpenVLA-OFT (Kim et al., 2025). All methods are trained with standard super-
vised fine-tuning (SFT). For fair evaluation, all baselines are retrained under identical 5-trajectory
per-task constraints, with performance metrics reported on the complete test set.

5.1 COMPARISON WITH STATE-OF-THE-ART METHODS

Table 1 presents success rate comparison between our method and the baseline models. As shown,
our method gains higher task success rate, demonstrating the effectiveness of our proposed post-
training strategy. Figure 3 further compares our method and the supervised fine-tuning (SFT) base-
line on multi-goal tasks, where we can see that our approach achieves superior performance within
only 20 training steps, clearly outperforming the compared SFT model. This rapid convergence and
early dominance highlight the efficiency and effectiveness of our method in learning conditioned
policies with minimal training iterations.

5.2 ABLATION STUDIES

Effect of World Simulator. We investigate how the generative capabilities of world simulator af-
fect the performance of our method. Figure 4 evaluates two world simulator variants: (1) w/o extra:
trained solely on human-annotated successful trajectories, (2) w/ extra: enhanced with our collected
data containing both successful and failed trajectories. As shown, the model trained without extra
data struggles with object tracking, particularly when the VLA model’s action predictions deviate
from ideal trajectories. This is because the world simulator only observes successful interactions
during training, making it unable to simulate complex object states caused by suboptimal actions.
In contrast, our model demonstrates significant improvements in robotic arm tracking precision and
object interaction fidelity. Table 2 quantitatively validates these observations: when the world sim-
ulator generates low-quality images, VLA training effectiveness drops. This correlation highlights
the importance of diverse training data in building robust world simulator that can handle real-world
action variations. Figure 5 further manifests the simulator’s ability to generate photorealistic obser-
vations with accurate physical interactions, showing that our method can be adopted in real-world
scene application. Please see also the supplementary material for video results.

Effect of Instant Reflector. We investigate the effect of instant reflector on our framework’s per-
formance. As summarized in Table 2, we perform evaluation for two strategies: (1) w/o reward
head: Direct use of pre-trained VLMs with prompt-based binary classification (yes/no) (2) w/ re-
ward head: We integrate a trainable reward head that scores action sequences on a continuous scale.
The difference lies in how each approach assesses alignment between generated video sequences and
text instructions. While the baseline leverages VLMs’ inherent language understanding capabilities
through fixed prompts, our method explicitly trains the reward head to quantify task completion
progress via scalar scores. Experimental validation demonstrates that a naive use of pre-trained
VLMs brings weak performance gains and may degrade VLA model learning in complex scenar-
ios. This limitation stems from the mismatch between VLMs’ general language vision alignment
and the specific action evaluation requirements. In contrast, our reward head, trained on diverse
success/failure trajectories, achieves higher accuracy in distinguishing successful actions.
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(a) Executing (b) Success (c) Fail (d) Fail (e) Fail

Figure 6: Post-success failure in VLA execution. An illustrative example for “put the wine bottle
on top of the cabinet” shows the VLA model completes the task (frames a-b), but fails due to delayed
termination (frames c-e), validating the necessity of dynamic termination mechanism.

Table 3: Comparison of task termination strategy under realistic feedback constraints. Note,
all compared methods are evaluated under the setting where ground-truth termination feedback is un-
available, while our method autonomously detects task completion via the proposed reward model.
Success rates are measured when reaching the maximum action steps.

Method LIBERO-Goal LIBERO-Object LIBERO-Spatial LIBERO-Long Average

π0 (Black et al., 2024) 55.4 71.0 72.6 20.6 54.9
π0+FAST (Pertsch et al., 2025) 21.2 74.0 44.8 15.0 38.75
OpenVLA (Kim et al., 2024) 68.4 47.4 59.8 26.6 50.55
UniVLA (Bu et al., 2025) 72.0 75.2 66.4 48.0 65.4
OpenVLA-OFT (Kim et al., 2025) 67.4 73.8 71.2 39.8 63.05
OpenVLA-OFT + Post-training (Ours) 85.0 78.4 78.4 57.8 74.9

Effect of Termination Signals. Table 3 further validates the effectiveness of our task success
detection capability. While conventional methods rely on simulator-provided termination signals
due to their inability to assess task completion, our approach employs a VLM-guided instant reflector
that dynamically evaluates task success and enables early termination upon achievement. To verify
this advantage, we set all compared baseline methods to strictly follow the maximum step limit for
termination, whereas our framework utilizes instant reflector predictions as stopping criteria. As
shown in Table 3, the compared baseline methods exhibit clear performance degradation under this
setting because redundant post-success actions from delayed termination may disrupt object states
after task completion (see Figure 6). In contrast, our method avoids such interference by terminating
execution immediately upon detecting success signals, demonstrating our instant reflector’s capacity
to preserve task outcomes through timely stopping decisions.

5.3 LIMITATIONS AND FUTURE WORK

Despite the effectiveness of our method in enhancing VLA manipulation capabilities, it still has the
following limitations. First, the performance of both world simulator and instant reflector depends
on massive training data to achieve high-fidelity simulation and accurate task evaluation. Second,
our VLA model optimization is slower than concurrent methods due to world simulator generation
bottlenecks. In the future, we will focus on addressing these limitations.

6 CONCLUSION

We present a post-training framework World-Env for Vision-Language-Action (VLA) models that
eliminates reliance on physical environment interaction. We introduce three core innovations: (1)
RL post-training by exploration in World-Env enables policy refinement, achieving strong perfor-
mance with only 5 demonstrations per task; (2) exploration in World-Env reduces physical exper-
imentation costs; and (3) dynamic termination via VLM-guided instant reflector prevents redun-
dant post-success actions. Experimental validation on complex manipulation tasks demonstrates
our method’s superiority in low-data regimes.
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ETHICS STATEMENT

The adoption of world models in Vision-Language-Action systems raises practical considerations.
While these models reduce reliance on real-world data collection and mitigate safety risks by en-
abling virtual training, they often demand substantial computational resources for training and in-
ference. Large-scale video prediction and cross-modal alignment typically require extensive GPU
usage over long durations, contributing to significant energy consumption and carbon emissions.
This raises concerns about environmental sustainability, particularly when such systems are scaled
or replicated across research groups without shared infrastructure or efficiency-aware design.

REPRODUCIBILITY STATEMENT

All implementation details regarding hyperparameter configurations and training protocols are de-
tailed in Appendix B. To ensure full reproducibility of our experiments, we will make publicly
available both the source code for model training and evaluation procedures, as well as pre-trained
model checkpoints specifically trained on the LIBERO dataset. These resources are provided to
facilitate direct replication of the experimental results presented in this work while enabling future
research extensions.
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A LANGUAGE MODEL USAGE STATEMENT

This paper was refined using the Qwen (Bai et al., 2023) large language model to enhance linguistic
clarity, grammatical precision, and cross-disciplinary readability. No unattributed content was gen-
erated by the model; all scientific claims, data interpretations, and conclusions were independently
validated by the authors.

Algorithm 1 World-Env Training Algorithm

Input: Pretrained VLA policy πθ, scale head βθ, VLM-based reward function R(o1:t,g), context
dataset Dcontext

1: for training iteration = 1 to M do
2: Set behavior policy: πϕ ← πθ, βϕ ← βθ ▷ Fix old policy and scale head
3: Initialize rollout buffer Drollout ← ∅
4: while |Drollout| < B do ▷ Rollout Collection
5: Sample context c = (g,o1, s1) ∼ Dcontext
6: for n = 1 to N do ▷ Generate N rollouts per context
7: Initialize trajectory τn ← (o1, s1)
8: for t = 1 to T do
9: Predict base action: µt ← πϕ(o1:t, s1:t,g)

10: Predict log-scale: βt ← βϕ(o1:t, s1:t,g)
11: Sample action: at ∼ Laplace(µt, exp(βt))
12: Compute next proprioceptive state: st+1 ← FK(st,at)
13: Predict next observation: ot+1 ←WorldSim(ot, st+1)
14: Append (at,ot+1, st+1) to τn
15: if R(o1:t+1,g) > η then ▷ Termination check (η = 0.5)
16: tend ← t+ 1; break
17: end if
18: end for
19: Set trajectory reward: Rn ← R(o1:tend ,g)
20: Store log-probabilities log pϕ(a1:tend | ·) for importance weighting
21: end for
22: Compute RLOO baselines: bn ← 1

N−1

∑
j ̸=n Rj for all n

23: Compute advantages: An ← Rn − bn
24: Add {(τn, An, log pϕ(·))}Nn=1 to Drollout
25: end while
26: for optimization step = 1 to K do
27: Sample batch from Drollout
28: Compute current log-probabilities log pθ(a | ·)
29: Compute importance ratios: rt ← exp(log pθ − log pϕ)
30: Update πθ and βθ by minimizing PPO loss (Eq. 5)
31: end for
32: end for

B MORE IMPLEMENTATION DETAILS

B.1 DEATILS OF SCALE HEAD

Our method builds upon OpenVLA-OFT (Kim et al., 2025), which predicts continuous actions via
an action head that takes hidden states f ∈ Rd as input and employs L1 loss for action regression:

LL1 = ∥agt − µ∥1 where µ = MLPaction(f). (6)

To model heteroscedastic uncertainty in action prediction, we introduce a scale head with the same
MLP architecture as the action head, as shown in Figure 7. This scale head outputs log-scale param-
eters β through:

β = MLPscale(h), (7)
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Figure 7: Architecture for uncertainty-aware action generation. The deterministic action output
of the VLA policy is augmented with a parallel Laplace scale head to model action uncertainty.

and is trained with negative log-likelihood (NLL) loss under a Laplace distribution assumption:

LNLL = |agt − µ| · e−β︸ ︷︷ ︸
Data fit

+ β︸︷︷︸
Uncertainty penalty

+ log 2. (8)

The scale head is trained using a batch size of 8 and a learning rate of 5× 10−4 over 1, 000 training
iterations.

B.2 DEATILS OF WORLD SIMULATOR

We adopt the original implementation of the EVAC world model (Jiang et al., 2025b) and retain
its training configuration. We show an overview in Figure 8. The generation process starts from a
reference image, whose CLIP (Radford et al., 2021) features provide style guidance. This signal is
integrated into the diffusion model via cross-attention. Action information is encoded as a spatial
action map and concatenated with visual features at the feature level. The fused representation
drives the diffusion network to generate future frames through iterative denoising, followed by a
video decoder to produce the final output. The EVAC model was originally designed for dual-
arm robotic platforms with 14-dimensional (14D) action vectors (7D per arm). In contrast, the
LIBERO benchmark employs a single-arm robot with 7D actions (6D end-effector pose + 1D gripper
state). To maintain compatibility with the EVAC architecture, we zero-pad the unused 7D action
dimensions during training, preserving the input interface while adapting to the target hardware.

B.3 DETAILS OF REWARD HEAD

Our VLM-guided instant reflector integrates a pretrained vision-language model (LLaVA (Liu et al.,
2023c)) with a lightweight reward head that predicts continuous reward signals, see Figure 9 for
an overview. The VLM backbone is kept frozen to preserve its semantic capabilities, and only the
reward head is trained. Given a video sequence {f1, . . . , fN} generated by the world simulator,
we uniformly sample 32 frames as visual input. The language prompt is formatted as: “Watch
the video and determine whether it completes the task: {g} — answer only ‘Yes’ or ‘No’.” The
VLM processes this input and extracts a pooled embedding, which is projected by the reward head
to a scalar. A sigmoid activation yields a continuous reward R ∈ [0, 1], interpreted as the task
completion probability. The reward head is trained with binary cross-entropy loss, using a batch
size of 8, learning rate 1× 10−4, Adam optimizer, and 50 epochs, with input frames center-cropped
to 384×384 resolution.

C ANALYSIS OF WORLD SIMULATOR

C.1 DATA ANALYSIS AND DISTRIBUTION

We provide a statistical analysis of the training data for the world simulator and instant reflector in
Figure 10, including: (a) length distributions for successful vs. failed trajectories, (b) cumulative
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distribution functions by outcome, and (c) task outcome proportions. The bimodal distribution in
successful trajectories motivated our dynamic termination mechanism, while the long-tailed length
distribution informed our curriculum sampling strategy.

100 200 300 400 500
Sequence Length

0

50

100

150

200

250

300

N
um

be
r 

of
 S

eq
ue

nc
es

Success
Failure

(a) Length Distribution

100 200 300 400 500
Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

Overall
Success
Failure

(b) Cumulative Distribution Func.

Success 
(12876)

64.3%

Failure 
(7134)

35.7%

(c) Task Outcome Proportion

Figure 10: Training data analysis and distribution.

C.2 MORE RESULTS OF WORLD SIMULATOR

Figures 11 and 12 show additional trajectories generated by the world simulator, demonstrating its
ability to synthesize both successful and failed task executions.
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Figure 11: Failure trajectories synthesized by the world simulator.
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Figure 12: Success trajectories synthesized by the world simulator.
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