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Figure 1: Left: (Top) Tasks like assembly require long-horizon coordination and high precision, at
which current BC methods fail due to their chunk-level open-loop nature. (Bottom) Combining a BC
trajectory planner with an RL-trained closed-loop residual policy results in surprisingly robust and
reactive behaviors. Right: Chunking improves performance over standard policy architectures. Still,
performance saturates despite increasing data and addressing distribution shifts with DAgger [1].
Combining chunking with closed-loop corrections (ResiP) combines the strength of each.

Abstract: Recent advances in behavior cloning (BC), like action-chunking and
diffusion, have led to impressive progress. Still, imitation alone remains insuffi-
cient for tasks requiring reliable and precise movements, such as aligning and in-
serting objects. Our central insight is that chunked BC policies function as trajec-
tory planners, enabling long-horizon tasks. Still, since they execute action chunks
open loop, they lack the fine-grained reactivity necessary for reliable execution.
Further, we find that the performance of BC policies saturates despite increasing
data. We present a simple yet effective method, ResiP (Residual for Precise Ma-
nipulation), that sidesteps these challenges by augmenting a frozen, chunked BC
model with a fully closed-loop residual policy trained with reinforcement learn-
ing (RL). The residual policy is trained via on-policy RL, addressing distribu-
tion shifts and reactivity without altering the BC trajectory planner. Evaluation
on high-precision manipulation tasks demonstrates strong performance of ResiP
over BC methods and direct RL fine-tuning. Videos, code, data, and supplemen-
tary materials are available at https://residual-assembly.github.io.
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1 Introduction

Robotic manipulation tasks requiring both long-horizon planning and high-precision control, such as
assembly, remain a significant challenge in robotics [2, 3, 4, 5, 6]. Consider the furniture assembly
task in Fig. 1 (Left), where a robot sequentially grasps, orients, inserts, and screws in four legs. This
task involves executing a specific sequence of skills over hundreds of timesteps, each dependent on
the previous stage. Small imprecisions at any point can lead to failure, highlighting the need for
reliable execution of diverse skills in sequence.
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Methods one leg round table lamp mug-rack peg-in-hole

Low Med Low Med Low Med Low Low

IL
MLP-S 0 0 0 0 0 0 0 0
MLP-C 45 10 5 2 8 1 21 2
DP 54 29 12 4 7 2 29 3

R
L

MLP-C + PPO 70 28 38 6 32 2 23 4
DP + IDQL 52 13 18 3 11 1 31 3
ResiP (ours) 98 76 94 77 97 70 88 99

Table 1: Top BC-trained MLPs without chunking (MLP-S) cannot per-
form any of the tasks, and Diffusion Policies (DP) generally outperform
MLPs with chunking (MLP-C). Bottom Training our proposed residual
policies with RL on top of frozen DP performs the best among the evalu-
ated fine-tuning techniques.

Figure 2: Examples of
tasks used for method
evaluations.

Behavior cloning (BC) is favored for teaching robots manipulation skills [7, 8, 9, 10, 11, 12, 13,
14, 6, 15]. Recent innovations like diffusion models [16, 17, 18, 19, 20] and action chunking [21,
6, 17, 19] enable learning complex behaviors from demonstrations [22, 15]. However, BC shows
limitations in high-precision tasks. In Fig. 1 (Left), a diffusion-based BC model achieves ∼50%
success with few demonstrations but plateaus at ∼80% even with 100,000 (Fig. 1 (Right)). Other
studies report similar saturation [23, 24, 25].

We hypothesize this saturation occurs due to two issues: (1) BC suffers from compounding errors
due to distributional shifts [23]. While Dataset Aggregation (DAgger) [1] can mitigate this, it re-
quires an on-demand, often unavailable expert. (2) Modern BC policies, especially those using
action chunking, act more like open-loop “planners” than reactive controllers. In tasks like furniture
assembly, “bottleneck” states [22] (e.g., insertions) require precise actions at specific times. If these
critical moments fall within an action chunk, the BC planner cannot make real-time adjustments,
leading to task failure in high-precision tasks.

Reinforcement Learning (RL) can learn corrective behaviors through interaction and explo-
ration [26, 27], effectively training robust reactive controllers for various tasks [28, 29, 30, 31, 32].
However, applying RL to complex, long-horizon, precise tasks like robotic assembly requires exten-
sive reward engineering [33] and vast amounts of data, which is costly, especially for real data.

We aim to leverage both BC and RL: BC learns a “planner” capturing high-level structure from a
few demonstrations, while RL augments it with fine-grained corrections. While combining BC and
RL has a long history [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46], recent BC advancements
(e.g., diffusion models, action chunking) complicate RL fine-tuning, often leading to instability or
requiring significant architectural modifications [47, 15, 48].

We propose ResiP (Residual for Precise Manipulation), shown in Fig. 3, to combine modern chun-
ked BC and on-policy RL controllers. We augment a frozen, chunked BC model with a small,
single-step residual policy trained via on-policy RL. This residual policy predicts corrective actions
based on each state and BC-predicted action. This approach addresses BC limitations by (1) being
on-policy, overcoming distributional shift, (2) enabling real-time adjustments for improved robust-
ness and precision, and (3) using a sparse task-completion reward, avoiding reward engineering.

We evaluate ResiP on high-precision manipulation tasks from FurnitureBench [5] and Factory [49]
benchmarks. ResiP outperforms pure BC and traditional RL fine-tuning, achieving ∼97% success
from 50 demonstrations, compared to BC’s ∼80% with 100k demonstrations. Using teacher-student
distillation, visual domain randomization, and co-training, we successfully transfer policies from
simulation to a real robot using RGB observations.

2 Methods

Imitation Learning We begin by training a “base” policy using 50 simulated demonstrations,
Dsim, obtained through teleoperation. Each trajectory τi in Dsim contains system states st
and robot actions at. We train the base policy πbase using Behavior Cloning (BC), maximizing
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E(at, st) ∼ Dsim [log π(at|st)]. We employ a Diffusion Policy [19], known for strong performance
on complex tasks with limited data [22]. Our policy predicts action chunks at = [at, ..., at+Ta ] of
length Ta, executing a subset [at, ..., at+Texec ] with Texec ≤ Ta, like recent advancements [19, 6].

Online Reinforcement Learning with Residual Policies Given an initial base policy πbase, we
aim to improve it with RL. However, directly fine-tuning diffusion models with RL is challeng-
ing [50, 51, 47, 52] due to multi-step inference and unavailability of action log-probabilities.

Some methods upweight high-quality model outputs [53, 54, 55, 18, 56], but focus on extracting
existing behaviors rather than learning new, corrective ones. Action chunking complicates policy
gradient optimization by increasing the effective action space, leading to training instability (see
Sec. 3.1). This also affects other BC architectures like ACT [6, 15]. Even successful RL fine-tuning
results in trajectory planners lacking closed-loop reactive control (Fig. 6). Additionally, fine-tuning
large pre-trained models can lead to capability forgetting if states seen during pre-training are not
frequently visited [57].

We propose training a residual Gaussian MLP policy πres, which takes as input both the system state
and the action predicted by πbase, producing an action correction: at = abase

t + α · ares
t , with α ≤ 1.

The combined policy is denoted π. This approach allows treating the diffusion model as a black
box [58], enables different prediction horizons Ta for the two policies, and removes the need for
explicit regularization to stay near the pre-trained policy [59, 60]1.

We train πres using standard PPO [27], augmenting the state space with the base action. For each
action in the chunk at output by the base model, we concatenate it with the current observation
sres
t+i = [st+i, a

base
t+i ], and predict the correction ares

t+i ∼ πres(·|sres
t+i) for i = 0, ..., Ta − 1. This

approach incorporates an inductive bias for learning locally corrective actions [61], motivated by
observations that most BC policy failures occur due to slight imprecisions near “bottleneck” transi-
tions in skills like grasping and insertion (e.g., Fig. 1 (Left)).

3 Experiments and Results

3.1 Improving Imitation Learning with Residual Learning

Why Action Chunking and Diffusion Policies? While simple MLPs have shown strong perfor-
mance in many RL domains [62, 63, 31], single-action MLP policies (MLP-S) fail across all our
tasks, as seen in Tab. 1. Introducing action chunking (MLP-C) drastically improves performance.
However, Diffusion Policies (DP) generally outperform MLPs, especially in intermediate-difficulty
tasks (e.g., 10% to 29% success rate for one leg on medium randomness). DP shows smoother,
faster actions, although this occasionally hinders performance (e.g., in lamp on low randomness).
All methods struggle with the hardest tasks (<5% success rate), indicating a need for stronger BC
methods. The peg-in-hole task, with a ∼0.2 mm clearance insertion, proved particularly challeng-
ing (2-3% success rate), supporting the hypothesis that BC methods struggle with high-precision
requirements. DP demonstrates greater robustness to noise compared to MLP-C, making it more
suitable as a base policy for residual fine-tuning.

Online Policy Fine-Tuning Comparison Next, we investigate the effectiveness of our residual
RL approach, ResiP, in improving the performance of policies trained with BC. We train residual
policies using PPO [27] on top of the diffusion policy and compare it to two baselines – (1) directly
fine-tune the MLP-C with PPO while regarding every action chunk as one concatenated action.
(2) Using the recently proposed IDQL algorithm [53] where one samples multiple times from the
diffusion policy and chooses which action chunk to execute based on its Q-value. We have found
that learning a good Q-value estimator from offline data alone, as proposed in IDQL, is challenging
with only 50 demonstrations. Therefore, we learn it in on-policy matter similar to [64].

1This decoupling also means that ACT and other BC methods can serve as the base model without changing
the method – an advantage of residual policy learning emphasized by prior robotics work [58, 61].

3



The results in Tab. 1 show that our residual RL approach significantly improves success rates over
BC and outperforms alternative RL fine-tuning methods. For tasks with lower initial randomization,
such as the one leg task, the residual policy increases the success rate from 54% to 98%. Even more
drastically, for the peg-in-hole task, ResiP improved the success rate from 3% to 99%. However,
we observe performance saturates at lower success rates (e.g., ∼ 70%) for tasks with higher part
randomization. We hypothesize that the base model’s performance limits the residual policy as it is
designed to act locally, constrained by the base.

Fig. 1 (Left) illustrates the common failure mode of BC policies and its RL-based solution. BC
policies often push down prematurely, misaligning the leg with the hole and causing object shifts that
lead to policy divergence due to out-of-distribution grasp poses. The residual policy corrects these
errors through small sideways translations and delays downward motions until proper alignment.
Additionally, the residual policy demonstrates superior initial grasping, facilitating more accurate
downstream alignment, whereas BC policies often grasp at angles that complicate insertion.

In addition to improved success rates, we observed different training dynamics across each method.
First, direct MLP-C fine-tuning proved unstable and required KL-regularization to avoid collapse.
Second, the trained DP produced actions with low variance, even with η = 1 in the DDIM sam-
pler [65], inhibiting Q-learning and constraining the potential for policy improvement. In contrast,
residual policy training was quite stable, likely because it is constrained to operate on a local scale,
which prevents large deviations that can make RL unstable [66, 67]. Finally, shown in Fig. 6, ResiP
exhibits better resilience to random force perturbations (12 percentage point drop) compared to al-
ternative chunked methods (19-26 percentage point drop for BC, DAgger, chunked residual).

3.2 Distillation Performance and Real-World Application

Distillation Performance Distilling trajectories from the RL agent outperforms training directly
on demonstrations, with a vision-based policy reaching 73% success on one leg compared to 50%
when trained directly on human demos (Fig. 5). However, a performance gap remains between
the RL-trained teacher (98%) and distilled student policy (73%). This gap is not primarily due to
the change in modality from state to image-based inputs. Scaling up the distillation dataset size
improves performance, but a gap persists even with 100k trajectories (78% student vs. 98% teacher
success rate, Fig. 1 Right). Despite this, the improvement with more data underscores the advantage
of using simulation for large-scale synthetic datasets.

Real-World Application We evaluate a sim-to-real policy trained on a mixture of real-world
demonstrations (10/40) and simulation data from the trained residual RL policy, comparing it to
a baseline trained only on real-world demos. For the one leg task, we test on two sets of 10 trials
each, randomizing part poses and obstacle poses in the other. Results in Tab. 2 show that incorporat-
ing simulation data improves real-world performance (increasing task completion from 20-30% to
50-60%). The sim-to-real policy exhibits smoother behavior with fewer erratic movements. Fig. 7
shows examples of successful and unsuccessful attempts. The supplementary video provides more
qualitative experiments on sim-to-real transfer and generalizations enabled by synthetic data.

4 Limitations and Conclusion

ResiP, while effective for fine-tuning BC-trained policies for precise manipulation tasks, has lim-
itations. Its local residual policies struggle with large-scale deviations and high initial scene ran-
domness. Sim-to-real transfer for RGB policies remains challenging, with performance gaps in
distillation and distribution shifts. Future work could explore better sim-to-real techniques, mech-
anisms for correcting large-scale errors, and generalization to broader initial states. Despite these
challenges, ResiP successfully uses RL to train residual policies that produce locally corrective ac-
tions on complex base models, demonstrating strong performance in fine-tuning imitation-learned
assembly policies. Through teacher-student distillation and sim-to-real co-training, we show that
precise behaviors can be transferred to real-world assembly policies operating from vision.
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A Problem Setup and Approach Overview

We aim to develop a method for robots to reliably execute long-horizon manipulation tasks with
minimal human effort. This section outlines our problem formulation and key assumptions.

Assumptions and System Components Given the observed limitations in scaling performance
with human demonstrations (Fig. 1 (Right), [24, 25, 23]), we adopt an approach that combines a
moderate set of expert demonstrations (∼50 per task) with RL refinement. We assume tasks consist
of a fixed set of rigid objects for which we can access CAD models (either given for an assembly
or scanned real-world object). Thus, both the parts and the entire assembly process can be accu-
rately simulated. Each task has an underlying success criterion depending on the required align-
ments between the parts used to implement the sparse task-completion reward. Each task may have
long horizons (up to ∼750-1000 steps at 10Hz) and require sequencing of behaviors such as corner
alignment, 6-DoF grasping, reorientation, insertion, and screwing (see, e.g., Fig. 1 (Left)). Multi-
part assembly interactions are simulated using the SDF-based collision geometry representations
featured in the Factory [49] extension of NVIDIA’s Isaac Gym simulator [68]. We use the tasks
one leg, round table, and lamp from the FurnitureBench [5] task suite, the peg-in-hole task
from [49], and mug-hanging task called mug-rack defined through scanning of real-world objects
and demonstrations.

Preliminaries We formulate the robot’s task as a discrete-time sequential decision-making prob-
lem. In each time step t, the robot receives either an observation ot ∈ O if it operates in the real
world or the state of the system st ∈ S if it operates in simulation. After receiving it, the agent
produces an action at to execute in the environment at 10Hz. The action space in both simulation
and the real world is the desired end-effector pose Tdes ∈ SE(3). We use a differential inverse kine-
matics [69] controller to convert the desired end-effector pose commands into joint position targets,
tracked with a low-level PD controller at 1kHz. The real world observation space O contains the
robot end-effector pose T ∈ SE(3), robot end-effector spatial velocity V ∈ R6, the gripper width
wg, and RGB images from a fixed front-view camera (I front ∈ Rh×w×3) and a wrist-mounted cam-
era (Iwrist ∈ Rh×w×3), each with unknown camera poses. In the simulated task variants, the system
states space S contains the same end-effector pose T, spatial velocity V, and gripper width wg,
along with the 6-DoF poses of all the parts in the environment {Tparti}num parts

i=1 . In addition to the
state/observation, the simulated agent receives a binary reward signal, indicating whether two parts
of the assembly have achieved their required geometric alignment.

B Extended methods

B.1 Imitation Learning

We start with a few human demonstrations to train a “base” policy that serves as the starting point
for RL training. For each task, we collect a dataset of 50 demonstrations in simulation, Dsim. This
dataset contains trajectories, e.g., D = {τ1, ..., τN}, where each trajectory contains the system states
st, and robot actions at, i.e., τi = {(st, a1), ..., (sT , aT )}, with T being the trajectory length. We
obtain these trajectories by teleoperating the simulated robot to complete the task.

Using the simulation dataset Dsim, we train the base policy πbase with Behavior Cloning (BC), i.e.,
we maximize the likelihood of the data by optimizing maxπ E(at,st)∼Dsim [log π(at|st)]. We use a
Diffusion Policy [19] as the base model, which has shown strong empirical performance in handling
difficult manipulation tasks with relatively small datasets [22]. Consistent with recent advance-
ments [19, 6], our policy framework enhances its performance by predicting multiple future actions
in chunks instead of individual actions at each timestep. We denote the length of future action se-
quences predicted by the policy as Ta, the output as at = [at, ..., at+Ta

]. When predicting an action
chunk at of length Ta, we only execute a subset [at, ..., at+Texec ], with execution horizon Texec ≤ Ta.
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B.2 Online Reinforcement Learning with Residual Policies

Given the initial base policy πbase, we aim to improve it using RL. However, directly fine-tuning
diffusion models with RL is an active area of research [50, 51, 47, 52], made difficult because of the
multi-step inference process and unavailability of the policy action log-probabilities.

Another category of methods upweight high-quality model outputs via importance sampling, return
conditioning, or augmenting the original de-noising objective with a loss term for maximizing a
Q-function [53, 54, 55, 18, 56]. However, these methods mainly enable better extraction of high-
quality behavior in the data, while we are more concerned with learning new, corrective behaviors.
Action chunks can also make optimization with policy gradients more difficult. This is partly due
to chunking increasing the effective action space (e.g., chunks of 8 actions increase the dimension
8×), which we find to increase RL training instability (see Sec. 3.1). This means fine-tuning other
popular BC architectures, like the Action-Chunked Transformer (ACT) [6], also brings technical
challenges [15]. Even with successful RL fine-tuning, the improved policy will still be a trajectory
planner lacking in closed-loop reactive control (Fig. 6). Furthermore, recent work has shown that
fine-tuning large pre-trained models can lead to forgetting of capabilities if the agent does not visit
states seen during pre-training frequently enough [57].

Figure 3: Overview of ResiP. A pre-
trained chunked base policy predicts an
action chunk of Ta future actions. For
every timestep, the residual model ob-
serves the current state st and predicted
base action abase

t and corrects.

We side-step these complications by training a residual
Gaussian MLP policy πres. This policy takes as input
both the system state and the action predicted by the diffu-
sion policy πbase and produces an “action correction” that
modifies the action as at = abase

t + α · ares
t , with α ≤ 1

being a coefficient controlling what scale the residual pol-
icy operates on. We find that the policy is not sensitive to
α in isolation, but rather the resulting exploration noise,
αN (0, σinit stdI). We denote the resulting combined pol-
icy π. This decoupling has several advantages. First, we
can regard the diffusion model as a black box and not
change its parameters [58]2. This also allows different
prediction horizons Ta for the two policies. This flexibility in action horizon is helpful as most RL
algorithms optimize single-action policies and allow the residual to be fully closed-loop. It also
removes the need to explicitly regularize the fine-tuned policy to stay near the pre-trained policy,
which is often necessary to achieve stable optimization [59, 60].

Given the above, we train the πres using standard PPO [27] with the alternation that we augment
the state space with the base action. The base model observes the current state st and outputs a
chunk of actions at. For each action in the chunk, we concatenate it with the current observation
sres
t+i = [st+i, a

base
t+i ], and predict the correction ares

t+i ∼ πres(·|sres
t+i) for i = 0, ..., Ta − 1. Besides

the technical convenience, one can look at residual policy as a way to incorporate an inductive bias
that the policy should only learn locally corrective actions [61]. This is motivated by our qualitative
observations that most of the base BC policy failures are due to slight imprecision near “bottleneck”
transitions when performing skills like grasping and insertion (e.g., Fig. 1 (Left)).

B.3 Sim-to-real pipeline

Ultimately, we are interested in what capabilities our method can enable on real robots. To that end,
we devise a sim-to-real pipeline to transfer state-based policies trained in simulation to RGB-based
policies deployable on physical hardware. We present the general pipeline in Fig. 4. Once the RL
training has converged, the combined policy has attained closed-loop correction behavior. We aim
to distill this enhanced performance from the state-based policy into a vision-based policy that oper-
ates from RGB images. Following the established teacher-student distillation paradigm [32, 63, 62],
we generate a dataset of successful trajectories, Dsynth, where the environment’s observations, ot,

2This decoupling also means that ACT and other BC methods can serve as the base model without changing
the method – an advantage of residual policy learning emphasized by prior robotics work [58, 61].
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Figure 4: Sim-to-real pipeline. (1) Beginning with a policy trained with
BC in simulation, (2) we train residual policies with RL and sparse re-
wards. (3) We then distill the resulting behaviors into a policy operating
from RGB images. (4) By combining synthetic data with a small set of
real demonstrations, (5) we deploy RGB-based policies in real.

Figure 5: Compari-
son of distilled perfor-
mance from BC and
RL-based teacher.

Training data Corner Grasp Insert Screw Complete

Part Obs Part Obs Part Obs Part Obs Part Obs

10 Real 5/10 5/10 5/10 7/10 2/10 3/10 0/10 2/10 0/10 2/10
10 Real + 350 Sim 9/10 9/10 7/10 8/10 0/10 3/10 0/10 3/10 0/10 3/10

40 Real 10/10 8/10 9/10 8/10 6/10 3/10 2/10 3/10 2/10 3/10
40 Real + 350 Sim 10/10 10/10 9/10 10/10 6/10 7/10 5/10 6/10 5/10 6/10

Table 2: We investigate the effect of combining real-world demon-
strations with simulation trajectories from our RL-trained residual
policies. Co-training with real and synthetic data improves motion
quality and success rate on the one leg task.

Figure 6: Perturbations show
ResiP’s resilience: 12% drop
vs. 19-26% for chunked
methods.

replace the states, i.e., Dsynth = {τsynth,1, ..., τsynth,N} and τsynth,i = {(o1, a1), ..., (oT , aT )}. For
real-world transfer, we enhance the synthetic dataset Dsynth by re-rendering its trajectories in Isaac
Sim [70]. This process improves image quality and introduces variability in environmental condi-
tions such as object and table colors, textures, lighting, and camera perspectives, many of which
cannot easily be done with standard image augmentation techniques. We denote this refined dataset
as Dsynth-render. To ease the difficulty of zero-shot sim-to-real with RGB images, we opt for a co-
training approach, integrating the synthetic dataset with a small set of real-world task demonstra-
tions, Dreal, which similarly comprises only environmental observations without ground truth poses.
This combined dataset, Dreal ∪ Dsynth-render, is used to train the final student policy with BC.

C Extended Experiments

C.1 Improving Imitation Learning with Residual Learning

(A)

(B)

Figure 7: (A) Examples of successful
real world assembly from RGB. Co-
training with simulation data reduces
jerkiness and improves insertion robust-
ness by containing a higher diversity of
part poses and insertion locations (see
Table 2). (B) Example failure: difficulty
adjusting the insertion pose when grasps
lead to unseen in-hand part poses.

Why Action Chunking and Diffusion Policies? Sim-
ple feed-forward MLPs of modest size have shown im-
pressive performance in many domains when trained with
RL [62, 63, 31], and offer a natural starting point for RL
fine-tuning after BC pre-training. However, MLP policies
trained to directly output single action control instead of
a trajectory plan through an action chunk (MLP-S) fail
across all tasks we consider. Therefore, we also trained
MLP policies with action chunking (MLP-C). When we
introduce chunking, MLP performance improves dras-
tically. However, we also find that the more complex
Diffusion Policy (DP) architecture generally outperforms
MLPs, especially in tasks of intermediate difficulty. For
example, an improvement from 10% success rate to 29%
for the one leg task on medium randomness made subse-
quent fine-tuning far easier. In one case, lamp on low ran-
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domness, MLP-C outperformed DP. In qualitative evalu-
ations, we find that DP has smoother and faster actions,
which is generally beneficial. Still, it seems to hurt per-
formance in this case, as it tends to retract before the grip-
per closes. We also find that all methods struggle with the hardest tasks, on which MLP-C and DP
both achieve less than 5% success rate, indicating that there is still a need for stronger BC methods.
The peg-in-hole task, despite its relatively short horizon of ∼100 timesteps, proved particularly
challenging for BC methods. This task involves a ∼0.2 mm clearance insertion, resulting in a 2-3%
success rate. This poor performance on a short yet precise task lends credence to the hypothesis that
BC methods are ill-equipped to handle high-precision requirements. Another interesting finding is
that the DP is significantly more robust to noise, an important property for an effective base policy
for residual fine-tuning. In contrast, we observed performance collapse when using MLP-C as the
base. Finally, as shown in Fig. 6, the effect of fully closed-loop control becomes clear when we
introduce randomly sampled force perturbations to the episode rollouts. Performance for the ResiP
policy drops 12 percentage points, compared to 19-26 percentage points for alternative chunked
methods (BC, DAgger, chunked residual).

Online Policy Fine-Tuning Comparison Next, we investigate the effectiveness of our residual
RL approach, ResiP, in improving the performance of policies trained with BC. We train residual
policies using PPO [27] on top of the diffusion policy and compare it to two baselines – (1) directly
fine-tune the MLP-C with PPO while regarding every action chunk as one concatenated action.
(2) Using the recently proposed IDQL algorithm [53] where one samples multiple times from the
diffusion policy and chooses which action chunk to execute based on its Q-value. We have found
that learning a good Q-value estimator from offline data alone, as proposed in IDQL, is challenging
with only 50 demonstrations. Therefore, we learn it in on-policy matter similar to [64].

The results in Fig. 1 show that our residual RL approach significantly improves success rates over
BC and outperforms alternative RL fine-tuning methods. For tasks with lower initial randomization,
such as the one leg task, the residual policy increases the success rate from 54% to 98%. Even more
drastically, for the peg-in-hole task, ResiP improved the success rate from 3% to 99%. However,
we observe performance saturates at lower success rates (e.g., ∼ 70%) for tasks with higher part
randomization. We hypothesize that the base model’s performance limits the residual policy as it is
designed to act locally, constrained by the base.

Fig. 1 (Left) qualitatively shows the most common failure mode of the BC policies and how the
RL policy overcomes it. For instance, a common BC policy error is to push down before the leg is
aligned with the hole. This often results in a shift of the object in the grasp, which causes the policy
to diverge due to the out-of-distribution grasp pose. The residual policy regularly corrects these
errors by performing small sideways translations while canceling premature downward motions.
It typically only allows the leg to be inserted once it is properly above the hole. We also find
the residual policy is better at performing initial grasps that allow accurate downstream alignment
between the grasped object and the receptacle. On the other hand, the BC policies more often grasp
the object at angles that make insertion more difficult.

In addition to improved success rates, we observed different training dynamics across each method.
First, direct MLP-C fine-tuning proved unstable and required KL-regularization to avoid collapse.
Second, the trained DP produced actions with low variance, even with η = 1 in the DDIM sam-
pler [65], inhibiting Q-learning and constraining the potential for policy improvement. Finally,
residual policy training was quite stable, likely because it is constrained to operate on a local scale,
which prevents large deviations that can make RL unstable [66, 67].

C.2 Distillation Performance from Synthetic RL Data

Next, we study how synthetic RL data quantity and quality impact the performance of distilled
vision-based policies. First, we find that distilling trajectories from the RL agent performs better
than training directly on the 50 demonstrations. A vision-based policy distilled from the RL-0trained
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teacher reached 73% on one leg, outperforming the 50% achieved by training the vision policy
directly on human demos, see Fig. 5. However, we also observe a performance gap between the
RL-trained teacher (95%) and distilled student policy (73%). We consider whether this gap may be
caused by training the student to operate on images. Upon examination, we find that distilling the
same number of teacher rollouts into an image-based student and a state-based student results in
comparable performance. This leads us to conclude that the change in modality is not the primary
source of the performance gap.

Therefore, we also examine the impact of the distillation dataset size. Here, we scale up the number
of state-based rollouts from the trained RL policy and distill these to a state-based student. In Fig. 1
(Right), we see that performance increases with more data but still does not reach the performance
achieved by the teacher policy, with a gap of 20 percentage points between the best student policy
(78% success rate) and the teacher policy (98% success rate) at 100k trajectories (with only a mi-
nor improvement from 77% at 10k trajectories). Nevertheless, the improved performance obtained
by training with more data highlights the advantage of using simulation for obtaining large-scale
synthetic datasets.

C.3 Real-World Application

Finally, we evaluate the real-world performance of a sim-to-real policy trained on a mixture of a few
(10/40) real-world demonstrations and simulation data generated by the trained residual RL policy.
We compare the co-trained policy to a baseline model trained only on real-world demonstrations.
We compare the success rates achieved by each policy on two sets of 10 trials for the one leg task.
In the first set, we randomize part poses, while in the second set, we randomize obstacle poses (i.e.,
insertion location in the workspace).

The results, presented in Fig. 2, show that incorporating simulation data improves real-world perfor-
mance (e.g., increasing task completion rate from 20-30% to 50-60%). Qualitatively, the sim-to-real
policy exhibits smoother behavior and makes fewer erratic movements that might exceed the robot’s
physical limits. Fig. 7 shows examples of successful and unsuccessful task attempts. See the supple-
mentary video for more qualitative experiments of sim-to-real transfer and generalizations enabled
by synthetic data.

D Implementation Details

D.1 Training Hyperparameters

State-based behavior cloning We provide a detailed set of hyperparameters used for training.
General hyperparameters for all models can be found in Tab. 3, while specific hyperparameters for
the diffusion models are in Tab. 4, and those for the MLP baseline are in Tab. 5.

Table 3: Training hyperparameters shared for all state-based BC models
Parameter Value

Control mode Absolute end-effector pose
Action space dimension 10
Proprioceptive state dimension 16
Orientation Representation 6D [71]
Max LR 10−4

LR Scheduler Cosine
Warmup steps 500
Weight Decay 10−6

Batch Size 256
Max gradient steps 400k
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Table 4: State-based diffusion pre-training hyperparameters
Parameter Value

U-Net Down dims [256, 512, 1024]
Diffusion step embed dim 256
Kernel size 5
N groups 8
Parameter count 66M
Observation Horizon To 1
Prediction Horizon Tp 32
Action Horizon Ta 8
DDPM Training Steps 100
DDIM Inference Steps 4

Table 5: State-based MLP pre-training hyperparameters
Parameter Value

Residual Blocks 5
Residual Block Width 1024
Layers per block 2
Parameter count 11M
Observation Horizon To 1
Prediction Horizon Tp (S / C) 1 / 8
Action Horizon Ta (S / C) 1 / 8

State-based reinforcement learning Below, we list the hyperparameters used for online rein-
forcement learning fine-tuning. The parameters that all state-based RL methods methods shared
are in Tab. 6. Method-specific hyperparameters for training the different methods are in the tables
below, direct fine-tuning of the MLP in Tab. 7, online IDQL in Tab. 8, and the residual policy in
Tab. 9. The different methods were tuned independently, but the same hyperparameters were used
for all tasks within each method.

Table 6: Hyperparameters shared for all online fine-tuning approaches
Parameter Value

Control mode Absolute end-effector pose
Action space dimension 10
Proprioceptive state dimension 16
Orientation Representation 6D [71]
Num parallel environments 1024
Max environment steps 500M
Critic hidden size 256
Critic hidden layers 2
Critic activation ReLU
Critic last layer activation Linear
Critic last layer bias initialization 0.25
Discount factor 0.999
GAE [72] lambda 0.95
Clip ϵ 0.2
Max gradient norm 1.0
Target KL 0.1
Num mini-batches 1
Episode length, one leg 700
Episode length, lamp/round table 1000
Normalize advantage true
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Table 7: Hyperparameters for direct fine-tuning of MLP
Parameter Value

Update epochs 1
Learning rate actor 10−4

Learning rate critic 10−4

Value function loss coefficient 1.0
KL regularization coefficient 0.5
Actor Gaussian initial log st.dev. -4.0

Table 8: Hyperparameters for training value-augmented diffusion sampling (IDQL)
Parameter Value

Update epochs 10
Learning rate Q-function 10−4

Learning rate scheduler Cosine
Num action samples 20
Actor added Gaussian noise, log st.dev. −4

Table 9: Hyperparameters for residual PPO training
Parameter Value

Residual action scaling factor 0.1
Update epochs 50
Learning rate actor 3 · 10−4

Learning rate critic 5 · 10−3

Learning rate scheduler Cosine
Value function loss coefficient 1.0
Actor Gaussian initial log st.dev. -1.5

Image-based real-world distillation For the real-world experiments, we use a separate set of
hyperparameters, presented in Tab. 10. The main difference is that we found in experimentation
that the transformer backbone in [19] worked better than the UNet for real-world experiments.
These models are also operating from RGB observations instead of privileged states, and we provide
parameters for the image augmentations applied to the front camera in Tab. 11 and the wrist camera
in Tab. 12.

17



Table 10: Training hyperparameters for real-world distilled policies
Parameter Value

Control mode Absolute end-effector pose
Action space dimension 10
Proprioceptive state dimension 16
Orientation Representation 6D [71]
Max policy LR 10−4

Max encoder LR 10−5

LR Scheduler (both) Cosine
Policy scheduler warmup steps 1000
Policy scheduler warmup steps 5000
Weight decay 10−3

Batch size 256
Max gradient steps 500k
Image size input 2× 320× 240× 3
Image size encoder 2× 224× 224× 3
Vision Encoder Model ResNet18 [73]
Encoder Weights R3M [74]
Encoder Parameters 2× 11 million
Encoder Projection Dim 128
Diffusion backbone architecture Transformer (similar to [19])
Transformer num layers 8
Transformer num heads 4
Transformer embedding dim 256
Transformer embedding dropout 0.0
Transformer attention dropout 0.3
Transformer causal attention true

Table 11: Parameters for front camera image augmentation
Parameter Value

Color jitter (all parameters) 0.3
Gaussian blur, kernel size 5
Gaussian blur, sigma (0.01, 1.2)
Random crop area 280× 240
Random crop size 224× 224
Random erasing, fill value random
Random erasing, probability 0.2
Random erasing, scale (0.02, 0.33)
Random erasing, ratio (0.3, 3.3)

Table 12: Parameters for wrist camera image augmentation
Parameter Value

Color jitter (all parameters) 0.3
Gaussian blur, kernel size 5
Gaussian blur, sigma (0.01, 1.2)
Random crop Not used
Image resize 320× 240 → 224× 224

D.2 Action and State-Space Representations

Action space The policies predict 10-dimensional actions consisting of absolute poses in the robot
base frame as the actions and a gripper action. In particular, the first 3 dimensions predict the
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desired end-effector position in the workspace, the next 6 predict the desired orientation using a 6-
dimensional representation described below. The final dimension is a gripper action, 1 to command
closing gripper and -1 for opening.

Proprioceptive state space The policy receives a 16-dimensional vector containing the current
end-effector state and gripper width. In particular, the first 3 dimensions is the current position in
the workspace, the next 6 the current orientation in the base frame (the same 6D representation), the
next 3 the current positional velocity, the next 3 the current roll, pitch, and yaw angular velocity, and
finally the current gripper width.

Rotation representation We use a 6D representation to represent all orientations and rotations
for the predicted action, and proprioceptive end-effector pose orientation [71, 75]. The poses of the
parts in state-based environments are represented with unit quaternions. While this representation
contains redundant dimensions, it is continuous, meaning that small changes in orientation lead to
small changes in the representation values, which can make learning easier[71, 75, 76]. This is
not generally the case for Euler angles and quaternions. The 6D representation is constructed by
taking two arbitrary 3D vectors and performing Gram-Schmidt orthogonalization to obtain a third
orthogonal vector to the first two. The resulting three orthogonal vectors form a rotation matrix that
represents the orientation. The end-effector rotation angular velocity is still encoded as roll, pitch,
and yaw values.

Action and state-space normalization All dimensions of the action, proprioceptive state, and
parts pose (for state-based environments), were independently scaled to the range [-1, 1]. That
is, we did not handle orientation representations (quaternions/6D [71]) in any particular way. The
normalization limits were calculated over the dataset at the start of behavior cloning training. They
were stored in the actor with the weights and reused as the normalization limits when training with
reinforcement learning. The normalization used here follows the same approach as in previous
works such as [77, 19]. This normalization method is widely accepted for diffusion models. In
[77], the input was standardized to have a mean of 0 and a standard deviation of 1, instead of using
min-max scaling to the range of [0, 1]. This approach was not tested in our experiments.

D.3 Image Augmentation

During training, we apply image augmentation and random cropping to both camera views. Specifi-
cally, only the front camera view undergoes random cropping. We also apply color jitter with a hue,
contrast, brightness, and saturation set to 0.3. Additionally, we apply Gaussian blur with a kernel
size of 5 and sigma between 0.1 and 5 to both camera views.

At inference time, we statically center-crop the front camera image from 320x240 to 224x224 and
resize the wrist camera view to the same dimensions. For both the random and center crops, we
resized the image to 280x240 to ensure that essential parts of the scene are not cropped out due to
excessive movement.

The values mentioned above were chosen based on visual assessment to balance creating adversarial
scenarios and keeping essential features discernible. We have included examples of these augmen-
tations below.
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Figure 8: Left: Examples of augmentations of the wrist camera view, consisting of color jitter and
Gaussian blur. Right: Examples of augmentations for the front view also consist of color jitter and
Gaussian blur augmentations and random cropping.

E Tasks and Environment

E.1 Tasks details and reward signal

We detail a handful of differentiating properties for each of the three tasks we use in Tab. 13.
one leg involves assembling 2 parts, the tabletop and one of the 4 table legs. The assembly is
characterized as successful if the relative poses between the parts are close to a predefined assem-
bled relative pose. When this pose is achieved, the environment returns a reward of 1. That is,
for the one leg task, the policy received a reward of 1 only at the very end of the episode. For
round table and lamp, which consists of assembling 3 parts together, the policy receives a reward
signal of 1 for each pair of assembled parts. E.g. for the lamp task, when the bulb is fully screwed
into the base, the first reward of 1 is received, and the second is received when the shade is correctly
placed.

Table 13: Task Attribute Overview
one leg round table lamp mug-rack peg-in-hole

Mean episode length ∼500 ∼700 ∼600 ∼200 ∼75
# Parts to assemble 2 3 3 2 2
Num rewards 1 2 2 1 1
Moving object ✗ ✗ ✓ ✗ ✗
# Precise insertions 1 2 1 1 1
# Screwing sequences 1 2 1 0 0
Precise grasping ✗ ✓ ✗ ✗ ✗
Insertion occlusion ✗ ✓ ✗ ✓ ✗
Insertion tolerance 0.5cm 0.5cm 0.5cm 1.5cm 0.2mm

E.2 Details on randomization scheme

The “low” and “medium” randomness settings we used for data collection and evaluation reflect
how much the initial part poses may vary when the environment is reset. We tuned these conditions
to mimic the levels of randomness introduced in the original FurnitureBench suite [5]. However, we
found that their method of directly sampling random poses often leads to initial part configurations
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Task: one_leg, Randomness: low

Task: one_leg, Randomness: med

Task: lamp, Randomness: low

Task: lamp, Randomness: med

Task: round_table, Randomness: low

Task: round_table, Randomness: med

Figure 9: Examples of initial scene layouts for one leg, lamp, and round table with different
levels of initial part pose and obstacle fixture randomness

that collide with each other, requiring expensive continued sampling to eventually find an initial
layout where all parts do not collide with each other.

Our modified randomization scheme instead initializes parts to a single pre-specified set of feasi-
ble configurations and then applies a randomly sampled force and torque to each part (where the
force/torque magnitudes are tuned for each part and scaled based on the desired level of random-
ness). This scheme allows the physics simulation to ensure parts stay out of collision while still
providing a controlled amount of variation in the initial scene randomness.

The second way we modified the randomization scheme was to randomize the position of the U-
shaped obstacle fixture and the parts (the obstacle fixture was always kept in a fixed position in [5]).
Our reasoning was that, for visual sim-to-real without known object poses, we could only imper-
fectly and approximately align the obstacle location in the simulated and real environment. Rather
than attempting to make this alignment perfect, we instead trained policies to cover some range of
possible obstacle locations, hoping that the real-world obstacle position would fall within the dis-
tribution the policies have seen in simulation. Fig. 9 shows examples of our different randomness
levels for each task in simulation.
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E.3 Adjustments to FurnitureBench simulation environments

In addition to our modified force-based method of controlling the initial randomness, we introduced
multiple other modifications to the original FurnitureBench environments proposed in [5] to enable
the environment to run fast enough to be feasible for online RL training. With these changes, we
were able to run at a total ∼4000 environment steps per second across 1024 parallel environments.
The main changes are listed below:

1. Vectorized reward computation, done check, robot, part, and obstacle resets, and differen-
tial inverse kinematics controller.

2. Removed April tags from 3D models to ensure vision policies would not rely on tags to
complete the tasks. We tried to align with the original levels of randomness, but only to an
approximation.

3. Deactivate camera rendering when running the environment in state-only mode.

4. Correct an issue where the physics was not stepped a sufficient amount of time for sim
time to run at 10Hz, and subsequently optimize calls to fetch simulation results, stepping
of graphics, and refreshing buffers.

5. Artificially constrained bulb from rolling on the table until robot gripper is nearby as the
rolling in the simulator was exaggerated compared to the real-world parts.

E.4 Task description, mug-rack

This task involves the robot picking up a coffee mug and hanging it by the handle on one of
two pegs on a rack. See Fig. 10 for task illustration and the attached supplementary video,
mug-rack-resip-1.mp4, for example rollouts. This task is interesting for two main reasons. First,
we don’t have any CAD models for the objects. Instead, we used scanned imports of real-world
objects (obtained with the ARCode app on the iPhone App Store). Second, the task has inherent
multi-modality in that the mug can be hung in one of two ways for each of the two pegs.

In practice, we find that the diffusion and residual policy system works well for this task. First, the
base diffusion model captures the task’s multimodality and sometimes hangs the mug on both pegs.
Furthermore, the residual RL procedure keeps this multimodality intact as the base model is frozen.
We achieve ∼30% success rate in pre-training and ∼85% with residual fine-tuning.

(a) Example task initialization of
the mug-rack task.

(b) Example of hanging the mug
on the lower rack.

(c) Example of hanging the mug
on the upper rack.

Figure 10: Overview of the new mug-rack task we add to showcase the real-to-sim capabilities that
one can leverage in tandem with our pipeline. This also shows how reward signals can be inferred
directly from data instead of being hand-designed.

E.5 Task description, peg-in-hole

To push the limits of precision in simulation, controller, and policy, we pick one of the insertion
tasks from the Factory task suite [49], which involves grasping a peg and inserting in a hole with a
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0.2mm clearance, i.e., 25x tighter than the FurnitureBench [5] tasks. See Fig. 11 for task illustration
and the supplementary video peg-hole-resip-1.mp4 for example rollouts.

Our approach worked out of the box on this task as well, using the same hyperparameters as for the
FurnitureBench tasks. Here, we achieve ∼3% success rate in pre-training and ∼99% in fine-tuning.
Good performance at this task is essentially entirely dominated by the ability to locally adjust the
peg until it lines up with the hole, and the high final success rate achieved by our approach reflects
that the local nature of the corrections learned by our residual policy is well aligned with such task
scenarios.

(a) Example task initialization of the
peg-in-hole task.

(b) Example of task completion when the peg is
fully inserted.

Figure 11: Overview of the new peg-in-hole task we add to push the requirement for precision.
We find that the pipeline as presented works well with the same hyperparameters used for the furni-
ture tasks.

F RGB Sim2Real Transfer

Visualization of overlap in action space in real and sim For data from the simulation to be
useful for increasing the support of the policy for real-world deployment, we posit that it needs to
cover the real-world data. We visualize the distributions of actions in the training data in Fig. 12.
Since actions are absolute poses in the robot base frame, we can take the x, y, z coordinates for all
actions from simulation and real-world demonstration data and plot them. Each of the 3 plots is a
different cross-section of the space, i.e., a view from top-down, side, and front. In general, we see
that the simulation action distribution is more spread out and mostly covers real-world actions.

Visual Domain randomization In addition to randomizing part poses and the position of the
obstacle, we randomize parts of the rendering which is not easily randomized by simple image
augmentations, like light placement (changing shadows), camera pose, and individual part colors.
See Fig. 13 for examples of front-view images obtained from our domain randomization and re-
rendering procedure.

G Visualization of Residual Policy Actions

We hypothesize that the strength of the residual policy is that it can operate locally and make correc-
tions to the base action predicted by the pretrained policy operating on the macro scale in the scene.
We show an example of this behavior in Fig. 14. Here, we visualize the base action with the red line,
the correction predicted by the residual in blue, and the net action of the combined policy in green.

We find that the residual has indeed learned to correct the base policy’s actions, which often leads
to failure. One common example is for the base policy to be imprecise in the approach to the hole
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Figure 12: Plots of the x, y, z action coordinates in the demo datasets for the one leg task in the real
world and the simulator. That is, each dot represents one action from one of the 40/50 trajectories.
Red is from real-world demos, and blue is from the simulator. Left: Top-down view, showing the
x, y positions in the workspace visited. In the top right, the insertion point is shown, where we see
that the simulator has a wider distribution but could have covered better in the positive y-direction.
Middle: Side-view of the actions taken in the x, z plane. The insertion point is to the right in the
plot; again, we see more spread in the simulation data. Right: Front view of the y, z actions.

Figure 13: Examples of the randomization applied when rendering out the simulation trajectories
used for co-training for the real-world policies.

during insertion, pushing down with the peg not aligned with the hole, causing the peg to shift in
the gripper, which leads to a grasp-pose unseen in the training data and the policy inevitably fails.
The residual policy counteracts the premature push-down and correct the placement towards the
hole, improving task success. See video examples of this behavior on the accompanying website:
https://residual-assembly.github.io/.
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Figure 14: Visualization of the effect of the residual policy during insertion, the phase requiring
the most precision. The red line shows the action commanded by the base policy. The blue is the
correction predicted by the residual, and the green is the net action. The residual learns to correct
actions that typically lead to failure.

H Real-World Results

H.1 Quantitative Results Failure Mode Breakdown

Corner (10 / 10) Grasp (9 / 10)
Insert (6 / 10)

Screw (5 / 10) Success

Failure

Figure 15: Sankey diagram for the success rate and failure points for the real-world rollouts with 40
real and 350 simulation demos.

The diagram in Fig. 15 shows how successful and failed completion of individual sub-skills along the
one leg task amount to our overall final success rates reported in Fig. 2 (bottom row, corresponding
to “40 real + 350 sim” with random initial part poses and a fixed obstacle pose).

H.2 Extension of Pipeline to Unseen Settings

Here, we conduct further qualitative experiments to evaluate whether our simulation-based co-
training pipeline can make policies more robust to real-world parts with visual appearances that are
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Figure 16: Randomizing the visual appearance of the scene in the simulator allows for more fine-
grained control and varying attributes that are hard to isolate in standard image augmentation tech-
niques. Here, we illustrate how we can easily cover a larger space of part appearances without
jittering the colors of everything else in the scene in tandem.

Figure 17: An example of a successful rollout of a policy co-trained on 40 real-world demos con-
taining only white parts and 400 synthetic demos with part colors randomized.

unseen in real world demos. To test this, we 3D printed the same set of parts used in the one leg

task in black, and rolled out various policies on these black parts (rather than the white-colored parts
used throughout our other experiments). This setting is especially relevant in industrial domains
where parts can come in a variety of colors to which the assembly system must be invariant (e.g.,
the same piece of real-world furniture usually comes in many colors).

When deploying the policy trained on the same 40 demos as in the main experiment, which only
had white, the policy cannot come close to completing the task. The behavior is highly erratic
and triggered the velocity limits of the Franka on every trial we ran. We compare this baseline
policy trained on differently colored parts to a policy co-trained on both real and synthetic data
from simulation. However, when creating the synthetic dataset for this test, we added in additional
randomization of part color, with an emphasis on black or gray colors in this case, as shown in
Fig. 17. When we co-train a policy on a mix of the same real-world demos containing only white
parts as before, with a dataset of 400 synthetic demos with varying part colors, the resulting policy
can complete the task, as illustrated in Fig. 17 (and even when it fails at the entire task sequence, the
predicted motions are much more reasonable than the erratic policy which has overfit to real-world
parts of a specific color).

For example videos, please see the accompanying website: https://residual-assembly.

github.io/. We note, however, that the resulting policy is considerably less reliable than the
corresponding policy rolled out with white parts, which illustrates that there is still a meaningful
sim2real gap.

I Related Works

Training diffusion models with reinforcement learning The approach in [47, 51] studied how
to cast diffusion de-noising as a Markov Decision Process, enabling preference-aligned image gen-
eration with policy gradient RL. However, this method is unstable and hard to tune. Other ways
to combine diffusion architectures with RL include Q-function-based importance sampling [53],
advantage weighted regression [54], or changing the objective into a supervised learning problem
with return conditioning [55, 18, 17]. Some have also explored augmenting the de-noising training
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objective with a Q-function maximization objective [56] and iteratively changing the dataset with Q-
functions [78]. Recent work developed techniques for training diffusion policies from scratch [52],
leveraging unsupervised clustering and Q-learning combinations to encourage multi-modal behavior
discovery. Our method avoids such complexity involved with directly optimizing diffusion models
by using standard PPO to train simple residual policies that correct for errors made by the base
policy.

Residual learning in robotics Learning corrective residual components in conjunction with
learned or non-learned “base” models has been widely successful in robotics. Common frame-
works include learning residual policies that correct for errors made by a nominal behavior pol-
icy [58, 61, 79, 80, 81, 82, 83, 84] and combining learned components to correct for inaccuracies in
analytical models for physical dynamics [85, 86, 87] or sensor observations [88]. Residual policies
have been used in insertion applications [89], and recent work has applied residual policy learning
to the same FurnitureBench task suite we study in this paper [90]. Their approach uses the residual
component to model online human-provided corrections via supervised learning, whereas we train
our residual policy from scratch with RL using task rewards in simulation.

J Expanded Related Work

Learning robotic assembly skills Robotic assembly has been used by many as a problem setting
for various behavior learning techniques [91, 92, 61, 93, 94]. Enabling assembly that involves multi-
skill sequencing (e.g., fixturing → grasping → insertion → screwing) directly from RGB images has
remained challenging, especially without explicitly defining sub-skill-specific boundaries and super-
vision. Concurrent work [90] explores a similar framework to ours on FurnitureBench tasks [5], but
instead supervises learned policies on a per-skill basis and incorporates 3D point clouds. Indus-
tReal [91] also leverages RL in simulation to train high-precision skills for tight-tolerance part in-
sertion in the real world. However, they train their RL policies from scratch using carefully-designed
shaped rewards and curricula, whereas we bootstrap RL from BC pre-training, which enables RL to
operate with simple sparse rewards for achieving the desired assembly.

Complementary combinations of behavior cloning and reinforcement learning Various com-
binations of learning from demonstrations/behavior cloning and reinforcement learning have begun
maturing into standard tools in the learning-based control development paradigm [36, 34]. For
instance, demonstrations are often used to support RL in overcoming exploration difficulty and im-
proving sample efficiency [95, 31, 96]. RL can also act as a robustification operator to improve
upon base BC behaviors [36, 31], paralleling the RL fine-tuning paradigm that has powered much of
the recent advancement in other areas like NLP [97] and vision [47]. Additionally, many successful
robotics deployments [32, 63, 62] have been powered by the “teacher-student distillation” paradigm,
wherein perception-based “student” policies are trained to clone behaviors produced by a state-based
“teacher” policy, which is typically trained via RL in simulation. We demonstrate that our residual
RL approach for fine-tuning modern diffusion policy architectures can allow each of these comple-
mentary ways to combine BC and RL to come together and enable precise manipulation directly
from RGB images.

K Expanded Conclusions and Limitations

K.1 Conclusion

This work presents an approach for fine-tuning BC-trained policies for precise manipulation tasks
using sparse rewards we call ResiP. We use RL to train residual policies that produce locally cor-
rective actions on top of base models with architecture components that complicate RL, such as
diffusion models and chunked action predictions. Our results show the proposed method performs
well for fine-tuning imitation-learned assembly policies with RL. We furthermore show that through
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teacher-student distillation and sim-to-real co-training techniques, the precise behaviors acquired by
our residual learner can be distilled into a real-world assembly policy that operates from vision.

K.2 Limitations

The local nature of our residual policies is not well-suited for learning the macro-level behaviors re-
quired to recover from large-scale deviations like dropped parts. Our proposed method also struggles
in regimes with very high initial scene randomness, as both the base policies and actions produced
via RL exploration struggle to deal with out-of-support initial part poses. Furthermore, despite show-
casing the advantage of incorporating simulation data, sim-to-real for RGB policies still presents a
challenge. There remains a performance gap in both teacher-student distillation and sim-to-real dis-
tribution shifts. Future investigations may include better sim-to-real transfer techniques, exploration
mechanisms for discovering how to correct large-scale execution errors, tractable interactive learn-
ing for real-world policy distillation, and incorporating inductive biases that help generalize to much
broader initial state distributions.

Real-world distillation Our experiments have demonstrated the effectiveness of online learning
versus offline or passive learning through behavior cloning. Still, we employ only offline learning
in our teacher-student distillation phase for sim-to-real transfer, which will likely upper-bound the
performance we can transfer to the real world. Combining our pipeline with techniques for on-
line learning could improve performance significantly. However, at this point, there are significant
challenges to overcome to make this practically applicable to the tasks studied herein.

The field is progressing rapidly, and we are excited to investigate how online learning in the real
world can be made practical for a broader set of tasks with longer horizons and less obvious ways
of performing automatic state resets in follow-up work. This effort further ties into a more general
framework for pre-training and adaptation of robot systems where the deployed robot can continue
learning and adapting “on the job” after deployment. These investigations complement the methods
presented in this paper and are not in scope.

At the same time, our results indicate that making more capable systems only through increasing
the collection of real-world demos may also be fundamentally limited unless online learning is
introduced as a fine-tuning step in those systems.

Locality of online correction learning Though effective, we re-emphasize that our residual online
reinforcement learning framework has the fundamental limitation of being bound to the pre-trained
policy and mainly performing locally corrective actions. This limitation is both a strength and a
weakness. First, the strong pre-trained prior allows RL to perform the tasks and improve, and having
a frozen prior helps stabilize training and prevent collapse. At the same time, the degree to which
online learning can generalize to states far from the training set is limited.

Limitations of simulators in contact-rich tasks We have an experiment for a task from the
Factory [49] task suite that pushes the simulator’s accuracy more than with the original Furni-
tureBench [5] tasks. This task has a clearance of 0.2mm for the insertion, which shows that the
general BC + Residual RL framework also works well in this setting. We did not show, however,
that this transfers to the real world, and it would likely be more challenging than in the original
tasks for at least two reasons. First, with increased precision requirements, accurate calibration of
physics parameters between the actual and simulated environment will likely matter more. Second,
performing manipulation from vision when parts are smaller is more challenging.
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L Updated RL results section

L.1 Improved task performance

Please see Fig. 1 for our updated success rates achieved using our residual RL + diffusion policy
method. In short, we now solve all tasks with >70% success rate, with an average success rate
improvement on tasks with low randomness of 73% and 64% for medium randomness.

As we discuss below, in the α parameter ablations (Sec. N.3), the crucial driver of performance with
this method (and RL generally) is effective exploration.

We did not come across these improved results earlier because we started out using a conservatively
low amount of exploration noise and an unnecessarily high rate for annealing the exploration. The
initial conservative hyperparameters were informed by the instability we faced trying to make RL
work with a pre-trained MLP policy (i.e., our baseline MLP-C + PPO experiment). However, by
experimenting with larger initial noise values and keeping the amount of exploration noise fixed
throughout training, we found that the increased exploration ability led to dramatic success rate
improvements across low and medium randomness settings in all three assembly tasks.

More aggressive exploration seems possible because we have a robust prior model kept frozen, with
a small model optimized online, alleviating some risk of collapse.

M The Surprising Effectiveness of DAgger

DAgger [1] can learn from scratch significantly more efficiently than pure BC regarding gradient
steps. DAgger performance compared to BC is in the scaling plot, shown to the right in Fig. 1.

In ∼10k steps, it surpasses the BC from 50 human demos trained with ∼100k steps. After 10k
steps, it has around 800 rollouts in the aggregated dataset. After around 20k gradient steps is when
it seems to surpass the best-performing BC distillation runs using more than 10k rollouts and 500k
gradient steps, at which point it has ∼1.5k demonstrations in the replay buffer.

This result highlights the effectiveness of online and interactive learning as opposed to learning
purely passively from an offline dataset. Furthermore, it highlights that the expert we query is an
effective teacher. It lastly highlights that for interactive learning to be effective, one needs to have a
teacher at the ready to be queried as learning progresses.

N Residual RL ablations

N.1 Effect of fully versus partially closed-loop policies

One differentiating factor of our residual model from some prior work is that the base and residual
models make predictions at different frequencies, i.e., every 8 timesteps for the base model and
every timestep for the residual model. Making predictions with the most up-to-date information is
likely an easier prediction problem, and we expect this to work better than the “standard” setup of
letting the residual correct the full output of the base model. When training a residual model that
corrects a whole chunk at a time but otherwise uses the same hyperparameters, we observe that
training is less sample efficient and performance saturates at a lower success rate. In particular, the
chunked residual policy reaches ∼85% success rate in about 250 million environment steps, while
the one-step residual needs about 75 million.

To further probe the difference between fully closed-loop policies and those using chunking, we
evaluate the policies with perturbations added to the parts in the environment throughout the episode.
In particular, at each timestep, 1% of parts across the environments will have a random force ap-
plied to them. The forces are sampled from the same distribution as the initial part randomization
distribution.
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We generally see that the partially open-loop policies have a bigger drop in performance when
perturbations are introduced, around 20 percentage points compared to 12 for the one-step residual
model.

Model No Perturb W/ Perturb Drop in SR

Standard RPPO 98% 86% 12 pp
Chunked RPPO 92% 73% 19 pp
Chunked pre-trained BC 52% 32% 20 pp
DAgger chunked student DP 90% 68% 24 pp

Table 14: Success rates with/without perturbations for different models. SR = Success Rate, pp =
percentage points.

N.2 Residual base policy ablation

To further tease apart what part of the diffusion policy that provides the most important performance
increase, the action chunking or the denoising diffusion process, we run the same residual PPO run
for the one leg task as before, but with the best-performing BC MLP model in place of the diffusion
policy.

The resulting training dynamics are intriguing. Despite the initial success rate of the base model
being close to that of the diffusion model, the success rate drops markedly when exploration noise
is introduced. This is especially visible in the training performance in plot 2 below. We also notice
that as the residual model explores and learns more, the evaluation performance drops. However, the
residual is eventually able to find actions that the MLP responds better to and, in the end, converges
to a similar performance as the diffusion-based runs.

In the harder version of the task with higher initial state randomness, the same initial dynamic plays
out, but the training performance drops to zero, causing the learning to collapse. We conclude that
any base model achieving a high enough initial success rate can be plugged into our framework
(and, based on our BC experiments, a base model with chunking is likely to outperform one without
chunking) but that the expressivity and robustness to input noise offered by diffusion de-noising also
contributes to downstream performance benefits during residual RL.

(a) Evaluation success rates for
RL training for one leg, low
randomness.

(b) Success rates in exploration
phase of training for one leg,
low randomness.

(c) Evaluation success rate
for RL training for one leg,
medium randomness.

Figure 18: We compare the performance of the diffusion-based residual RL training with using
the best-performing MLP as the base model. As we can see, despite having similar pertaining
performance (for low randomness), the MLP-based residual model performs poorly compared to
the diffusion-based one. On a higher randomness setting, it fails to complete the task.
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N.3 Residual action scaling parameter ablation

Two of the reviewers, y2T5 and A6PS, inquired about the significance of the parameter α = 0.1. It is
a good question and something we should have included in the original submission. The parameter
choice is somewhat arbitrary and was informed by some intuitions about the task. I.e., since the
intention is for the residual model to make local corrections, we want to imbue it with that inductive
bias. In the normalized action space, the workspace is constrained to [-1, 1], and letting a σ = 1 for
the residual Gaussian model correspond to [-0.1, 0.1] on the macro scale seemed reasonable.

In response to the reviewers’ requests, we have tested more values of the parameter α ∈
{0.01, 0.05, 0.2, 1.0}, but kept the resulting exploration noise on the macro scale fixed (i.e., scaled
with the value of α, so α1σ1 = α2σ2). The result, shown in the figure below, shows a remarkable
robustness to this parameter, and all cases have very similar performance.

We note a couple of observations that are still preliminary and that we will investigate further with
more runs and harder tasks. First is that α = 0.2 seems to perform slightly better than our original
α = 0.1. Second, different levels of α also result in very different magnitudes of activations at the
last layer, which impacts losses. In this experiment, it seems to change the resulting performance
much, but we suspect it could make training less stable in harder settings.

(a) Evaluation success
rate curves for different
levels of α.

(b) Mean norm of pre-
dicted action throughout
training.

(c) The policy gradi-
ent loss development
throughout training.

(d) The fraction of time
the PPO clipping kicks
in throughout training.

Figure 19: We test different values of the residual action scaling parameter α, and test it for values
α ∈ {0.01, 0.05, 0.2, 1.0}, while adjusting the exploration noise to be such that the macro-level
exploration is the same initially. We find that for success rates in this task, the value is not crucial
but does cause training dynamics to change, particularly the residual model output norms and policy
loss magnitude.

N.4 Data-efficiency ablation

Some reviews have raised the question of whether it would be better to spend the time collecting
demonstrations in simulation than collecting them in the real world. We also investigate the flip side
of the question of how little data we need to get the pipeline going. In the figure below, we compare
using 50 demos for pre-training with 10 (red) and 20 (green).

We naturally see worse performance with fewer demonstrations, but all can improve significantly.
Despite this worse performance, this experiment shows that the pipeline is versatile and can use
whatever data is available. It also points towards a bootstrapping procedure that can allow reaching
the same performance with less data by distilling the initial policy into a stronger base policy and
running the procedure again.
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Figure 20: Comparison of online RL optimization for the one leg task on low randomness with BC
diffusion policies trained with the original 50 demonstrations (orange), 20 demonstrations (green),
and 10 demonstrations (red). We observe worse performance with fewer demonstrations but robust
improvement with RL across the board.
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