On Large Multimodal Models as Open-World Image Classifiers

Alessandro Conti^{1,*} Massimiliano Mancini¹ Enrico Fini^{2,†} Yiming Wang³ Paolo Rota¹ Elisa Ricci^{1,3}

¹University of Trento ²Independent researcher ³Fondazione Bruno Kessler

Abstract

Traditional image classification requires a predefined list of semantic categories. In contrast, Large Multimodal Models (LMMs) can sidestep this requirement by classifying images directly using natural language (e.g., answering the prompt "What is the main object in the image?"). Despite this remarkable capability, most existing studies on LMM classification performance are surprisingly limited in scope, often assuming a closed-world setting with a predefined set of categories. In this work, we address this gap by thoroughly evaluating LMM classification performance in a truly open-world setting. We first formalize the task and introduce an evaluation protocol, defining various metrics to assess the alignment between predicted and ground truth classes. We then evaluate 13 models across 10 benchmarks, encompassing prototypical, non-prototypical, finegrained, and very fine-grained classes, demonstrating the challenges LMMs face in this task. Further analyses based on the proposed metrics reveal the types of errors LMMs make, highlighting challenges related to granularity and fine-grained capabilities, showing how tailored prompting and reasoning can alleviate them. Code is available at https://github.com/altndrr/lmms-owc.

1. Introduction

Image classification aims to assign a label to an image. This widely studied task relies on a key assumption: the categories are fixed and known in advance, a setting known as the *closed world*. However, the latter is often restrictive in real-world applications where new categories can emerge, requiring to expand the label set [5], recognize unseen concepts [24], or both [6]. Despite its limitations, this assumption has historically been useful, enabling supervised training and straightforward evaluation on labeled datasets. With the rise of Large Multimodal Models (LMMs) [3, 38, 41]

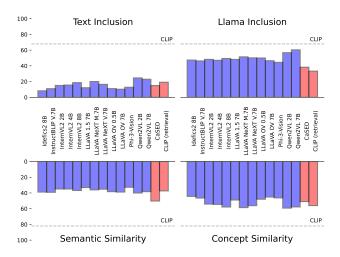


Figure 1. We extensively test 13 Large Multimodal Models (LMMs) for Open-World (OW) classification on 10 datasets using four evaluation metrics. We show that LMMs outperform contrastive-based approaches in OW (CaSED [17], and CLIP [49] with image-to-text retrieval) but still lag behind closedworld models with fixed categories (CLIP [49], dashed line).

processing images and text, this constraint is no longer necessary. Instead of choosing from a fixed list, LMMs can answer open-ended prompts such as "What is the object in the image?", recognizing virtually any semantic concept. From this perspective, closed-world classification is an artificial limitation that restricts a model's expressive capabilities rather than reflecting its true potential.

While some studies have explored classification with LMMs, they have either focused on the closed-world setting [42] or relied on limited metrics to assess performance: checking whether the ground truth label appears in the model's prediction [69]. However, this metric provides a limited view of classification performance. It fails to account for alternative correct answers (e.g., sofa instead of couch), while also overlooking real mistakes (e.g., confusing can with trash can). Evaluating models in the open world presents additional challenges, as predictions may differ in granularity (e.g., dog vs. pug), or conflict with an-

^{*}Correspondence to: alessandro.conti-1@unitn.it.

[†]Enrico Fini is currently at Apple

notation ambiguities (*e.g.*, *bedroom* vs *bed*). These issues highlight the need for a more comprehensive evaluation framework to assess the open-world capabilities of LMMs.

In this work, we address this gap by formalizing the Open-World (OW) classification task and introducing four complementary metrics: (i) text inclusion [69], evaluating string matching, (ii) Llama inclusion which leverages Llama [25], to distinguish good and bad responses, as in LLM-as-a-judge [71], (iii) semantic similarity [17] between text embeddings of predictions and ground truth, and (iv) concept similarity, doing the same at the level of sentence parts. Using these metrics, we evaluate 13 models across 10 benchmarks spanning different levels of granularity, from prototypical, coarse categories (e.g., Caltech101 [23]) to fine-grained (e.g., Flowers102 [46]), very fine-grained (e.g., Stanford Cars [33]), and non-prototypical ones (e.g., DTD [16]). Our results (aggregated in Fig. 1) show that these models often predict semantically related concepts (even better than previous, contrastive-based alternatives [17]), demystifying the skepticism against LMMs on OW classification. However, LMMs also make notable errors, being far from closed-world baselines.

While the challenging nature of the problem makes analyzing the severity of the mistakes hard, we find that different behaviors on different metrics can pinpoint sources of errors. In particular, mismatches in concept similarity and Llama inclusion uncover errors in the granularity of the predictions (*i.e.*, correct but generic) or very similar categories easy to confuse (*i.e.*, wrong but specific). We show how the former can be addressed via tailored prompting, while the latter via implementing reasoning strategies. Finally, we further analyze cases where the metrics identify a mistake and, using tagging models [28], check if predictions are incorrect only due to the single-label nature of the datasets.

Contributions. To summarize, our contributions are:

- We formalize a comprehensive evaluation protocol for the task of *open-world classification* with LMMs, using 4 different metrics capturing both semantic and text alignment of predictions with the ground truth.
- We perform the first, large-scale assessment of LMMs on this task, using 13 models on 10 benchmarks, showing promising results yet multiple challenging cases.
- By combining the different metrics, we investigate the root of the models' mistakes, identifying various issues (e.g., wrong granularity, fine-grained discrimination, labeling ambiguities) and showing how changes in the models (e.g., prompts, reasoning) can reduce them.
- We use these results to draw conclusions on the source of errors that future research should account for when using these models, releasing our evaluation suite to encourage future research efforts on addressing them.

2. Related Work

Large Multimodal Models. While early large visionlanguage models aligned visual and text representation in a shared embedding space [49, 68], there has been an increasing effort in developing generative multimodal models [2, 38, 53, 74]. These models process an input image and text generating either a text [38, 41] or a multimodal [31, 70] output. While these models share common components (e.g., visual and text encoders, text decoders) they differ in the specific strategies for modality alignment (e.g., MLP projector [41], Q-former [38]), pretraining (e.g., autoregressive [41], alignment [38]), finetuning (e.g., supervised, instruction tuning) but also data source (e.g., web data [34], textbook-style [1]) and structure (e.g., captioning [19], interleaved image-text [34]). In this work, we do not aim to introduce a new LMM or novel methodologies for building LMMs. Instead, we focus on evaluating how these models perform in OW classification, testing 13 different models belonging to 8 different families [1, 3, 13, 19, 34, 36, 37, 41], covering multiple architectural, data, and design choices.

Classification with LMMs. Multiple works designed benchmarks to test the general capabilities [35, 39, 43], or shortcomings [27, 40, 67, 73] of LMMs. The most closely related works to ours are [42, 66, 69], investigating their classification performance. Yue et al. [66] developed an approach exploiting the next token prediction probability of an LMM, reporting results on multi-label recognition. Zhang et al. [69] tested multiple LMMs on both closedworld and OW settings, showing how data influences their performance and that generative LMMs underperform their contrastive counterpart. This latter finding is challenged by Liu et al. [42], who extended the analyses of [69] to multiple datasets and more recent models. However, [42] focused on closed-world classification, while [69] limited the analyses on OW to 4 datasets and a single metric (i.e., text inclusion). In this work, we expand existing analyses in OW classification with LMMs, providing the largest study up-to-date in terms of datasets (10) and models (13). We also analyze the performance of LMMs according to four different metrics, capturing complementary aspects. Moreover, we use these metrics to analyze LMM mistakes in this scenario.

Analyzing model failures. There has been a growing interest in studying what type of mistakes models make. For instance, works on *failure modes* detection studied how to identify slices of data on which models underperform [22, 55, 64] and, through the use of LMMs, these slices can be also interpreted via natural language [18, 20, 30]. Other works examined the models' mistakes on specific datasets, to understand what prevents them from achieving perfect performance and to provide guidelines for future works. This has been the case for ImageNet [51], where previous studies discovered problems linked to spurious correla-

tions [45, 54], fine-grained discrimination [48, 59], but also labeling itself [7]. Our work is similar to this latter trend, as we want to investigate what type of mistakes LMMs make when classifying images in the OW. We aim for our findings to serve as a foundation for future research focused on improving the performance of LMMs in this challenging task.

3. Benchmarking LMMs in OW Classification

In this section, we first formalize the setting of OW classification with LMMs, clarifying its goal and terminology w.r.t. related works (Sec. 3.1). We then discuss how to evaluate performance in this setting, describing the different metrics and what they capture (Sec. 3.2). Last, we provide details on the datasets and models considered in our analyses (Sec. 3.3) before showing their results (Sec. 3.4).

3.1. Preliminaries

Classification with LMMs. Let us define an LMM as a function f_{LMM} generating a text output y in the space \mathcal{T} given an image x in the space \mathcal{X} and a text query $q \in \mathcal{T}$, i.e., $f_{\text{LMM}}: \mathcal{X} \times \mathcal{T} \to \mathcal{T}$. To perform classification with LMMs, the query q contains a prompt of the type "What type of object is in this image?" and we expect the output y to be a semantic class $\mathcal{Y} \subset \mathcal{T}$. In the case of closed-world classification, we have a predefined list \mathcal{C} of classes and we modify q by specifying the set \mathcal{C} (e.g., via a multi-choice question). In OW we let the LMM predict naturally on its original output space \mathcal{T} , without any constraint. As a consequence, the model can pick from the set \mathcal{Y} of all possible semantic concepts, with $\mathcal{C} \subset \mathcal{Y}$ and $|\mathcal{C}| \ll |\mathcal{Y}|$.

Relationships with prior problem definitions. While we followed [69] and used *open-world* to define this setting, the term can be ambiguous. The traditional definition of OW recognition [6] refers to a different problem, where a model trained to recognize \mathcal{C} classes should recognize whether an instance belongs to an unknown one $u \notin \mathcal{C}$ and learn to recognize u. Other works refer to this task as *vocabulary-free* classification [17] due to the absence of a predefined vocabulary, *open-ended* recognition [65] due to the lack of constraints, or avoided any specific terminology in the context of multi-label recognition [66]. While these different definitions closely relate to each other, we follow [69], clarifying that OW here refers only to the lack of constraints in the output space of the LMMs.

3.2. Metrics

Evaluating open-world recognition with LMMs is challenging as, even if we have a ground truth, we have no guarantee that the model will output the same name when correct (e.g., sofa vs couch), especially as the model may produce an undesired wordy output (e.g., the object in the image is a sofa). These potential variations ask for specific evaluation criteria, accounting for different types of (mis)alignment

between the prediction and the ground truth. Below, we describe the four metrics we consider for this task.

Text inclusion (TI). This metric, adopted in [69], refers to whether the ground truth is contained in the model's prediction. Specifically, let us define as y the ground truth and as \hat{y} the model's prediction. Text inclusion score is defined as:

$$TI(y, \hat{y}) = \begin{cases} 1 & \text{if } y \subseteq \hat{y}, \\ 0 & \text{otherwise} \end{cases}$$
 (1)

where, in this context, \subseteq refers to string inclusion. This metric assesses whether the predictions strictly adhere to the ground truth label but over-penalizes whether the two are semantically coherent (*e.g.*, the prediction *labrador* would be considered wrong for the label *labrador dog*).

Llama inclusion (**LI**). Differently from TI, this metric evaluates whether the prediction aligns with the ground truth label based on a Large Language Model (LLM) internal knowledge. Specifically, we employ Llama 3.2 3B [58] and report the prompt we use in the Supp. Mat. (see A.2). The score is 0 or 1, depending on the LLM's answer. This is similar to methods that use LLM/LMMs-as-a-judge [9, 71], but is specifically adapted to OW classification.

Semantic similarity (SS). Unlike previous metrics that assess alignment with the ground truth in a binary manner, SS captures the degree of semantic similarity on a continuous scale between 0 and 1. To achieve this, we employ a semantic similarity metric. Following [17], we define similarity as $\langle g_{\text{emb}}(\hat{y}), g_{\text{emb}}(y) \rangle$, where g_{emb} is a text embedding function, and $\langle \cdot, \cdot \rangle$ denotes cosine similarity. As in [17], we use Sentence-BERT [50] for computing embeddings.

Concept similarity (CS). By considering the prediction as a whole, the semantic similarity previously defined ignores whether parts of the sentence (*e.g.*, *elephant*) are closer to the ground truth (*e.g.*, *animal*) than the sentence as a whole (*e.g.*, *a photo of an elephant in the room*). To address this, we consider CS as an additional metric, defining it as:

$$\max_{p \in \mathtt{split}(\hat{y})} \langle g_{\mathtt{emb}}(p), g_{\mathtt{emb}}(y) \rangle \tag{2}$$

where split is a sentence splitting procedure that, in our case, is implemented via spaCy ¹.

3.3. Dataset and Models

Datasets. Following previous works [17, 52, 72], we analyze four different challenges: coarse-grained (or prototypical), non-prototypical, fine-grained, and very fine-grained classification. For the **prototypical** classification, we include standard benchmarks such as Caltech101 [23] for objects and SUN397 [62] for places. The **non-prototypical** set comprises datasets that either lack nouns or involve

¹We use the model available at https://spacy.io/models/en#en_core_web_lg

		Protot	ypical		N	on-pro	totypic	al		Fine-g	rained		V	ery fine	-grain	ed
Model	TI	LI	SS	CS	TI	LI	SS	CS	TI	LI	SS	CS	TI	LI	SS	CS
IDEFICS2 [34] 8B	30.8	52.7	54.5	63.1	3.7	27.9	35.4	41.3	3.0	49.9	38.0	41.7	0.0	67.0	29.6	33.6
INSTRUCTBLIP [19] Vicuna 7B	29.7	56.3	56.8	64.0	6.0	27.1	37.0	42.0	10.4	48.8	35.6	47.2	0.0	61.0	30.0	34.3
INTERNVL2 [12, 13] 2B	36.9	69.9	46.9	70.4	10.2	45.2	31.6	53.4	14.9	47.0	31.6	50.7	0.7	32.9	33.1	43.9
INTERNVL2 [12, 13] 4B	36.3	68.5	46.5	70.8	10.1	42.1	30.8	53.1	16.2	44.4	32.0	52.0	1.7	36.8	33.8	44.2
INTERNVL2 [12, 13] 8B	40.6	74.4	48.2	74.0	11.0	46.2	31.9	53.9	22.3	46.7	34.8	56.7	2.3	32.5	36.0	49.4
LLAVA-1.5 [41] 7B	34.6	63.1	45.3	65.8	8.6	44.3	33.0	49.5	8.4	46.5	28.2	44.8	0.0	41.0	28.6	37.6
LLAVA-NEXT [36] (Mistral 7B)	41.7	73.9	45.9	74.3	11.3	46.8	31.2	54.4	26.8	43.7	35.3	60.1	1.4	47.2	34.2	46.9
LLAVA-NEXT [36] (Vicuna 7B)	39.5	72.8	46.2	73.2	10.6	45.9	31.1	54.2	16.9	44.5	32.2	53.2	1.3	42.2	34.5	46.1
LLAVA-OV [37] (Qwen2 0.5B)	34.4	64.4	54.0	67.3	7.3	37.0	32.8	47.0	6.0	42.7	38.5	43.3	0.6	65.6	30.5	37.1
LLAVA-OV [37] (Qwen2 7B)	30.8	53.2	56.1	62.0	7.2	28.1	31.6	43.8	6.4	40.4	39.0	43.8	0.0	76.7	31.9	32.4
PHI-3-VISION [1]	34.1	60.1	47.7	65.1	6.0	28.7	26.0	39.5	13.4	49.1	31.8	47.2	0.2	45.0	28.9	36.0
QWEN2VL [60] 2B	44.9	77.8	52.2	74.7	7.8	34.3	27.7	42.7	35.7	62.5	40.7	63.4	12.9	60.7	45.1	62.3
Qwen2VL [60] 7B	46.4	78. 7	51.9	76.0	10.3	42.6	30.8	49.8	34.6	64.0	39.2	62.9	0.8	63.0	34.5	43.4
Open-world baselines																
CASED [17]	24.5	46.3	58.9	59.8	5.4	18.6	41.8	42.4	27.4	46.6	60.7	61.7	0.7	47.1	38.5	38.5
CLIP retrieval	28.6	42.9	40.2	60.6	7.5	24.6	28.1	43.4	32.4	45.4	42.9	65.4	7.0	18.1	39.7	56.1
Closed-world baselines																
CLIP [49]	76	5.4	91	.5	56	5.0	73	3.6	85	5.0	89	0.6	51	1.7	73	3.6
SigLIP [68]	81	.8	90).5	61	1.7	76	5.1	92	2.6	95	5.1	69	9.2	89).1

Table 1. OW results averaged on the grouped datasets. TI stands for text inclusion, LI for Llama inclusion, SS for semantic similarity, and CS for concept similarity. Higher is better, **bold** indicates best.

non-standard domains. This includes DTD [16] (textures), UCF101 [56] (actions), and EuroSAT [26] (satellite images). The **fine-grained** set consists of datasets where classes belong to a shared superclass and/or are challenging to distinguish. These include Flowers102 [46] (flowers), Food101 [8] (food), and OxfordPets [47] (animals). Finally, the **very fine-grained** set comprises datasets where categories are not only within the same subclass but also highly difficult to differentiate. This includes StanfordCars [33], where labels specify car brands, models, and years of production, and FGVCAircraft [44], which categorizes aircraft models. More details are in the Supp. Mat. (see A.1).

Models. We perform our evaluation considering state-ofthe-art LMMs of 8 types, including Idefics2 [34], Instruct-BLIP [19], InternVL2 [12, 13], LLaVA-1.5 [41], LLaVA-NeXT [37], LLaVa-OV [37], Phi-3-Vision [1], Qwen2VL [60]. We choose these models as they are publicly available and widely adopted by the community. These models encompass different design choices such as the vision encoder (e.g., CLIP [49], SigLIP [68], BLIP-2 [38]), language model (e.g., Mistral [29], Vicuna [14], Qwen2 [60]), data types (e.g., instruction following, multilingual, textbookbased), and pretraining strategies (e.g., single vs multistage). Unless otherwise stated, we query the model with the same prompt of [69], i.e., "What type of object is in this image?", letting the models perform unconstrained generation. We report a summary of the models and their differences in the Supp. Mat. (see A.1).

References. As a reference, we consider baselines based on contrastive vision-language models. Specifically, we report results using CLIP [49] and SigLIP [68] in the closedworld setting, where the models have access to the list of

target class names. Additionally, we include two baselines that adapt CLIP to the OW setting by formulating image classification as a retrieval task. The first retrieves the closest caption from a predefined database, while the second, CaSED [17], leverages retrieved captions to generate a list of candidate classes for the final prediction. For both baselines, we use the same retrieval database as in [17].

3.4. Are LMMs Good at OW Classification?

In this section, we analyze the performance of LMMs in an OW setting, with results summarized in Tab. 1 by dataset groups with per-dataset results in the Supp. Mat., see A.3). **Prototypical classification.** LMMs perform best on prototypical classes, with high scores on inclusion and similarity metrics. They consistently outperform CaSED and CLIP retrieval on inclusion metrics and are generally comparable or superior on similarity scores.

Non-prototypical classification. Performance drops significantly, with the highest LI score at 46.8, nearly 15 points lower than closed-world CLIP. Predictions are also less semantically indicative of the target class, with an average CS of 49.3, much lower than the prototypical case (69.2).

Fine-grained classification. Greater variation is observed among different models, ranging from 41.7 to 63.4 in concept similarity. In this group, LMM predictions are slightly less accurate than those of CaSED and CLIP retrieval.

Very fine-grained classification. Many models achieve a TI of 0.0, except for Qwen2VL 2B, which scores 12.9 due to the exceptional performance of FGVAircraft (25.6 vs 4.6 for the second-best model). Most LMMs underperform CLIP retrieval in CS, suggesting an issue due to granularity.

Overall trends. Across ten datasets, CLIP retrieval outper-

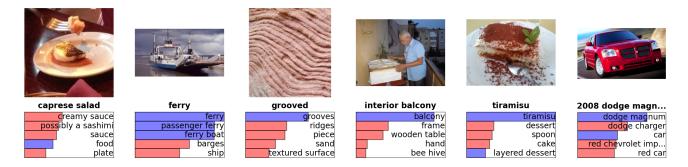


Figure 2. Per-image examples of model predictions. **Bold** indicates the ground truth class names. For visualization purposes, we show only the predictions with the highest/lowest concept similarity. **Blue** and **red** indicate positive and negative Llama inclusion values.

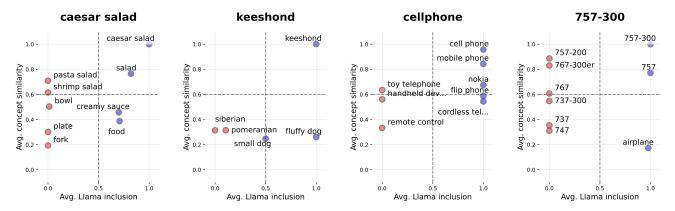


Figure 3. Per-class examples of model predictions. **Bold** indicates the ground truth class names. On the x-axis we report the average LI, and on the y-axis the average CS. For visualization purposes, we show the most frequent concepts predicted for each quadrant.

forms 9/13 models in TI, but LMMs consistently achieve higher Llama inclusion scores. CaSED ranks highest in semantic similarity due to its concise responses, while CLIP retrieval remains competitive. These results confirm insights from previous works, such as the influence of data exposure on coarse-grained categories [42, 69]. Additionally, stronger language models (*e.g.*, Mistral, Qwen) tend to yield better results than weaker counterparts (*e.g.*, Vicuna). LMMs generally outperform contrastive models in OW classification, leading in 11/16 metric/groups. However, top-performing models in one metric may struggle in others—for example, Qwen2VL 7B excels in LI on very fine-grained datasets, while InternVL2 8B and LLaVA-OV (Qwen2 7B) show different strengths in prototypical classification: *e.g.*, +21.2 LI of the first on the second but -7.9 SS.

While these results are promising, there is still a large gap with closed-world models, *i.e.*, CLIP [49], SigLIP [68]. In the next sections, we further explore what the metrics capture, to better understand OW predictions.

3.5. Interpreting Model Predictions Through Inclusion and Similarity Scores

To underscore the importance of jointly evaluating inclusion and similarity scores, we present qualitative results demonstrating how their combined analysis offers deeper insights into LMM failures. Fig. 2 showcases qualitative results from various datasets, displaying ground truth class labels alongside model predictions. For instance, the challenging case of *caprese salad* illustrates this distinction: more descriptive predictions like *creamy sauce*, which LI considers incorrect, receive a relatively higher CS score than *food*, which is deemed correct by LI. This emphasizes that *creamy sauce* is semantically closer to the ground truth, yet it is rejected by LI due to its lack of alignment with the ground truth. Similar behavior is present in the other examples.

To reinforce our previous point, Fig. 3 illustrates the relationship between LI and CS, highlighting the distinct contributions of these two metrics. Predictions in the top-right quadrant correspond to concepts that are semantically close to the ground truth and are also likely to be considered correct by LI (e.g., cellphone with predictions such as mobile phone and Nokia). In contrast, the bottom-left quadrant represents the opposite case. For instance, in the same plot, handheld device—while somewhat related to cellphone and receiving a nonzero CS score—is still deemed incorrect by LI. Similarly, in the Caesar salad example, the prediction food appears in the bottom-right quadrant, as it is correct but overly generic. Meanwhile, pasta salad, being more specific yet incorrect, falls into the top-left quadrant.

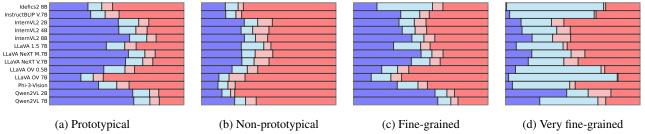


Figure 4. Types of model predictions per dataset groups. Blue indicates correct and specific and correct but generic predictions, red indicates wrong but specific and wrong and generic mistakes.

3.6. Grouping Model Predictions

Following the intuition from above, we analyze the performance of LMMs defining four different groups of predictions: correct and specific, correct but generic (e.g., dog vs pug); wrong but specific, predicting classes semantically similar to the target (e.g., pug vs pomeranian); and wrong and generic *i.e.*, where the prediction is semantically dissimilar from the target (e.g., sofa vs dalmatian). To define these groups, we split the model predictions into four sets by thresholding the LI and CS scores. We arbitrarily set the CS threshold at 0.6 to distinguish between generic and specific responses and the LI threshold at 0.5 to separate correct and wrong responses². We visualize the ratios for the predictions in Fig. 4. Intuitively, a good LMM should have an high amount of predictions as correct and specific. When not possible, however, having an equally high correct but generic ratio is still better than having errors of any form.

In terms of optimal predictions, we see that the bestperforming models vary according to dataset groups. For prototypical classification, the models with the lowest error are InternVL 8B, Qwen2VL 2B, and Qwen2VL 7B. For non-prototypical tasks, instead, LLaVA 1.5 7B performs best, but InternVL 2B and InternVL 8B provide slightly more precise predictions. For fine-grained, trends are similar to the prototypical groups, but with fewer correct and more generic responses. This is most evident for Idefics 28B, which works fairly well on fine-grained classification but provides responses lacking specificity. On very fine-grained, we perceive higher rates of wrong and generic, with more generic predictions across all models. Notably, Qwen2VL models perform better in the last two settings. On average, the models with the highest wrong predictions are LLaVA-OV 7B and InstructBLIP Vicuna 7B. The model that is, on average, more generic in its replies is Idefics2 8B.

4. Analyzing LMMs Mistakes in OW

In the following, we further inspect the correct and wrong predictions of different models. Specifically, each sec-

Dataset	High (%)	Agreement Medium (%)	Low (%)
C101	71.4	15.8	12.8
S397	34.3	33.0	32.8
U101	33.8	26.8	39.5
FOOD	32.6	27.5	39.9
DTD	23.3	29.1	47.6
FLWR	13.9	25.5	60.6
ESAT	6.1	21.8	72.1
PETS	5.5	16.1	78.4
CARS	1.5	21.9	76.6
FGVC	0.1	4.0	96.0

Table 2. Agreement of LMMs correct predictions across datasets. Low indicates that less than 30% of the models predicted a sample correctly, while high indicates that more than 70% did.

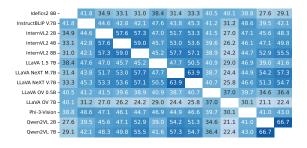


Figure 5. Percentage of correct and specific predictions shared between models. Higher values indicate higher agreement.

tion will analyze one of the four cases: correct and specific (Sec. 4.1), correct but generic (Sec. 4.2), wrong but specific (Sec. 4.3), and wrong and generic (Sec. 4.4).

4.1. Correct and Specific

While this section describes successful cases, from Sec. 3.4 we know that models perform differently. Thus, here we investigate whether LMMs share similar success cases.

Are correct predictions shared among models? To answer this question, we first evaluate the percentage of samples that receive correct predictions by multiple models across datasets. We report the results in Tab. 2, splitting them according to low (less than 30% of models), medium (30%-70%), and high agreement (above 70%). The table shows that the models tend to agree on prototypical datasets (e.g., 71.4% of high agreement on C101) but they do not

²Note that LI is either 0 or 1 on a per-sample basis, but it ranges between the two when considering aggregated results, *e.g.*, average per class.

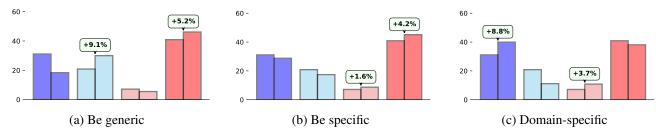


Figure 6. Average gains per prediction type when asking models to be more generic/specific (a, b), or via dataset-specific prompts (c). Blue indicates correct and specific and correct but generic predictions, red indicates wrong but specific and wrong and generic mistakes.

for very fine-grained ones (*i.e.*, CARS and FGVC). Overall, we found that only 5.6% of the samples are correctly predicted by all models and there exists 6 labels out of almost 1200 that are never predicted correctly according to the LI score: *i.e.*, *birman*, *bishop of llandaff*, *egyptian mau*, *prince of wales feather*, *silverbush*, and *watercress*, all belonging to fine-grained datasets. These results confirm the ability of LMMs to capture generic concepts while struggling on very specific ones. In Fig. 4, we observe that when the granularity constraint is relaxed, most models continue to predict the parent class with a remarkable level of accuracy, given the nature of the task.

Which models agree the most with each other? We additionally check the pair-wise agreement on the model predictions on the correct and specific group, showing the results in Fig. 5. Interestingly, models of the same family tend to share more predictions, i.e., Qwen2VL 2B and Qwen2VL 7B share 66.7% correct and specific predictions, InternVL2 4B and InternVL2 8B 59.0%. This also happens with different language models (e.g., LLaVA NeXT with Mistral and Vicuna share 63.9% of correct predictions), and differences might arise within lower performing families (e.g., LLaVA-OV 0.5B and 7B agree only 37% of the time). While there is no clear pattern, the best-performing families (e.g., LLaVA NeXT, InternVL2, Qwen2VL) tend to share more than half of the correct predictions (e.g., InternVL2 8B and Qwen2VL 7B, 55.5%), suggesting that the agreement is mostly driven by the capabilities rather than design choices. We also show the agreement between models on the other three prediction splits in the Supp. Mat. (see A.4).

4.2. Correct but Generic

As different classification scenarios may require different levels of granularity, in the following we check whether we can control the latter via prompting. We investigate three types of requests: "Be generic.", "Be specific.", and domain-specific prompts, focusing on the fine-grained and very fine-grained datasets, alongside DTD. In Fig. 6, we report the average difference across datasets for each group of predictions and type of prompt, reporting in the Supp. Mat. (see A.5) the metric variations on datasets and models.

Be more generic. When queried for generic responses, we see a large shift from correct and specific predictions to correct but generic, and, to a smaller degree, the same happens for wrong ones. This highlights how models can provide good generic responses (+9.1%) but the large decrease in correct and specific ones means they become too generic.

Be more specific. In this case, all LMMs consistently get worse, equally increasing wrong but specific and wrong and generic predictions. While a decrease (especially in correct but generic) is expected, this hints that LMMs are stronger at providing more generic replies than more specific ones.

Domain-specific. When tackling specific fine-grained scenarios, it is possible to tailor a custom prompt, e.g., when classifying flowers, we can directly ask "What type of flower is in this image?" instead of a generic object. Therefore, we explore whether informing the LMM on the target fine-grained scenario may fix the specificity issue. We update the prompt to use the terms "texture" (for DTD), "aircraft" (for FGVC), "flower" (for FLWR), "food" (for FOOD), "pet" (for PETS), or "car" (for CARS). Overall, domain-specific prompts positively influence the predictions, converting an average of 12.5% of generic responses into specific ones. Notably, LLaVA-OV 0.5B gets +29% on the correct and specific set, followed by Qwen2VL 7B with +15% (see A.5 in the Supp. Mat.). This shows how, while LMMs struggle to provide specific predictions off-the-shelf, injecting domain-specific context can largely improve OW performance.

4.3. Wrong but Specific

Here we analyze mistakes due to two objects being very similar (*e.g.*, *euphonium* vs *trombone*). As addressing this type of mistake requires reasoning on fine-level details of the images, we explore whether test-time reasoning can improve performance. Thus, we study the impact of introducing Chain-of-Thought [32, 61] during inference.

Can CoT mitigate misclassification? We identify three simple techniques we can apply without modifying the architecture of the models: zero-shot CoT [32] appending the instruction "Think step by step." to the input query, LlamaV-o1 prompt using the multi-turn procedure of [57],

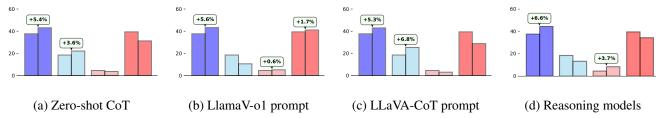


Figure 7. Average gains per prediction types when including chain-of-thought reasoning (a, b, c), or when with reasoning models (d). Blue indicates correct and specific and correct but generic predictions, red indicates wrong but specific and wrong and generic mistakes.

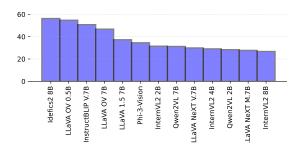


Figure 8. Percentage of model predictions considered wrong in the single-label setting, but correct in multi-label.

and the *LLaVA-CoT prompt* [63] for reasoning in procedures. For this study, we focus on the InternVL2 and the Qwen2VL families, showing their average gains in Fig. 7. Additional results are available in the Supp. Mat. (see A.5). Notably, test-time reasoning helps the models in making correct and specific responses. Performance-wise, Qwen2VL shows the highest gains, achieving up to +13% in correct and specific responses. While test-time reasoning enhance the OW of LMMs, we observe that the multi-turn prompt tends to steer the model either toward semantically correct predictions or completely divergent ones (+1.7 on wrong and generic). On the other hand, simply instructing LMMs to think with zero-shot CoT or providing a longer prompt (*LLaVA-CoT*), consistently increases their accuracy.

Do models tailored for reasoning excel in OW? As we saw positive gains from using test-time reasoning, we further explore the capabilities of more advanced approaches. Specifically, both InternVL2 and Qwen2-VL have two improved versions tailored for reasoning: InternVL2.5 [11] and Qwen2.5VL [4]. In the following, we check whether these variants outperform their predecessors, less tailored to reasoning. We show the average relative gains in Fig. 7 (d).

By directly replacing the base models with their reasoning counterparts, we get mixed results, as we see a large increase in correct prediction (+6.6% on average), but also in misclassification with semantically close concepts (+3.7%), the error we wanted to address. This shows that test-time reasoning might be more effective at addressing such nuanced cases than reasoning-based models.

4.4. Wrong and Generic

In this category, predictions are not only wrong according to inclusion metrics but also based on semantic ones. While some of the mistakes are due to the lack of fine-grained understanding of the models (see Sec. 4.1), here we investigate to which extent LMMs are correct even within wrong predictions. Specifically, we explore cases where models simply focus on the wrong object in the image.

Do LMMs focus on the wrong object? To investigate this, we annotate images with multiple labels using RAM++ [28], a state-of-the-art model for tagging images with a list of concepts. Then, we compare LMM predictions to the list of tags, looking for cases where there is an extremely high CS (above 0.95 with any of the tags in the image). If this is the case, we assume the prediction to be relevant for the image, even if different from the true label.

Fig. 8 shows the percentage of wrong predictions that match a tag. As shown in the table, this percentage is high, ranging between 30% and 60% of the wrong predictions. Notably, this is high also for models with lower overall performance in Tab. 1, such as Idefics2 and InstructBLIP. Additional experiments on the capability of models in predicting and suggesting multiple hypotheses for the output class are in Supp. Mat. (see A.4), where we explore their changes in accuracies when tasked to predict multiple labels.

5. Conclusions

In this work, we conducted a large-scale study on LMMs for OW classification. Evaluating 13 models across 10 datasets using four different metrics, we highlight both their strengths and the challenges they face in this task. As the four metrics capture different levels of alignment between predictions and ground truth, we use them to provide an indepth analysis of LMMs' mistakes, identifying cases where the model is too generic, confused by similar concepts, or focuses on the wrong subject, analyzing strategies to mitigate these issues. Our benchmark and metrics can serve as a reference for future work in this field, toward tackling this challenging yet underexplored setting.

Acknowledgements

This project was supported by PNRR ICSC National Research Centre for HPC, Big Data and Quantum Computing (CN00000013), FAIR - Future AI Research (PE00000013), funded by NextGeneration EU. This work is also supported by the EU projects ELIAS (101120237) and ELLIOT (101214398), and by Ministero delle Imprese e del Made in Italy (IPCEI Cloud DM 27 giugno 2022 – IPCEI-CL-0000007) and European Union (NextGeneration EU).

References

- [1] Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly capable language model locally on your phone. *arXiv preprint arXiv:2404.14219*, 2024. 2, 4, 13, 14, 15, 16, 17, 18, 19, 20, 22
- [2] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for few-shot learning. *NeurIPS*, 2022.
- [3] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities. *arXiv preprint arXiv:2308.12966*, 2023. 1, 2
- [4] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2.5-vl technical report. arXiv preprint arXiv:2502.13923, 2025. 8, 21, 24
- [5] Eden Belouadah, Adrian Popescu, and Ioannis Kanellos. A comprehensive study of class incremental learning algorithms for visual tasks. *Neural Networks*, 135:38–54, 2021.
- [6] Abhijit Bendale and Terrance Boult. Towards open world recognition. In CVPR, 2015. 1, 3
- [7] Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron van den Oord. Are we done with imagenet? *arXiv preprint arXiv:2006.07159*, 2020. 3
- [8] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101-mining discriminative components with random forests. In ECCV, 2014. 4, 12
- [9] Dongping Chen, Ruoxi Chen, Shilin Zhang, Yaochen Wang, Yinuo Liu, Huichi Zhou, Qihui Zhang, Yao Wan, Pan Zhou, and Lichao Sun. Mllm-as-a-judge: Assessing multimodal llm-as-a-judge with vision-language benchmark. In *ICML*, 2024. 3
- [10] Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal models with model, data, and test-time scaling. arXiv preprint arXiv:2412.05271, 2024. 24
- [11] Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong Ye, Hao Tian,

- Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024. 8, 21
- [12] Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to commercial multimodal models with open-source suites. *Science China Information Sciences*, 67(12):220101, 2024. 4, 14, 15, 16, 17, 18, 19, 20, 21, 22
- [13] Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. In CVPR, 2024. 2, 4, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
- [14] Wei-Lin Chiang, Zhuohan Li, Ziqing Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality. See https://vicuna.lmsys.org (accessed 14 April 2023), 2023, 4
- [15] Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena: An open platform for evaluating llms by human preference. In *ICML*, 2024. 12
- [16] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describing textures in the wild. In CVPR, 2014. 2, 4, 12
- [17] Alessandro Conti, Enrico Fini, Massimiliano Mancini, Paolo Rota, Yiming Wang, and Elisa Ricci. Vocabulary-free image classification. *NeurIPS*, 2023. 1, 2, 3, 4, 12, 14, 15, 17
- [18] Gabriela Csurka, Tyler L Hayes, Diane Larlus, and Riccardo Volpi. What could go wrong? discovering and describing failure modes in computer vision. arXiv preprint arXiv:2408.04471, 2024.
- [19] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, and Junqi Zhao. Instructblip: Towards general-purpose vision-language models with instruction tuning. *NeurIPS*, 2023. 2, 4, 13, 14, 15, 16, 17, 18, 19, 20, 22
- [20] Lisa Dunlap, Yuhui Zhang, Xiaohan Wang, Ruiqi Zhong, Trevor Darrell, Jacob Steinhardt, Joseph E Gonzalez, and Serena Yeung-Levy. Describing differences in image sets with natural language. In CVPR, 2024. 2
- [21] Arpad E Elo. The proposed usef rating system, its development, theory, and applications. Chess life, 22(8):242–247, 1967. 12
- [22] Sabri Eyuboglu, Maya Varma, Khaled Kamal Saab, Jean-Benoit Delbrouck, Christopher Lee-Messer, Jared Dunnmon, James Zou, and Christopher Re. Domino: Discovering systematic errors with cross-modal embeddings. In *ICLR*, 2022.
- [23] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In CVPRW. IEEE, 2004. 2, 3, 12
- [24] Chuanxing Geng, Sheng-jun Huang, and Songcan Chen. Recent advances in open set recognition: A survey. *IEEE TPAMI*, 43(10):3614–3631, 2020. 1

- [25] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024. 2, 12
- [26] Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 12(7), 2019. 4, 12
- [27] Cheng-Yu Hsieh, Jieyu Zhang, Zixian Ma, Aniruddha Kembhavi, and Ranjay Krishna. Sugarcrepe: Fixing hackable benchmarks for vision-language compositionality. *NeurIPS*, 2023. 2
- [28] Xinyu Huang, Yi-Jie Huang, Youcai Zhang, Weiwei Tian, Rui Feng, Yuejie Zhang, Yanchun Xie, Yaqian Li, and Lei Zhang. Open-set image tagging with multi-grained text supervision. arXiv preprint arXiv:2310.15200, 2023. 2, 8
- [29] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. 4
- [30] Younghyun Kim, Sangwoo Mo, Minkyu Kim, Kyungmin Lee, Jaeho Lee, and Jinwoo Shin. Discovering and mitigating visual biases through keyword explanation. In *CVPR*, 2024. 2
- [31] Jing Yu Koh, Ruslan Salakhutdinov, and Daniel Fried. Grounding language models to images for multimodal inputs and outputs. In *International Conference on Machine Learning*, pages 17283–17300. PMLR, 2023. 2
- [32] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models are zero-shot reasoners. *NeurIPS*, 2022. 7
- [33] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained categorization. In *ICCV-WS*, 2013. 2, 4, 12
- [34] Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building vision-language models? *NeurIPS*, 2025. 2, 4, 13, 14, 15, 16, 17, 18, 19, 20, 22
- [35] Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying Shan. Seed-bench: Benchmarking multimodal large language models. In CVPR, 2024.
- [36] Bo Li, Kaichen Zhang, Hao Zhang, Dong Guo, Renrui Zhang, Feng Li, Yuanhan Zhang, Ziwei Liu, and Chunyuan Li. Llava-next: Stronger llms supercharge multimodal capabilities in the wild. https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms, 2024. 2, 4, 13, 14, 15, 16, 17, 18, 19, 20, 22
- [37] Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint arXiv:2408.03326*, 2024. 2, 4, 13, 14, 15, 16, 17, 18, 19, 20, 22

- [38] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. In *ICML*, 2023. 1, 2, 4
- [39] Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen, Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. In CVPR, 2024. 2
- [40] Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object hallucination in large vision-language models. In EMNLP, 2023. 2
- [41] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *NeurIPS*, 2023. 1, 2, 4, 13, 14, 15, 16, 17, 18, 19, 20, 22
- [42] Huan Liu, Lingyu Xiao, Jiangjiang Liu, Xiaofan Li, Ze Feng, Sen Yang, and Jingdong Wang. Revisiting mllms: An in-depth analysis of image classification abilities. *arXiv* preprint arXiv:2412.16418, 2024. 1, 2, 5
- [43] Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player? In *ECCV*, 2024. 2
- [44] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013. 4, 12
- [45] Mazda Moayeri, Sahil Singla, and Soheil Feizi. Hard imagenet: Segmentations for objects with strong spurious cues. *NeurIPS*, 2022. 3
- [46] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. In *Indian conference on computer vision, graphics & image processing*. IEEE, 2008. 2, 4, 12
- [47] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In CVPR, 2012. 4, 12
- [48] Momchil Peychev, Mark Müller, Marc Fischer, and Martin Vechev. Automated classification of model errors on imagenet. *NeurIPS*, 2023. 3
- [49] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *ICML*, 2021. 1, 2, 4, 5, 14, 15, 17, 24
- [50] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. In EMNLP-IJCNLP, 2019. 3
- [51] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. *IJCV*, 115:211–252, 2015. 2
- [52] Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and Chaowei Xiao. Testtime prompt tuning for zero-shot generalization in visionlanguage models. *NeurIPS*, 2022. 3
- [53] Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and

- Douwe Kiela. Flava: A foundational language and vision alignment model. In CVPR, 2022. 2
- [54] Sahil Singla and Soheil Feizi. Salient imagenet: How to discover spurious features in deep learning? In *ICLR*, 2022.
- [55] Sahil Singla, Besmira Nushi, Shital Shah, Ece Kamar, and Eric Horvitz. Understanding failures of deep networks via robust feature extraction. In CVPR, 2021. 2
- [56] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012. 4, 12
- [57] Omkar Thawakar, Dinura Dissanayake, Ketan More, Ritesh Thawkar, Ahmed Heakl, Noor Ahsan, Yuhao Li, Mohammed Zumri, Jean Lahoud, Rao Muhammad Anwer, et al. Llamavo1: Rethinking step-by-step visual reasoning in llms. arXiv preprint arXiv:2501.06186, 2025. 7
- [58] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023. 3
- [59] Vijay Vasudevan, Benjamin Caine, Raphael Gontijo Lopes, Sara Fridovich-Keil, and Rebecca Roelofs. When does dough become a bagel? analyzing the remaining mistakes on imagenet. *NeurIPS*, 2022. 3
- [60] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the world at any resolution. arXiv preprint arXiv:2409.12191, 2024. 4, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
- [61] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *NeurIPS*, 2022. 7
- [62] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database: Large-scale scene recognition from abbey to zoo. In CVPR, 2010. 3, 12
- [63] Guowei Xu, Peng Jin, Li Hao, Yibing Song, Lichao Sun, and Li Yuan. Llava-o1: Let vision language models reason step-by-step. *arXiv preprint arXiv:2411.10440*, 2024. 8
- [64] Sriram Yenamandra, Pratik Ramesh, Viraj Prabhu, and Judy Hoffman. Facts: First amplify correlations and then slice to discover bias. In *ICCV*, 2023. 2
- [65] Qihang Yu, Xiaohui Shen, and Liang-Chieh Chen. Towards open-ended visual recognition with large language models. In ECCV, 2024. 3
- [66] Kaiyu Yue, Bor-Chun Chen, Jonas Geiping, Hengduo Li, Tom Goldstein, and Ser-Nam Lim. Object recognition as next token prediction. In CVPR, 2024. 2, 3
- [67] Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When and why visionlanguage models behave like bags-of-words, and what to do about it? In *ICLR*, 2023. 2
- [68] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image pre-training. In *ICCV*, 2023. 2, 4, 5, 14, 15, 17, 24

- [69] Yuhui Zhang, Alyssa Unell, Xiaohan Wang, Dhruba Ghosh, Yuchang Su, Ludwig Schmidt, and Serena Yeung-Levy. Why are visually-grounded language models bad at image classification? *NeurIPS*, 2024. 1, 2, 3, 4, 5
- [70] Kaizhi Zheng, Xuehai He, and Xin Eric Wang. Minigpt-5: Interleaved vision-and-language generation via generative vokens. arXiv preprint arXiv:2310.02239, 2023. 2
- [71] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena. *NeurIPS*, 2023. 2, 3, 12
- [72] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-language models. *IJCV*, 130(9):2337–2348, 2022. 3
- [73] Yiyang Zhou, Chenhang Cui, Jaehong Yoon, Linjun Zhang, Zhun Deng, Chelsea Finn, Mohit Bansal, and Huaxiu Yao. Analyzing and mitigating object hallucination in large vision-language models. *ICLR*, 2024. 2
- [74] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing vision-language understanding with advanced large language models. In *ICLR*, 2024. 2

A. Supplementary Material

In the following, we provide additional information on our analyses. First, we report further detail on the considered datasets, models (A.1), and metrics (A.2), followed by the extended results of each model for each dataset (A.3). Then, we extend our main analyses by evaluating with an Elo ranking system which model provides the best responses, using a Llama instance to score wins. We continue the analysis by evaluating the percentage of agreement between models for the three prediction groups not present in the main paper, and we use RAM++ to tag images by checking whether we can improve the model performance by using prompts that foster multi-label responses, *e.g.*, listing the objects in the scene, or describing the image (A.4). Finally, we report additional tables and visualizations to accompany the studies in the main manuscript (A.5).

A.1. Additional details on the datasets and models

The datasets used in our evaluation are summarized in Tab. 3. For the experiments we used the same training and test splits used in previous works [17], while a summary of the LMMs used in this study and their differences is in Tab. 4.

A.2. Additional details on the metrics

For computing the inclusion metric, we instruct Llama 3.2 [25] to score good and bad LMM responses with the following prompt:

Llama inclusion instruction

You are a model that determines whether an answer is a good reply to a question given also its target value.

This is the question: What type of object is in

this image?

This is the answer: %s This is the target value: %s

If the answer describes the target, reply positively. If the answer includes the target value or a synonym of it, reply positively. If the target is generic but it is related to the answer, reply positively. Reply only with "1" if yes, or "0" if no.

A.3. Extended results

We report the per-dataset results of the evaluated LMMs, split into one table for each of the considered metrics, *i.e.*, text inclusion in Tab. 5, Llama inclusion in Tab. 6, semantic similarity in Tab. 7, and concept similarity in Tab. 8.

Dataset	Images	Classes
CALTECH101 [23] (C101)	2,465	100
DTD [16]	1,692	47
EUROSAT [26] (ESAT)	8,100	10
FGVCAIRCRAFT [44] (FGVC)	3,333	100
FLOWERS 102 [46] (FLWR)	2,463	102
FOOD101 [8] (FOOD)	30,300	101
OXFORDPETS [47] (PETS)	3,669	37
STANFORD CARS [33] (CARS)	8,041	196
SUN397 [62] (S397)	19,850	397
UCF101 [56] (U101)	3,783	101

Table 3. Summary details of the datasets used in our analyses.

A.4. Additional analyses

Which model provides the best responses? To analyze which model provides the best responses, we compare their generations in pairs. Specifically, for each of the ten datasets, we randomly sample 10'000 pairs of generations, and instruct a Llama 3.2 model to identify the best response in the pair, similarly to what done in the Chatbot Arena [15] but through automatic evaluation with LLM-asa-judge [71]. We use the following prompt to instruct Llama 3.2 to judge the pairs of predictions and decide for a win:

Llama Elo ranking

You are a model that discriminates whether labels A or B better align with a target value.

This is label A: %s This is label B: %s

This is the target value: %s

Does A align better with the target value? Does B align better with the target value? Reply only with "1" if A wins over B, or "0" if B wins over A.

We directly compare the quality of the outputs by evaluating the Elo score [21] of these model responses and report the average on the ten datasets in Tab. 9. Results show that Qwen2VL models are the best at providing accurate predictions, similar to the trend in Tab. 1.

Which models agree the most with each other? To complement the analysis of the main paper, here we show the pair-wise agreement on the model predictions on group beyond the correct and specific one, showing the results in Fig. 9 for correct but generic, Fig. 10 for wrong but specific, and Fig. 11 for wrong and generic. The trends follow those of the main paper (Fig. 5) *i.e.*, where models of the same families tend to agree on the same samples, generalizing those findings across groups.

Model	Vision Enc	Language Enc	Training	Pre-training
IDEFICS2 [34]	SOVIT (SigLIP), 0.4B params; max 980x980.	Mistral 7B	Interleaved web docs, image- caption pairs (LAION-COCO), OCR data; fine-tuned on 50 cu- rated datasets.	Joint dual encoder training with Perceiver pooling for vision- text alignment.
INSTRUCTBLIP [19]	ViT-g (BLIP-2), 1.1B params; 224x224.	Vicuna 7B	26 datasets transformed into instruction-tuning format: captioning, VQA, image generation.	Two-stage pre-training: Vision-language alignment via BLIP-2 and instruction-aware Query Transformer for task-specific feature extraction.
INTERNVL2 [13]	InternViT (custom), 0.3B params (or 6B for larger models); dy- namic resolution, max 40 tiles of 448×448.	Qwen2 0.5B (for 1B and 2B versions), or InternLM2 8B (for 8B version).	Interleaved image-text, multilingual OCR, mathematical charts; strict quality control.	Progressive training: masked video modeling, cross-modal contrastive learning, and next-token prediction with spatiotemporal focus.
LLAVA-1.5 [41]	ViT-L (CLIP), 0.3B params; 336x336.	Vicuna 7B	158K multimodal instruction- following samples; pre-trained on filtered CC dataset (596K image-text pairs).	Frozen vision encoder during feature alignment stage; end-to-end fine-tuning.
LLAVA-NEXT [36]	ViT-L (CLIP), 0.3B params; 336x336, 672x672, 336x1344, and 1344x336.	Mistral 7B, or Vicuna 7B	Diverse tasks, including multi- image and video understanding.	Builds on LLaVA with extended ViT and additional multimodal datasets for improved generalization.
LLAVA-OV [37]	SOVIT (SigLIP), 0.4B params; dynamic resolution (AnyRes-9), max 2304x2304.	Qwen2 0.5B, or Qwen2 7B	Single-image and video scenarios with task transfer capabilities; diverse visual benchmarks.	Pre-trained with balanced visual token representation across scenarios to enable task transfer.
PHI-3-VISION [1]	ViT-L (CLIP), 0.4B params; dynamic resolution, max 1344x1344.	Phi-3 Mini (3.8B params)	Synthetic data, filtered public docs, high-quality interleaved text-image data, math/code examples.	Multi-stage training: custom vision encoder aligned with Phi-3 Mini language model using interleaved and fine-grained tasks.
QWEN2VL [60]	ViT (custom), 0.6B params; dynamic resolution (Naive Dynamic Resolution), no max.	Qwen2 1.5B, or Qwen2 7B	Multilingual datasets: Math- Vista, DocVQA, Real- WorldQA; supports videos (20+ min) and multilingual text in images.	Pre-trained with dynamic resolution ViT for flexible input sizes and multilingual alignment strategies.

Table 4. Summary details of the Language Multimodal Models used in our analyses.

Predicting more concepts. The experiment using RAM++ to tag images suggested that LMMs often fail to predict the class names because they focus on the wrong part of the image. However, when prompted to provide multiple candidates, do LMMs get the correct prediction? To investigate this, we ask the model to (i) list the objects in the image; (ii) caption it, or (iii) describe its content. We report the relative gain per model in Tab. 12. The results show that providing outputs that focus on multiple labels on average improves the concept-based similarity, with the only exception of the caption case. Text inclusion improves consistently, showing that predictions become correct even according to this strict metric. Overall, these results highlight how LMM mistakes can be ascribed by mismatches between the label and the

focus of the annotator, with the models often focusing on grounded image content even in case of mistakes.

Larger models. In Tab. 10, we add 6 larger models (green) to the original 13 base, with scales from 13B to 72B. Notably, *scaling has mixed impacts*, sometimes leading to better performance (*e.g.*, InternVL2 26B, Qwen2-VL 72B) and sometimes worse (*e.g.*, InstructBLIP 13B, LLaVA-NeXT 34B). Particularly, the language encoder in LLaVA-NeXT changes between 13B (Vicuna) and 34B (Yi), highlighting that *the pre-training data has a stronger effect than scaling*.

Commercial models. In Tab. 11, we report results for commercial models on a subset of the considered datasets. We compare these models against all the previously considered

	Textual inclusion												
Model	C101	DTD	ESAT	FGVC	FLWR	FOOD	PETS	CARS	S397	U101	Avg.		
IDEFICS2 [34] 8B	52.0	1.7	1.6	0.0	0.8	8.2	0.1	0.0	9.6	7.9	8.2		
INSTRUCTBLIP [19] Vicuna 7B	47.8	3.0	5.5	0.0	6.0	24.3	0.8	0.0	11.6	9.6	10.9		
INTERNVL2 [12, 13] 2B	52.8	10.8	7.4	1.4	14.1	23.3	7.2	0.0	21.1	12.4	15.0		
INTERNVL2 [12, 13] 4B	49.6	11.8	6.0	3.4	12.8	28.2	7.8	0.0	23.0	12.7	15.5		
INTERNVL2 [12, 13] 8B	55.0	12.5	6.0	4.6	19.1	33.9	13.8	0.1	26.3	14.4	18.6		
LLAVA-1.5 [41] 7B	51.6	6.0	11.7	0.1	6.7	17.6	1.1	0.0	17.6	8.2	12.1		
LLAVA-NEXT [36] (Mistral 7B)	58.0	13.6	7.4	2.8	17.6	35.5	27.1	0.0	25.4	13.0	20.0		
LLAVA-NEXT [36] (Vicuna 7B)	54.9	12.2	7.2	2.5	11.9	29.6	9.4	0.0	24.0	12.5	16.4		
LLAVA-OV [37] (Qwen2 0.5B)	53.4	9.2	4.2	1.2	2.9	12.6	2.5	0.1	15.5	8.7	11.0		
LLAVA-OV [37] (Qwen2 7B)	55.5	12.6	4.9	0.0	14.2	5.0	0.1	0.0	6.2	4.0	10.2		
PHI-3-VISION [1]	53.4	10.9	0.8	0.4	12.0	21.6	6.5	0.1	14.7	6.5	12.7		
QWEN2VL [60] 2B	60.8	12.1	0.4	25.6	42.9	48.5	15.7	0.1	29.0	10.8	24.6		
QWEN2VL [60] 7B	63.2	15.7	2.7	1.4	42.3	49.3	12.1	0.1	29.5	12.5	22.9		
Open-world baselines													
CaSED [17]	35.5	5.1	3.0	1.4	28.1	19.4	34.6	0.0	13.5	8.1	14.9		
CLIP retrieval	42.6	7.5	6.6	14.0	40.6	26.4	30.3	0.0	14.7	8.4	19.1		
Closed-world baselines													
CLIP [49]	87.1	52.6	42.7	27.2	76.9	89.9	88.1	76.2	65.6	72.7	67.9		
SigLIP [68]	93.6	60.8	42.1	46.0	88.2	94.1	95.4	92.3	69.9	82.1	76.5		

Table 5. Text inclusion on the ten datasets. Higher is better, **bold** indicates best.

	ī				T 1	. , .					
Madal	C101	DTD	ECAT	ECVC		na inclusi		CARC	6207	11101	l A
Model	C101	DTD	ESAT	FGVC	FLWR	FOOD	PETS	CARS	S397	U101	Avg.
Idefics2 [34] 8B	72.9	24.6	19.0	64.4	54.6	58.7	36.3	69.6	32.5	40.1	47.3
INSTRUCTBLIP [19] Vicuna 7B	76.8	26.2	19.1	59.9	57.4	47.6	41.3	62.0	35.8	36.0	46.2
INTERNVL2 [12, 13] 2B	74.9	48.5	35.0	35.8	49.3	44.3	47.4	30.0	64.9	52.1	48.2
INTERNVL2 [12, 13] 4B	74.4	45.7	30.1	40.5	37.5	45.9	49.7	33.1	62.5	50.4	47.0
INTERNVL2 [12, 13] 8B	77.2	50.5	28.6	29.7	36.0	53.7	50.4	35.3	71.5	59.6	49.3
LLAVA-1.5 [41] 7B	74.5	39.4	45.0	44.5	46.3	47.7	45.5	37.5	51.6	48.5	48.1
LLAVA-NEXT [36] (Mistral 7B)	77.8	54.0	28.0	43.4	33.4	63.2	34.6	50.9	69.9	58.3	51.4
LLAVA-NEXT [36] (Vicuna 7B)	77.3	52.2	26.4	43.1	29.2	60.6	43.6	41.2	68.2	59.1	50.1
LLAVA-OV [37] (Qwen2 0.5B)	76.5	46.5	28.7	61.2	55.1	28.1	44.9	70.0	52.2	35.8	49.9
LLAVA-OV [37] (Qwen2 7B)	81.3	45.6	11.8	68.9	48.9	22.0	50.2	84.4	25.0	27.0	46.5
PHI-3-VISION [1]	75.7	45.3	6.0	51.0	53.2	45.1	49.1	39.0	44.5	34.7	44.4
QWEN2VL [60] 2B	82.9	54.6	3.1	65.0	67.0	71.1	49.3	56.3	72.6	45.2	56.7
QWEN2VL [60] 7B	84.3	60.8	18.1	58.8	71.0	75.0	46.0	67.2	73.0	48.8	60.3
Open-world baselines											
CaSED [17]	57.7	16.7	7.3	30.7	46.0	35.1	58.7	63.5	34.9	31.7	38.2
CLIP retrieval	55.3	28.2	12.7	25.8	44.6	35.4	56.2	10.4	30.5	32.9	33.2
Closed-world baselines											
CLIP [49]	87.1	52.6	42.7	27.2	76.9	89.9	88.1	76.2	65.6	72.7	67.9
SigLIP [68]	93.6	60.8	42.1	46.0	88.2	94.1	95.4	92.3	69.9	82.1	76.5

Table 6. Llama inclusion on the ten datasets. Higher is better, **bold** indicates best. Note that the scores for CLIP closed-world equals the textual inclusion scores.

open-source models (*i.e.*, 13 base + 5 reasoning and the larger models from the previous analysis). The estimated sizes of these models are 8B (Haiku and GPT-4o-mini), 32B (Gemini 2.0 Flash), and +175B (Sonnet and GPT-4o). From

the results, we notice there isn't a large gap between open and commercial models, with GPTs and Gemini performing on par with, *e.g.*, InternVL2 26B and Qwen2-VL 72B. Only Claude consistently achieves better performance, still com-

					Semai	ntic simila	arity				
Model	C101	DTD	ESAT	FGVC	FLWR	FOOD	PETS	CARS	S397	U101	Avg.
IDEFICS2 [34] 8B	64.9	34.6	27.5	27.6	38.6	44.4	30.8	31.6	44.2	44.0	38.8
INSTRUCTBLIP [19] Vicuna 7B	71.5	32.8	30.0	21.4	38.9	41.6	26.4	38.5	42.1	48.3	39.1
INTERNVL2 [12, 13] 2B	50.5	25.6	26.0	23.4	31.2	39.6	23.9	42.9	43.3	43.1	34.9
INTERNVL2 [12, 13] 4B	49.2	26.1	24.7	23.6	30.2	41.1	24.6	44.1	43.8	41.8	34.9
INTERNVL2 [12, 13] 8B	50.1	26.7	24.4	25.5	32.8	44.2	27.3	46.6	46.3	44.6	36.8
LLAVA-1.5 [41] 7B	49.0	24.2	34.2	19.0	25.8	37.2	21.5	38.2	41.7	40.7	33.1
LLAVA-NEXT [36] (Mistral 7B)	48.2	27.7	23.9	23.6	30.2	45.3	30.3	44.8	43.6	42.1	36.0
LLAVA-NEXT [36] (Vicuna 7B)	49.2	27.9	23.1	23.4	29.3	43.0	24.4	45.7	43.3	42.3	35.1
LLAVA-OV [37] (Qwen2 0.5B)	64.7	28.8	21.6	21.0	41.4	42.7	31.4	40.0	43.2	47.9	38.3
LLAVA-OV [37] (Qwen2 7B)	68.7	32.2	19.4	29.4	37.5	41.7	37.8	34.4	43.4	43.2	38.8
PHI-3-VISION [1]	53.6	28.5	12.3	18.8	30.9	40.1	24.3	39.0	41.8	37.3	32.7
QWEN2VL [60] 2B	56.4	27.0	13.5	32.8	43.7	50.6	27.8	57.4	47.9	42.7	40.0
QWEN2VL [60] 7B	55.8	28.5	20.7	20.6	41.8	50.6	25.1	48.5	48.1	43.2	38.3
Open-world baselines											
CaSED [17]	65.3	39.9	32.2	30.0	55.6	64.1	62.4	47.1	52.4	53.4	50.2
CLIP retrieval	41.3	23.6	22.4	30.7	40.3	46.7	41.7	48.8	39.1	38.5	37.3
Closed-world baselines											
CLIP [49]	90.8	69.9	67.7	66.7	83.4	93.7	91.8	80.5	92.2	83.3	82.0
SigLIP [68]	97.8	75.6	63.1	80.0	92.0	96.4	96.8	98.1	83.1	89.6	87.3

Table 7. Semantic similarity on ten datasets. Higher is better, **bold** indicates best.

	Concept similarity												
Model	C101	DTD	ESAT	FGVC	FLWR	FOOD	PETS	CARS	S397	U101	Avg.		
IDEFICS2 [34] 8B	76.3	38.5	30.9	29.7	41.5	48.4	35.3	37.5	49.9	54.6	44.3		
INSTRUCTBLIP [19] Vicuna 7B	75.3	39.1	31.6	28.6	43.6	60.0	37.9	40.0	52.6	55.3	46.4		
INTERNVL2 [12, 13] 2B	75.7	48.0	52.9	36.8	49.5	60.8	41.9	50.9	65.1	59.4	54.1		
INTERNVL2 [12, 13] 4B	76.1	48.6	51.5	37.9	51.0	63.0	41.9	50.5	65.4	59.1	54.5		
INTERNVL2 [12, 13] 8B	78.7	49.7	49.1	42.5	56.9	67.1	46.0	56.2	69.2	62.9	57.8		
LLAVA-1.5 [41] 7B	72.1	41.3	51.6	29.0	41.6	56.8	35.9	46.2	59.4	55.5	48.9		
LLAVA-NEXT [36] (Mistral 7B)	79.8	51.0	49.5	37.5	55.1	70.0	55.3	56.3	68.7	62.7	58.6		
LLAVA-NEXT [36] (Vicuna 7B)	79.0	50.1	50.8	37.1	51.3	65.8	42.4	55.0	67.4	61.8	56.1		
LLAVA-OV [37] (Qwen2 0.5B)	77.8	45.1	39.9	30.6	42.4	50.0	37.5	43.5	56.7	55.9	47.9		
LLAVA-OV [37] (Qwen2 7B)	79.1	47.0	41.0	29.4	51.7	41.9	37.8	35.4	44.9	43.3	45.1		
PHI-3-VISION [1]	74.1	44.0	25.3	29.1	43.0	58.3	40.3	42.9	56.1	49.1	46.2		
QWEN2VL [60] 2B	79.4	47.3	24.2	56.0	67.9	75.7	46.7	68.6	70.0	56.6	59.2		
QWEN2VL [60] 7B	81.3	50.4	39.8	30.8	68.8	76.9	43.1	56.0	70.6	59.1	57.7		
Open-world baselines													
CaSED [17]	65.9	39.8	32.2	29.9	55.6	66.5	62.9	47.1	53.7	55.1	50.9		
CLIP retrieval	63.9	38.1	37.8	50.7	62.3	67.8	66.1	61.5	57.3	54.4	56.0		
Closed-world baselines			_				_	_					
CLIP [49]	90.8	69.9	67.7	66.7	83.4	93.7	91.8	80.5	92.2	83.3	82.0		
SigLIP [68]	97.8	75.6	63.1	80.0	92.0	96.4	96.8	98.1	83.1	89.6	87.3		

Table 8. Concept similarity on ten datasets. Higher is better, **bold** indicates best.

parable to Qwen2.5-VL 7B at a fraction of the size. Surprisingly, GPT-4o-mini is better than GPT-4o on the task, similarly to the findings for InternVL2 2B *vs.* 4B. Also, *reasoning models are strong*: Qwen2.5-VL 7B outperforms Qwen2-VL 72B and the commercial models on most of the

metrics despite its reduced dimension.

Linking model info with performance. Many models do not disclose their full training details, making it hard to identify key factors influencing performance. However, by linking the results in Tab. 1 with the summary in Tab. 4,

	Average Elo ratings	
Rank	Model	Rating
1	QWEN2VL [60] 2B	1037
2	QWEN2VL [60] 7B	1037
3	PHI-3-VISION [1]	1029
4	LLAVA-NEXT [36] (Mistral 7B)	1018
5	LLAVA-NEXT [36] (Vicuna 7B)	1015
6	LLAVA-OV [37] (Qwen2 7B)	1014
7	LLAVA-OV [37] (Qwen2 0.5B)	1007
8	INTERNVL2 [12, 13] 8B	1004
9	INTERNVL2 [12, 13] 4B	994
10	INTERNVL2 [12, 13] 2B	991
11	LLAVA-1.5 [41] 7B	984
12	INSTRUCTBLIP [19] Vicuna 7B	943
13	IDEFICS2 [34] 8B	924

Table 9. Elo ratings on the ten datasets. Higher scores indicate comparatively better responses from the models.

Idefics2 8B -		35.4	18.5	17.2	13.0	24.9	16.3	19.9	31.9		27.1	14.9	23.8
InstructBLIP V.7B -	35.4		24.7	24.6	17.7	30.4	20.0	23.5			35.5	19.2	31.1
InternVL2 2B -	18.5	24.7		32.5	28.8	24.5	21.7	26.6	25.1	20.8	27.2	25.0	28.2
InternVL2 4B -	17.2	24.6	32.5		30.0	23.5	21.2	26.3	24.6	21.6	26.8	25.1	29.5
InternVL2 8B -	13.0	17.7	28.8	30.0		19.8	19.4	23.8	18.6	15.8	20.2	23.3	24.5
LLaVA 1.5 7B -	24.9	30.4	24.5	23.5	19.8		20.7	26.2	28.2	24.2	31.8	19.1	25.4
LLaVA NeXT M.7B -	16.3	20.0	21.7	21.2	19.4	20.7		27.9	20.6	17.9	20.4	18.9	24.9
LLaVA NeXT V.7B -	19.9	23.5	26.6	26.3	23.8	26.2	27.9		23.4	20.1	25.2	22.6	27.9
LLaVA OV 0.5B -	31.9		25.1	24.6	18.6	28.2	20.6	23.4			31.4	20.4	31.4
LLaVA OV 7B -			20.8	21.6	15.8	24.2	17.9	20.1			29.5	16.5	29.2
Phi-3-Vision -	27.1	35.5	27.2	26.8	20.2	31.8	20.4	25.2	31.4	29.5		22.3	31.0
Qwen2VL 2B -	14.9	19.2	25.0	25.1	23.3	19.1	18.9	22.6	20.4	16.5	22.3		30.8
Qwen2VL 7B -	23.8	31.1	28.2	29.5	24.5	25.4	24.9	27.9	31.4	29.2	31.0	30.8	

Figure 9. Percentage of correct but generic predictions shared between models. Higher values indicate models perform responses similarly to the same inputs.

9 15.8 3 19.5			24.5	24.1	18.1	12.6	13.6
3 19.5	122						
	12.5	13.1	22.0	18.5	22.4	15.0	17.2
2 17.5	20.8	21.5	17.7	14.2	20.0	15.7	19.0
6 15.5	22.0	22.3	15.8	13.5	18.1	15.6	19.4
15.4	22.4	23.0	13.7	11.7	16.6	16.5	18.9
4	16.6	18.3	17.0	13.3	24.0	13.0	15.2
4 16.6		29.4	13.7	11.7	16.1	15.4	19.1
0 18.3	29.4		14.3	12.6	18.2	14.9	18.9
7 17.0	13.7	14.3		29.6	19.6	13.4	15.3
7 13.3	11.7	12.6	29.6		16.2	9.1	12.4
6 24.0	16.1	18.2	19.6	16.2		15.2	18.0
5 13.0	15.4	14.9	13.4	9.1	15.2		23.0
9 15.2	19.1	18.9	15.3	12.4	18.0	23.0	
	2 17.5 6 15.5 15.4 4 16.6 0 18.3 7 17.0 7 13.3 6 24.0 5 13.0	2 17.5 20.8 6 15.5 22.0 15.4 22.4 4 16.6 0 18.3 29.4 7 17.0 13.7 7 13.3 11.7 6 24.0 16.1 5 13.0 15.4	2 17.5 20.8 21.5 6 15.5 22.0 22.3 15.4 22.4 23.0 16.6 18.3 4 16.6 29.4 7 17.0 13.7 14.3 11.7 12.6 6 24.0 16.1 18.2 5 13.0 15.4 14.9	2 17.5 20.8 21.5 17.7 6 15.5 22.0 22.3 15.8 15.4 22.4 23.0 13.7 4 16.6 18.3 17.0 13.7 14.3 17.7 13.3 11.7 12.6 29.6 6 24.0 15.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13	2 17.5 20.8 21.5 17.7 14.2 6 15.5 22.0 22.3 15.8 13.5 15.4 22.4 23.0 13.7 11.7 16.2 16.6 18.3 17.0 13.3 14.2 16.6 21.5 16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2	2 17.5 20.8 21.5 17.7 14.2 20.0 6 15.5 22.0 22.3 15.8 13.5 18.1 15.4 22.4 23.0 13.7 11.7 16.6 4 16.6 16.8 18.0 17.0 13.3 24.0 4 16.6 29.4 14.3 12.6 18.2 7 17.0 13.7 14.3 2.6 19.6 8 13.4 11.7 12.6 29.6 19.6 16.2 9 16.1 18.2 19.6 16.2 19.6 16.2 9 13.0 15.4 14.9 13.4 9.1 15.2	2 17.5 20.8 21.5 17.7 14.2 20.0 15.7 6 15.5 22.0 22.3 15.8 13.5 11.7 16.6 15.6 15.4 22.4 23.0 13.7 11.7 16.6 16.5 4 16.6 16.3 13.7 13.7 15.4 15.4 7 17.0 13.7 13.4 12.6 18.2 14.9 7 17.0 13.7 14.3 29.6 19.6 13.4 7 13.3 11.7 16.2 29.6 19.6 13.4 8 24.0 15.2 29.6 19.6 13.4 13.4 9 13.3 13.4 13.6 15.2 15.2 15.2 15 15.4 14.9 13.4 9.1 15.2 15.2

Figure 10. Percentage of wrong but specific predictions shared between models. Higher values indicate models perform responses similarly to the same inputs.

we hypothesize that (i) the pre-training of the vision encoder is more important than the size (*e.g.*, InternVL and Qwen2-VL *vs.* CLIP/SigLIP, or *vs.* BLIP-2, which has double the size); (ii) higher image resolution can improve performance (*e.g.*, LLaVA-NeXT *vs.* LLaVA-1.5); (iii) the pre-training of the language encoder is less important than the training strategy (*e.g.*, LLaVA-NeXT Mistral/Vicuna *vs.* Idefics/InstructBLIP); (iv) the size of the language encoder is not an indicator of performance (*e.g.*, LLaVA-

Idefics2 8B -		53.3	37.9	38.1	35.6	40.9	25.0	37.4	46.6	E2.0	47.5	39.7	39.1
idelicsz ob -		33.3	37.9	30.1	33.0		33.0	37.4		52.0			
InstructBLIP V.7B -	53.3		47.8	47.6	44.2	51.0			53.0	54.0	56.2		42.3
InternVL2 2B -	37.9	47.8		59.7	57.3	48.9	47.8				51.5		
InternVL2 4B -	38.1		59.7		58.0	48.5	48.3				51.5		
InternVL2 8B -	35.6		57.3	58.0						38.1	48.2		42.6
LLaVA 1.5 7B -		51.0	48.9	48.5				48.3	46.6		52.5	37.4	37.1
LLaVA NeXT M.7B -	35.8			48.3	49.7			56.1		35.1			42.9
LLaVA NeXT V.7B -	37.4					48.3	56.1			37.4			43.2
LLaVA OV 0.5B -	46.6					46.6				57.2	50.4		
LLaVA OV 7B -	52.8	54.0			38.1		35.1	37.4	57.2		50.2	35.3	33.6
Phi-3-Vision -		56.2	51.5	51.5	48.2	52.5				50.2			43.1
Qwen2VL 2B -						37.4				35.3			54.4
Qwen2VL 7B -		42.3			42.6	37.1	42.9	43.2		33.6	43.1	54.4	

Figure 11. Percentage of wrong and generic predictions shared between models. Higher values indicate models perform responses similarly to the same inputs.

NeXT Mistral vs. Yi, GPT-4o-mini vs. GPT-4o). It is also reasonable to assume that the strongest influence comes from the training data for which details are only partly available.

A.5. Extended results for the analyses

Below, we report the extended results for the analyses we conducted. In Tab. 15 (also visualizing the average gains in Fig. 12) we show the variation in correct and wrong predictions for each model when using more generic/specific prompts and domain-specific information. We additionally report the variation in text inclusion, Llama inclusion, and concept similarity for each model and dataset in Tab. 13 and Tab. 14. For the chain-of-thought experiments, we provide the variations on the correct and wrong predictions in Tab. 17, and the per-dataset and model variations for the list, caption, and describe experiments in Fig. 13 (also reported numerically in Tab. 18). Finally, we report the complete results table for the reasoning models tested on the ten classification datasets in Tab. 19.

		Protot	ypical		Non-prototypical				Fine-grained				Very fine-grained			
Model	TI	LI	SS	CS	TI	LI	SS	CS	TI	LI	SS	CS	TI	LI	SS	CS
IDEFICS2 [34] 8B	30.8	52.7	54.5	63.1	3.7	27.9	35.4	41.3	3.0	49.9	38.0	41.7	0.0	67.0	29.6	33.6
INSTRUCTBLIP [19] Vicuna 7B	29.7	56.3	56.8	64.0	6.0	27.1	37.0	42.0	10.4	48.8	35.6	47.2	0.0	61.0	30.0	34.3
(*) INSTRUCTBLIP [19] Vicuna 13B	22.7	47.7	49.5	57.8	4.4	27.3	34.2	41.2	6.6	36.7	30.2	41.4	0.0	52.9	31.5	34.2
INTERNVL2 [12, 13] 2B	36.9	69.9	46.9	70.4	10.2	45.2	31.6	53.4	14.9	47.0	31.6	50.7	0.7	32.9	33.1	43.9
INTERNVL2 [12, 13] 4B	36.3	68.5	46.5	70.8	10.1	42.1	30.8	53.1	16.2	44.4	32.0	52.0	1.7	36.8	33.8	44.2
INTERNVL2 [12, 13] 8B	40.6	74.4	48.2	74.0	11.0	46.2	31.9	53.9	22.3	46.7	34.8	56.7	2.3	32.5	36.0	49.4
(*) INTERNVL2 [12, 13] 26B	46.6	78.6	49.1	77.7	15.8	58.7	36.7	60.5	36.5	58.9	40.2	65.0	7.1	40.8	40.9	59.3
LLAVA-1.5 [41] 7B	34.6	63.1	45.3	65.8	8.6	44.3	33.0	49.5	8.4	46.5	28.2	44.8	0.0	41.0	28.6	37.6
(*) LLAVA-1.5 [41] 13B	35.7	63.5	47.0	66.7	9.5	43.0	34.1	51.2	8.8	48.0	28.7	44.9	0.0	37.4	28.9	37.8
LLAVA-NEXT [36] (Mistral 7B)	41.7	73.9	45.9	74.3	11.3	46.8	31.2	54.4	26.8	43.7	35.3	60.1	1.4	47.2	34.2	46.9
LLAVA-NEXT [36] (Vicuna 7B)	39.5	72.8	46.2	73.2	10.6	45.9	31.1	54.2	16.9	44.5	32.2	53.2	1.3	42.2	34.5	46.1
(*) LLAVA-NEXT [36] (Vicuna 13B)	42.2	73.6	46.2	75.3	11.4	46.5	32.4	55.5	26.2	44.0	36.1	60.4	1.3	33.4	34.4	47.0
(*) LLAVA-NEXT [36] (Yi 34B)	39.2	74.9	46.2	73.9	12.2	49.3	33.1	56.6	25.3	43.1	35.1	60.0	0.9	42.5	33.5	45.3
LLAVA-OV [37] (Qwen2 0.5B)	34.4	64.4	54.0	67.3	7.3	37.0	32.8	47.0	6.0	42.7	38.5	43.3	0.6	65.6	30.5	37.1
LLAVA-OV [37] (Qwen2 7B)	30.8	53.2	56.1	62.0	7.2	28.1	31.6	43.8	6.4	40.4	39.0	43.8	0.0	76.7	31.9	32.4
PHI-3-VISION [1]	34.1	60.1	47.7	65.1	6.0	28.7	26.0	39.5	13.4	49.1	31.8	47.2	0.2	45.0	28.9	36.0
QWEN2VL [60] 2B	44.9	77.8	52.2	74.7	7.8	34.3	27.7	42.7	35.7	62.5	40.7	63.4	12.9	60.7	45.1	62.3
QWEN2VL [60] 7B	46.4	78. 7	51.9	76.0	10.3	42.6	30.8	49.8	34.6	64.0	39.2	62.9	0.8	63.0	34.5	43.4
(*) QWEN2VL [60] 72B	47.7	78.2	49.1	76.7	10.4	42.1	28.6	48.6	48.1	66.6	43.4	71.8	11.9	59.1	40.6	58.8
Open-world baselines																
CASED [17]	24.5	46.3	58.9	59.8	5.4	18.6	41.8	42.4	27.4	46.6	60.7	61.7	0.7	47.1	38.5	38.5
CLIP retrieval	28.6	42.9	40.2	60.6	7.5	24.6	28.1	43.4	32.4	45.4	42.9	65.4	7.0	18.1	39.7	56.1
Closed-world baselines																
CLIP [49]	76	5.4	91	.5	56	5.0	73	3.6	85	5.0	89	0.6	51	1.7	73	3.6
SigLIP [68]	81	.8	90).5	61	1.7	76	5.1	92	2.6	95	5.1	69	9.2	89).1

Table 10. OW results with larger models (in green) averaged on the grouped datasets. TI stands for text inclusion, LI for Llama inclusion, SS for semantic similarity, and CS for concept similarity. Higher is better, **bold** indicates best.

Model	TI	LI	SS	CS	Model	TI	LI	SS	CS
IDEFICS2 8B	12.5	45.7	42.6	49.2	Reasoning models				
INSTRUCTBLIP Vicuna 7B	13.4	38.3	37.4	50.2	INTERNVL2.5 2B	20.3	51.7	33.1	54.6
(*) INSTRUCTBLIP Vicuna 13B	10.0	38.3	37.4	45.2	INTERNVL2.5 4B	21.6	54.4	35.7	55.8
INTERNVL2 2B	19.5	54.4	34.9	54.9	INTERNVL2.5 8B	21.3	55.9	36.0	56.3
INTERNVL2 4B	18.9	51.5	34.4	55.3	QWEN2.5VL 3B	36.5	64.2	39.8	66.1
INTERNVL2 8B	22.9	54.7	36.3	58.8	QWEN2.5VL 7B	45.0	71.5	41.9	72.6
(*) INTERNVL2 26B	31.3	63.1	39.5	63.9	Commercial models				
LLAVA-1.5 7B	14.7	50.8	32.2	49.3	(*) GPT-40-MINI	29.5	70.3	39.9	63.1
(*) LLAVA-1.5 13B	15.7	52.9	33.1	50.1	(*) GPT-40	27.4	66.3	41.2	59.9
LLAVA-NEXT (Mistral 7B)	25.9	51.6	35.7	60.8	(*) CLAUDE HAIKU 3.5	37.2	74.7	42.1	70.1
LLAVA-NEXT (Vicuna 7B)	20.2	52.3	34.6	56.9	(*) CLAUDE SONNET 3.5	39.0	77.3	42.4	72.2
(*) LLAVA-NEXT (Vicuna 13B)	25.7	52.6	36.4	61.4	(*) GEMINI 2.0 FLASH	29.2	62.2	39.1	60.1
(*) LLAVA-NEXT (Yi 34B)	24.5	52.4	36.1	60.7	` '				
LLAVA-OV (Qwen2 0.5B)	15.3	51.8	42.8	51.7	Open-world baselines	22.2	10.0	55.0	55.0
LLAVA-OV (Qwen2 7B)	17.3	50.6	43.9	51.8	CASED	22.3	42.2	55.3	55.9
PHI-3-VISION	17.9	51.6	34.9	50.1	CLIP retrieval	25.9	43.4	37.0	57.0
QWEN2VL 2B	28.5	59.8	39.5	59.6	Closed-world baselines				
QWEN2VL 7B	29.2	62.2	38.9	60.5	CLIP	75	5.5	83	3.8
(*) QWEN2VL 72B	36.7	64.0	40.2	66.3	SigLIP	84	1.0	90).4

Table 11. Results with larger (in green) and commercial (in purple) models averaged on 5 datasets, *i.e.*, Caltech101, DTD, Flowers102, OxfordPets, UCF101. TI stands for text inclusion, LI for Llama inclusion, SS for semantic similarity, and CS for concept similarity. Higher is better, **bold** is best.

	C	altech10)1		DTD		Fl	owers10)2	0	xfordPe	ets		UCF101	
Model	TI	LI	CS	TI	LI	CS	TI	LI	CS	TI	LI	CS	TI	LI	CS
List															
IDEFICS2 [34] 8B	-1.5	-12.8	-2.8	+3.6	+3.4	+2.0	+3.6	-19.3	-0.3	+1.8	-17.6	+3.5	+2.7	-6.6	-1.2
INSTRUCTBLIP [19] Vicuna 7B	+12.5	-3.5	+4.5	+6.8	+15.8	+6.0	+13.7	-24.2	+5.9	+2.6	-29.1	+0.9	+6.7	+21.1	+9.3
INTERNVL2 [12, 13] 2B	-0.8	-6.1	+1.2	-1.5	-2.8	-1.7	-4.2	-23.5	-2.4	+4.8	-32.8	+2.2	-3.1	-11.2	-1.6
INTERNVL2 [12, 13] 4B	+1.8	-4.3	+0.7	-1.8	+3.6	-1.6	-3.7	-12.7	-5.7	+3.4	-35.5	+3.1	+2.2	-0.2	+0.6
INTERNVL2 [12, 13] 8B	-1.7	-2.2	-0.2	-0.8	+0.1	-1.2	-4.8	-2.3	-5.2	+2.3	-26.5	+2.4	+1.0	-3.9	-3.2
LLAVA-1.5 [41] 7B	-0.7	-6.3	-2.7	+0.7	+2.6	+1.4	+0.8	-21.5	-0.9	+0.9	-23.0	+1.4	-1.5	-10.2	+0.0
LLAVA-NEXT [36] (Mistral 7B)	-2.5	-2.1	-0.4	-1.1	-1.2	-0.8	-5.1	-2.1	-4.1	-9.5	-7.6	-4.3	-0.6	-0.6	-1.8
LLAVA-NEXT [36] (Vicuna 7B)	-1.5	-2.9	-0.6	-0.7	-1.4	-1.0	-2.7	-3.7	-2.8	+3.6	-19.0	+6.5	-1.3	-3.7	-1.5
LLaVa-OV [37] (Owen2 0.5B)	+6.3	-8.1	+0.5	+1.8	+5.7	+4.4	+8.1	-23.8	+4.0	+2.1	-39.0	+3.0	+5.5	+19.5	+4.0
LLaVa-OV [37] (Owen2 7B)	+6.5	+1.1	+3.6	+3.0	+14.2	+6.2	+1.6	-7.2	-0.6	+2.1	-46.9	+0.9	+13.6	+29.1	+19.9
PHI-3-VISION [1]	-1.1	-11.9	+1.0	-1.9	+1.6	-1.8	+3.3	-17.1	+1.4	+1.5	-40.7	+1.9	+1.2	+3.0	+3.9
OWEN2VL [60] 2B	+0.4	-0.1	+2.6	+5.9	+9.7	+6.3	-10.6	-12.2	-8.0	-3.4	-23.1	-5.0	+6.3	+18.6	+7.5
OWEN2VL [60] 7B	-1.8	-10.4	-1.0	+0.4	+2.7	+1.4	-24.2	-44.0	-21.4	-5.6	-39.2	-1.0	+0.4	+0.8	-0.7
Caption															
IDEFICS2 [34] 8B	-2.8	-5.4	-4.9	+5.3	+13.5	+3.2	+6.2	-33.5	-0.7	+8.3	-18.9	+6.4	+3.4	+1.3	+0.2
INSTRUCTBLIP [19] Vicuna 7B	+9.4	-8.6	+0.0	+4.7	+14.6	+3.4	+6.6	-34.5	-0.8	+3.5	-24.6	+1.6	+5.2	+11.1	+4.5
INTERNVL2 [12, 13] 2B	-6.3	-4.5	-9.9	-1.1	-5.1	-6.3	-2.2	-20.3	-7.3	+10.3	-13.3	+3.0	+0.2	-7.0	-2.4
INTERNVL2 [12, 13] 4B	-0.8	-6.5	-9.2	-2.2	-2.9	-5.3	-1.9	-13.6	-7.9	+13.8	-18.3	+4.3	-0.1	-3.6	-19.7
INTERNVL2 [12, 13] 4B	-4.2	-4.3	-9.5	+1.0	+0.6	-4.8	-5.4	-4.2	-13.5	+2.9	-20.3	-1.5	-1.4	-10.0	-4.6
LLAVA-1.5 [41] 7B	+0.9	+1.6	+5.4	+3.0	+4.8	+7.1	-1.0	-27.5	+3.7	+5.6	-19.6	+7.9	+3.2	+9.2	+5.3
LLAVA-NEXT [36] (Mistral 7B)	-9.4	-15.5	-17.7	-5.5	-20.9	-9.0	-8.1	-10.2	-15.2	-16.2	-10.6	-17.8	-4.8	-28.0	-9.7
LLAVA-NEXT [36] (Vicuna 7B)	-8.4	-13.5	-16.9	-4.9	-20.3	-9.7	-2.2	-5.9	-11.3	+0.5	-17.0	-3.8	-4.8	-24.3	-9.5
LLaVa-OV [37] (Qwen2 0.5B)	+2.5	-0.1	-8.9	+1.2	+2.7	+0.2	+12.6	-23.0	-0.3	+10.2	-18.2	+4.7	+7.1	+22.6	+5.2
LLAVA-OV [37] (Qwen2 7B)	+0.7	-6.8	-8.1	-1.7	+1.9	-3.1	-6.2	-28.4	-11.2	+5.6	-35.4	+2.0	+9.5	+21.3	+16.9
PHI-3-VISION [1]	+2.5	+0.4	+3.5	+2.4	+10.0	+5.8	+12.4	-4.6	+8.7	+17.1	-14.2	+12.8	+3.8	+13.5	+4.9
OWEN2VL [60] 2B	+0.3	+0.3	-5.2	+2.9	+7.1	+0.5	-6.6	-8.9	-14.8	+20.0	+0.2	+8.5	+3.6	+15.4	+5.2
QWEN2VL [60] 7B	-0.6	-1.1	+0.9	+1.7	+1.7	+1.2	-8.5	-15.8	-13.5	+13.2	-7.2	+10.0	+48.4	-32.7	+3.8
	0.0	1.1	10.5	1 11.7	11.7	. 1.2	0.5	13.0	13.3	113.2	7.2	110.0	1 10.1	32.7	13.0
Describe IDEFICS2 [34] 8B	-10.0	-21.1	-5.1	-0.8	-4.9	-2.2	+3.3	-33.0	-0.6	+2.1	-22.0	+4.0	-2.4	-19.9	-6.8
INSTRUCTBLIP [19] Vicuna 7B	+11.5	-4.6	-1.9	+6.9	+18.7	+5.2	+15.2	-25.5	+3.5	+2.1	-12.3	+4.0	+5.0	+24.1	+8.3
INTERNVL2 [12, 13] 2B	-1.4	+1.4	+3.4	+0.9	-0.5	+3.2	-2.3	-23.3	+3.3	+14.9	-12.3	+0.8	+9.7	-23.0	-6.1
•	-									+14.9				2.12	
INTERNVL2 [12, 13] 4B	+2.0	-0.9 -0.2	+2.2	+34.6	+5.4 +2.1	-20.8 +0.4	-0.4 -5.1	-10.6 +0.0	+0.1	+10.3	-20.4 -18.7	+12.4	+1.7	+1.6	+0.8
INTERNVL2 [12, 13] 8B		+0.6					+0.5				-18.7			-1.6	-2.1
LLAVA-1.5 [41] 7B	+1.9	+0.6	+6.6 +0.8	+3.8	+6.6	+7.5	-4.9	-28.0	+4.7	+5.6	-22.9	+7.9 -1.9	+2.7	+10.0	+5.7
LLAVA-NEXT [36] (Mistral 7B)	-1.9		+0.8	+0.3	-1.0 -0.7	+0.8 +0.4	-4.9	-3.8 -5.1	-4.1 -3.7	+7.6	-3.1		+1.1	+3.6	-1.1
LLAVA-NEXT [36] (Vicuna 7B)	-1.7	+0.5					+12.1	-5.1 -6.9	-3.7 +7.6			+9.5	+5.4	+1.6	-1.8
LLAVA-OV [37] (Qwen2 0.5B)	+6.7	+7.6	+4.3	+6.1	+21.7	+8.0				+11.7	-7.6	+10.7		+1.5	-7.7
LLAVA-OV [37] (Qwen2 7B)	+8.1	+6.5	+5.8	+5.1	+22.4	+7.0	+7.4	-5.3	+3.0	+20.3	-18.0	+14.3	+16.6	+43.1	+21.6
PHI-3-VISION [1]	-0.1	-0.1	+2.0	+2.8	+11.5	+5.6	+11.7	-2.7	+8.5	+14.6	-14.0	+11.2	+4.4	+15.0	+5.8
QWEN2VL [60] 2B	+1.8	+1.8	+5.0	+5.4	+8.1	+6.7	-6.5	-13.3	-3.8	+12.8	-12.1	+10.0	+17.7	-8.0	+0.1
QWEN2VL [60] 7B	-1.0	-1.9	+2.9	+2.1	+2.4	+4.1	-2.6	-15.6	-4.1	+24.6	-2.2	+18.6	+4.4	+14.2	+4.5

Table 12. Relative performance variation with multi-label prompts on five datasets. TI stands for text inclusion, LI for Llama inclusion, and CS for concept similarity.

		DTD		FG	VCAirc	raft	F	lowers10)2		Food101		0	xfordPe	ts	St	anfordC	ars
Model	TI	LI	CS	TI	LI	CS	TI	LI	CS	TI	LI	CS	TI	LI	CS	TI	LI	CS
Be generic																		
IDEFICS2 [34] 8B	-7.0	-9.7	-8.5	-2.4	+27.2	-2.4	-25.7	+8.9	-13.3	-19.8	+30.5	-20.7	-0.5	-15.5	-4.2	+0.0	+8.2	-19.1
INSTRUCTBLIP [19] Vicuna 7B	-10.6	-20.7	-9.3	-0.7	-9.1	-4.4	-29.6	+2.5	-19.0	-15.7	-13.9	-13.3	-13.6	-20.5	-8.4	+0.0	+10.2	-24.5
INTERNVL2 [12, 13] 2B	-3.0	+3.8	-3.9	-2.5	+43.5	-15.8	-6.1	+31.8	-11.4	-4.5	-11.5	-6.2	-14.8	-8.2	-9.1	+0.0	+13.9	-8.2
INTERNVL2 [12, 13] 4B	-6.3	-4.7	-3.9	-7.2	+63.2	-20.1	-13.7	+35.8	-15.2	-13.3	-11.6	-10.4	-10.0	-3.6	-7.1	-0.0	+51.4	-14.1
INTERNVL2 [12, 13] 8B	-12.4	-16.1	-10.8	-7.3	+44.3	-21.3	-20.1	+37.7	-17.9	-21.3	-18.0	-17.9	-15.0	-3.0	-9.6	-0.0	+65.6	-18.3
LLAVA-1.5 [41] 7B	-4.4	-21.7	-7.0	-0.2	+23.1	-0.3	-10.5	+27.0	-2.2	-23.0	-41.7	-27.2	-5.0	-20.7	-4.1	+0.0	+45.3	-19.9
LLAVA-NEXT [36] (Mistral 7B)	-4.5	-6.0	-3.5	-5.9	+27.6	-17.7	-13.4	+25.5	-13.1	-8.5	-0.4	-5.2	-19.6	-12.3	-14.2	-0.0	+43.2	-21.7
LLAVA-NEXT [36] (Vicuna 7B)	-3.1	-9.7	-5.6	-5.3	+59.6	-17.3	-12.8	+37.2	-12.3	-19.0	-10.2	-16.2	-23.9	-0.7	-19.2	+0.0	+50.1	-24.5
LLAVA-OV [37] (Qwen2 0.5B)	-10.1	-20.4	-6.9	-8.7	+5.3	-18.2	-15.9	+18.2	-16.3	-30.2	-51.5	-26.5	-25.6	-29.4	-20.3	-0.1	+3.4	-27.6
LLAVA-OV [37] (Qwen2 7B)	-39.1	-32.8	-26.1	-2.4	+4.8	-7.7	-29.8	+4.9	-21.4	-11.2	-2.3	-15.0	-0.0	-0.7	-0.3	+0.0	+4.8	-24.4
PHI-3-VISION [1]	-5.7	-0.1	+0.5	-1.8	+8.1	-5.0	-28.0	-2.1	-13.5	-14.7	-17.8	-11.8	-16.9	-30.2	-9.9	+0.0	+39.4	-15.9
QWEN2VL [60] 2B	-8.0	-13.4	-8.9	-35.5	-1.4	-36.6	-16.3	+1.7	-17.8	-18.4	-22.5	-13.5	-41.6	-22.8	-26.9	-0.0	-18.4	-6.3
Qwen2VL [60] 7B	-11.1	-17.6	-10.5	-39.6	-9.9	-43.6	-55.7	-20.8	-40.0	-41.5	-31.4	-30.2	-15.4	-11.1	-10.0	+0.0	-4.3	-34.4
Be specific																		
IDEFICS2 [34] 8B	-1.0	-4.2	-1.7	+0.0	-3.5	-0.2	+0.2	-2.3	+0.0	-2.2	-5.6	-2.3	-0.1	-5.4	-1.5	+0.0	+5.4	-1.8
INSTRUCTBLIP [19] Vicuna 7B	+1.9	+13.9	+0.1	+0.0	-12.4	-1.8	+5.5	+5.6	+1.8	-0.2	+2.9	-0.3	-0.1	-4.7	-0.9	+0.0	-22.3	+7.1
INTERNVL2 [12, 13] 2B	-0.5	-4.5	-0.7	-0.8	+5.9	-3.6	-2.2	+8.1	-1.8	+0.1	-3.4	-0.5	-2.4	-1.8	-1.2	-0.0	+1.2	-2.6
INTERNVL2 [12, 13] 4B	-0.8	-0.1	-1.1	+1.2	-11.1	+2.7	+0.9	-3.5	-1.3	+0.1	-3.3	-1.3	+7.6	-4.9	+3.6	-0.0	-15.1	+2.1
INTERNVL2 [12, 13] 8B	+1.5	+0.0	+0.2	+0.1	-6.2	+1.5	-0.5	-4.5	+0.2	-0.2	-3.2	-0.5	+2.0	-7.1	+1.4	+0.0	-13.4	+1.6
LLAVA-1.5 [41] 7B	+0.5	+0.3	-0.7	+0.0	-4.1	-0.6	+0.6	-4.1	-0.6	-0.3	-8.1	-2.2	+0.3	+0.9	-0.8	+0.0	-11.7	-0.4
LLAVA-NEXT [36] (Mistral 7B)	+0.7	-2.0	+0.2	+1.1	-12.6	+2.5	+0.2	-3.0	-0.2	-0.5	-2.6	-0.4	-0.9	-1.8	-0.5	+0.0	-18.1	+0.3
LLAVA-NEXT [36] (Vicuna 7B)	-0.8	-3.1	-1.0	-0.6	-5.8	-3.5	-3.0	+16.9	-4.0	-1.5	-5.8	-1.6	-3.4	-2.7	-3.0	-0.0	-14.5	-1.6
LLAVA-OV [37] (Qwen2 0.5B)	-1.3	-10.0	-3.6	-1.2	-6.3	-1.4	+4.2	+7.2	+3.0	-3.6	-6.0	-4.5	+0.5	-1.2	+0.8	-0.1	-2.4	-7.2
LLAVA-OV [37] (Qwen2 7B)	+1.1	+5.5	+1.5	+0.0	-3.9	+0.0	+2.6	+0.7	+1.4	+2.6	-0.8	+3.2	+0.3	-4.8	+0.3	+0.0	-5.5	+2.9
PHI-3-VISION [1]	+0.7	+3.6	+0.4	+0.3	+6.2	+0.3	+5.2	+0.3	+4.1	+3.4	-0.9	+1.0	+2.4	-1.6	+1.4	-0.1	-2.5	+1.6
QWEN2VL [60] 2B	+4.0	+4.1	+3.1	+6.4	-5.7	+9.1	+4.1	-3.2	+4.6	+2.9	+1.3	+1.9	+13.4	+5.5	+7.8	+0.1	-3.4	+4.5
QWEN2VL [60] 7B	-2.8	-8.1	-4.1	-1.0	+0.8	-1.0	-21.9	-15.0	-16.3	-11.2	-17.8	-8.7	-9.1	-3.9	-4.7	+0.0	-0.3	-5.5

Table 13. Relative performance variation with the generic/specific prompts on six datasets. TI stands for text inclusion, LI for Llama inclusion, and CS for concept similarity.

		DTD		FG	VCAirc	raft	F	lowers1	02		Food101		C	OxfordPe	ts	St	anfordC	ars
Model	TI	LI	CS	TI	LI	CS	TI	LI	CS	TI	LI	CS	TI	LI	CS	TI	LI	CS
IDEFICS2 [34] 8B	+6.0	+3.2	+6.8	+2.4	-37.3	+2.2	+24.9	-10.2	+12.9	+15.3	-19.6	+15.0	+0.4	+9.9	+3.2	+0.0	-2.1	+16.8
INSTRUCTBLIP [19] Vicuna 7B	+9.0	+11.2	+6.1	+0.7	-0.3	+4.1	+26.6	-11.1	+17.9	+6.4	+1.5	+5.7	+12.8	+16.6	+7.9	+0.0	-7.4	+19.9
INTERNVL2 [12, 13] 2B	+2.3	-5.9	+0.6	+1.5	-20.9	+7.6	+2.2	-24.6	+7.1	+0.8	+5.4	+1.8	+9.8	+5.9	+6.5	-0.0	-8.4	+3.1
INTERNVL2 [12, 13] 4B	+3.8	+0.9	+1.3	+3.8	-25.3	+10.2	+5.8	-12.0	+5.6	+3.0	+4.1	+2.2	+4.7	+3.6	+3.8	+0.0	-18.5	+4.9
INTERNVL2 [12, 13] 8B	+6.5	+1.5	+1.5	+2.6	-13.9	+8.4	+1.9	-9.4	+2.4	+2.0	+0.5	+1.5	+2.0	+3.8	+2.0	-0.1	-14.9	+0.8
LLaVA-1.5 [41] 7B	+0.4	-0.6	+0.7	+0.1	-8.4	+0.7	+3.8	-18.7	+1.6	+7.6	+3.6	+5.5	+3.9	+15.4	+3.7	+0.0	-3.7	+7.1
LLAVA-NEXT [36] (Mistral 7B)	+3.7	+1.1	+1.4	+3.4	-29.4	+10.0	+2.4	-5.5	+3.4	+3.5	-2.2	+2.0	-0.3	+8.8	+0.5	+0.0	-23.9	+4.5
LLAVA-NEXT [36] (Vicuna 7B)	+0.4	-3.7	+0.8	+2.9	-27.0	+10.2	+1.0	-11.1	+2.0	+5.0	-2.2	+3.1	+14.7	+3.9	+12.4	-0.0	-7.6	+5.4
LLAVA-OV [37] (Qwen2 0.5B)	+8.2	+8.7	+3.9	+7.5	-18.5	+16.9	+16.8	-17.1	+16.7	+25.6	+38.7	+20.6	+25.4	+10.9	+19.4	+0.1	-4.0	+19.6
LLAVA-OV [37] (Qwen2 7B)	+36.4	+22.8	+23.9	+2.4	-5.4	+7.7	+16.0	-7.1	+10.7	+10.1	+3.5	+14.8	-0.0	-4.3	+0.5	+0.0	-8.7	+22.3
PHI-3-VISION [1]	+6.0	-4.5	-1.8	+1.4	-8.4	+5.0	+19.7	-6.5	+12.2	+5.4	+2.1	+3.8	+10.4	+5.0	+6.4	-0.1	-0.5	+9.0
QWEN2VL [60] 2B	+7.5	+7.2	+5.5	+21.8	+0.7	+19.4	+10.2	-1.3	+11.1	+9.8	+6.9	+6.5	+38.7	+22.3	+24.5	+0.0	+17.8	+5.5
QWEN2VL [60] 7B	+7.9	+3.1	+4.4	+38.2	+16.1	+42.2	+13.6	-1.8	+11.8	+7.7	+3.5	+4.9	+3.3	+9.5	+4.3	-0.1	+13.7	+17.2

Table 14. Relative performance variation with dataset-specific prompts on six datasets. TI stands for text inclusion, LI for Llama inclusion, and CS for concept similarity.

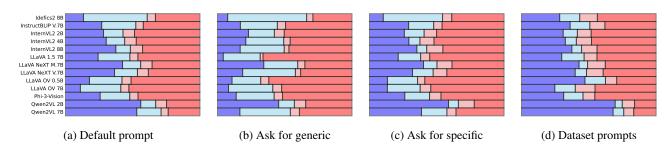


Figure 12. Types of model predictions when using the generic and specific prompts and the dataset-specific prompts. Blue indicates correct and specific and correct but generic predictions, red indicates wrong but specific and wrong and generic mistakes.

	Cor	rect	Wr	ong
Model	Specific	Generic	Specific	Generic
Be generic				
IDEFICS2 [34] 8B	-5.9	+11.3	-1.4	-4.0
INSTRUCTBLIP [19] Vicuna 7B	-9.9	+2.2	+0.5	+7.3
INTERNVL2 [12, 13] 2B	-5.3	+4.8	-1.2	+1.7
INTERNVL2 [12, 13] 4B	-9.3	+14.5	-3.9	-1.4
INTERNVL2 [12, 13] 8B	-20.6	+21.9	-5.5	+4.2
LLAVA-1.5 [41] 7B	-20.0	+3.8	-3.9	+20.0
LLAVA-NEXT [36] (Mistral 7B)	-8.0	+11.8	-3.2	-0.5
LLAVA-NEXT [36] (Vicuna 7B)	-17.8	+22.2	-4.2	-0.2
LLAVA-OV [37] (Owen2 0.5B)	-7.1	-2.8	-0.8	+10.7
LLAVA-OV [37] (Qwen2 7B)	-2.9	+2.9	+0.6	-0.5
PHI-3-VISION [1]	-11.9	+6.2	+0.1	+5.6
QWEN2VL [60] 2B	-10.5	+0.6	+0.3	+9.6
QWEN2VL [60] 7B	-36.4	+19.5	+1.4	+15.5
Be specific			'	
IDEFICS2 [34] 8B	-3.2	-3.3	+0.7	+5.8
INSTRUCTBLIP [19] Vicuna 7B	+2.1	-6.7	+0.6	+4.0
INTERNVL2 [12, 13] 2B	-2.4	+0.2	+0.7	+1.5
INTERNVL2 [12, 13] 4B	-1.1	-5.4	+1.8	+4.7
INTERNVL2 [12, 13] 8B	-2.3	-3.5	+3.0	+2.8
LLAVA-1.5 [41] 7B	-2.9	-7.0	+0.8	+9.1
LLAVA-NEXT [36] (Mistral 7B)	-2.3	-3.4	+2.6	+3.1
LLAVA-NEXT [36] (Vicuna 7B)	-4.5	-1.7	+2.0	+4.2
LLAVA-OV [37] (Qwen2 0.5B)	-4.5	-1.8	-1.4	+7.7
LLAVA-OV [37] (Qwen2 7B)	+2.1	-5.6	+1.9	+1.6
PHI-3-VISION [1]	+0.4	-3.6	+2.3	+0.9
OWEN2VL [60] 2B	+2.7	-3.8	+3.7	-2.7
Qwen2VL [60] 7B	-14.4	+0.8	+1.4	+12.1
Dataset-specific				
IDEFICS2 [34] 8B	+14.9	-32.5	+7.0	+10.6
INSTRUCTBLIP [19] Vicuna 7B	+9.1	-10.7	+5.6	-4.0
INTERNVL2 [12, 13] 2B	+2.6	-3.9	+1.7	-0.4
INTERNVL2 [12, 13] 4B	+2.2	-5.5	+2.6	+0.7
INTERNVL2 [12, 13] 8B	-0.1	-3.6	+2.5	+1.2
LLAVA-1.5 [41] 7B	+5.6	-7.0	+3.6	-2.2
LLAVA-NEXT [36] (Mistral 7B)	+0.3	-7.1	+4.6	+2.2
LLAVA-NEXT [36] (Vicuna 7B)	+3.4	-8.6	+4.3	+1.0
LLAVA-OV [37] (Qwen2 0.5B)	+29.2	-8.9	+1.6	-21.9
LLAVA-OV [37] (Qwen2 7B)	+13.6	-14.8	+8.7	-7.5
PHI-3-VISION [1]	+5.5	-7.6	+2.6	-0.5
QWEN2VL [60] 2B	+13.6	-5.8	+1.1	-8.8
QWEN2VL [60] 7B	+15.0	-10.1	+2.1	-7.0

Table 15. Gains on the types of model prediction when instructing the models to be more generic/specific, and when using dataset-specific prompts techniques on six datasets, *i.e.*, DTD, FGVCAircraft, Flowers102, Food101, OxfordPets, StanfordCars.

	C	altech1	01		DTD		F	lowers10)2	О	xfordPe	ts		UCF10	1
Model	TI	LI	CS	TI	LI	CS	TI	LI	CS	TI	LI	CS	TI	LI	CS
Zero-shot chain-of-thoug	ht														
INTERNVL2 [12, 13] 2B	+0.3	-0.5	+4.0	+2.3	+18.5	+5.3	-3.5	-7.8	+1.3	+4.9	-14.9	+5.3	+6.3	+5.3	+6.3
INTERNVL2 [12, 13] 4B	-5.1	+2.2	-0.7	+1.4	+29.3	+3.1	+0.9	+16.0	+2.7	+3.0	+6.9	+4.9	+4.6	+23.9	+4.6
INTERNVL2 [12, 13] 8B	-2.3	+2.2	+0.5	+4.0	+20.7	+3.5	-1.7	+13.8	+0.1	+2.3	-9.7	+4.2	+4.3	+14.9	+3.2
QWEN2VL [60] 2B	+1.8	+3.6	+5.5	+6.5	+25.4	+8.2	-1.9	+5.4	+2.0	+6.8	+3.6	+6.7	+5.7	+23.2	+7.9
QWEN2VL [60] 7B	-2.9	+5.0	+1.5	+6.5	+21.5	+5.5	-4.9	+13.6	-1.5	+7.1	+17.0	+7.7	+2.3	+23.9	+5.4
LlamaV-o1 multi-round j	prompt														
INTERNVL2 [12, 13] 2B	+0.4	+2.4	+4.1	+3.0	+7.8	+4.1	-2.6	-7.0	+1.9	+9.9	-18.8	+8.3	+5.5	+11.4	+5.0
INTERNVL2 [12, 13] 4B	-2.7	-4.3	-3.3	-0.5	+4.1	-0.7	+0.2	-9.1	-0.5	+3.4	-31.1	-5.2	+4.1	+3.9	+2.6
INTERNVL2 [12, 13] 8B	-1.5	-2.0	+1.3	+3.2	+8.9	+3.6	-2.5	+3.0	-2.2	+8.2	-15.5	+7.6	+5.4	+3.1	+2.8
QWEN2VL [60] 2B	+0.8	+0.3	+4.8	+6.3	+8.1	+6.7	-5.8	-7.7	-4.1	+27.6	+0.1	+19.5	+7.9	+19.1	+9.7
QWEN2VL [60] 7B	-1.0	-3.0	-1.5	+3.3	+2.4	+0.2	-6.8	-17.3	-10.3	+22.9	-3.4	+16.4	+3.3	+10.9	+4.2
LLaVA-COT prompt															
INTERNVL2 [12, 13] 2B	-0.6	+6.4	+4.1	+1.6	+19.8	+3.9	-3.8	+11.2	+1.2	+7.9	-8.6	+6.7	+5.8	+11.9	+5.2
INTERNVL2 [12, 13] 4B	+0.1	+5.0	+2.0	+0.8	+23.7	+2.9	-4.9	+30.8	-3.0	+6.7	+7.7	+7.2	+3.6	+16.4	+3.7
INTERNVL2 [12, 13] 8B	-1.7	+5.8	+1.3	+0.4	+25.3	+2.8	-8.9	+44.7	-6.8	-2.9	+28.9	+1.3	+3.2	+18.8	+0.8
QWEN2VL [60] 2B	+1.6	+0.4	+5.2	+4.4	+10.3	+6.4	-8.9	-7.9	-5.4	+5.6	-8.0	+6.1	+9.1	+18.5	+10.6
QWEN2VL [60] 7B	+0.3	+3.0	+3.4	+0.3	+12.5	+4.5	-10.2	+8.8	-7.2	+8.5	+16.2	+9.6	+6.6	+22.6	+7.1

Table 16. Relative performance variation with chain-of-thought prompts on five datasets. TI stands for text inclusion, LI for Llama inclusion, and CS for concept similarity.

	Cor	rect	Wr	ong
Model	Specific	Generic	Specific	Generic
Zero-shot chain-of-thoug	ht			
INTERNVL2 [12, 13] 2B	+3.5	-5.5	+1.4	+0.6
INTERNVL2 [12, 13] 4B	+4.8	+9.7	-2.0	-12.5
INTERNVL2 [12, 13] 8B	+3.9	+2.1	-1.1	-4.9
QWEN2VL [60] 2B	+8.0	+3.1	-0.4	-10.8
QWEN2VL [60] 7B	+6.9	+8.6	-2.5	-13.1
LlamaV-o1 prompt				
INTERNVL2 [12, 13] 2B	+6.7	-8.8	+0.4	+1.7
INTERNVL2 [12, 13] 4B	+0.5	-9.8	+0.4	+9.0
INTERNVL2 [12, 13] 8B	+3.7	-6.2	+0.6	+1.9
QWEN2VL [60] 2B	+12.7	-8.6	+1.0	-5.1
QWEN2VL [60] 7B	+4.4	-6.3	+0.8	+1.0
LLaVA-CoT prompt				
INTERNVL2 [12, 13] 2B	7.3	-1.2	-0.9	-5.2
INTERNVL2 [12, 13] 4B	5.2	10.0	-2.3	-12.8
INTERNVL2 [12, 13] 8B	1.5	22.5	-2.8	-21.1
QWEN2VL [60] 2B	6.3	-4.2	0.3	-2.4
QWEN2VL [60] 7B	6.3	7.0	-2.0	-11.3
Reasoning models				
INTERNVL2.5 [11] 2B	-2.5	-7.6	+4.2	+6.0
INTERNVL2.5 [11] 4B	+4.7	-2.4	+4.4	-6.6
INTERNVL2.5 [11] 8B	+0.7	-0.3	+4.1	-4.5
QWEN2.5VL [4] 3B	+10.8	-6.5	+2.6	-6.9
QWEN2.5VL [4] 7B	+19.1	-9.4	+3.5	-13.2

Table 17. Gains on the types of model prediction when instructing the models to reason with chain-of-thought, and when using reasoning models on five datasets, *i.e.*, Caltech101, DTD, Flowers102, OxfordPets, UCF101.

	Cor	rect	Wr	ong	
Model	Specific	Generic	Specific	Generio	
List					
IDEFICS2 [34] 8B	-4.2	-9.5	+4.0	+9.7	
INSTRUCTBLIP [19] Vicuna 7B	+9.6	-16.1	+1.5	+5.0	
INTERNVL2 [12, 13] 2B	-3.1	-14.2	+3.5	+13.9	
INTERNVL2 [12, 13] 4B	-1.4	-10.9	+0.9	+11.3	
INTERNVL2 [12, 13] 8B	-2.6	-6.7	+0.8	+8.5	
LLAVA-1.5 [41] 7B	-2.6	-13.7	+2.6	+13.6	
LLAVA-NEXT [36] (Mistral 7B)	-4.4	+1.3	-0.4	+3.5	
LLAVA-NEXT [36] (Vicuna 7B)	-1.6	-5.7	+1.3	+6.0	
LLAVA-OV [37] (Owen2 0.5B)	+3.6	-14.7	+2.0	+9.1	
LLAVA-OV [37] (Owen2 7B)	+9.3	-13.5	+2.2	+2.0	
PHI-3-VISION [1]	-0.5	-16.8	+2.5	+14.9	
QWEN2VL [60] 2B	+2.4	-5.0	-0.3	+3.0	
QWEN2VL [60] 7B	-10.7	-9.1	+2.6	+17.2	
Caption			1		
IDEFICS2 [34] 8B	+0.1	-12.0	+3.2	+8.6	
INSTRUCTBLIP [19] Vicuna 7B	+2.3	-13.1	+2.8	+8.0	
INTERNVL2 [12, 13] 2B	-4.0	-6.6	+1.0	+9.6	
INTERNVL2 [12, 13] 4B	-2.1	-7.9	+1.1	+8.9	
INTERNVL2 [12, 13] 8B	-7.4	-2.5	+0.9	+9.0	
LLaVA-1.5 [41] 7B	+6.4	-15.9	+1.2	+8.4	
LLAVA-NEXT [36] (Mistral 7B)	-20.2	+2.9	+2.4	+15.0	
LLAVA-NEXT [36] (Vicuna 7B)	-14.2	-2.7	+2.2	+14.6	
LLAVA-OV [37] (Qwen2 0.5B)	+4.7	-8.4	+0.0	+3.7	
LLAVA-OV [37] (Qwen2 7B)	+0.7	-10.6	+2.7	+7.2	
PHI-3-VISION [1]	+10.9	-13.2	+0.3	+2.0	
OWEN2VL [60] 2B	+3.8	-0.9	-0.1	-2.8	
QWEN2VL [60] 7B	+2.7	-4.7	+0.2	+1.8	
Describe			I		
IDEFICS2 [34] 8B	-9.4	-13.9	4.2	19.1	
INSTRUCTBLIP [19] Vicuna 7B	9.9	-11.2	1.6	-0.3	
INTERNVL2 [12, 13] 2B	5.6	-11.6	0.6	5.4	
INTERNVL2 [12, 13] 4B	4.6	-11.9	1.0	6.2	
INTERNVL2 [12, 13] 8B	1.1	-6.7	0.3	5.3	
LLAVA-1.5 [41] 7B	7.2	-17.4	1.5	8.7	
LLAVA-NEXT [36] (Mistral 7B)	-2.1	1.6	-0.9	1.4	
LLAVA-NEXT [36] (Vicuna 7B)	1.1	-5.0	0.0	3.9	
LLAVA-OV [37] (Qwen2 0.5B)	15.0	-5.8	-2.1	-7.0	
LLAVA-OV [37] (Qwen2 7B)	19.8	-10.5	-0.5	-8.8	
PHI-3-VISION [1]	10.3	-11.8	-0.2	1.6	
QWEN2VL [60] 2B	8.7	-7.9	0.1	-0.9	
OWEN2VL [60] 7B	8.8	-8.9	0.3	-0.2	

Table 18. Gains on the types of model prediction when instructing the models with multi-label prompts on five datasets, *i.e.*, Caltech101, DTD, Flowers102, OxfordPets, UCF101.

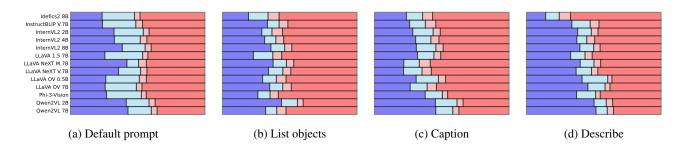


Figure 13. Types of model predictions when using multi-label prompts. Blue indicates correct and specific and correct but generic predictions, red indicates wrong but specific and wrong and generic mistakes.

					1	Datasets					
Model	C101	DTD	ESAT	FGVC	FLWR	FOOD	PETS	CARS	S397	U101	Avg.
Text inclusion											
INTERNVL2.5 [10] 2B	55.8	12.6	12.6	1.5	10.9	17.0	8.7	0.0	16.3	13.7	14.9
INTERNVL2.5 [10] 4B	55.6	10.9	12.1	0.9	12.2	24.9	14.6	0.0	23.7	14.9	17.0
INTERNVL2.5 [10] 8B	56.4	12.1	8.4	3.0	16.8	29.7	7.2	0.1	24.7	13.8	17.2
QWEN2.5VL [4] 3B	62.1	13.9	1.6	18.8	49.7	44.2	38.9	0.0	30.7	18.0	27.8
QWEN2.5VL [4] 7B	65.6	16.7	4.4	32.7	56.1	54.9	65.1	0.0	33.6	21.5	35.1
Closed-world baselines											
CLIP [49]	87.1	52.6	42.7	27.2	76.9	89.9	88.1	76.2	65.6	72.7	67.9
SigLIP [68]	93.6	60.8	42.1	46.0	88.2	94.1	95.4	92.3	69.9	82.1	76.5
Llama inclusion											
INTERNVL2.5 [10] 2B	76.8	49.2	47.2	55.4	42.4	34.2	39.2	49.3	49.3	51.1	49.4
INTERNVL2.5 [10] 4B	77.1	48.7	42.6	61.4	43.3	52.0	49.4	49.8	63.1	53.6	54.1
INTERNVL2.5 [10] 8B	78.4	48.9	45.5	59.1	51.2	53.2	48.2	60.6	62.7	52.7	56.1
QWEN2.5VL [4] 3B	81.4	58.1	6.3	58.9	71.5	68.7	51.4	58.9	78.9	58.8	59.3
QWEN2.5VL [4] 7B	84.5	59.8	12.6	69.6	75.2	76.4	71.0	71.2	81.1	67.0	66.8
Closed-world baselines											
CLIP [49]	87.1	52.6	42.7	27.2	76.9	89.9	88.1	76.2	65.6	72.7	67.9
SigLIP [68]	93.6	60.8	42.1	46.0	88.2	94.1	95.4	92.3	69.9	82.1	76.5
Semantic similarity											
INTERNVL2.5 [10] 2B	49.5	25.2	31.4	21.4	26.7	33.5	22.4	41.8	39.8	41.5	33.3
INTERNVL2.5 [10] 4B	51.7	26.7	31.7	20.9	29.4	41.6	27.4	41.9	46.5	43.5	36.1
INTERNVL2.5 [10] 8B	53.2	27.1	29.5	21.4	32.1	42.2	24.2	42.9	47.0	43.2	36.3
QWEN2.5VL [4] 3B	51.8	27.4	12.3	28.9	45.4	48.0	31.4	50.9	47.0	43.2	38.6
QWEN2.5VL [4] 7B	48.8	28.2	18.9	36.5	47.4	52.4	41.1	55.0	47.0	44.2	42.0
Closed-world baselines	1										
CLIP [49]	90.8	69.9	67.7	66.7	83.4	93.7	91.8	80.5	92.2	83.3	82.0
SigLIP [68]	97.8	75.6	63.1	80.0	92.0	96.4	96.8	98.1	83.1	89.6	87.3
Concept similarity	i										
INTERNVL2.5 [10] 2B	78.0	46.2	59.9	33.1	47.8	53.5	39.7	50.0	59.5	61.4	52.9
INTERNVL2.5 [10] 4B	77.3	44.8	57.1	31.1	49.3	61.7	45.8	48.3	66.1	61.8	54.3
INTERNVL2.5 [10] 8B	77.7	45.4	52.7	31.5	54.2	64.5	41.9	49.2	66.3	62.2	54.6
QWEN2.5VL [4] 3B	81.8	51.3	23.8	52.4	72.6	73.2	62.1	64.7	70.8	62.9	61.6
QWEN2.5VL [4] 7B	85.8	53.2	41.3	68.4	79.7	79.6	77.3	68.4	74.1	67.1	69.5
Closed-world baselines	00.5						24.0				
CLIP [49]	90.8	69.9	67.7	66.7	83.4	93.7	91.8	80.5	92.2	83.3	82.0
SigLIP [68]	97.8	75.6	63.1	80.0	92.0	96.4	96.8	98.1	83.1	89.6	87.3

Table 19. OW results of reasoning models on ten datasets. Higher is better, **bold** indicates best. Note that the Llama inclusion for CLIP closed-world equals the textual inclusion scores.