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Abstract

Traditional image classification requires a predefined list of
semantic categories. In contrast, Large Multimodal Mod-
els (LMMs) can sidestep this requirement by classifying im-
ages directly using natural language (e.g., answering the
prompt “What is the main object in the image?”). De-
spite this remarkable capability, most existing studies on
LMM classification performance are surprisingly limited in
scope, often assuming a closed-world setting with a prede-
fined set of categories. In this work, we address this gap
by thoroughly evaluating LMM classification performance
in a truly open-world setting. We first formalize the task
and introduce an evaluation protocol, defining various met-
rics to assess the alignment between predicted and ground
truth classes. We then evaluate 13 models across 10 bench-
marks, encompassing prototypical, non-prototypical, fine-
grained, and very fine-grained classes, demonstrating the
challenges LMMs face in this task. Further analyses based
on the proposed metrics reveal the types of errors LMMs
make, highlighting challenges related to granularity and
fine-grained capabilities, showing how tailored prompting
and reasoning can alleviate them. Code is available at
https://github.com/altndrr/lmms—owc.

1. Introduction

Image classification aims to assign a label to an image.
This widely studied task relies on a key assumption: the cat-
egories are fixed and known in advance, a setting known as
the closed world. However, the latter is often restrictive in
real-world applications where new categories can emerge,
requiring to expand the label set [5], recognize unseen con-
cepts [24], or both [6]. Despite its limitations, this assump-
tion has historically been useful, enabling supervised train-
ing and straightforward evaluation on labeled datasets. With
the rise of Large Multimodal Models (LMMs) [3, 38, 41]
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Figure 1. We extensively test 13 Large Multimodal Models
(LMMs) for Open-World (OW) classification on 10 datasets us-
ing four evaluation metrics. We show that LMMs outper-
form contrastive-based approaches in OW (CaSED [17], and
CLIP [49] with image-to-text retrieval) but still lag behind closed-
world models with fixed categories (CLIP [49], dashed line).

processing images and text, this constraint is no longer nec-
essary. Instead of choosing from a fixed list, LMMs can
answer open-ended prompts such as “What is the object in
the image?”, recognizing virtually any semantic concept.
From this perspective, closed-world classification is an arti-
ficial limitation that restricts a model’s expressive capabili-
ties rather than reflecting its true potential.

While some studies have explored classification with
LMMs, they have either focused on the closed-world set-
ting [42] or relied on limited metrics to assess performance:
checking whether the ground truth label appears in the
model’s prediction [69]. However, this metric provides a
limited view of classification performance. It fails to ac-
count for alternative correct answers (e.g., sofa instead of
couch), while also overlooking real mistakes (e.g., confus-
ing can with trash can). Evaluating models in the open
world presents additional challenges, as predictions may
differ in granularity (e.g., dog vs. pug), or conflict with an-
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notation ambiguities (e.g., bedroom vs bed). These issues
highlight the need for a more comprehensive evaluation
framework to assess the open-world capabilities of LMMs.

In this work, we address this gap by formalizing the
Open-World (OW) classification task and introducing four
complementary metrics: (i) text inclusion [69], evaluat-
ing string matching, (ii) Llama inclusion which leverages
Llama [25], to distinguish good and bad responses, as
in LLM-as-a-judge [71], (iii) semantic similarity [17] be-
tween text embeddings of predictions and ground truth,
and (iv) concept similarity, doing the same at the level
of sentence parts. Using these metrics, we evaluate 13
models across 10 benchmarks spanning different levels of
granularity, from prototypical, coarse categories (e.g., Cal-
tech101 [23]) to fine-grained (e.g., Flowers102 [46]), very
fine-grained (e.g., Stanford Cars [33]), and non-prototypical
ones (e.g., DTD [16]). Our results (aggregated in Fig. 1)
show that these models often predict semantically related
concepts (even better than previous, contrastive-based al-
ternatives [ 17]), demystifying the skepticism against LMMs
on OW classification. However, LMMs also make notable
errors, being far from closed-world baselines.

While the challenging nature of the problem makes ana-
lyzing the severity of the mistakes hard, we find that differ-
ent behaviors on different metrics can pinpoint sources of
errors. In particular, mismatches in concept similarity and
Llama inclusion uncover errors in the granularity of the pre-
dictions (i.e., correct but generic) or very similar categories
easy to confuse (i.e., wrong but specific). We show how
the former can be addressed via tailored prompting, while
the latter via implementing reasoning strategies. Finally, we
further analyze cases where the metrics identify a mistake
and, using tagging models [28], check if predictions are in-
correct only due to the single-label nature of the datasets.

Contributions. To summarize, our contributions are:

* We formalize a comprehensive evaluation protocol for the
task of open-world classification with LMMs, using 4 dif-
ferent metrics capturing both semantic and text alignment
of predictions with the ground truth.

* We perform the first, large-scale assessment of LMMs on
this task, using 13 models on 10 benchmarks, showing
promising results yet multiple challenging cases.

* By combining the different metrics, we investigate the
root of the models’ mistakes, identifying various issues
(e.g., wrong granularity, fine-grained discrimination, la-
beling ambiguities) and showing how changes in the mod-
els (e.g., prompts, reasoning) can reduce them.

* We use these results to draw conclusions on the source of
errors that future research should account for when using
these models, releasing our evaluation suite to encourage
future research efforts on addressing them.

2. Related Work

Large Multimodal Models. While early large vision-
language models aligned visual and text representation in
a shared embedding space [49, 68], there has been an in-
creasing effort in developing generative multimodal mod-
els [2, 38, 53, 74]. These models process an input im-
age and text generating either a text [38, 41] or a multi-
modal [31, 70] output. While these models share com-
mon components (e.g., visual and text encoders, text de-
coders) they differ in the specific strategies for modality
alignment (e.g., MLP projector [41], Q-former [38]), pre-
training (e.g., autoregressive [41], alignment [38]), fine-
tuning (e.g., supervised, instruction tuning) but also data
source (e.g., web data [34], textbook-style [1]) and struc-
ture (e.g., captioning [19], interleaved image-text [34]). In
this work, we do not aim to introduce a new LMM or novel
methodologies for building LMMs. Instead, we focus on
evaluating how these models perform in OW classification,
testing 13 different models belonging to 8 different fami-
lies [1, 3, 13, 19, 34, 36, 37, 41], covering multiple archi-
tectural, data, and design choices.

Classification with LMMs. Multiple works designed
benchmarks to test the general capabilities [35, 39, 43], or
shortcomings [27, 40, 67, 73] of LMMs. The most closely
related works to ours are [42, 66, 69], investigating their
classification performance. Yue et al. [66] developed an
approach exploiting the next token prediction probability
of an LMM, reporting results on multi-label recognition.
Zhang et al. [69] tested multiple LMMs on both closed-
world and OW settings, showing how data influences their
performance and that generative LMMs underperform their
contrastive counterpart. This latter finding is challenged by
Liu et al. [42], who extended the analyses of [69] to multiple
datasets and more recent models. However, [42] focused on
closed-world classification, while [69] limited the analyses
on OW to 4 datasets and a single metric (i.e., text inclusion).
In this work, we expand existing analyses in OW classifica-
tion with LMMs, providing the largest study up-to-date in
terms of datasets (10) and models (13). We also analyze the
performance of LMMs according to four different metrics,
capturing complementary aspects. Moreover, we use these
metrics to analyze LMM mistakes in this scenario.
Analyzing model failures. There has been a growing in-
terest in studying what type of mistakes models make. For
instance, works on failure modes detection studied how to
identify slices of data on which models underperform [22,
55, 64] and, through the use of LMMs, these slices can be
also interpreted via natural language [18, 20, 30]. Other
works examined the models’ mistakes on specific datasets,
to understand what prevents them from achieving perfect
performance and to provide guidelines for future works.
This has been the case for ImageNet [51], where previ-
ous studies discovered problems linked to spurious correla-



tions [45, 54], fine-grained discrimination [48, 59], but also
labeling itself [7]. Our work is similar to this latter trend, as
we want to investigate what type of mistakes LMMs make
when classifying images in the OW. We aim for our findings
to serve as a foundation for future research focused on im-
proving the performance of LMMs in this challenging task.

3. Benchmarking LMMs in OW Classification

In this section, we first formalize the setting of OW clas-
sification with LMMs, clarifying its goal and terminology
w.r.t. related works (Sec. 3.1). We then discuss how to
evaluate performance in this setting, describing the differ-
ent metrics and what they capture (Sec. 3.2). Last, we pro-
vide details on the datasets and models considered in our
analyses (Sec. 3.3) before showing their results (Sec. 3.4).

3.1. Preliminaries

Classification with LMMs. Let us define an LMM as a
function fruy generating a text output y in the space 7 given
an image x in the space X and a text query ¢ € T, i.e.,
Sfum : X X T — T. To perform classification with LMMs,
the query ¢ contains a prompt of the type “What type of ob-
ject is in this image?” and we expect the output y to be a
semantic class ) C 7. In the case of closed-world classifi-
cation, we have a predefined list C of classes and we modify
q by specifying the set C (e.g., via a multi-choice question).
In OW we let the LMM predict naturally on its original out-
put space 7, without any constraint. As a consequence, the
model can pick from the set ) of all possible semantic con-
cepts, with C C Y and |C| < |-

Relationships with prior problem definitions. While we
followed [69] and used open-world to define this setting, the
term can be ambiguous. The traditional definition of OW
recognition [6] refers to a different problem, where a model
trained to recognize C classes should recognize whether an
instance belongs to an unknown one v ¢ C and learn to
recognize u. Other works refer to this task as vocabulary-
free classification [17] due to the absence of a predefined
vocabulary, open-ended recognition [65] due to the lack of
constraints, or avoided any specific terminology in the con-
text of multi-label recognition [66]. While these different
definitions closely relate to each other, we follow [69], clar-
ifying that OW here refers only to the lack of constraints in
the output space of the LMMs.

3.2. Metrics

Evaluating open-world recognition with LMM:s is challeng-
ing as, even if we have a ground truth, we have no guaran-
tee that the model will output the same name when correct
(e.g., sofa vs couch), especially as the model may produce
an undesired wordy output (e.g., the object in the image is a
sofa). These potential variations ask for specific evaluation
criteria, accounting for different types of (mis)alignment

between the prediction and the ground truth. Below, we
describe the four metrics we consider for this task.

Text inclusion (TT). This metric, adopted in [69], refers to
whether the ground truth is contained in the model’s predic-
tion. Specifically, let us define as y the ground truth and as
y the model’s prediction. Text inclusion score is defined as:

L ify €y,
0 otherwise

Ti(y,9) = { ey
where, in this context, C refers to string inclusion. This
metric assesses whether the predictions strictly adhere to the
ground truth label but over-penalizes whether the two are
semantically coherent (e.g., the prediction labrador would
be considered wrong for the label labrador dog).

Llama inclusion (LI). Differently from TI, this metric eval-
uates whether the prediction aligns with the ground truth
label based on a Large Language Model (LLM) internal
knowledge. Specifically, we employ Llama 3.2 3B [58] and
report the prompt we use in the Supp. Mat. (see A.2). The
score is 0 or 1, depending on the LLM’s answer. This is
similar to methods that use LLM/LMMs-as-a-judge [9, 71],
but is specifically adapted to OW classification.

Semantic similarity (SS). Unlike previous metrics that as-
sess alignment with the ground truth in a binary manner,
SS captures the degree of semantic similarity on a contin-
uous scale between 0 and 1. To achieve this, we employ a
semantic similarity metric. Following [17], we define simi-
larity as {Gemb(9), gemb (V) ), Where genp is a text embedding
function, and (-, -} denotes cosine similarity. As in [17], we
use Sentence-BERT [50] for computing embeddings.

Concept similarity (CS). By considering the prediction as
a whole, the semantic similarity previously defined ignores
whether parts of the sentence (e.g., elephant) are closer to
the ground truth (e.g., animal) than the sentence as a whole
(e.g., a photo of an elephant in the room). To address this,
we consider CS as an additional metric, defining it as:

majx N <gemb(p)7gemb(y)> (2)
pEsplit(y)
where split is a sentence splitting procedure that, in our
case, is implemented via spaCy '.

3.3. Dataset and Models

Datasets. Following previous works [17, 52, 72], we ana-
lyze four different challenges: coarse-grained (or prototyp-
ical), non-prototypical, fine-grained, and very fine-grained
classification. For the prototypical classification, we in-
clude standard benchmarks such as Caltech101 [23] for ob-
jects and SUN397 [62] for places. The non-prototypical
set comprises datasets that either lack nouns or involve

'We use the model available at https: //spacy.io/models/
enten_core_web_1lg
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Prototypical Non-prototypical Fine-grained Very fine-grained
Model TI LI SS CS TI LI SS CS TI LI SS CS TI LI SS CS
IDEFICS2 [34] 8B 30.8 527 545 63.1 37 279 354 413 3.0 499 380 417 00 670 296 33.6
INSTRUCTBLIP [19] Vicuna 7B 29.7 563 56.8 640 60 271 370 420 104 488 356 472 00 61.0 300 343
INTERNVL2 [12, 13] 2B 369 699 469 704 102 452 31.6 534 149 470 316 50.7 0.7 329 331 439
INTERNVL2 [12, 13] 4B 363 685 465 70.8 10.1 421 308 53.1 162 444 320 520 1.7 368 338 442
INTERNVL2 [12, 13] 8B 40.6 744 482 740 11.0 462 319 539 223 46.7 348 567 23 325 360 494
LLAVA-1.5[41]7B 346 63.1 453 658 8.6 443 330 495 84 465 282 448 0.0 410 286 376
LLAVA-NEXT [36] (Mistral 7B) 41.7 739 459 743 113 468 312 544 268 437 353 601 14 472 342 469
LLAVA-NEXT [36] (Vicuna7B) 39.5 72.8 46.2 732 106 459 31.1 542 169 445 322 532 13 422 345 46.1
LLAVA-OV [37] (Qwen2 0.5B) 344 644 540 673 73 370 328 470 6.0 427 385 433 06 656 305 371
LLAVA-OV [37] (Qwen2 7B) 308 532 561 620 72 281 31.6 438 64 404 390 438 00 767 319 324
PHI-3-VISION [1] 341 60.1 477 651 6.0 287 260 395 134 49.1 318 472 02 450 289 36.0
QWEN2VL [60] 2B 449 778 522 747 7.8 343 277 427 357 625 40.7 634 129 607 451 623
QWEN2VL [60] 7B 464 787 519 76.0 103 426 30.8 49.8 346 64.0 392 629 0.8 63.0 345 434
Open-world baselines
CASED [17] 245 463 589 59.8 54 186 418 424 274 466 60.7 617 07 47.1 385 385
CLIP retrieval 286 429 402 60.6 75 246 281 434 324 454 429 654 70 181 39.7 56.1
Closed-world baselines
CLIP [49] 76.4 91.5 56.0 73.6 85.0 89.6 51.7 73.6
SigLIP [68] 81.8 90.5 61.7 76.1 92.6 95.1 69.2 89.1

Table 1. OW results averaged on the grouped datasets. TI stands for text inclusion, LI for Llama inclusion, SS for semantic similarity, and

CS for concept similarity. Higher is better, bold indicates best.

non-standard domains. This includes DTD [16] (textures),
UCF101 [56] (actions), and EuroSAT [26] (satellite im-
ages). The fine-grained set consists of datasets where
classes belong to a shared superclass and/or are challeng-
ing to distinguish. These include Flowers102 [46] (flowers),
Food101 [8] (food), and OxfordPets [47] (animals). Finally,
the very fine-grained set comprises datasets where cate-
gories are not only within the same subclass but also highly
difficult to differentiate. This includes StanfordCars [33],
where labels specify car brands, models, and years of pro-
duction, and FGVCAircraft [44], which categorizes aircraft
models. More details are in the Supp. Mat. (see A.1).
Models. We perform our evaluation considering state-of-
the-art LMMs of 8 types, including Idefics2 [34], Instruct-
BLIP [19], InternVL2 [12, 13], LLaVA-1.5 [41], LLaVA-
NeXT [37], LLaVa-OV [37], Phi-3-Vision [1], Qwen2VL
[60]. We choose these models as they are publicly avail-
able and widely adopted by the community. These models
encompass different design choices such as the vision en-
coder (e.g., CLIP [49], SigLIP [68], BLIP-2 [38]), language
model (e.g., Mistral [29], Vicuna [14], Qwen2 [60]), data
types (e.g., instruction following, multilingual, textbook-
based), and pretraining strategies (e.g., single vs multi-
stage). Unless otherwise stated, we query the model with
the same prompt of [69], i.e., “What type of object is in this
image?”, letting the models perform unconstrained genera-
tion. We report a summary of the models and their differ-
ences in the Supp. Mat. (see A.1).

References. As a reference, we consider baselines based
on contrastive vision-language models. Specifically, we re-
port results using CLIP [49] and SigLIP [68] in the closed-
world setting, where the models have access to the list of

target class names. Additionally, we include two baselines
that adapt CLIP to the OW setting by formulating image
classification as a retrieval task. The first retrieves the clos-
est caption from a predefined database, while the second,
CaSED [17], leverages retrieved captions to generate a list
of candidate classes for the final prediction. For both base-
lines, we use the same retrieval database as in [17].

3.4. Are LMMs Good at OW Classification?

In this section, we analyze the performance of LMMs in an
OW setting, with results summarized in Tab. 1 by dataset
groups with per-dataset results in the Supp. Mat., see A.3).
Prototypical classification. LMMs perform best on proto-
typical classes, with high scores on inclusion and similarity
metrics. They consistently outperform CaSED and CLIP
retrieval on inclusion metrics and are generally comparable
or superior on similarity scores.

Non-prototypical classification. Performance drops sig-
nificantly, with the highest LI score at 46.8, nearly 15 points
lower than closed-world CLIP. Predictions are also less se-
mantically indicative of the target class, with an average CS
of 49.3, much lower than the prototypical case (69.2).
Fine-grained classification. Greater variation is observed
among different models, ranging from 41.7 to 63.4 in con-
cept similarity. In this group, LMM predictions are slightly
less accurate than those of CaSED and CLIP retrieval.
Very fine-grained classification. Many models achieve a
TI of 0.0, except for Qwen2VL 2B, which scores 12.9 due to
the exceptional performance of FGVAircraft (25.6 vs 4.6 for
the second-best model). Most LMMs underperform CLIP
retrieval in CS, suggesting an issue due to granularity.
Overall trends. Across ten datasets, CLIP retrieval outper-
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Figure 3. Per-class examples of model predictions. Bold indicates the ground truth class names. On the x-axis we report the average LI,
and on the y-axis the average CS. For visualization purposes, we show the most frequent concepts predicted for each quadrant.

forms 9/13 models in TI, but LMMs consistently achieve
higher Llama inclusion scores. CaSED ranks highest in se-
mantic similarity due to its concise responses, while CLIP
retrieval remains competitive. These results confirm in-
sights from previous works, such as the influence of data
exposure on coarse-grained categories [42, 69]. Addition-
ally, stronger language models (e.g., Mistral, Qwen) tend
to yield better results than weaker counterparts (e.g., Vi-
cuna). LMMs generally outperform contrastive models in
OW classification, leading in 11/16 metric/groups. How-
ever, top-performing models in one metric may struggle
in others—for example, Qwen2VL 7B excels in LI on very
fine-grained datasets, while InternVL2 8B and LLaVA-OV
(Qwen2 7B) show different strengths in prototypical classi-
fication: e.g., +21.2 LI of the first on the second but -7.9 SS.

While these results are promising, there is still a large
gap with closed-world models, i.e., CLIP [49], SigLIP [68].
In the next sections, we further explore what the metrics
capture, to better understand OW predictions.

3.5. Interpreting Model Predictions Through Inclu-
sion and Similarity Scores

To underscore the importance of jointly evaluating inclusion
and similarity scores, we present qualitative results demon-
strating how their combined analysis offers deeper insights

into LMM failures. Fig. 2 showcases qualitative results
from various datasets, displaying ground truth class labels
alongside model predictions. For instance, the challenging
case of caprese salad illustrates this distinction: more de-
scriptive predictions like creamy sauce, which LI consid-
ers incorrect, receive a relatively higher CS score than food,
which is deemed correct by LI. This emphasizes that creamy
sauce is semantically closer to the ground truth, yet it is re-
jected by LI due to its lack of alignment with the ground
truth. Similar behavior is present in the other examples.

To reinforce our previous point, Fig. 3 illustrates the re-
lationship between LI and CS, highlighting the distinct con-
tributions of these two metrics. Predictions in the top-right
quadrant correspond to concepts that are semantically close
to the ground truth and are also likely to be considered cor-
rect by LI (e.g., cellphone with predictions such as mobile
phone and Nokia). In contrast, the bottom-left quadrant rep-
resents the opposite case. For instance, in the same plot,
handheld device—while somewhat related to cellphone and
receiving a nonzero CS score—is still deemed incorrect by
LI. Similarly, in the Caesar salad example, the prediction
food appears in the bottom-right quadrant, as it is correct
but overly generic. Meanwhile, pasta salad, being more
specific yet incorrect, falls into the top-left quadrant.



Idefics2 8B
InstructBLIP V.78
InternVL2 2B

(a) Prototypical

(b) Non-prototypical

InternVL2 48
InternVL2 8B
LLavA 1.5 7B
LLaVA NeXT M.7B
LLaVA NeXT V.7B
LLaVA OV 0.5B
LLavA OV 7B
Phi-3-Vision
Qwen2VL 2B
Qwen2VL 7B

(c) Fine-grained (d) Very fine-grained

Figure 4. Types of model predictions per dataset groups. Blue indicates [[Coitectiandispecific] and correct but generic predictions, red

indicates ‘wrong but specific and [Wrong and generic| mistakes.
3.6. Grouping Model Predictions

Following the intuition from above, we analyze the perfor-
mance of LMMs defining four different groups of predic-
tions: correct and specific, (e.g., dog
vs pug); wrong but specific, predicting classes semantically
similar to the target (e.g., pug vs pomeranian); and wrong
and generic i.e., where the prediction is semantically dis-
similar from the target (e.g., sofa vs dalmatian). To define
these groups, we split the model predictions into four sets
by thresholding the LI and CS scores. We arbitrarily set the
CS threshold at 0.6 to distinguish between generic and spe-
cific responses and the LI threshold at 0.5 to separate correct
and wrong responses’. We visualize the ratios for the pre-
dictions in Fig. 4. Intuitively, a good LMM should have an
high amount of predictions as correct and specific. When
not possible, however, having an equally high
ratio is still better than having errors of any form.

In terms of optimal predictions, we see that the best-
performing models vary according to dataset groups. For
prototypical classification, the models with the lowest er-
ror are InternVL 8B, Qwen2VL 2B, and Qwen2VL 7B.
For non-prototypical tasks, instead, LLaVA 1.5 7B per-
forms best, but InternVL 2B and InternVL 8B provide
slightly more precise predictions. For fine-grained, trends
are similar to the prototypical groups, but with fewer cor-
rect and more generic responses. This is most evident for
Idefics2 8B, which works fairly well on fine-grained classi-
fication but provides responses lacking specificity. On very
fine-grained, we perceive higher rates of wrong and generic,
with more generic predictions across all models. Notably,
Qwen2VL models perform better in the last two settings.
On average, the models with the highest wrong predictions
are LLaVA-OV 7B and InstructBLIP Vicuna 7B. The model
that is, on average, more generic in its replies is Idefics2 8B.

4. Analyzing LMMs Mistakes in OW

In the following, we further inspect the correct and wrong
predictions of different models. Specifically, each sec-

2Note that LI is either 0 or 1 on a per-sample basis, but it ranges be-
tween the two when considering aggregated results, e.g., average per class.

Agreement
Dataset | pioh (%) Medium (%) Low (%)
ciol 714 15.8 128
$397 343 330 3238
ulo1 3338 2638 395
FOOD | 326 275 39.9
DTD 233 2.1 476
FLWR | 139 255 60.6
ESAT 6.1 2138 72.1
PETS 55 16.1 78.4
CARS 15 219 76.6
FGVC 0.1 40 96.0

Table 2. Agreement of LMMs correct predictions across datasets.
Low indicates that less than 30% of the models predicted a sample
correctly, while high indicates that more than 70% did.
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Figure 5. Percentage of correct and specific predictions shared
between models. Higher values indicate higher agreement.

47.1 456 483

tion will analyze one of the four cases: correct and spe-
cific (Sec. 4.1), (Sec. 4.2), wrong but
specific (Sec. 4.3), and wrong and generic (Sec. 4.4).

4.1. Correct and Specific

While this section describes successful cases, from Sec. 3.4
we know that models perform differently. Thus, here we
investigate whether LMMs share similar success cases.

Are correct predictions shared among models? To an-
swer this question, we first evaluate the percentage of sam-
ples that receive correct predictions by multiple models
across datasets. We report the results in Tab. 2, splitting
them according to low (less than 30% of models), medium
(30%-70%), and high agreement (above 70%). The table
shows that the models tend to agree on prototypical datasets
(e.g., 71.4% of high agreement on C101) but they do not
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for very fine-grained ones (i.e., CARS and FGVC). Overall,
we found that only 5.6% of the samples are correctly pre-
dicted by all models and there exists 6 labels out of almost
1200 that are never predicted correctly according to the LI
score: i.e., birman, bishop of llandaff, egyptian mau, prince
of wales feather, silverbush, and watercress, all belonging
to fine-grained datasets. These results confirm the ability of
LMMs to capture generic concepts while struggling on very
specific ones. In Fig. 4, we observe that when the granular-
ity constraint is relaxed, most models continue to predict the
parent class with a remarkable level of accuracy, given the
nature of the task.

Which models agree the most with each other? We addi-
tionally check the pair-wise agreement on the model pre-
dictions on the correct and specific group, showing the
results in Fig. 5. Interestingly, models of the same fam-
ily tend to share more predictions, i.e., Qwen2VL 2B and
Qwen2VL 7B share 66.7% correct and specific predictions,
InternVL2 4B and InternVL2 8B 59.0%. This also happens
with different language models (e.g., LLaVA NeXT with
Mistral and Vicuna share 63.9% of correct predictions), and
differences might arise within lower performing families
(e.g., LLaVA-OV 0.5B and 7B agree only 37% of the time).
While there is no clear pattern, the best-performing families
(e.g., LLaVA NeXT, InternVL2, Qwen2VL) tend to share
more than half of the correct predictions (e.g., InternVL2
8B and Qwen2VL 7B, 55.5%), suggesting that the agree-
ment is mostly driven by the capabilities rather than design
choices. We also show the agreement between models on
the other three prediction splits in the Supp. Mat. (see A.4).

4.2. Correct but Generic

As different classification scenarios may require different
levels of granularity, in the following we check whether
we can control the latter via prompting. We investigate
three types of requests: “Be generic.”, “Be specific.”, and
domain-specific prompts, focusing on the fine-grained and
very fine-grained datasets, alongside DTD. In Fig. 6, we re-
port the average difference across datasets for each group of
predictions and type of prompt, reporting in the Supp. Mat.
(see A.5) the metric variations on datasets and models.

Be more generic. When queried for generic responses, we
see a large shift from correct and specific predictions to
, and, to a smaller degree, the same happens

for wrong ones. This highlights how models can provide
good generic responses (+9.1%) but the large decrease in
correct and specific ones means they become too generic.
Be more specific. In this case, all LMMs consistently get
worse, equally increasing and wrong and
generic predictions. While a decrease (especially in

) is expected, this hints that LMMs are stronger
at providing more generic replies than more specific ones.
Domain-specific. When tackling specific fine-grained sce-
narios, it is possible to tailor a custom prompt, e.g., when
classifying flowers, we can directly ask “What type of
flower is in this image?” instead of a generic object. There-
fore, we explore whether informing the LMM on the tar-
get fine-grained scenario may fix the specificity issue. We
update the prompt to use the terms “texture” (for DTD),
“aircraft” (for FGVC), “flower” (for FLWR), “food” (for
FOOD), “pet” (for PETS), or “car” (for CARS). Overall,
domain-specific prompts positively influence the predic-
tions, converting an average of 12.5% of generic responses
into specific ones. Notably, LLaVA-OV 0.5B gets +29% on
the correct and specific set, followed by Qwen2VL 7B with
+15% (see A.5 in the Supp. Mat.). This shows how, while
LMMs struggle to provide specific predictions off-the-shelf,
injecting domain-specific context can largely improve OW
performance.

4.3. Wrong but Specific

Here we analyze mistakes due to two objects being very
similar (e.g., euphonium vs trombone). As addressing this
type of mistake requires reasoning on fine-level details of
the images, we explore whether test-time reasoning can im-
prove performance. Thus, we study the impact of introduc-
ing Chain-of-Thought [32, 61] during inference.

Can CoT mitigate misclassification? We identify three
simple techniques we can apply without modifying the ar-
chitecture of the models: zero-shot CoT [32] appending
the instruction “Think step by step.” to the input query,
LlamaV-ol prompt using the multi-turn procedure of [57],
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Figure 8. Percentage of model predictions considered wrong in
the single-label setting, but correct in multi-label.

and the LLaVA-CoT prompt [63] for reasoning in proce-
dures. For this study, we focus on the InternVL2 and
the Qwen2VL families, showing their average gains in
Fig. 7. Additional results are available in the Supp. Mat.
(see A.5). Notably, test-time reasoning helps the models in
making correct and specific responses. Performance-wise,
Qwen2VL shows the highest gains, achieving up to +13%
in correct and specific responses. While test-time reasoning
enhance the OW of LMMs, we observe that the multi-turn
prompt tends to steer the model either toward semantically
correct predictions or completely divergent ones (+1.7 on
wrong and generic). On the other hand, simply instructing
LMMs to think with zero-shot CoT or providing a longer
prompt (LLaVA-CoT), consistently increases their accuracy.

Do models tailored for reasoning excel in OW? As we
saw positive gains from using test-time reasoning, we fur-
ther explore the capabilities of more advanced approaches.
Specifically, both InternVL2 and Qwen2-VL have two im-
proved versions tailored for reasoning: InternVL2.5 [11]
and Qwen2.5VL [4]. In the following, we check whether
these variants outperform their predecessors, less tailored to
reasoning. We show the average relative gains in Fig. 7 (d).

By directly replacing the base models with their reason-
ing counterparts, we get mixed results, as we see a large in-
crease in correct prediction (+6.6% on average), but also in
misclassification with semantically close concepts (+3.7%),
the error we wanted to address. This shows that test-time
reasoning might be more effective at addressing such nu-
anced cases than reasoning-based models.

4.4. Wrong and Generic

In this category, predictions are not only wrong according
to inclusion metrics but also based on semantic ones. While
some of the mistakes are due to the lack of fine-grained un-
derstanding of the models (see Sec. 4.1), here we investi-
gate to which extent LMMs are correct even within wrong
predictions. Specifically, we explore cases where models
simply focus on the wrong object in the image.

Do LMMs focus on the wrong object? To investi-
gate this, we annotate images with multiple labels using
RAM++ [28], a state-of-the-art model for tagging images
with a list of concepts. Then, we compare LMM predic-
tions to the list of tags, looking for cases where there is an
extremely high CS (above 0.95 with any of the tags in the
image). If this is the case, we assume the prediction to be
relevant for the image, even if different from the true label.

Fig. 8 shows the percentage of wrong predictions that
match a tag. As shown in the table, this percentage is high,
ranging between 30% and 60% of the wrong predictions.
Notably, this is high also for models with lower overall per-
formance in Tab. 1, such as Idefics2 and InstructBLIP. Addi-
tional experiments on the capability of models in predicting
and suggesting multiple hypotheses for the output class are
in Supp. Mat. (see A.4), where we explore their changes in
accuracies when tasked to predict multiple labels.

5. Conclusions

In this work, we conducted a large-scale study on LMMs
for OW classification. Evaluating 13 models across 10
datasets using four different metrics, we highlight both their
strengths and the challenges they face in this task. As the
four metrics capture different levels of alignment between
predictions and ground truth, we use them to provide an in-
depth analysis of LMMs’ mistakes, identifying cases where
the model is too generic, confused by similar concepts, or
focuses on the wrong subject, analyzing strategies to miti-
gate these issues. Our benchmark and metrics can serve as
a reference for future work in this field, toward tackling this
challenging yet underexplored setting.
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A. Supplementary Material

In the following, we provide additional information on our
analyses. First, we report further detail on the considered
datasets, models (A.1), and metrics (A.2), followed by the
extended results of each model for each dataset (A.3). Then,
we extend our main analyses by evaluating with an Elo
ranking system which model provides the best responses,
using a Llama instance to score wins. We continue the
analysis by evaluating the percentage of agreement between
models for the three prediction groups not present in the
main paper, and we use RAM++ to tag images by checking
whether we can improve the model performance by using
prompts that foster multi-label responses, e.g., listing the
objects in the scene, or describing the image (A.4). Finally,
we report additional tables and visualizations to accompany
the studies in the main manuscript (A.5).

A.1l. Additional details on the datasets and models

The datasets used in our evaluation are summarized in
Tab. 3. For the experiments we used the same training and
test splits used in previous works [17], while a summary
of the LMMs used in this study and their differences is in
Tab. 4.

A.2. Additional details on the metrics

For computing the inclusion metric, we instruct Llama
3.2 [25] to score good and bad LMM responses with the
following prompt:

Llama inclusion instruction

You are a model that determines whether an answer
is a good reply to a question given also its target
value.

This is the question: What type of object is in
this image?

This is the answer: %s

This is the target value: %s

If the answer describes the target, reply posi-
tively. If the answer includes the target value or
a synonym of it, reply positively. If the target
is generic but it is related to the answer, reply
positively. Reply only with 1" if yes, or 0" if no.

A.3. Extended results

We report the per-dataset results of the evaluated LMMs,
split into one table for each of the considered metrics, i.e.,
text inclusion in Tab. 5, Llama inclusion in Tab. 6, semantic
similarity in Tab. 7, and concept similarity in Tab. 8.

Dataset ‘ Images Classes
CALTECH101 [23] (C101) 2,465 100
DTD [16] 1,692 47
EUROSAT [26] (ESAT) 8,100 10
FGVCAIRCRAFT [44] (FGVC) 3,333 100
FLOWERS102 [46] (FLWR) 2,463 102
Foop101 [8] (FOOD) 30,300 101
OXFORDPETS [47] (PETS) 3,669 37
STANFORD CARS [33] (CARS) 8,041 196
SUN397 [62] (S397) 19,850 397
UCF101 [56] (U101) 3,783 101

Table 3. Summary details of the datasets used in our analyses.

A.4. Additional analyses

Which model provides the best responses? To ana-
lyze which model provides the best responses, we com-
pare their generations in pairs. Specifically, for each of the
ten datasets, we randomly sample 10’000 pairs of genera-
tions, and instruct a Llama 3.2 model to identify the best
response in the pair, similarly to what done in the Chatbot
Arena [15] but through automatic evaluation with LLM-as-
a-judge [71]. We use the following prompt to instruct Llama
3.2 to judge the pairs of predictions and decide for a win:

Llama Elo ranking

You are a model that discriminates whether labels
A or B better align with a target value.

This is label A: %s
This is label B: %s
This is the target value: %s

Does A align better with the target value? Does B
align better with the target value? Reply only with
”1” if A wins over B, or ’0” if B wins over A.

J

We directly compare the quality of the outputs by evalu-

ating the Elo score [21] of these model responses and report
the average on the ten datasets in Tab. 9. Results show that
Qwen2VL models are the best at providing accurate predic-
tions, similar to the trend in Tab. 1.
Which models agree the most with each other? To com-
plement the analysis of the main paper, here we show the
pair-wise agreement on the model predictions on group be-
yond the correct and specific one, showing the results in
Fig. 9 for correct but generic, Fig. 10 for wrong but spe-
cific, and Fig. 11 for wrong and generic. The trends follow
those of the main paper (Fig. 5) i.e., where models of the
same families tend to agree on the same samples, general-
izing those findings across groups.



Model

Vision Enc

| Language Enc

Training

‘ Pre-training

IDEFICS2 [34]

SOVIT (SigLIP), 0.4B
params; max 980x980.

Mistral 7B

Interleaved web docs, image-
caption pairs (LAION-COCO),
OCR data; fine-tuned on 50 cu-
rated datasets.

Joint dual encoder training with
Perceiver pooling for vision-
text alignment.

INSTRUCTBLIP
[19]

ViT-g (BLIP-2), 1.1B
params; 224x224.

Vicuna 7B

26 datasets transformed into
instruction-tuning format: cap-
tioning, VQA, image genera-
tion.

Two-stage pre-training: Vision-
language alignment via BLIP-
2 and instruction-aware Query
Transformer for task-specific
feature extraction.

INTERNVL2 [13]

InternViT (custom),
0.3B params (or 6B
for larger models); dy-
namic resolution, max
40 tiles of 448x448.

Qwen2 0.5B (for 1B
and 2B versions), or
InternLM2 8B (for
8B version).

Interleaved image-text, mul-
tilingual OCR, mathematical
charts; strict quality control.

Progressive training: masked
video modeling, cross-modal
contrastive  learning, and
next-token prediction  with
spatiotemporal focus.

LLAVA-1.5 [41]

ViT-L (CLIP), 0.3B

params; 336x336.

Vicuna 7B

158K multimodal instruction-
following samples; pre-trained
on filtered CC dataset (596K
image-text pairs).

Frozen vision encoder during
feature alignment stage; end-to-
end fine-tuning.

LLAVA-NEXT [36]

ViT-L (CLIP), 0.3B
params; 336x336,
672x672,  336x1344,
and 1344x336.

Mistral 7B, or Vi-
cuna 7B

Diverse tasks, including multi-
image and video understanding.

Builds on LLaVA with ex-
tended ViT and additional mul-
timodal datasets for improved
generalization.

LLAVA-OV [37]

SOVIT (SigLIP), 0.4B

Qwen2 0.5B, or

Single-image and video scenar-

Pre-trained with balanced vi-

params; dynamic reso- | Qwen2 7B ios with task transfer capabili- | sual token representation across
lution (AnyRes-9), max ties; diverse visual benchmarks. | scenarios to enable task trans-
2304x2304. fer.

PHI-3-VISION [1] ViT-L (CLIP), 0.4B | Phi-3 Mini (3.8B | Synthetic data, filtered public | Multi-stage training: custom
params; dynamic reso- | params) docs, high-quality interleaved | vision encoder aligned with
lution, max 1344x1344. text-image data, math/code ex- | Phi-3 Mini language model us-

amples. ing interleaved and fine-grained
tasks.

QWEN2VL [60] ViT (custom), 0.6B | Qwen2 1.5B, or | Multilingual datasets: Math- | Pre-trained with dynamic res-
params; dynamic reso- | Qwen2 7B Vista, DocVQA, Real- | olution ViT for flexible input
lution (Naive Dynamic WorldQA; supports videos | sizes and multilingual align-
Resolution), no max. (20+ min) and multilingual text | ment strategies.

in images.

Table 4. Summary details of the Language Multimodal Models used in our analyses.

Predicting more concepts. The experiment using RAM++
to tag images suggested that LMMs often fail to predict the
class names because they focus on the wrong part of the
image. However, when prompted to provide multiple can-
didates, do LMMs get the correct prediction? To investigate
this, we ask the model to (i) list the objects in the image; (ii)
caption it, or (iii) describe its content. We report the relative
gain per model in Tab. 12. The results show that providing
outputs that focus on multiple labels on average improves
the concept-based similarity, with the only exception of the
caption case. Text inclusion improves consistently, showing
that predictions become correct even according to this strict
metric. Overall, these results highlight how LMM mistakes
can be ascribed by mismatches between the label and the

focus of the annotator, with the models often focusing on
grounded image content even in case of mistakes.

Larger models. In Tab. 10, we add 6 larger models
( green ) to the original 13 base, with scales from 13B to
72B. Notably, scaling has mixed impacts, sometimes lead-
ing to better performance (e.g., InternVL2 26B, Qwen2-
VL 72B) and sometimes worse (e.g., InstructBLIP 13B,
LLaVA-NeXT 34B). Particularly, the language encoder in
LLaVA-NeXT changes between 13B (Vicuna) and 34B
(Y1), highlighting that the pre-training data has a stronger
effect than scaling.

Commercial models. In Tab. 11, we report results for com-
mercial models on a subset of the considered datasets. We
compare these models against all the previously considered



Textual inclusion

Model C101 DTD ESAT FGVC FLWR FOOD PETS CARS S397 U101 ‘ Avg.
IDEFICS2 [34] 8B 52.0 1.7 1.6 0.0 0.8 8.2 0.1 0.0 9.6 7.9 8.2
INSTRUCTBLIP [19] Vicuna 7B 47.8 3.0 5.5 0.0 6.0 243 0.8 0.0 11.6 9.6 10.9
INTERNVL2 [12, 13] 2B 52.8 10.8 7.4 1.4 14.1 233 7.2 0.0 21.1 124 | 15.0
INTERNVL2 [12, 13] 4B 496 11.8 6.0 34 12.8 28.2 7.8 0.0 23.0 12.7 | 155
INTERNVL2 [12, 13] 8B 55.0 125 6.0 4.6 19.1 33.9 13.8 0.1 263 144 | 18.6
LLAVA-1.5[41]7B 51.6 6.0 11.7 0.1 6.7 17.6 1.1 0.0 17.6 8.2 12.1
LLAVA-NEXT [36] (Mistral 7B) | 58.0 13.6 7.4 2.8 17.6 355 27.1 0.0 254  13.0 | 200
LLAVA-NEXT [36] (Vicuna 7B) | 54.9 122 7.2 2.5 11.9 29.6 9.4 0.0 240 125 | 164
LLAVA-OV [37] (Qwen2 0.5B) 53.4 9.2 4.2 1.2 29 12.6 2.5 0.1 15.5 8.7 11.0
LLAVA-OV [37] (Qwen2 7B) 555 126 4.9 0.0 14.2 5.0 0.1 0.0 6.2 4.0 10.2
PHI-3-VISION [1] 534 109 0.8 0.4 12.0 21.6 6.5 0.1 14.7 6.5 12.7
QWEN2VL [60] 2B 60.8 12.1 0.4 25.6 4.9 48.5 15.7 0.1 29.0 10.8 | 24.6
QWEN2VL [60] 7B 63.2 157 2.7 1.4 42.3 49.3 12.1 0.1 295 125 | 229
Open-world baselines

CaSED [17] 35.5 5.1 3.0 1.4 28.1 19.4 34.6 0.0 13.5 8.1 14.9
CLIP retrieval 42.6 7.5 6.6 14.0 40.6 26.4 30.3 0.0 14.7 8.4 19.1
Closed-world baselines

CLIP [49] 87.1 52.6 42.7 27.2 76.9 89.9 88.1 76.2 65.6 727 | 679
SigLIP [68] 93.6 60.8 42.1 46.0 88.2 94.1 95.4 92.3 69.9 82.1 76.5

Table 5. Text inclusion on the ten datasets. Higher is better, bold indicates best.

Llama inclusion

Model C101 DTD ESAT FGVC FLWR FOOD PETS CARS S397 U101 ‘ Avg.
IDEFICS2 [34] 8B 729 24.6 19.0 64.4 54.6 58.7 36.3 69.6 325 40.1 | 473
INSTRUCTBLIP [19] Vicuna 7B 76.8 26.2 19.1 59.9 57.4 47.6 41.3 62.0 35.8 36.0 | 46.2
INTERNVL2 [12, 13] 2B 749  48.5 35.0 35.8 49.3 44.3 47.4 30.0 649 52.1 48.2
INTERNVL2 [12, 13] 4B 744 457  30.1 40.5 37.5 459 49.7 33.1 62.5 504 | 470
INTERNVL2 [12, 13] 8B 772  50.5 28.6 29.7 36.0 53.7 50.4 353 71.5 59.6 | 49.3
LLAVA-1.5[41]7B 745 394 45.0 44.5 46.3 47.7 45.5 37.5 51.6 48.5 | 48.1
LLAVA-NEXT [36] Mistral 7B) | 77.8  54.0 28.0 43.4 33.4 63.2 34.6 50.9 699 583 | 514
LLAVA-NEXT [36] (Vicuna7B) | 77.3 522 264 43.1 29.2 60.6 43.6 41.2 68.2 59.1 | 50.1
LLAVA-OV [37] (Qwen2 0.5B) 76.5 46.5 28.7 61.2 55.1 28.1 44.9 70.0 522 35.8 | 499
LLAVA-OV [37] (Qwen2 7B) 813 45.6 11.8 68.9 48.9 22.0 50.2 84.4 250 27.0 | 46.5
PHI-3-VISION [1] 7577 453 6.0 51.0 53.2 45.1 49.1 39.0 44.5 347 | 44.4
QWEN2VL [60] 2B 82.9 546 3.1 65.0 67.0 71.1 49.3 56.3 726 452 | 56.7
QWEN2VL [60] 7B 843 60.8 18.1 58.8 71.0 75.0 46.0 67.2 73.0 48.8 | 60.3
Open-world baselines

CaSED [17] 57.7 16.7 7.3 30.7 46.0 35.1 58.7 63.5 349  31.7 | 382
CLIP retrieval 553 282 12.7 25.8 44.6 354 56.2 10.4 30.5 329 | 33.2
Closed-world baselines

CLIP [49] 87.1 52.6 42.7 27.2 76.9 89.9 88.1 76.2 65.6 72.7 67.9
SigLIP [68] 93.6 60.8 42.1 46.0 88.2 94.1 95.4 92.3 69.9 82.1 76.5

Table 6. Llama inclusion on the ten datasets. Higher is better, bold indicates best. Note that the scores for CLIP closed-world equals the

textual inclusion scores.

open-source models (i.e., 13 base + 5 reasoning and the
larger models from the previous analysis). The estimated
sizes of these models are 8B (Haiku and GPT-40-mini), 32B
(Gemini 2.0 Flash), and +175B (Sonnet and GPT-40). From

the results, we notice there isn’t a large gap between open
and commercial models, with GPTs and Gemini performing
on par with, e.g., InternVL2 26B and Qwen2-VL 72B. Only
Claude consistently achieves better performance, still com-



Semantic similarity

Model C101 DTD ESAT FGVC FLWR FOOD PETS CARS S397 U101 ‘ Avg.
IDEFICS2 [34] 8B 649 346 275 27.6 38.6 44 .4 30.8 316 442 440 | 388
INSTRUCTBLIP [19] Vicuna 7B 71.5 328  30.0 214 38.9 41.6 26.4 38.5 42.1 483 | 39.1
INTERNVL2 [12, 13] 2B 505 256 260 234 31.2 39.6 239 429 433 431 | 349
INTERNVL2 [12, 13] 4B 492 26.1 247 23.6 30.2 41.1 24.6 44.1 43.8 41.8 | 349
INTERNVL2 [12, 13] 8B 50.1 267 244 255 32.8 442 273 46.6 463 446 | 36.8
LLAVA-1.5[41]7B 49.0 242 342 19.0 25.8 372 21.5 382 417  40.7 | 33.1

LLAVA-NEXT [36] (Mistral 7B) | 482 27.7 239 23.6 30.2 453 30.3 44.8 43.6 42.1 | 36.0
LLAVA-NEXT [36] (Vicuna7B) | 49.2 279  23.1 234 29.3 43.0 244 45.7 433 423 | 351
LLAVA-OV [37] (Qwen2 0.5B) 64.7 288  21.6 21.0 41.4 42.7 314 40.0 432 479 | 383

LLAVA-OV [37] (Qwen2 7B) 68.7 322 194 294 37.5 41.7 37.8 34.4 434 432 | 38.8
PHI-3-VISION [1] 53.6 285 12.3 18.8 30.9 40.1 243 39.0 418 373 | 327
QWEN2VL [60] 2B 564 270 135 32.8 43.7 50.6 27.8 574 479 427 | 400
QWEN2VL [60] 7B 55.8 285 20.7 20.6 41.8 50.6 25.1 48.5 48.1 432 | 383
Open-world baselines

CaSED [17] 653 399 322 30.0 55.6 64.1 62.4 47.1 524 534 | 50.2
CLIP retrieval 413 236 224 30.7 40.3 46.7 41.7 48.8 39.1 385 | 373
Closed-world baselines

CLIP [49] 90.8 699 67.7 66.7 83.4 93.7 91.8 80.5 92.2 83.3 | 82.0
SigLIP [68] 97.8 75.6 63.1 80.0 92.0 96.4 96.8 98.1 83.1 89.6 | 87.3

Table 7. Semantic similarity on ten datasets. Higher is better, bold indicates best.

Concept similarity

Model C101 DTD ESAT FGVC FLWR FOOD PETS CARS S397 U101 | Avg.
IDEFICS2 [34] 8B 763 385 309 29.7 41.5 48.4 353 37.5 499 546 | 443
INSTRUCTBLIP [19] Vicuna 7B 753 391 316 28.6 43.6 60.0 37.9 40.0 52,6 553 | 464
INTERNVL2 [12, 13] 2B 75.7 48.0 529 36.8 49.5 60.8 41.9 50.9 65.1 594 | 54.1
INTERNVL2 [12, 13] 4B 76.1 48.6 515 37.9 51.0 63.0 41.9 50.5 654 59.1 | 545
INTERNVL2 [12, 13] 8B 787 497  49.1 425 56.9 67.1 46.0 56.2 69.2 629 | 578
LLAVA-1.5[41]7B 72.1 413 516 29.0 41.6 56.8 35.9 46.2 594 555 | 489

LLAVA-NEXT [36] (Mistral 7B) | 79.8 51.0  49.5 37.5 55.1 70.0 553 56.3 68.7 627 | 58.6
LLAVA-NEXT [36] (Vicuna 7B) | 79.0  50.1 50.8 37.1 51.3 65.8 42.4 550 674 618 | 56.1
LLAVA-OV [37] (Qwen2 0.5B) 77.8 451 399 30.6 42.4 50.0 37.5 43.5 56.7 559 | 479

LLAVA-OV [37] (Qwen2 7B) 79.1 470 41.0 29.4 51.7 41.9 37.8 354 449 433 | 45.1
PHI-3-VISION [1] 74.1  44.0 25.3 290.1 43.0 58.3 40.3 42.9 56.1 49.1 | 46.2
QWEN2VL [60] 2B 794 473 24.2 56.0 67.9 75.7 46.7 68.6 70.0 56.6 | 59.2
QWEN2VL [60] 7B 81.3 504 398 30.8 68.8 76.9 43.1 56.0 70.6 59.1 | 57.7
Open-world baselines

CaSED [17] 659 398 322 29.9 55.6 66.5 62.9 47.1 53.7 55.1 | 509
CLIP retrieval 639 38.1 37.8 50.7 62.3 67.8 66.1 61.5 573 544 | 56.0
Closed-world baselines

CLIP [49] 90.8 69.9 67.7 66.7 834 93.7 91.8 80.5 92.2 83.3 82.0
SigLIP [68] 97.8 75.6 63.1 80.0 92.0 96.4 96.8 98.1 83.1 89.6 87.3

Table 8. Concept similarity on ten datasets. Higher is better, bold indicates best.

parable to Qwen2.5-VL 7B at a fraction of the size. Sur- metrics despite its reduced dimension.
prisingly, GPT-40-mini is better than GPT-40 on the task,
similarly to the findings for InternVL2 2B vs. 4B. Also,
reasoning models are strong: Qwen2.5-VL 7B outperforms
Qwen2-VL 72B and the commercial models on most of the

Linking model info with performance. Many models do
not disclose their full training details, making it hard to
identify key factors influencing performance. However, by
linking the results in Tab. 1 with the summary in Tab. 4,



Average Elo ratings
Rank Model Rating

1 QWEN2VL [60] 2B 1037
2 QWEN2VL [60] 7B 1037
3 PHI-3-VISION [1] 1029
4 LLAVA-NEXT [36] (Mistral 7B) 1018
5 LLAVA-NEXT [36] (Vicuna 7B) 1015
6
7
8

LLAVA-OV [37] (Qwen2 7B) 1014
LLAVA-OV [37] (Qwen2 0.5B) 1007

INTERNVL2 [12, 13] 8B 1004
9 INTERNVL2 [12, 13]4B 994
10 INTERNVL2 [12, 13] 2B 991
11 LLAVA-1.5[41]17B 984
12 INSTRUCTBLIP [19] Vicuna 7B 943
13 IDEFICS2 [34] 8B 924

Table 9. Elo ratings on the ten datasets. Higher scores indicate
comparatively better responses from the models.

Idefics2 88 - 354 185 172 13.0 249 163 19.9 31.9 [N 271 149 238
InstructsLIP v.78 1 35.4 247 246 17.7 304 20.0 23.535.5 19.2 311
InternvL2 28 - 18.5 24.7 32.5 28.8 245 217 26.6 251 20.8 27.2 25.0 28.2
InternVL2 48 - 17.2 24.6 32,5 300 235 212 263 246 21.6 26.8 251 29.5
InternvL2 88 - 13.0 17.7 28.8 30.0 19.8 19.4 238 186 158 20.2 23.3 245
LlaVAL1578-24.9 30.4 245 23.5 19.8 20.7 262 282 242 318 19.1 254
LLaVANeXTM.78- 16.3 20.0 21.7 21.2 19.4 20.7 27.9 206 17.9 20.4 18.9 24.9
LLaVANeXTV.7B- 19.9 23.5 26.6 26.3 23.8 26.2 27.9 234 201 252 226 27.9
avaovose-31.9 WEIEN 25.1 246 18.6 282 206 234 [ZX) 314 204 314
wavaov 78 LN PPN 208 216 158 242 17.9 201 IR 295 165 29.2
Phi-3Vision- 27.1 '35.5 27.2 26.8 20.2 31.8 204 252 314 295 22.3 31.0
Quen2vL2B- 14.9 19.2 25.0 25.1 23.3 191 18.9 22.6 204 165 223 30.8
Quen2vL78- 23.8 311 282 29.5 245 254 24.9 27.9 314 292 310 30.8

Figure 9. Percentage of correct but generic predictions shared be-
tween models. Higher values indicate models perform responses
similarly to the same inputs.

Idefics2 8B - 23.1 14.0 13.1 109 158 11.7 11.7 245 241 181 126 13.6
InstructBLIP V.7B - 23.1 16,5 14.8 | 13.3 BIGISE 12.3 13.1 E22iUNNISISNRZ2ElY 15.00 §17.2
InternVL2 2B - 14.0 16.5 RURZRR25t2N 17.5 120:8 021058 17.7 14.2 120.0/ 15.7 19.0
InternVL2 4B- 13.1 14.8 27.2 26.6 155 22.0 22.3 15.8 13.5 18.1 15.6 19.4
InternvL2 88- 10.9 13.3 25.2 26.6 15.4 224 23.0 13.7 11.7 16.6 16.5 18.9
LlavA1578- 15.8 19.5 17.5 155 15.4 16.6 183 17.0 13.3 24.0 13.0 15.2
LLaVANeXTM.78- 11.7 12.3 20.8 22.0 22.4 16.6 29.4 137 11.7 16.1 154 19.1
LlaVANexTV.78- 11.7 13.1 21.5 22.3 23.0 183 29.4 143 12.6 182 149 189
LlavAOvV0.5B- 24.5 22.0 17.7 15.8 13.7 17.0 13.7 14.3 29.6 19.6 13.4 153
LlavAOv78-24.1 185 14.2 135 11.7 133 11.7 12.6 29.6 162 9.1 124
Phi-3vision- 18.1 22.4 20.0 18.1 16.6 24.0 16.1 182 19.6 16.2 15.2 18.0
Qwen2vL2B- 12.6 15.0 15.7 15.6 16.5 13.0 15.4 149 134 9.1 152 23.0
Qwen2vL7B- 13.6 17.2 19.0 19.4 189 152 19.1 189 153 124 18.0 23.0

Figure 10. Percentage of wrong but specific predictions shared be-
tween models. Higher values indicate models perform responses
similarly to the same inputs.

we hypothesize that (i) the pre-training of the vision en-
coder is more important than the size (e.g., InternVL and
Qwen2-VL vs. CLIP/SigLIP, or vs. BLIP-2, which has dou-
ble the size); (ii) higher image resolution can improve per-
formance (e.g., LLaVA-NeXT vs. LLaVA-1.5); (iii) the
pre-training of the language encoder is less important than
the training strategy (e.g., LLaVA-NeXT Mistral/Vicuna
vs. Idefics/InstructBLIP); (iv) the size of the language en-
coder is not an indicator of performance (e.g., LLaVA-

Idefics2 8B - 35.6 LE:-N 35.8 46.6 52.8
InstructBLIP V.78 SEEFES 47.8 47.6 442 51.0 43.2 454 53.0 54.0 56.2  44.1

InternVL2 28 59.7 57.3 489 47.8 50.9 47.5 423

[ELVERELE -1 47.6 so.7 [ se0 485 483 513 471 430

InternVL2 88 4 35.6 | Lt-) Y IERIETT) 450 497 517 431 L 482 42.0

IPVSERLE 100 510 489 485 45.0 45.0 48.3 46.6 43.8 525 il i
IRUNTSUIRERECE-8 450 478 483 49.7 450 56.1 |40.0 (LM 44.7

IEVYCRARERE 18 454 509 51.3 517 483 56.1
LLaVA OV 0.5B SZIHERRCERON Y )

LLaVA OV 7B PR RRCTN)

[LUCRELEIE 47.5 56.2

51.5 482 52.5 44.7 47.6 50.4 50.2 452 431
LICEVRLE 397 44.1(39.8 40.2 42.0 |77 413 418 392 FLFE 452 54.4
Qwen2VL 78 -1 b 1 426 7/ 429 432 387 SENd 431 544

Figure 11. Percentage of wrong and generic predictions shared be-
tween models. Higher values indicate models perform responses
similarly to the same inputs.

NeXT Mistral vs. Yi, GPT-40-mini vs. GPT-40). It is also
reasonable to assume that the strongest influence comes
from the training data for which details are only partly avail-
able.

A.5. Extended results for the analyses

Below, we report the extended results for the analyses we
conducted. In Tab. 15 (also visualizing the average gains
in Fig. 12) we show the variation in correct and wrong pre-
dictions for each model when using more generic/specific
prompts and domain-specific information. We additionally
report the variation in text inclusion, Llama inclusion, and
concept similarity for each model and dataset in Tab. 13
and Tab. 14. For the chain-of-thought experiments, we pro-
vide the variations on the correct and wrong predictions in
Tab. 17, and the per-dataset and model variations in Tab. 16.
We also provide a visualization of the variations for the list,
caption, and describe experiments in Fig. 13 (also reported
numerically in Tab. 18). Finally, we report the complete
results table for the reasoning models tested on the ten clas-
sification datasets in Tab. 19.



Prototypical Non-prototypical Fine-grained Very fine-grained

Model TI LI SS CS TI LI SS CS TI LI SS CS TI LI SS CS
IDEFICS2 [34] 8B 30.8 527 545 631 37 279 354 413 3.0 499 380 417 00 670 29.6 33.6
INSTRUCTBLIP [19] Vicuna 7B 29.7 563 568 640 60 27.1 370 420 104 488 356 472 00 610 300 343
(*) INSTRUCTBLIP [19] Vicuna 13B  22.7 47.7 495 578 44 273 342 412 66 367 302 414 00 529 315 342
INTERNVL2 [12, 13] 2B 369 699 469 704 102 452 31.6 534 149 470 31.6 507 0.7 329 331 439
INTERNVL2 [12, 13] 4B 363 685 465 708 10.1 42.1 30.8 53.1 162 444 320 520 1.7 368 338 442
INTERNVL2 [12, 13] 8B 40.6 744 482 740 11.0 462 319 539 223 467 348 567 23 325 360 494
(*) INTERNVL2 [12, 13] 26B 46.6 78.6 49.1 777 158 587 36.7 60.5 365 589 402 650 7.1 40.8 409 593
LLAVA-1.5[41]7B 346 63.1 453 658 86 443 330 495 84 465 282 448 00 410 286 376
(*) LLAVA-1.5[41] 13B 357 635 470 667 95 430 341 512 88 480 287 449 00 374 289 378
LLAVA-NEXT [36] (Mistral 7B) 417 739 459 743 113 468 312 544 268 437 353 601 14 472 342 469
LLAVA-NEXT [36] (Vicuna 7B) 39.5 728 462 732 106 459 31.1 542 169 445 322 532 13 422 345 46.1
(*) LLAVA-NEXT [36] (Vicuna 13B) 422 73.6 46.2 753 114 465 324 555 262 440 36.1 604 13 334 344 470
(*) LLAVA-NEXT [36] (Yi 34B) 39.2 749 462 739 122 493 331 566 253 431 351 600 09 425 335 453
LLAVA-OV [37] (Qwen2 0.5B) 344 644 540 673 73 37.0 328 470 6.0 427 385 433 06 656 305 37.1
LLAVA-OV [37] (Qwen2 7B) 308 532 561 620 7.2 281 316 438 64 404 39.0 438 00 767 319 324
PHI-3-VISION [1] 341 60.1 477 651 60 287 260 395 134 49.1 318 472 02 450 289 36.0
QWEN2VL [60] 2B 449 778 522 747 78 343 277 427 357 625 407 634 129 607 451 623
QWEN2VL [60] 7B 464 787 519 76.0 103 42.6 30.8 498 346 640 392 629 08 63.0 345 434
(*) QWEN2VL [60] 72B 477 782 49.1 76.7 104 421 286 48.6 481 66.6 434 718 119 59.1 40.6 58.8
Open-world baselines

CASED [17] 245 463 589 598 54 186 41.8 424 274 466 60.7 61.7 0.7 47.1 385 385
CLIP retrieval 286 429 402 606 7.5 246 28.1 434 324 454 429 654 7.0 181 39.7 56.1
Closed-world baselines

CLIP [49] 76.4 91.5 56.0 73.6 85.0 89.6 51.7 73.6
SigLIP [68] 81.8 90.5 61.7 76.1 92.6 95.1 69.2 89.1

Table 10. OW results with larger models (in green ) averaged on the grouped datasets. TI stands for text inclusion, LI for Llama inclusion,
SS for semantic similarity, and CS for concept similarity. Higher is better, bold indicates best.

Model TI LI SS CS Model TI LI SS CS
IDEFICS2 8B 12.5 457 42,6 492 Reasoning models

INSTRUCTBLIP Vicuna 7B 134 383 374 502 INTERNVL2.5 2B 203 51.7 33.1 54.6
(*) INSTRUCTBLIP Vicuna 13B 10.0 38.3 374 452 INTERNVL2.5 4B 21.6 544 357 558
INTERNVL2 2B 19.5 544 349 549 INTERNVL2.5 8B 21.3 559 36.0 563
INTERNVL2 4B 189 51.5 344 553 QWEN2.5VL 3B 36.5 642 39.8 66.1
INTERNVL2 8B 229 547 363 588 QWEN2.5VL 7B 450 715 419 726
(*) INTERNVL?2 26B 313 63.1 395 639 Commercial models

LLAVA-1.57B 147 50.8 322 493 (*) GPT-40-MINI 295 703 399 63.1
(*) LLAVA-1.5 13B 15.7 529 331 50.1 (*) GPT-40 274 663 412 599
LLAVA-NEXT (Mistral 7B) 259 51.6 357 60.8 (*) CLAUDE HAIKU 3.5 372 747 421  70.1
LLAVA-NEXT (Vicuna 7B) 20.2 523 346 569 (*) CLAUDE SONNET 3.5 39.0 773 424 722
(*) LLAVA-NEXT (Vicuna 13B) 25.7 52.6 364 614 (*) GEMINI 2.0 FLASH 292 622 39.1 60.1
(*) LLAVA-NEXT (Yi 34B) 245 524 36.1 60.7

LLAVA-OV (Qwen2 0.5B) 153 51.8 428 517 Gy onild) basebings

LLAVA-OV (Qwen2 7B) 173 506 439 518  CASED 223 422 553 559
PHI-3-VISION 17.9 51.6 34.9 50.1 CLIP retrieval 25.9 43.4 37.0 57.0
QWEN2VL 2B 28.5 59.8 395 59.6 Closed-world baselines

QWEN2VL 7B 292 622 389 605 CLIP 75.5 83.8

(*) QWEN2VL 72B 36.7 64.0 402 66.3 SigLIP 84.0 90.4

Table 11. Results with larger (in green ) and commercial (in purple ) models averaged on 5 datasets, i.e., Caltech101, DTD, Flowers102,
OxfordPets, UCF101. TI stands for text inclusion, LI for Llama inclusion, SS for semantic similarity, and CS for concept similarity. Higher
is better, bold is best.



Caltech101 DTD Flowers102 OxfordPets UCF101

Model TI LI CS \ TI LI CS \ TI LI CS \ TI LI CS \ TI LI CS
List
IDEFICS2 [34] 8B -1.5 -128 28 | 436 +34 +2.0 | 43.6 -193 -03 | +1.8 -17.6 +3.5 | +2.7 -6.6 -1.2

INSTRUCTBLIP [19] Vicuna 7B | +12.5 -3.5 +45 | +6.8 +158 +6.0 | +13.7 -242 +59 | +2.6 -29.1 +09 | +6.7 +21.1 +9.3

1
INTERNVL2 [12, 13] 2B -0.8 6.1  +12 | -1.5 -2.8 -1.7 42 235 24 | +48 -328 +22 3.1 -11.2 -1.6
INTERNVL2 [12, 13] 4B +1.8 43 +0.7 -1.8 +3.6 -1.6 37 -127 5.7 +3.4 355 +3.1 +2.2 -0.2 +0.6
INTERNVL2 [12, 13] 8B -1.7 22 -02 -0.8 +0.1 -1.2 -4.8 2.3 -5.2 +2.3 265 +24 +1.0 -39 =32
LLAVA-1.5[41]7B -0.7 -63 27 | 407 +2.6 +14 | 40.8 -21.5 -09 | +09 -23.0 +14 -1.5  -102  +0.0

LLAVA-NEXT [36] Mistral 7B) | -2.5 -2.1  -04 | -1.1 -12 -0.8 -5.1 2.1 41 -9.5 716 43 -0.6 -0.6 -1.8
LLAVA-NEXT [36] (Vicuna7B) | -1.5 -29 -0.6 -0.7 -14  -10 | 27 37 28 | 43.6 -19.0 +6.5 -1.3 -3.7 -1.5
LLAVA-OV [37] (Qwen2 0.5B) +63 -81 +0.5 | +1.8 +57 +44 | +8.1 -238 +4.0 | +2.1 -390 +3.0 | 455 +195 +40

LLAVA-OV [37] (Qwen2 7B) +6.5 +1.1  +3.6 | +3.0 +142 +62 | +1.6 -7.2 -0.6 | +2.1 -469 +09 | +13.6 +29.1 +19.9
PHI-3-VISION [1] -1.1 -11.9 +1.0 | -1.9 +1.6 -1.8 | +3.3 -17.1 +14 | +1.5 -407 +19 | +1.2 +30 439
QWEN2VL [60] 2B +04  -0.1 +26 | 459 +9.7 +6.3 | -10.6 -122 -8.0 34 2311 5.0 +63 +18.6 +7.5
QWEN2VL [60] 7B -1.8  -104 -1.0 | +04 +27 +14 | 242 -440 -214| -56 -392 -10 +0.4  +0.8 -0.7
Caption

IDEFICS2 [34] 8B -2.8 54 -49 +53  +13.5 432 | +62 335 -0.7 +8.3 -189 +64 +3.4  +13 +0.2
INSTRUCTBLIP [19] Vicuna 7B +94 -86 +00 | +47 +146 +34 | +6.6 345 -08 | +3.5 246 +1.6 | +52 +11.1 +45
INTERNVL2 [12, 13] 2B -6.3 -45 99 -1.1 -5.1 -6.3 22 203 -73 | +10.3 -133 +3.0 | +0.2 -7.0 2.4
INTERNVL2 [12, 13] 4B -0.8 6.5 92 2.2 2.9 -5.3 -1.9  -136 -79 | +13.8 -183 +4.3 -0.1 -3.6  -19.7
INTERNVL2 [12, 13] 8B -4.2 -43 95 | +1.0 +0.6 -48 5.4 42 -135 ] +29 203 -15 -14  -10.0 -4.6
LLAVA-1.5[41]17B +09 +1.6 +54 | +3.0 +4.8 +7.1 -1.0 275 +3.7 | 45.6 -196 +7.9 +3.2 +9.2 +5.3

LLAVA-NEXT [36] (Mistral 7B) | -94  -155 -17.7 | -55 -209 -9.0 -8.1 -102 -152 | -162 -106 -17.8 | 48 280 -9.7
LLAVA-NEXT [36] (Vicuna7B) | -84 -135 -169 | -49 -203 -9.7 -2.2 -59 -113 | +05 -17.0 -3.8 -48 243 95
LLAVA-OV [37] (Qwen2 0.5B) +2.5 -0.1 -89 | +12 427 +0.2 | +12.6 -23.0 -03 | +102 -182 +4.7 | +7.1 4226 +52

LLAVA-OV [37] (Qwen2 7B) +0.7 -6.8 -8.1 -1.7 +1.9 3.1 -6.2 284 -112 | 456 -354 +2.0 | 495 4213 +169
PHI-3-VISION [1] +2.5 +04 +35 | +24 +10.0 +5.8 | +124 4.6 +87 | +17.1 -142 +12.8 | +3.8 +13.5 +49
QWEN2VL [60] 2B +0.3 +03 52 | 429 +7.1 +0.5 | -6.6 -89 -148 | 420.0 +0.2 485 | +3.6 +154 +52
QWEN2VL [60] 7B -0.6 -1.1 409 | +1.7  +1.7 +12 | -85 -158 -135 | +132 -72 +100 | +484 -327 +38
Describe

IDEFICS2 [34] 8B -10.0  -21.1 -5.1 -0.8 -4.9 22 | +33  -33.0 -06 | +2.1 @ -22.0 +4.0 24 -199 -6.8

INSTRUCTBLIP [19] Vicuna 7B +11.5 -4.6 -1.9 +6.9 +18.7 +52 | +152 -255 +3.5 +9.6 -123 +6.8 +5.0 +24.1 +83

INTERNVL2 [12, 13] 2B 14 +14  +34 | +09 0.5 +1.0 | -23 -18.0 +1.1 | +149 -183 +114 | +9.7 -23.0 -6.1

INTERNVL2 [12, 13] 4B +20 -09 +22 | +346 +54 -208 | -04 -10.6 +0.1 | +16.3 -204 +124 | +1.7 +1.6 +0.8

INTERNVL2 [12, 13] 8B -1.7 02  +1.0 | +0.3 +2.1 +04 | -5.1 +0.0 -54 | +10.7 -187 +9.0 | +0.9 -1.6 -2.1

LLAVA-1.5[41]17B +19 +0.6 +6.6 | +3.8 +6.6 +7.5 +0.5 -28.0 +4.7 +56 229 +79 +2.7  +10.0 +5.7

LLAVA-NEXT [36] (Mistral 7B) | -19  +0.8 +0.8 | +0.3 -1.0 +0.8 -4.9 3.8 41 -6.6 -3.1 -1.9 +1.1 +3.6 -1.1
LLAVA-NEXT [36] (Vicuna7B) | -1.7 +0.5 +0.4 | -0.5 -0.7  +04 | -27 -5.1 37 | 476  -13.1 495 -1.1 +1.6 -1.8
LLAVA-OV [37] (Qwen2 0.5B) +6.7 +7.6 +43 | +6.1 421.7 +80 | +12.1 -69 +7.6 | +11.7 -7.6 +10.7 | +54 +15 -1.7

LLAVA-OV [37] (Qwen2 7B) +8.1 +6.5 +5.8 | +5.1 4224 +7.0 | +74 -53 +3.0 | +203 -18.0 +14.3 | +16.6 +43.1 +21.6
PHI-3-VISION [1] -0.1 -0.1 +2.0 | +2.8 +11.5 +45.6 | +11.7 2.7 485 | +14.6 -14.0 +11.2 | +44 +15.0 +5.8
QWEN2VL [60] 2B +1.8 +1.8 +50 | +54 +81 +6.7 | -65 -13.3 -38 | +12.8 -12.1 +10.0 | +17.7 -8.0 +0.1
QWEN2VL [60] 7B -1.0 -9 429 | 2.1 424 +4.1 2.6 -156 4.1 | 4246 22 +18.6 | +44 +142 +45

Table 12. Relative performance variation with multi-label prompts on five datasets. TI stands for text inclusion, LI for Llama inclusion,
and CS for concept similarity.



DTD FGVCAircraft Flowers102 Food101 OxfordPets StanfordCars

Model M LI CS | T L ¢S | T LI CS| T LI CS| T LI CS|TI LI CS

Be generic

IDEFICS2 [34] 8B 7.0 97 -85 24 4272 24 | 257 489 -133]-198 4305 207 | -05 -155 -42 | +00 +82 -19.1
INSTRUCTBLIP [19] Vicuna 7B | -10.6 207 93 -07 -9.1 -44 | 296 +25 -190 |-157 -139 -133 | -136 -205 -84 |+0.0 +102 -245
INTERNVL2 [12, 13] 2B 30 438 -39 25 +435 -158| -6.1 4318 -114 | -45 -I11.5 -62 | -148 -82 9.1 |+00 +139 82
INTERNVL2 [12, 13] 4B 63 47 -39 72 4632 201 | -13.7 +358 -152 | -133 -11.6 -104 | -100 -36 -7.1 | -00 +514 -14.1
INTERNVL2 [12, 13] 8B 124 -161 -108 73 +443 213 | 2001 +37.7 -179 | 213 -180 -17.9 | -150 -30 -96 | -00 +656 -183
LLAVA-1.5 [41] 7B 44 217 <70 02 4231 03 [-10.5 +27.0 -22 | -230 417 272 | -50 207 -41 | +00 +453 -19.9

LLAVA-NEXT [36] (Mistral 7B) | -4.5 -60 -35 59 4276 -17.7 | -134 4255 -13.1 | -85 -04 52 | -196 -123 -142 | -0.0 +432 -21.7
LLAVA-NEXT [36] (Vicuna 7B) | -3.1 -9.7 56 53 +59.6 -173 | -128 4372 -123 | -19.0 -102 -162 | -239 -0.7 -192 | +0.0 +50.1 -245
LLAVA-OV [37] (Qwen2 0.5B) -10.1  -204 -69 87 453 -182 | -159 +182 -163 | -302 -51.5 -265| -256 -294 -203 | -0.1 +34 -27.6

LLAVA-OV [37] (Qwen2 7B) -39.1 -328 -26.1 -24 +48 7.7 | 298 +49 -214|-112 -23 -150| -00 -07 -03 | +00 +4.8 -244
PHI-3-VISION [1] -5.7 -0.1 405 -1.8 481 -50 | -280 -2.1 -135]|-147 -17.8 -11.8 | -169 -30.2 -99 | +0.0 +394 -159
QWEN2VL [60] 2B -80 -134 -89 -355 -14 -366|-163 +1.7 -17.8|-184 -225 -135 | -41.6 -228 -269 | -00 -184 -63
QWEN2VL [60] 7B -11.1 -17.6  -10.5 -39.6 99 436 | -55.7 -20.8 -40.0 | 415 -314 -302 | -154 -11.1 -10.0 | +0.0 -43 -344
Be specific

IDEFICS2 [34] 8B -0 42 -1.7 400 35 -02 | 402 23 +0.0 | 22 56 23 -0.1 54 -15 | +00 454 -1.8
INSTRUCTBLIP [19] Vicuna7B | +1.9 +139 +0.1 +0.0 -124 -18 | +55 456 +1.8 | -02 +29 -03 -0.1 -47  -09 | +0.0 -223 +47.1
INTERNVL2 [12, 13] 2B -0.5 -4.5 0.7 -08 459 36 | 22 +81 -1.8 | +0.1 -34  -05 24  -18 -12 | 00 +12 -26
INTERNVL2 [12, 13] 4B -0.8 -0.1 1.1 412 -11.1 427 | 409 35 -1.3 | +0.1  -33 -1.3 | +7.6 -49 436 | -0.0 -151 +2.1
INTERNVL2 [12, 13] 8B +1.5  +0.0 +02 +0.1 -62 +15 | -05 45 402 | -02 32 -05 | 420 7.1  +14 | +0.0 -134 +1.6
LLAVA-1.5[41]7B +0.5 +03 -07 +0.0 -41 -0.6 | 406  -4.1 -0.6 | -03 -8.1 22 | +03  +09 -0.8 | +0.0 -11.7 -04

LLAVA-NEXT [36] (Mistral 7B) | +0.7 -2.0 +0.2 +1.1 -12.6 +25 | +02 -3.0 -02 | -0.5 26 -04 09 -18 -05 | +0.0 -181 +0.3
LLAVA-NEXT [36] (Vicuna 7B) | -0.8 -3.1 -1.0 -06 -58 S35 | -3.0 4169 4.0 | -1.5 -5.8 -1.6 34  -27 30 | 00 -145 -16
LLAVA-OV [37] (Qwen2 0.5B) -3 -100 36 -12 -63 -14 | +42 472 430 | 36 60 45 | +05 -12 +08 | -01 24 72

LLAVA-OV [37] (Qwen2 7B) +1.1 455 +15 +00 -39 +0.0 | 426 +0.7 +14 | +26 -08 432 | 403 48 +03 | 400 -55 +29
PHI-3-VISION [1] +0.7 +3.6 +04 403 +62 +03 | 452 +03 +4.1 | 434 -09 +10 | +24 -16 +14 | -0.1 25 +16
QWEN2VL [60] 2B +4.0 +41 431 +64 57 491 | +41 32  +4.6 | +29 +13  +19 | 4134 +55 478 | +0.1 34 445
QWEN2VL [60] 7B 2.8 -8.1 4.1 -1.0 +08 -1.0 | 219 -150 -163 | -11.2 -178 -87 9.l -39 47 | +00 -03 )

Table 13. Relative performance variation with the generic/specific prompts on six datasets. TI stands for text inclusion, LI for Llama
inclusion, and CS for concept similarity.

DTD FGVCAircraft Flowers102 Food101 OxfordPets StanfordCars

Model M LI ¢S | T LI C | T LI CS | T LI CS | T LI C |TI LI CS

IDEFICS2 [34] 8B +6.0 432 468 | +24 [ 373 422 | 4249 -102 +129 | 4153 -196 +150 | +04 499 432 | 400 21 +168
INSTRUCTBLIP [19] Vicuna 7B~ +9.0  +11.2  +6.1 | +0.7 03  +41 | 4266 -11.1 +17.9 | +64 +1.5 457 |+128 +166 +7.9 |+00 -74 +19.9
INTERNVL2 [12, 13] 2B 423 -59 406 | +1.5 209 476 | +22 246 +7.1 | +0.8 454 418 | 498 459 465 | -00 -84 431
INTERNVL2 [12, 13] 4B +3.8 409 413 | 438 253 +102 | +58 -120 456 | +3.0 441 422 | +47 436 438 | +00 -185 +49
INTERNVL2 [12, 13] 8B +6.5 415 415 | 426 139 484 | +19 94 424 | 420 405 415 | 420 438 420 | -0.1 -149 +038
LLAVA-1.5[41]17B +0.4 -0.6 +0.7 +0.1 -8.4 +0.7 +3.8 -18.7 +1.6 +7.6  +3.6 +5.5 +3.9 +154 +3.7 | +0.0 -3.7 +7.1

LLAVA-NEXT [36] (Mistral 7B) ~ +3.7  +1.1  +14 | +34 -294 +10.0 | +24 -55 +34 | 435 -2.2 +2.0 -0.3 +88 405 | 400 -239 +45
LLAVA-NEXT [36] (Vicuna 7B)  +0.4  -3.7 +0.8 | #29  -27.0 +102 | +1.0 -11.1 +2.0 | +5.0 2.2 +3.1 | +147 +39 +124 | -00 -7.6 +54
LLAVA-OV [37] (Qwen2 0.5B) +82 +87 439 | +75 -185 +169 | +16.8 -17.1 +16.7 | 425.6 +38.7 +20.6 | +25.4 +109 +194 | +0.1 40 +19.6
LLAVA-OV [37] (Qwen2 7B) +364 +22.8 +239 | +24 54 477 | +16.0 -7.1 +10.7 | +10.1 435 +14.8 | -0.0 -4.3 +0.5 | 400 -8.7 4223

PHI-3-VISION [1] +6.0 -45 -1.8 | +14 -84 450 | +19.7 -65 +122 | +54 +2.1  +3.8 | 4104 +5.0 +64 | -0.1 -05 +9.0
QWEN2VL [60] 2B +7.5 +7.2 455 | +21.8 +0.7 +194 | +10.2 -1.3  +I11.1 | +9.8 +6.9 +6.5 | +38.7 +223 +245 | +0.0 +17.8 455
QWEN2VL [60] 7B +7.9 +3.1 +4.4 | +38.2 +16.1 +422 | +13.6 -1.8 +11.8 | +7.7 +3.5 +4.9 +3.3 +9.5 +43 | -0.1 +13.7 +17.2

Table 14. Relative performance variation with dataset-specific prompts on six datasets. TI stands for text inclusion, LI for Llama inclusion,
and CS for concept similarity.

Idefics2 8B
InstructBLIP V.78
InternVL2 2B
InternVL2 4B
InternVL2 8B
LLavA 1.5 7B
LLaVA NeXT M.7B
LLaVA NeXT V.78
LLaVA OV 0.5B
LLavA OV 7B
Phi-3-Vision
Qwen2VL 2B
Qwen2VL 7B

(a) Default prompt (b) Ask for generic (c) Ask for specific (d) Dataset prompts

Figure 12. Types of model predictions when using the generic and specific prompts and the dataset-specific prompts. Blue indicates

[CorTeciandISpecific] and correct but generic predictions, red indicates ' wrong but specific and [Wrong and'generic| mistakes.




Correct Wrong

Model Specific Generic | Specific Generic
Be generic

IDEFICS2 [34] 8B -5.9 +11.3 -1.4 -4.0
INSTRUCTBLIP [19] Vicuna 7B 9.9 +2.2 +0.5 +7.3
INTERNVL2 [12, 13] 2B -53 +4.8 -1.2 +1.7
INTERNVL2 [12, 13] 4B 93 +14.5 -39 -14
INTERNVL2 [12, 13] 8B -20.6 +21.9 -5.5 +4.2
LLAVA-1.5[41]7B -20.0 +3.8 -39 +20.0
LLAVA-NEXT [36] (Mistral 7B) -8.0 +11.8 3.2 -0.5
LLAVA-NEXT [36] (Vicuna 7B) -17.8 +22.2 -4.2 -0.2
LLAVA-OV [37] (Qwen2 0.5B) 7.1 2.8 -0.8 +10.7
LLAVA-OV [37] (Qwen2 7B) 2.9 +2.9 +0.6 -0.5
PHI-3-VISION [1] -11.9 +6.2 +0.1 +5.6
QWEN2VL [60] 2B -10.5 +0.6 +0.3 +9.6
QWEN2VL [60] 7B -36.4 +19.5 +1.4 +15.5
Be specific

IDEFICS2 [34] 8B -3.2 -3.3 +0.7 +5.8
INSTRUCTBLIP [19] Vicuna 7B +2.1 -6.7 +0.6 +4.0
INTERNVL2 [12, 13] 2B 24 +0.2 +0.7 +1.5
INTERNVL2 [12, 13] 4B -1.1 5.4 +1.8 +4.7
INTERNVL2 [12, 13] 8B 23 -3.5 +3.0 +2.8
LLAVA-1.5[41]7B -29 -1.0 +0.8 +9.1
LLAVA-NEXT [36] (Mistral 7B) 2.3 -3.4 +2.6 +3.1
LLAVA-NEXT [36] (Vicuna 7B) -4.5 -1.7 +2.0 +4.2
LLAVA-OV [37] (Qwen2 0.5B) -4.5 -1.8 -1.4 +7.7
LLAVA-OV [37] (Qwen2 7B) +2.1 -5.6 +1.9 +1.6
PHI-3-VISION [1] +0.4 -3.6 +2.3 +0.9
QWEN2VL [60] 2B +2.7 -3.8 +3.7 -2.7
QWEN2VL [60] 7B -14.4 +0.8 +1.4 +12.1
Dataset-specific

IDEFICS2 [34] 8B +14.9 -325 +7.0 +10.6
INSTRUCTBLIP [19] Vicuna 7B +9.1 -10.7 +5.6 -4.0
INTERNVL2 [12, 13] 2B +2.6 -3.9 +1.7 -0.4
INTERNVL2 [12, 13] 4B +2.2 -5.5 +2.6 +0.7
INTERNVL2 [12, 13] 8B -0.1 -3.6 +2.5 +1.2
LLAVA-1.5[41]7B +5.6 -7.0 +3.6 22
LLAVA-NEXT [36] (Mistral 7B) +0.3 -7.1 +4.6 +2.2
LLAVA-NEXT [36] (Vicuna 7B) | +3.4 -8.6 +4.3 +1.0
LLAVA-OV [37] (Qwen2 0.5B) +29.2 -8.9 +1.6 -21.9
LLAVA-OV [37] (Qwen2 7B) +13.6 -14.8 +8.7 -1.5
PHI-3-VISION [1] +5.5 -7.6 +2.6 -0.5
QWEN2VL [60] 2B +13.6 -5.8 +1.1 -8.8
QWEN2VL [60] 7B +15.0 -10.1 +2.1 -7.0

Table 15. Gains on the types of model prediction when instructing
the models to be more generic/specific, and when using dataset-
specific prompts techniques on six datasets, i.e., DTD, FGVCAir-
craft, Flowers102, Food101, OxfordPets, StanfordCars.



Caltech101 DTD Flowers102 OxfordPets UCF101
Model M LI CS|T LI CS| T LI €| T LI CS | T LI CS

Zero-shot chain-of-thought
INTERNVL2[12, 13]2B | +0.3 -0.5 +4.0 | +2.3 +185 453 | -3.5 7.8 +13 | 449  -149 453 | +63 453 +6.3
INTERNVL2 [12,13]4B | -5.1 +2.2 -0.7 | +1.4 4293 +3.1 | 409 +16.0 +2.7 | +3.0 +69 +49 | +4.6 +239 +4.6
INTERNVL2[12,13]18B | -23 +22 +0.5 | +4.0 +20.7 435 | -1.7 +13.8 +0.1 +2.3 9.7 +4.2 | +43 +149 +32
QWEN2VL [60] 2B +1.8 +3.6 455 | +6.5 +254 +82 | -1.9 +54 +2.0 | +6.8 +3.6 +6.7 | 457 +232 +79
QWEN2VL [60] 7B 29 +50 +1.5| +6.5 +21.5 +55 | 49 +13.6 -1.5 | +7.1 +17.0 +7.7 | +23 4239 +54

LlamaV-ol multi-round prompt
INTERNVL2 [12,13]2B | +0.4 +24 +4.1 | +3.0 +7.8 +4.1 | -2.6 7.0 +19 | 499 -188 +83 | +5.5 +114 +45.0
INTERNVL2[12,13]14B | -27 43 -33 | -05 +4.1 -07 | 402 9.1 -0.5 +34  -31.1 52 | +4.1 439 426
INTERNVL2 [12,13]8B | -1.5 -2.0 +13 | +32 +89 +3.6 | -25 +3.0 -22 | +82 -155 +76 | +54 +3.1 428
QWEN2VL [60] 2B +0.8 +03 +4.8 | +6.3 +8.1 +6.7 | -5.8 -7.7 4.1 | 427.6 +0.1 +19.5 | +7.9 +19.1 +9.7
QWEN2VL [60] 7B -1.0 30 -1.5 | +33 +24 +02 | -6.8 -17.3 -10.3 | +229 -34 +164 | +3.3 +109 +4.2

LLaVA-COT prompt
INTERNVL2 [12,13]2B | -0.6 +64 +4.1 | +1.6 +19.8 +39 | -3.8 +11.2 +12 | +79 -8.6 +6.7 | 458 +11.9 +52
INTERNVL2 [12,13]14B | +0.1 +5.0 +2.0 | +0.8 +23.7 +29 | 49 +308 -3.0 +6.7 +7.7 +7.2 | 43.6 +164 +3.7
INTERNVL2 [12,13]8B | -1.7 +5.8 +1.3 | +0.4 +253 +2.8 | -89 +44.7 -6.8 29 4289 +13 | +32 +188 +0.8
QWEN2VL [60] 2B +1.6 +04 +52 | +44 +103 +64 | -89 -7.9 5.4 +5.6 -8.0 +6.1 | +9.1 +18.5 +10.6
QWEN2VL [60] 7B +0.3 +3.0 +34 | +0.3 +125 +4.5 | -102 +8.8 -7.2 +8.5 +16.2 +9.6 | +6.6 +22.6 +7.1

Table 16. Relative performance variation with chain-of-thought prompts on five datasets. TI stands for text inclusion, LI for Llama
inclusion, and CS for concept similarity.

Correct Wrong
Model Specific Generic | Specific Generic
Zero-shot chain-of-thought
INTERNVL2 [12, 13] 2B +3.5 -5.5 +1.4 +0.6
INTERNVL2 [12, 13]4B +4.8 +9.7 -2.0 -12.5
INTERNVL2 [12, 13] 8B +3.9 +2.1 -1.1 -4.9
QWEN2VL [60] 2B +8.0 +3.1 -0.4 -10.8
QWEN2VL [60] 7B +6.9 +8.6 2.5 -13.1
LlamaV-ol prompt
INTERNVL2 [12, 13] 2B +6.7 -8.8 +0.4 +1.7
INTERNVL2 [12, 13] 4B +0.5 -9.8 +0.4 +9.0
INTERNVL2 [12, 13] 8B +3.7 -6.2 +0.6 +1.9
QWEN2VL [60] 2B +12.7 -8.6 +1.0 -5.1
QWEN2VL [60] 7B +4.4 -6.3 +0.8 +1.0
LLaVA-CoT prompt
INTERNVL2 [12, 13] 2B 7.3 -1.2 -0.9 -5.2
INTERNVL2 [12, 13]14B 5.2 10.0 2.3 -12.8
INTERNVL2 [12, 13] 8B 1.5 22.5 -2.8 211
QWEN2VL [60] 2B 6.3 -4.2 0.3 -2.4
QWEN2VL [60] 7B 6.3 7.0 -2.0 -11.3
Reasoning models
INTERNVL2.5[11] 2B 2.5 -7.6 +4.2 +6.0
INTERNVL2.5[11]4B +4.7 24 +4.4 -6.6
INTERNVL2.5[11] 8B +0.7 -0.3 +4.1 -4.5
QWEN2.5VL [4] 3B +10.8 -6.5 +2.6 -6.9
QWEN2.5VL [4] 7B +19.1 94 +3.5 -13.2

Table 17. Gains on the types of model prediction when instruct-
ing the models to reason with chain-of-thought, and when using
reasoning models on five datasets, i.e., Caltech101, DTD, Flow-
ers102, OxfordPets, UCF101.



Correct Wrong

Model Specific Generic | Specific Generic
List

IDEFICS2 [34] 8B -4.2 9.5 +4.0 +9.7
INSTRUCTBLIP [19] Vicuna 7B +9.6 -16.1 +1.5 +5.0
INTERNVL2 [12, 13] 2B -3.1 -14.2 +3.5 +13.9
INTERNVL2 [12, 13] 4B -1.4 -10.9 +0.9 +11.3
INTERNVL2 [12, 13] 8B -2.6 -6.7 +0.8 +8.5
LLAVA-1.5[41]7B -2.6 -13.7 +2.6 +13.6
LLAVA-NEXT [36] (Mistral 7B) | -4.4 +1.3 -0.4 +3.5
LLAVA-NEXT [36] (Vicuna 7B) -1.6 -5.7 +1.3 +6.0
LLAVA-OV [37] (Qwen2 0.5B) +3.6 -14.7 +2.0 +9.1
LLAVA-OV [37] (Qwen2 7B) +9.3 -13.5 +2.2 +2.0
PHI-3-VISION [1] -0.5 -16.8 +2.5 +14.9
QWEN2VL [60] 2B +2.4 -5.0 -0.3 +3.0
QWEN2VL [60] 7B -10.7 9.1 +2.6 +17.2
Caption

IDEFICS2 [34] 8B +0.1 -12.0 +3.2 +8.6
INSTRUCTBLIP [19] Vicuna 7B +2.3 -13.1 +2.8 +8.0
INTERNVL2 [12, 13] 2B -4.0 -6.6 +1.0 +9.6
INTERNVL2 [12, 13] 4B -2.1 -7.9 +1.1 +8.9
INTERNVL2 [12, 13] 8B -7.4 2.5 +0.9 +9.0
LLAVA-1.5[41]7B +6.4 -15.9 +1.2 +8.4
LLAVA-NEXT [36] (Mistral 7B) -20.2 +2.9 +2.4 +15.0
LLAVA-NEXT [36] (Vicuna 7B) | -14.2 2.7 2.2 +14.6
LLAVA-OV [37] (Qwen2 0.5B) +4.7 -8.4 +0.0 +3.7
LLAVA-OV [37] (Qwen2 7B) +0.7 -10.6 2.7 +7.2
PHI-3-VISION [1] +10.9 -13.2 +0.3 +2.0
QWEN2VL [60] 2B +3.8 -0.9 -0.1 -2.8
QWEN2VL [60] 7B +2.7 -4.7 +0.2 +1.8
Describe

IDEFICS2 [34] 8B 94 -13.9 4.2 19.1
INSTRUCTBLIP [19] Vicuna 7B 9.9 -11.2 1.6 -0.3
INTERNVL2 [12, 13] 2B 5.6 -11.6 0.6 5.4
INTERNVL2 [12, 13]14B 4.6 -11.9 1.0 6.2
INTERNVL2 [12, 13] 8B 1.1 -6.7 0.3 53
LLAVA-1.5[41]7B 7.2 -17.4 1.5 8.7
LLAVA-NEXT [36] (Mistral 7B) -2.1 1.6 -0.9 14
LLAVA-NEXT [36] (Vicuna 7B) 1.1 -5.0 0.0 39
LLAVA-OV [37] (Qwen2 0.5B) 15.0 -5.8 -2.1 -7.0
LLAVA-OV [37] (Qwen2 7B) 19.8 -10.5 -0.5 -8.8
PHI-3-VISION [1] 10.3 -11.8 -0.2 1.6
QWEN2VL [60] 2B 8.7 -1.9 0.1 -0.9
QWEN2VL [60] 7B 8.8 -8.9 0.3 -0.2

Table 18. Gains on the types of model prediction when instruct-
ing the models with multi-label prompts on five datasets, i.e., Cal-
tech101, DTD, Flowers102, OxfordPets, UCF101.



Idefics2 8B
InstructBLIP V.78
InternVL2 2B
InternVL2 4B
InternVL2 8B
LlavA1.5 7B
LLaVA NeXT M.7B
LLaVA NeXT V.7B
LLaVA OV 0.5B
LLavA OV 7B
Phi-3-Vision
Qwen2VL 2B
Qwen2VL 7B

(a) Default prompt (b) List objects (c) Caption (d) Describe

Figure 13. Types of model predictions when using multi-label prompts. Blue indicates [E0trectiandispecifiel and correct but generic
predictions, red indicates | wrong but specific and [Wrong and generic| mistakes.



Datasets
Model C101 DTD ESAT FGVC FLWR FOOD PETS CARS S397 U101 | Avg.

Text inclusion
INTERNVL2.5[10]2B | 558 126 12.6 1.5 10.9 17.0 8.7 0.0 16.3 13.7 | 149
INTERNVL2.5[10]4B | 55.6 109 12.1 0.9 12.2 24.9 14.6 0.0 237 149 | 170
INTERNVL2.5[10] 8B | 564 12.1 8.4 3.0 16.8 29.7 7.2 0.1 247 138 | 172
QWEN2.5VL [4] 3B 62.1 13.9 1.6 18.8 49.7 44.2 38.9 0.0 30.7 18.0 | 27.8
QWEN2.5VL [4] 7B 65.6 16.7 4.4 32.7 56.1 54.9 65.1 0.0 336 21.5 | 351

Closed-world baselines

CLIP [49] 87.1 526 427 27.2 76.9 89.9 88.1 76.2 65.6 727 | 679
SigLIP [68] 93.6 60.8 42.1 46.0 88.2 94.1 95.4 923 69.9 82.1 | 76.5

Llama inclusion
INTERNVL2.5[10]2B | 76.8 492 47.2 55.4 424 34.2 39.2 49.3 493 51.1 | 494
INTERNVL2.5[10]14B | 77.1 487 42.6 61.4 433 52.0 494 49.8 63.1 53.6 | 54.1
INTERNVL2.5[10] 8B | 78.4 489 455 59.1 51.2 53.2 48.2 60.6 627 527 | 56.1
QWEN2.5VL [4] 3B 81.4 58.1 6.3 58.9 71.5 68.7 514 58.9 789 588 | 593
QWEN2.5VL [4] 7B 84.5 59.8 12.6 69.6 75.2 76.4 71.0 71.2 81.1 67.0 | 66.8

Closed-world baselines

CLIP [49] 87.1 526 427 27.2 76.9 89.9 88.1 76.2 65.6 727 | 679
SigLIP [68] 93.6 60.8 42.1 46.0 88.2 94.1 95.4 923 699 82.1 | 76.5

Semantic similarity
INTERNVL2.5[10]2B | 495 252 314 214 26.7 335 224 41.8 398 41.5 | 333
INTERNVL2.5[10]14B | 51.7 267 317 20.9 294 41.6 274 419 465 435 | 36.1
INTERNVL2.5[10]18B | 53.2 27.1 295 214 32.1 422 24.2 429 470 432 | 363
QWEN2.5VL [4] 3B 51.8 274 123 28.9 454 48.0 314 50.9 47.0 432 | 38.6
QWEN2.5VL [4] 7B 48.8 282 189 36.5 474 524 41.1 55.0 47.0 442 | 42.0

Closed-world baselines
CLIP [49] 90.8  69.9 67.7 66.7 83.4 93.7 91.8 80.5 92.2 83.3 82.0
SigLIP [68] 97.8 75.6 63.1 80.0 92.0 96.4 96.8 98.1 83.1 89.6 | 87.3

Concept similarity
INTERNVL2.5[10]2B | 78.0 462 59.9 33.1 47.8 53.5 39.7 50.0 595 614 | 529
INTERNVL2.5[10]4B | 77.3 448 57.1 31.1 493 61.7 45.8 48.3 66.1 61.8 | 543
INTERNVL2.5[10] 8B | 77.7 454 527 31.5 54.2 64.5 41.9 492 663 622 | 54.6
QWEN2.5VL [4] 3B 81.8 513 238 52.4 72.6 73.2 62.1 647 708 629 | 61.6
QWEN2.5VL [4] 7B 858 532 413 68.4 79.7 79.6 77.3 684 741 67.1 | 69.5

Closed-world baselines

CLIP [49] 90.8 699 67.7 66.7 83.4 93.7 91.8 80.5 922 833 | 820
SigLIP [68] 97.8 75,6  63.1 80.0 92.0 96.4 96.8 98.1 83.1 89.6 | 87.3

Table 19. OW results of reasoning models on ten datasets. Higher is better, bold indicates best. Note that the Llama inclusion for CLIP
closed-world equals the textual inclusion scores.
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