
RETHINKING KEY-VALUE CACHE COMPRESSION TECHNIQUES FOR LARGE
LANGUAGE MODEL SERVING

Wei Gao * 1 2 3 Xinyu Zhou * 1 Peng Sun 3 4 Tianwei Zhang 1 Yonggang Wen 1

ABSTRACT
Key-Value cache (KV cache) compression has emerged as a promising technique to optimize Large Language
Model (LLM) serving. It primarily decreases the memory consumption of KV cache to reduce the computation
cost. Despite the development of many compression algorithms, their applications in production environments
are still not prevalent. In this paper, we revisit mainstream KV cache compression solutions from a practical
perspective. Our contributions are three-fold. First, we comprehensively review existing algorithmic designs and
benchmark studies for KV cache compression and identify missing pieces in their performance measurement,
which could hinder their adoption in practice. Second, we empirically evaluate representative KV cache
compression methods to uncover two key issues that affect the computational efficiency: (1) while compressing
KV cache can reduce memory consumption, current implementations (e.g., FlashAttention, PagedAttention) do
not optimize for production-level LLM serving, resulting in suboptimal throughput performance; (2) compressing
KV cache may lead to longer outputs, resulting in increased end-to-end latency. We further investigate the
accuracy performance of individual samples rather than the overall performance, revealing the intrinsic limitations
in KV cache compression when handling specific LLM tasks. Third, we provide tools to shed light on future KV
cache compression studies and facilitate their practical deployment in production. They are open-sourced in
https://github.com/LLMkvsys/rethink-kv-compression.

1 INTRODUCTION

The groundbreaking success of Large Language Models
(LLMs), e.g., ChatGPT (OpenAI, 2023), Gemini (Hassabis
& the Gemini Team, 2023), and Cluade (Anthropic, 2024),
is reshaping the global technological landscape. The expo-
nential growth in LLM service requests is creating an un-
precedented demand for inference optimization algorithms,
which can reduce exorbitant hardware costs and attain supe-
rior efficiency. In particular, many research efforts (Sheng
et al., 2023; Zhang et al., 2024f) pinpoint that the Key-Value
cache (KV cache) acts as a major performance bottleneck
in LLM serving. For instance, to serve a LLaMA3-70B
model with FP16 format, a batch size of 512, and a prompt
length of 2048, it requires 130GB of storage space for model
weights and an additional 512 GB for the KV cache. This
high resource requirement underscores the urgent need to
mitigate the KV cache memory overhead.

There are two prominent strategies to compress KV cache

*Equal contribution 1Nanyang Technological University
2S-Lab, Nanyang Technological University 3Shanghai AI
Laboratory 4SenseTime. Correspondence to: Wei Gao
<gaow0007@e.ntu.edu.sg>.

Proceedings of the 8 th MLSys Conference, Santa Clara, CA, USA,
2025. Copyright 2025 by the author(s).

and alleviate its exorbitant memory consumption. The first
is quantization-based methods (Liu et al., 2024e; Hooper
et al., 2024; Kang et al., 2024), which convert the KV cache
into low-precision representations to reduce the GPU mem-
ory usage, albeit with the potential of affecting the accuracy.
The effectiveness of these methods depends on the design
of representations, which need to strike a balance between
memory reduction and maintaining model accuracy. The
second is sparsity-based methods (Xiao et al., 2023; Liu
et al., 2024d; Zhang et al., 2024f; Li et al., 2024b), which
either move less critical portions of the KV cache from
fast to slow memory or remove them directly. Their success
hinges on accurately assessing the importance of the KV
cache to ensure that the removal of selected entries does
not compromise model performance.

Although researchers have demonstrated the effectiveness
of KV cache compression algorithms, whether they can be
deployed in the production environment is still unknown. To
bridge this gap, this paper provides an in-depth investigation
of existing compression algorithms. We make the following
contributions. First, we provide a comprehensive survey of
various KV cache compression algorithms (Table 1), and
summarize relevant benchmark studies (Table 2). Based
on the literature review, we identify three key dimensions
that have been overlooked in current research evaluation on

https://github.com/LLMkvsys/rethink-kv-compression

LLM KV cache compression but are crucial for practical
deployment. Beyond the model accuracy and GPU memory
reduction, assessing the throughput, length distribution,
and negative samples1 can heavily affect the adoption of
these compression algorithms in real-world production envi-
ronments.

Second, we conduct a full-around experimental analysis on
representative KV cache compression algorithms, focus-
ing on our identified three dimensions. This brings several
novel and interesting observations. (1) KV cache com-
pression algorithms can bring throughput improvement in
the decoding stage. However, our evaluation presents poor
performance under certain batch sizes and prompt lengths.
Besides, when we integrate KV cache compression algo-
rithms with FlashAttention (Dao et al., 2022; Dao,
2024) and PagedAttention (Kwon et al., 2023a), the
performance gains from KV cache compression dimin-
ish further. (2) The evaluation practice for the computa-
tional efficiency of KV cache compression is length con-
trolled. By measuring the length distribution shift induced
by KV cache compression, we observe that the length-
ier responses produced by these methods can outweigh the
throughput speedup benefits, ultimately leading to extended
end-to-end latency. (3) We analyze the negative samples
in the performance evaluation of KV cache compression
methods. We observe their existence across many com-
pression methods and uncover the fragility of KV cache
compression towards specific task types.

Third, driven by the limitations of existing KV cache com-
pression algorithms for practical deployment, we provide
a set of tools to facilitate their adoption. This includes (1)
a throughput analysis tool to decide under which ranges of
batch sizes and prompt lengths KV cache compression can
present advantageous performance; (2) a length predictor
to inform the serving system of requests that could produce
longer responses when applying KV cache compression
algorithms; (3) a benchmark dataset consisting of our dis-
covered failure cases to help researchers more fairly and
accurately assess their compression solutions.

2 BACKGROUND AND MOTIVATION

2.1 Large Language Model (LLM)

A conventional LLM inference process is composed of the
following two stages:

Prefill Stage. The prompts are employed to produce KV
cache for each transformer layer. Formally, given the input
tensor X ∈ Rb×l×d, of batch size b, input prompt length
l, and hidden dimension d, The key and value tensors are

1This refers to the samples that are benign in the original LLMs,
but turn to malign when KV cache compression is applied.

calculated as follows:

XK = X ·WK ,

XV = X ·WV ,
(1)

where WK ,WV ∈ Rd×d are the weights of the key and
value layers, respectively. XK and XV are typically
cached in the memory, forming KV cache to avoid the
re-computation cost in the decoding stage.

Decoding Stage. The model leverages and updates the KV
cache dynamically to decode and generate tokens sequen-
tially. We denote the current input token embedding as
x ∈ Rb×1×d. The key, value, and query layer outputs are
calculated as xK = x ·WK , xV = x ·WV , xQ = x ·WQ.
Subsequently, we can update the KV cache as follows:

XK ← [XK , xK],

XV ← [XV , xV],
(2)

where [·] denotes the concatenation operation along with the
token dimension.

2.2 LLM Serving Acceleration

LLM practitioners commonly adopt two methods to acceler-
ate the LLM serving in production deployment.

FlashAttention (Dao et al., 2022). This is an IO-aware
technique designed to reduce the memory overhead in the
attention operation. It employs tiling and re-computation
strategies alongside an online softmax operation, facilitating
tile-based matrix multiplication. The tile size is carefully
determined to fit submatrices within the on-chip memory,
thereby minimizing the need for data loading to the memory.

PagedAttention. As introduced in vLLM (Kwon et al.,
2023b), this technique emulates the virtual memory and
paging mechanisms in operating systems for managing
the KV cache. It dynamically allocates small GPU mem-
ory blocks for the KV cache on demand, rather than pre-
allocating memory to the maximum length. This effectively
reduces the GPU memory overhead and fragmentation. Usu-
ally, PagedAttention is implemented with FlashAttention
together to yield the attention output.

2.3 KV Cache Compression

Past works have introduced different techniques to compress
the KV cache for LLM serving optimization. They can be
roughly classified into the following two categories.

Quantization. These approaches reduce the size of KV
cache by using low bits (e.g., INT8) to represent the origi-
nal full precision (e.g., FP16) without degrading the model
accuracy. The quantization and de-quantization processes

can be illustrated as follows:

quantize: Xquant = ⌊
X − ℓ

∆
⌉, ∆ =

u− ℓ

2b − 1
,

de-quantize: X̂ = Xquant ·∆+ ℓ,

(3)

where X is the original KV cache, Xquant is the quantized
result from X , and X̂ is the de-quantized result from Xquant.
These quantization-based methods aim to minimize the dif-
ference between X and X̂ . As the quantized KV cache
does not participate in the prefill stage, quantization typi-
cally happens in the decoding stage to reduce the memory
consumption of token generation.

Sparsity. These approaches are inspired by the sparsity of
attention scores (Xiao et al., 2023; Liu et al., 2024d; Zhang
et al., 2024f; Li et al., 2024b; Yang et al., 2024a; Zhang et al.,
2024d). They dramatically reduce the memory footprint of
the KV cache by evicting the KV pairs of less important
tokens while retaining the ones of more important tokens to
preserve the model’s accuracy. The key to these solutions is
to determine when and how many tokens should be evicted
for effective compression.

2.4 Concerns in LLM Production Deployment

Despite the memory reduction benefits, the main concerns
that prevent LLM practitioners from deploying KV cache
compression methods in production environments are accu-
racy and computational efficiency.

For accuracy, many compression studies emphasize minor
overall accuracy loss while concealing the specific accuracy
performance defects of KV cache compression methods.
Furthermore, many techniques possess abundant configu-
rations to balance the accuracy performance and memory
compression ratio, increasing the burden of tuning the com-
plex configuration parameters.

For computational efficiency, LLM practitioners focus
on the key metrics of Time-To-First-Token (TTFT) and
Time-Between-Output-Token (TBOT). However, they are
typically measured using the naive transformers library
(TRL) (Wolf et al., 2020), which falls short of the perfor-
mance expected in production environments. Besides, the
speedup benefits from KV cache compression are not al-
ways guaranteed. In particular, during the decoding stage,
compressing the KV cache primarily influences the atten-
tion operation. The time required for the attention operation
to generate one token is comprised of two steps: (1) loading
data into on-chip memory and (2) performing the compu-
tation. The reduction of memory consumption brought by
KV cache compression can lead to decreased time for the
first step. However, for quantization-based methods, the
operation described in Eqn. 3 incurs additional overhead for
the second step. For sparsity-based methods, although the
reduced KV cache size can lower the time cost spent on

the second step, an extra computation step is required for
the KV cache eviction, with additional time overhead.

3 A COMPREHENSIVE SURVEY

3.1 KV Cache Compression Algorithms

Table 1 summarizes existing quantization- and sparsity-
based KV cache compression algorithms. We focus on
the design components of these algorithms that could ad-
versely affect computational efficiency.

3.1.1 Quantization

We first review some relevant KV cache quantization algo-
rithms, focusing on the quantization granularity and quanti-
zation error. First, a few studies observe that the sensitivity
to quantization operations varies with the granularity of KV
cache. ZipCache (He et al., 2024) and WKVQuant (Yue
et al., 2024) adopt channel-separable token-wise quantiza-
tion for KV cache. KVQuant (Hooper et al., 2024), and
KIVI (Liu et al., 2024e) utilize per-channel quantization
for the key tensor and per-token quantization for the value
tensor. QJL (Zandieh et al., 2024) introduces the quantized
JL transform to key tensor and per-token quantization for
value tensor to reduce the memory consumption of the quan-
tized tensor. MiKV (Yang et al., 2024b), QAQ (Dong et al.,
2024b), and SKVQ (Duanmu et al., 2024) allow varying
bits to represent KV cache to attain accuracy and mem-
ory reduction balance. Coupled Quantization (Zhang et al.,
2024b) integrates multiple channels and jointly quantizes
them. Additionally, it leverages Fisher information to priori-
tize important tokens when quantizing. From an accuracy
standpoint, researchers are advancing dedicated quantiza-
tion operations toward finer KV cache granularity. While
finer quantization granularity may preserve the accu-
racy performance, it introduces irregular computational
patterns, thereby limiting the effective utilization of GPU
resources. Consequently, these approaches may not lead to
improved computational performance.

Second, some research efforts aim to rectify the quantiza-
tion error to sustain the LLM response quality. For example,
Gear (Kang et al., 2024) approximates the quantization error
with a low-rank matrix. Quantization outliers, which mani-
fest as quantization errors with extreme values, can greatly
impair model performance. To counter this, IntactKV (Liu
et al., 2024c) retains the full precision of the outlier to main-
tain the model accuracy, while Gear employs a sparse matrix
to mitigate the error caused by the outliers. Additionally,
QuaRot (Ashkboos et al., 2024) innovatively transforms
each weight matrix with Hadamard orthogonal matrices
to eliminate the quantization outlier without changing the
LLM output. Addressing the quantization error remains
a promising area to improve the accuracy of quantization-

Table 1. Summary of existing KV cache compression algorithms.
Date (YY.MM) Algorithm Quant / Sparse Algorithm Features Model Heavy Eval Mem Prf Thr Dec Thr Frw

24.02 KVQuant (Hooper et al., 2024) Q Per-channel key quantization L 65B / 1 / 32k 8.0 × - - T
24.02 WKVQuant (Yue et al., 2024) Q Loss design for quant parameter optimization L 13B / 16 / 18k 4.0 × - - T
24.02 KIVI (Liu et al., 2024e) Q Per-channel key quantization L, M, F 13B / 380 / 18k 2.6 × 2.3 × 3.4 × T
24.02 MiKV (Yang et al., 2024b) Q Mixed-precision quantization L, M 70B / 8 / 4k 5.0 × - - T
24.03 IntactKV (Liu et al., 2024c) Q Keep full-precision caches for outlier tokens L, M 70B / 1 / - 4.0 × - - T
24.03 QAQ (Dong et al., 2024b) Q Quality-adaptive quantization L 13B / 1 / - 10.0 × - - T
24.03 GEAR (Kang et al., 2024) Q Approximate the quant error with low-rank matrix L, M 13B / 18 / 7k 3.8 × - 5.0 × T
24.03 QuaRot (Ashkboos et al., 2024) Q Eliminate KV outliers with Hardmard matrix L 70B / 64 / 2k 3.7 × 2.1 × T
24.05 SKVQ (Duanmu et al., 2024) Q Clipped dynamic quant with channel reorder L, M 13B / 128 / 200k 7.9 × 7.0 × T
24.05 ZipCache (He et al., 2024) Q Channel-separable tokenwise quantization L, M 13B / 8 / 4k 4.9 × 1.6 × 2.3 × T
24.07 QJL (Zandieh et al., 2024) Q Elimiate quant constants storage overheads with JL transform L 8B / 1 / 18k 5.2 × - - T
24.07 Palu (Chang et al., 2024) Q KV cache compression with low-rank projection L, M 13B / 1 / 64k 11.4 × - 1.6 × T
24.08 ZDC (Zhang & Shen, 2024) Q Eliminate compression overhead O, L 175B / 1 / 20k 10.0 × - 2.8 × T / D / V

23.08 Scissorhands (Liu et al., 2024d) S Window-based eviction with a counter-based token score O 175B / 128 / 2k 5.0 × - - T
23.12 StreamingLLM (Xiao et al., 2023) S Retain KV cache of initial tokens L, F, M 70B / 1 / 18k 5.0 × - - T
23.12 H2O (Zhang et al., 2024f) S Accumulate attention scores as token score L, O, G 66B / 64 / 7k 5.0 × - 29.0 × T / D / F
24.01 FastGen (Ge et al., 2023) S Head-adaptive eviction policy L 65B / 16 / 4k 1.6 × - 1.2 × T / D / F
24.02 LESS (Dong et al., 2024a) S Merge to-be-evicted caches into low-rank matrix L, F 13B / 64 / 5k 50.0 × - 1.7 × T
24.02 ROCO (Ren & Zhu, 2024) S Standard deviation of attention score as token score L, W 7B / 1 / - 3.3 × - - T
24.04 Keyformer (Adnan et al., 2024) S Add gumbel-based regularization in token score G 7B / 2 / 4k 2.0 × - 2.4 × T
24.04 SqueezeAttention (Wang & Gan, 2024) S Reallocate KV cache budget across layers L, M, F, G, O 70B / 224 / 18k 3.3 × - 2.2 × T
24.04 SnapKV (Li et al., 2024b) S Select clustered important KV cache across heads L, M 35B / 8 / 26k 8.2 × - 3.6 × T
24.04 CORM (Dai et al., 2024) S Budget-unrestricted KV cache eviction L 7B / 1 / 18k 3.3 × - - T
24.05 CaM (Zhang et al., 2024c) S Merge to-be-evicted caches into recent KV cache L, O, G 13B / 1 / - 3.3 × - - T
24.05 PyramidInfer (Yang et al., 2024a) S Drop KV cache during KV cache computation process L 70B / 88 / 2k 2.1 × - 2.2 × T / D
24.05 MiniCache (Liu et al., 2024a) S Multiple layers sharing the same retained KV cache L, M 70B / 300 / 18k 1.7 × - 5.0 × T
24.05 InfLLM (Xiao et al., 2024a) S Store evicted tokens as context memory for furthur lookups L, M 8B / 1 / 100k 2.9 × - 1.5 × T
24.05 Q-Hitter (Zhang et al., 2024e) Q + S Keep quantization-friendly and important tokens L, O 30B / 1 / 4M 20 × - 33.0 × T
24.06 Quest (Tang et al., 2024b) S Query-aware cache eviction policy L 7B / 1 / 64k 8.0 × - 2.2 × F
24.06 PyramidKV (Zhang et al., 2024d) S Adjust KV cache budget across layers L, M 8B / 1 / 18k 8.3 × - - T
24.06 SampleAttention (Zhu et al., 2024) S Adaptive structured sparse attention C, I 6B / 1 / 200k 12.5× 2.2 × - T
24.07 TOVA (Oren et al., 2024) S Enable recent KV cache evictable L 7B / 139 / 70k - - 4.8 × T
24.07 LazyLLM (Fu et al., 2024) S Revive previously evicted KV cache L 7B / 1 / 18k - 2.3 × - T
24.07 Ada-KV (Feng et al., 2024) S Allocate KV cache budget across different heads L, M 7B / 1 / 18k 3.3 × - - T
24.07 RazorAttention (Tang et al., 2024a) S Disable KV cache eviction for retrieval heads L, Q, B 72B / 1 / 18k 3.3 × - - T
24.07 ThinK (Xu et al., 2024) S Evict KV cache in channel dimension L, M 8B / 1 / 18k 1.25 × - - T
24.08 NACL (Chen et al., 2024) S General KV cache eviction framework L 7B / 4 / 32k 5.0 × - - T
24.08 DoubleSparse (Yang et al., 2024c) S Prefetch tokens with token and channel sparsity L, M 70B / 32 / 256k 16 × - 16.3 × T
24.09 GemFilter (Shi et al., 2024) S Use early layes of LLM to filter and compress tokens L, M 12B / 1 / 120k 1.43 × - 2.4 × T
24.09 RetrievalAttention (Liu et al., 2024b) S Leverage vector search for dynamic sparse attention L 8B / 1 / 1M - - 4.9 × T
24.10 DuoAttention (Xiao et al., 2024b) S Identify streaming heads to accelerate attention L, M 8B / 1 / 3.3M 2.55 × 1.73 × 2.18 × F

Notations: In column Model, L, M, F, O, C, and I represent Llama, Mistral, Falcon, OPT, ChatGLM, and the InternLM LLM family. In column Heavy Eval, we list the
heaviest evaluation setting in a format of model size/ batch size/ prompt length. We list the maximum memory reduction, prefill throughput speedup, and decoding throughput
speedup in column Mem, Prf Thr, and Dec Thr. For evaluation frameworks shown in column Frw, T, D, F, and V represent the transformer library (Wolf et al., 2020),
DeepSpeed (Aminabadi et al., 2022), FlashInfer (Flashinfer, 2024), and vLLM (Kwon et al., 2023b).

based methods. However, error correction necessitates an-
other step to compute the quantization error. Mitigating the
quantization error not only compromises the memory
efficiency but also incurs additional computational costs
during inference, which can offset the computational
benefits from memory reduction.

Note that most quantization-based algorithms keep a win-
dow of recent historical KV cache as full precision for
accuracy considerations, which could burden the compat-
ibility with PagedAttention. Specifically, PagedAttention
maintains a number of tensors with a fixed page size and
tensor type. The window-based quantization demands two
types of paged tensors to manage full-precision and quan-
tized KV cache, respectively. This introduces unstructured
computation patterns when computing the attention output.
The window-based design choice in quantization-based
methods increases the deployment complexity, poten-
tially negating the computational efficiency gains.

3.1.2 Sparsity

We further review sparsity-based KV cache compression
algorithms from two perspectives. First, we investigate
the granularity of KV cache compression, encompass-
ing token-level, layer-level, head-level, and channel-level.
Early works including Scissorhands (Liu et al., 2024d),
StreamingLLM (Xiao et al., 2023), H2O (Zhang et al.,

2024f), ROCO (Ren & Zhu, 2024), Keyformer (Adnan
et al., 2024) propose discarding the KV cache of unimpor-
tant tokens. Layer-level KV cache eviction methods, e.g.,
SqueezeAttention (Wang & Gan, 2024), PyramidKV (Zhang
et al., 2024d), and MiniCache (Liu et al., 2024a), enable
the selective removal of KV cache entries corresponding
to different token positions across layers. FastGen (Ge et al.,
2023), SnapKV (Li et al., 2024b), CORM (Dai et al., 2024),
Ada-KV (Feng et al., 2024), RazorAttention (Tang et al.,
2024a), and NACL (Chen et al., 2024) evict varying token
positions across different heads. Notably, ThinK (Xu et al.,
2024) deviates from these approaches by targeting partial
channel dimensions, thereby achieving a consistent reduc-
tion in KV cache size, irrespective of the sequence length.
PQCache (Zhang et al., 2024a) utilizes Product Quantiza-
tion (PQ) to manage the KV cache. It employs Maximum
Inner-Product Search (MIPS) to identify relevant tokens for
attention computations during the decoding stage. Similar
to quantization-based techniques, pursuing finer gran-
ularity in sparsity-based methods can yield improved
accuracy, at the cost of high GPU utilization owing to
the resulting irregular computational patterns.

Second, we summarize the eviction policies, focusing on
the importance metric, eviction scope, and budget alloca-
tion. (1) The importance metric is to determine the relative
order by which caches are evicted. Many attention score

variants (Liu et al., 2024d; Ge et al., 2023; Ren & Zhu, 2024;
Adnan et al., 2024; Tang et al., 2024b) are used as the impor-
tance metric. The accumulated attention score is particularly
popular due to its robust accuracy performance over diverse
LLM tasks. (2) The eviction scope defines the tokens el-
igible for eviction. A prevalent approach is to employ a
local window to reduce the eviction overhead. Additionally,
constraints are often considered to ensure that specific to-
kens (Xiao et al., 2023; Oren et al., 2024), heads (Tang et al.,
2024a), or layers (Tang et al., 2024b) are excluded from the
eviction scope, safeguarding model quality. (3) The budget
allocation dictates how the available GPU memory budget
is allocated. A straightforward solution is to set a fixed mem-
ory budget; however, not all layers and heads are equally
important. Therefore, some methods dynamically allocate
the memory budget across layers (Wang & Gan, 2024; Yang
et al., 2024a; Zhang et al., 2024d) and heads (Feng et al.,
2024). Moreover, CORM (Dai et al., 2024) introduces a
budget-unrestricted KV cache eviction policy. The evic-
tion policy of sparsity-based methods is more flexible and
complex than the quantization policy as described in Eqn. 3.

The pursuit of fine-grained token eviction and intricate evic-
tion policies intensifies the challenges of gaining compu-
tation efficiency from sparsity-based methods. These con-
cerns remain consistent across various LLM serving frame-
works. Moreover, our analysis reveals that the algorithmic
designs of sparsity-based methods are not compatible with
FlashAttention and PagedAttention. FlashAttention gets
rid of the multi-pass attention operation and exploits soft-
max and tiling to attain a one-pass operation, thus reducing
the number of passes to load data from global memory to
on-chip memory. However, the importance metric depends
upon the attention scores, which are not saved in the FlashAt-
tention process. As a result, calculating the importance
metric necessitates two additional passes to load the data
and one more step to compute the attention scores. Page-
dAttention usually assumes that the length of KV cache
for a request monotonically increases. Sparsity-based meth-
ods execute token eviction at a fixed interval. Thus, the
length of the remaining KV cache fluctuates over time, ex-
acerbating the complexity of KV cache management with
PagedAttention. The integration of sparsity-based meth-
ods with FlashAttention and PagedAttention increases
the implementation complexity and compromises poten-
tial computational efficiency advantages, underscoring
the necessity for targeted systematic optimizations.

3.1.3 Evaluation Settings

Table 1 collects the evaluation settings of various KV cache
compression algorithms. First, many research works spare
more empirical analysis on accuracy than computational
efficiency. The research trends that incorporate undesirable
design elements in KV cache compression may preserve

the accuracy but fail to facilitate computational gains be-
cause these design elements are not sufficient to exploit
GPU parallelism. Notably, many studies only report the
throughput for assessing the computational efficiency of the
TRL framework, yet the design of compression algorithms
possesses features that may not align with established op-
timizations for LLM serving. As a result, the potential for
performance speedup becomes obscured when deploying
compression algorithms in production environments.

Second, around half of the quantization-based algorithms
are evaluated on models with a maximum size of 13 bil-
lion parameters and a maximum sequence length of 20
thousand. Statistically, more sparsity-based works evaluate
larger model sizes (70B) and longer prompt lengths (200K)
than quantization-based ones. This necessitates tensor paral-
lelism to support such extreme scenarios on multiple GPUs.

Missing Piece 1: With less focus on computational ef-
ficiency, only a few compression studies measure the
throughput performance using the TRL framework, of-
ten neglecting serving techniques, including FlashAtten-
tion and PagedAttention. Additionally, there is a lack of
assessment regarding the throughput on multiple GPUs,
which is crucial for supporting large models and long
sequences through tensor parallelism.

Third, the throughput performance of different compres-
sion algorithms is typically evaluated with a fixed response
length. The response length is a crucial factor that impacts
the end-to-end latency of LLM serving requests. The re-
sponse length is known when a termination token (e.g., EOS)
is present. Thus, measuring the computational efficiency
with a fixed response length is not an appropriate approach.
In a realistic macro-benchmark, it is essential to account
for the variations in the length distribution difference and
assess the end-to-end latency performance of KV cache
compression techniques for a fair comparison.

Missing Piece 2: The end-to-end latency variations from
compression algorithms hinge not only on the through-
put but also on the response length. However, the effect
of compression algorithms on the response length has
been largely neglected in existing compression studies.

3.2 KV Cache Compression Benchmark Studies

The surge of KV cache compression algorithms drives sev-
eral benchmark studies. We review them in Table 2 and
dissect them from tasks, models, and metrics. We identify
several insights and pinpoint a gap in the accuracy perfor-
mance demonstration within current studies.

First, for evaluation metrics, only LLM-QBench (Gong
et al., 2024) measures the prefill and decoding throughput.

Table 2. Summary of KV cache compression benchmarks. W/A/KV denote weights, activations, and KV cache, respectively.
Benchmarks Tasks Models Metrics Eval Methods Benchmark Features

QLLM-Eval (Li et al., 2024a)

Basic NLP Tasks
Emergent Ability
Trustworthiness
Dialogue
Long-context Tasks

OPT
LLaMA2
Falcon
Mistral

Acc W/A/KV Quant Evaluation of quant impacts for efficient deployment

LLM-QBench (Gong et al., 2024) WikiText2, C4
Exam & Coding

LLaMA2
ChatGLM
CodeLLaMA
WizardMath

Acc
Throughput W/A/KV Quant A plug-and-play toolkit to explore quant impacts

LongCTX-Bench (Yuan et al., 2024) Long-context Tasks Mistral
LLaMA Acc KV Quant

KV Sparse KV compression evaluations in a long-context environment

Shi et al. (2024) (Luohe et al., 2024) Basic NLP Tasks LLaMA Acc KV Quant
KV Sparse A systematic review on KV optimizations without empirical results

These benchmark studies generally suggest that compres-
sion algorithms result in only minor overall performance
degradation. However, the aggregated numerical value may
obscure the biases introduced by KV cache compression
toward specific tasks and sample types. Existing studies
lack an in-depth analysis of how KV cache compression
affects the response quality of individual examples.

Second, for evaluation models, accuracy performance anal-
ysis has been primarily conducted using LLM families such
as LLaMA (Touvron et al., 2023) and Mistral (Jiang et al.,
2023). Their guidance on KV cache compression tech-
niques is derived from empirical studies across LLM fami-
lies. For example, LLM-QBench (Li et al., 2024a) recom-
mends adjusting the quantization bit-widths based on the
specific LLM family. This underscores the importance of
investigating accuracy performance within the LLaMA
and Mistral families to gain comprehensive insights.

Third, for evaluation tasks, a benchmark demands a com-
prehensive understanding of the LLMs’ capabilities in a
multidimensional manner. Existing studies (Li et al., 2024a;
Gong et al., 2024; Luohe et al., 2024) assess a wide range
of language tasks, including language understanding, mod-
eling and reasoning, emergent abilities, dialogue, and long-
context tasks. According to these analyses, long-context
tasks exhibit lower tolerance to KV cache compression. A
detailed response quality analysis to individual samples
in long-context tasks is imperative to understand the
limitations of KV cache compression.

Missing Piece 3: Long-context tasks are challenging
for KV cache compression algorithms to maintain the
accuracy. Many works report the overall performance,
but they often overlook the analysis of response quality
for individual samples.

4 EVALUATION

In this section, we evaluate KV cache compression, with
the focus on three missing aspects: throughput analysis,
response length distribution, and negative sample analysis.

4.1 Evaluation Recipes

We single out representative models, datasets, and algo-
rithms based on the above literature analysis. The ma-
jority of the experiments are conducted on A6000 GPUs
with LLM serving frameworks, including TRL, FlashAt-
tention (Dao, 2024), and LMDeploy (Contributors, 2023).
We have also extended the scope to H800 GPU in Figure 2.
We select LMDeploy for its efficient quantization kernels
and fast development of KV cache compression algorithms.
Appendix B offers additional explanations and comprehen-
sive details about the evaluation setup, further validating the
rationale behind the selection of LMDeploy.

LLMs. Inspired by previous benchmark studies and imple-
mentation complexity, our evaluation only chooses LLaMA
and Mistral families. We integrate corresponding compres-
sion algorithms and LLMs into TRL and LMDeploy.

Datasets. We choose ShareGPT (Anon, 2024) to conduct
the throughput analysis. This dataset is commonly used for
LLM-serving benchmarks in real-world applications. We
choose LongBench (Bai et al., 2023) to perform negative
sample analysis. This is a task for long-context understand-
ing that covers critical long-text application scenarios.

Metrics. For computational efficiency, we concentrate on
the throughput and end-to-end latency. In particular, we
report pre-fill and decoding throughput using synthesized
examples and measure the end-to-end latency using samples
from ShareGPT. For negative sample analysis, LongBench
provides task-specific metrics to evaluate the accuracy of
individual samples.

Compression Algorithms. We choose four compression
algorithms for evaluation. For quantization-based ones,
KIVI (Liu et al., 2024e) is a mainstream solution for quan-
tizing key and value tensors. GEAR (Kang et al., 2024)
is a popular quantization error mitigation algorithm. For
sparsity-based ones, StreamingLLM (Xiao et al., 2023) only
keeps first and recent tokens without complex attention score
computation and presents a structured computation pattern.
H2O (Zhang et al., 2024f) dynamically evicts KV cache
with complex attention score computations.

LMD TRL TRL+FA

1 2 4 8 16
Batch Size

250

500

D
 T

hr
 (T

/S
)

(a) Decode, KV Length 256

1 2 4 8 16
Batch Size

100

200

300

D
 T

hr
 (T

/S
)

(b) Decode, KV Length 2048

5 10 15
Batch Size

0.75

1.00

1.25

D
 S

pe
ed

up

(c) Decode, KV Length 1024

5 10 15
Batch Size

1

2

D
 S

pe
ed

up

(d) Decode, KV Length 2048

FP16 K-4 G-4 H2O Stream

5 10 15
Batch Size

5000
6000
7000

P
Th

r
(T

/S
)

(e) Prefill, Prompt 1024

2000 4000
Prompt Length

4000

6000

P
Th

r
(T

/S
)

(f) Prefill, Batch 1

1 2 3 4
Batch Size

4000

5000

6000

P
Th

r
(T

/S
)

(g) Prefill, Prompt 6144

4000 6000 8000
Prompt Length

4000

6000

P
th

r
(T

/S
)

(h) Prefill, Batch 1

5 10 15
Batch Size

250

500

D
 T

hr
 (T

/S
)

(i) Decode, KV Length 1024

2000 4000
KV Length

42.5

45.0

D
 T

hr
 (T

/S
)

(j) Decode, Batch 1

5 10 15
Batch Size

200

400

600

D
 T

hr
 (T

/S
)

(k) Decode, KV Length 6144

4000 6000 8000
KV Length

40

45

D
 T

hr
 (T

/S
)

(l) Decode, Batch 1

Figure 1. Throughput analysis of LLaMA-7B: (a-b) The FP16 decoding throughput on TRL (with and without FlashAttention) and
LMDeploy (LMD). (c-d) The speedup of the StreamingLLM algorithm on TRL and LMD. (e-h) The prefill throughput for various sizes
of inputs. (i-l) The decoding throughput for various sizes of inputs.

FP16 K-4 G-4 H2O Stream

500 1000 1500 2000
Prompt Length

5000

10000

15000

P
Th

r
(T

/S
)

(a) Prefill, Batch 1

500 1000 1500 2000
KV Length

10

15

D
 T

hr
 (T

/S
)

(b) Decode, Batch 1

Figure 2. Throughput analysis of LLaMA-70B on H800 GPUs.

4.2 Throughput Analysis

We first utilize synthesized samples and LLaMA-7B to an-
alyze the prefill and decoding throughput of LLM serving
acceleration techniques. We measure the decoding through-
put of full-precision baseline on TRL, TRL+PagedAttention,
and LMDeploy, which possess the functionality of PagedAt-
tention and FlashAttention. As shown in Figure 1 (a-b),
PagedAttention and FlashAttention can improve the decod-
ing throughput. Moreover, Figure 1 (c-d) shows the relative
speedup of decoding throughput between the FP16 baseline
and StreamingLLM across batch sizes by fixing KV lengths.
When the batch size exceeds 4 and the sequence length
reaches 1024, the relative speedup on TRL does not show a
significant advantage when measured against PagedAtten-
tion and FlashAttention.

Observation 1: The computational efficiency results on
TRL are unreliable. An appropriate way is to measure
the throughput performance on established LLM serving
frameworks with prominent LLM serving techniques,
including PagedAttention and FlashAttention.

Second, we compare the prefill throughput of different com-
pression algorithms. In particular, we collect the prefill
throughput performance across different batch sizes and
prompt lengths in Figure 1 (e-h). KIVI and StreamingLLM
perform close to and even better than the FP16 baseline.
However, GEAR and H2O consistently lower the prefill
throughput, with the gap widening as the prompt length
increases. Qualitatively, GEAR introduces extra steps to
offset the quantization error, and H2O requires a multi-pass
attention operation to compute the attention score as a result
of high memory access overhead. The execution time of
the attention layer in GEAR and H2O in Figure 3(a) further
demonstrates that the additional KV cache compression
overhead should not be disregarded in the prefill stage.

Third, we measure the decoding throughput for different
compression algorithms, shown in Figure 1 (i-l). The
throughput difference is insignificant when both batch size
and KV length are small among different methods, includ-
ing the baseline, as illustrated in Figure 1 (i-j). For heavy
settings with long KV length and high batch size, sparsity-

FP16 K-4 G-4 H2O Stream

2000 4000
Prompt Length

0

1

P
At

t T
im

e
(S

)

(a) Prefill, Batch 1

2000 4000
KV Length

2.2

2.4

2.6

D
 A

tt
 T

im
e

(S
)

(b) Decode, Batch 1

Figure 3. The execution time of the attention layer of various com-
pression algorithms measured across different prompt lengths.

based methods can maintain their throughput advantages,
whereas the benefits of quantization-based methods tend to
diminish. We also observe that quantization-based methods
even suffer from out-of-memory issues when the KV length
reaches up to 8192 in Figure 1 (l). Moreover, Figure 3(b)
depicts the execution time of the attention layer in sparsity-
based methods remains more stable during the decoding
stage across various KV lengths, as they retain a relatively
small KV cache. For larger LLMs, we observe a similar
phenomenon in decoding throughput, with results provided
in Appendix C.

Table 3. Relative speedup brought by different compression algo-
rithms in the prefill and decoding.

TP/Algo FP16 (Thr: T/S) K-4 G-4 H2O Stream

Prefill
1 6610.24 1.06× 0.86× 0.58× 0.95×
2 11041.35 1.09× 0.80× 0.58× 0.96×
4 12938.66 1.03× 0.90× 0.51× 0.92×

Decode
1 129.72 0.98× 1.02× 1.34× 1.34×
2 194.83 0.88× 0.97× 0.69× 1.01×
4 195.02 0.9× 0.97× 0.85× 0.97×

Fourth, we report the relative speedup in the prefill and
decoding throughput of different compression algorithms
compared to the FP16 baseline across various tensor paral-
lelism settings in Table 3. While tensor parallelism can im-
prove throughput, it may also reduce the throughput speedup
gained from KV cache compression and, in some cases,
even negatively impact overall throughput performance. We
ascribe this to that increasing tensor parallelism can allevi-
ate memory bandwidth contention on each GPU, thereby
weakening the benefits of reduced memory access over-
head achieved through KV cache compression. Note that
Appendix C consists of more throughput analyses across
different batch sizes, sequence lengths, LLMs (e.g., Mis-
tral (Jiang et al., 2023) in Figure 8), and algorithms (e.g.,
SnapKV (Li et al., 2024b) in Figure 9), our conclusions
remain consistent.

Observation 2: The KV cache compression methods
show negative computational efficiency in certain scenar-
ios of batch size, sequence length, and tensor parallelism
in the prefill and decoding stage. We recommend apply-
ing compression algorithms for serving requests with
heavy KV cache.

Table 4. Comparison of semantic scores and length increase for
different KV cache compression algorithms.

Metric FP16 KIVI-4 GEAR-4 H2O-512 Stream-512

Semantic Score 49.6 50.7 46.2 46.2 46.3
Length Increase (×) - 1.69 1.70 1.55 1.76

4.3 Length Distribution Analysis

Lossy compression can elicit LLMs to yield different
lengths of responses. Despite potential throughput bene-
fits from KV cache compression, the lengthy responses
can still prolong the end-to-end latency. We first exam-
ine the response length difference induced by compres-
sion methods. We define the response length difference
as D = (Lun − Lcs)/Lun, where Lun and Lcs represent the
response length without and with compression methods, re-
spectively. A negative D implies that compression methods
lead to longer outputs, while a positive D suggests shorter
responses due to compression. We use 1,000 samples from
ShareGPT and measure D on LLaMA-3.1-8B-instruct using
different KV cache compression algorithms. First, com-
pression algorithms tend to increase the response length. We
gather samples whose response length either decreases or in-
creases by 50%. Table 5 presents the proportion of samples
exhibiting substantial variations in response length. Since
the temperature in text generation affects response length,
we use temperatures of 0.9 and 1.1 for a fair comparison
while fixing the temperature as 1.0 for the baseline and other
compression algorithms. We observe that the temperature
can increase and decrease the response length in roughly
equal measure. Differently, KV cache compression leans
toward generating lengthy responses. Specifically, more
than 20% of the samples show at least a 1.5 × increase
in response length. Prior throughput analysis shows that
compression methods cannot achieve more than a 1.5× in-
crease in the decoding throughput in many scenarios. This
indicates that these samples will suffer from increased end-
to-end latency due to their extended response length.

Second, we investigate the impact of compression ratio on
the length difference distribution. A higher compression
ratio can be achieved with a lower bit in the quantization-
based method or a lower length of KV cache in sparsity-
based methods. We draw the distribution of the difference
in response length (bar) and approximate the kernel density
estimation of this distribution (line) across varying compres-
sion ratios in Figure 4. We observe that with the increase
of the compression ratio, the distribution of response differ-
ence flattens, and more samples experience lengthy response.
The lengthy responses may serve as an implicit way for KV
cache compression to compensate for accuracy loss.

To uncover whether KV cache compression techniques
yield verbose output to improve the accuracy, we provide
an intuitive experiment to investigate the verbosity of out-

200 150 100 50 0 50 100
Response Length Difference (%)

10 4

10 3

10 2
Lo

g
De

ns
ity

KIVI-2
KIVI-4

(a) KIVI

200 150 100 50 0 50 100
Response Length Difference (%)

10 3

10 2

Lo
g

De
ns

ity

GEAR-2
GEAR-4

(b) GEAR

200 150 100 50 0 50 100
Response Length Difference (%)

10 3

10 2

Lo
g

De
ns

ity

H2O-256
H2O-512

(c) H2O

200 150 100 50 0 50 100
Response Length Difference (%)

10 3

10 2

Lo
g

De
ns

ity

Stream-256
Stream-512

(d) StreamingLLM

Figure 4. The log-scaled distribution of response length difference over different compression algorithms and configurations.

Table 5. The ratio (%) of samples experiencing response length
variations induced by temperature and KV cache compression.

Metric T=0.9 T=1.1 KIVI GEAR H2O Stream

% of samples D of which ≥ 50% 20.8% 21.3% 10.9% 6.8% 9.5% 16.5%
% of samples D of which ≤ −50% 27.5% 31.4% 24.5% 27.1% 21.3% 26.4%

puts. We define the verbose output as follows: for the
output of an LLM with FP 16 baseline, its output quality
and length are defined as Qfp16 and Lfp16; for the out-
put of compression baseline, its accuracy and length is de-
fined as Qcompress and Lfp16. We consider the output of
compression baseline is verbose when Qcompress ≤ Qfp16

and Lcompress ≥ Lfp16. We choose 200 requests from
ShareGPT, in which KV cache compression techniques
yield longer responses than FP 16 baseline when adopt-
ing LLaMA-7B. Fortunately, ShareGPT provides real-world
conversations between humans and ChatGPT. To evaluate
the semantic similarity between the outputs of ChatGPT
and LLaMA-7B. We report the average semantic score and
relative length increase in Table 4. We find that three KV
cache compression approaches produce longer outputs but
with relatively minor semantic quality drops. Compared
to the output from an LLM with FP 16, the output from
an LLM with a KV cache compression approach might be
more verbose.

Observation 3: The lossy compression contributes to a
large variation of response length distribution. Compres-
sion algorithms produce lengthy responses. Furthermore,
a high compression ratio exacerbates this issue.

20 21 22 23 24 25

Latency (s)

0

50

100

C
D

F
(%

)

FP16
KIVI
GEAR

H2O
Stream

Figure 5. The cumulative distribution function of the end-to-end
latency (seconds) of various compression algorithms.
Third, beyond the length distribution analysis, we present
the distribution of end-to-end latency to gain a vivid under-
standing of how length difference impacts computational
efficiency. Specifically, we measure the end-to-end latency
performance for each sample in the ShareGPT dataset with

a fixed batch size of one, as shown in Figure 5. When we
combine the throughput and response length, the perfor-
mance gains of compression methods are not significant.
We even observe that GEAR leads to longer end-to-end
tail latency. In other words, only measuring the throughput
performance with a fixed response length cannot convince
LLM practitioners to deploy compression algorithms in pro-
duction environments. We leave more empirical analysis
about length distribution in Appendix D.

Observation 4: Measuring the end-to-end latency un-
covers that compression methods still have a long way to
go in practice. In addition to the innate algorithm defect
of compression that might lower the throughput perfor-
mance benefits, the lengthy response length is another
factor that hinders their adoption.

4.4 Negative Sample Analysis

Many studies on KV cache compression place emphasis
on preserving the quality of LLM responses, supported by
empirical evidence from a few benchmark datasets. While
most of them report minor/no accuracy performance drops,
they often overlook the impact of compression on individual
samples. In other words, LLM practitioners lack insightful
guidance on when KV cache compression fails to achieve
satisfactory performance. To bridge such a gap, we explore
the negative performance impact on individual samples. We
follow the criterion in QLLM-Eval (Li et al., 2024a) to
define the negative sample as a benign sample where KV
cache compression leads to the relative accuracy loss ex-
ceeding a given threshold2. Algorithm 1 describes the pro-
cess of collecting negative samples given the LLM, dataset,
and compression algorithms. The baseline algorithm is the
one without using KV cache compression.

First, we unveil the fragility of compression algorithms
using negative samples. We use LongBench and LLaMA-
3.1-8B-instruct to conduct negative sample analysis. The
experimental details can be found in Appendix E. We vary
the threshold in Algorithm 1 to collect negative samples
shown in Figure 6. The minor accuracy loss brought by
compression algorithms (e.g., KIVI, GEAR) does not mean

2In the evaluation, we select samples with accuracy equal to or
above the average value as benign.

that each sample suffers from the minor performance loss.
Our pinhole observation indicates a high number of negative
samples even with a threshold of 10%, revealing the fragility
of compression algorithms. Combining an ensemble of
algorithms to construct an algorithm set A is a feasible
approach to reduce the occurrence of negative samples;
however, they cannot be totally eliminated.

Observation 5: KV cache compression algorithms
naturally possess negative samples, and the accuracy
improvement can reduce the occurrence of negative sam-
ples, but it is hard to eradicate.

21 23 25

Thresold (%)

400

500

600

#
 N

eg
at

iv
e

Sa
m

pl
es

KIVI
GEAR
Quant (C)

(a) Quantization

21 23 25

Thresold (%)

400

600

800

#
 N

eg
at

iv
e

Sa
m

pl
es

H2O
Stream
Sparse (C)

(b) Sparsity

Figure 6. The threshold (x-axis) versus the number of negative
samples (y-axis) for quantization-based (a) and sparsity-based (b)
methods. Quant (C) refers to negative samples collected using both
KIVI and GEAR together. Sparse (C) refers to negative samples
collected using both H2O and StreamingLLM together.

66.7%
11.5%

12.1%

KIVI

73.0%

10.5%

GEAR

54.6%
22.8%

14.5%

H2O

43.0%

32.6%

StreamingLLM

Summarization QA Code Few shot Synthetic

Figure 7. The pie chart details the proportion of negative samples
over task types across varying compression algorithms.

Second, we explore the sensitivity of task types to KV
cache compression using a threshold of 10%. Figure 7
depicts the breakdown of the number of negative samples
across various tasks. Both quantization-based and sparsity-
based methods exhibit a similar unbalanced fragility across
different task types. Particularly, the summarization tasks
depend heavily on context information, and any loss of
this information can lead LLMs to produce undesirable re-
sponses. Similarly, in the question-answering (QA) task,
information lost in the early stages can become significant
in later stages, thereby amplifying this issue. Fortunately, a
recent work, Quest (Tang et al., 2024b), proposes a query-
aware approach to address this drawback.

Observation 6: Not all task types are equally treated by
KV cache compression algorithms. The compression
studies show limitations in maintaining accuracy for
summarization and QA tasks.

Algorithm 1 Negative Sample Collection.
1: Input: Dataset D, Threshold θ, LLM M, Baseline Algorithm

Ab, Compression Algorithm Set A
2: Output: Negative Dataset Dneg
3:
4: Function AccMetric(A,M, d):
5: Input: Algorithm A, Data point d
6: Output: Accuracy p
7: Adopt compression algorithm A and LLM M to produce

the response r for given prompt d.
8: Return the accuracy with the response r.
9: End Function

10:
11: Initialize Dneg = ∅.
12: for di in D do
13: pbase = AccMetric(Abase, di)
14: negative = true
15: for Aj in A do
16: if AccMetric(Aj , di) ≥ (1− θ)× pbase then
17: negative = false
18: end if
19: end for
20: if negative then
21: Insert di in Dneg
22: end if
23: end for

5 A SUITE OF TOOLS

Given the above limitations of existing studies, we introduce
a set of tools to assist KV cache compression.

5.1 Throughput Predictor

First, it is common for online LLM serving systems to han-
dle various sequence lengths and batch sizes in the prefill
and decoding stages. In LLM serving, all other operations
(e.g., linear product) are independent of KV cache and
attention operation. Fortunately, KV cache compression
primarily impacts the throughput performance of the atten-
tion operations. Hence, we profile the throughput of the
attention layer across various sequence lengths and batch
sizes in both prefill and decoding stages. We incorporate
the offline profiled throughput results into the LLM run-
time predictor developed by Vidur (Agrawal et al., 2024)
to inform the LLM serving systems to make appropriate
scheduling decisions. Table 6 reports the accuracy of our
throughput predictor for LLaMA-7B. Our observation is
that it can provide above 85% prediction accuracy for var-
ious compression techniques. More experimental details
about the throughput predictor can be found in Appendix F.

5.2 Length Predictor

Recent works (Zheng et al., 2023; Qiu et al., 2024) demon-
strate the potential for predicting the response length in
LLMs. Following this direction, we gather response length
from various KV cache compression algorithms and em-

ploy a BERT-based classifier to predict the length generated
by a given compression algorithm. Table 6 reports the pre-
diction results of our length predictor for LLaMA-3.1-8B-
instruct, which can attain above 85% accuracy across four
representative KV cache algorithms. More experimental
details and results about the length predictor are elaborated
in Appendix G. Our length predictor can inform the online
serving system to determine whether to apply compression
techniques on incoming requests, thus mitigating the ex-
tended end-to-end latency.

Table 6. The prediction accuracy of our proposed tools.
Tools FP16 KIVI GEAR H2O Stream

Throughput Predictor 88.5% 88.4% 87.7% 85.8% 86.6%
Length Predictor 89.3% 95.7% 88.4% 87.8% 90.0%

5.3 Negative Sample Evaluator

Based on our empirical analysis, we set a 10% threshold to
identify negative samples and compile them into a bench-
mark dataset. This dataset evaluates both existing and future
KV cache compression techniques. Using LongBench’s
evaluation score, we measure the performance of four repre-
sentative compression methods on LLaMA-3.1-8B-instruct,
as reported in Table7. The baseline (FP16) achieves high
scores, but various KV cache compression algorithms show
significant drops. More details are provided in Appendix H.
We recommend further research into these negative samples
to better understand the impact of KV cache compression
algorithms on accuracy.

To mitigate negative samples, we recommend the following
solutions to realize task-specific KV cache compression
techniques. First, we can adopt a lightweight model to pre-
dict the task types of input requests for LLM serving. Sec-
ond, we can develop task-specific KV cache compression
approaches or adopt KV cache with varying compression
levels.

Table 7. The measured score of various algorithms on the negative
sample benchmark dataset using LongBench’s provided metric.

Task Type Baseline KIVI GEAR H2O Stream

Summarization 31.6 24.8 23.7 24.7 24.3
Question Answering 52.0 28.8 28.7 33.8 30.4
Code 97.0 30.0 30.0 57.2 61.3

5.4 Usage of Tools: Request Router

We leverage our throughput and length predictor to explore
how both tools can be used to expedite online LLM serving
via request routing. Particularly, we run LLaMA-7B on four
A6000 GPUs with LMDeploy, and sample 1000 requests
from ShareGPT, using Poisson distributions with request per
second as 10. Baseline refers to running LLaMA-7B with
FP 16 or a given KV cache compression approach on four

Table 8. Average end-to-end latency of different routing methods.
Average E2E FP16 KIVI GEAR H2O Stream

Baseline 11.4 9.1 13.4 10.6 10.3
w/ Throughput - 7.7 9.1 8.3 8.2
w/ Length - 10.9 13 11.2 11.3
w/ Both - 6.3 7.4 6.9 6.6

GPUs. It adopts a load-balancing technique to route incom-
ing requests to a GPU with minimum memory usage. In the
following three policies, we empirically use one GPU to run
FP16 and three GPUs to run a given compression technique.
We need to route an incoming request to an appropriate
GPU. w/ Throughput refers to routing a request to a GPU
that can yield the estimated highest decoding throughput
by the throughput predictor. w/ Length refers to routing to
a GPU, which can yield the estimated minimum response
length by length predictor. w/ Both refers to routing to
a GPU that can yield the minimum estimated end-to-end
latency. The end-to-end latency is calculated by the pre-
filling time and a product between the estimated decoding
throughput and estimated response length. We report the
average end-to-end latency (seconds) for FP16 and compres-
sion techniques in Table 8. The throughput predictor speeds
up the end-to-end latency by 1.18-1.48×. In contrast, the
length predictor yields a speedup of 0.83-1.03×, suggesting
that relying solely on the length predictor potentially com-
promises the latency. Combining the throughput predictor
and length predictor speeds up the latency by 1.45 to 1.80×.

6 CONCLUSION

In this paper, we present a retrospective study of KV cache
compression for LLM serving. We conduct a comprehen-
sive literature survey and empirical analysis of existing algo-
rithms, identifying several under-explored aspects of their
practical usage. Our analysis reveals key difficulties that
hinder the real-world deployment of KV cache compres-
sion. We recommend dissecting the evaluation of LLM KV
cache compression algorithms into three critical dimen-
sions, including throughput, length distribution, and nega-
tive samples. We gather insights from both literature and
our evaluations to design three tools aimed at facilitating the
applications of LLM KV cache compression algorithms in
the production environment.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their valuable com-
ments. The research is supported under the RIE2020 In-
dustry Alignment Fund - Industry Collaboration Projects
(IAF-ICP) Funding Initiative, as well as cash and in-kind
contributions from the industry partner(s).

REFERENCES

Issue #4: [integrate kivi into inference frameworks?].
https://github.com/jy-yuan/KIVI/
issues/4. Accessed: 2025.04.

Adnan, M., Arunkumar, A., Jain, G., Nair, P., Solovey-
chik, I., and Kamath, P. Keyformer: Kv cache reduction
through key tokens selection for efficient generative in-
ference. Proceedings of Machine Learning and Systems,
6:114–127, 2024.

Agrawal, A., Kedia, N., Mohan, J., Panwar, A., Kwatra, N.,
Gulavani, B., Ramjee, R., and Tumanov, A. Vidur: A
large-scale simulation framework for llm inference, 2024.
URL https://arxiv.org/abs/2405.05465.

Aminabadi, R. Y., Rajbhandari, S., Awan, A. A., Li, C.,
Li, D., Zheng, E., Ruwase, O., Smith, S., Zhang, M.,
Rasley, J., et al. Deepspeed-inference: enabling efficient
inference of transformer models at unprecedented scale.
In SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–15.
IEEE, 2022.

Anon. Sharegpt vicuna unfiltered dataset.
https://huggingface.co/datasets/
anon8231489123/ShareGPT_Vicuna_
unfiltered, 2024. Accessed: 2024-06-13.

Anthropic. Claude ai, 2024. URL https://claude.
ai/. Accessed: 2024-09.

Ashkboos, S., Mohtashami, A., Croci, M. L., Li, B., Jaggi,
M., Alistarh, D., Hoefler, T., and Hensman, J. Quarot:
Outlier-free 4-bit inference in rotated llms. arXiv preprint
arXiv:2404.00456, 2024.

Bai, Y., Lv, X., Zhang, J., Lyu, H., Tang, J., Huang, Z.,
Du, Z., Liu, X., Zeng, A., Hou, L., et al. Longbench: A
bilingual, multitask benchmark for long context under-
standing. arXiv preprint arXiv:2308.14508, 2023.

BentoML. Benchmarking llm inference back-
ends. https://bentoml.com/blog/
benchmarking-llm-inference-backends.
Accessed: 2025.03.

Chang, C.-C., Lin, W.-C., Lin, C.-Y., Chen, C.-Y., Hu, Y.-F.,
Wang, P.-S., Huang, N.-C., Ceze, L., and Wu, K.-C. Palu:
Compressing kv-cache with low-rank projection. arXiv
preprint arXiv:2407.21118, 2024.

Chen, Y., Wang, G., Shang, J., Cui, S., Zhang, Z., Liu, T.,
Wang, S., Sun, Y., Yu, D., and Wu, H. Nacl: A general
and effective kv cache eviction framework for llms at
inference time. arXiv preprint arXiv:2408.03675, 2024.

Contributors, L. Lmdeploy: A toolkit for compressing,
deploying, and serving llm. https://github.com/
InternLM/lmdeploy, 2023.

Dai, J., Huang, Z., Jiang, H., Chen, C., Cai, D., Bi, W., and
Shi, S. Sequence can secretly tell you what to discard.
arXiv preprint arXiv:2404.15949, 2024.

Dao, T. FlashAttention-2: Faster attention with better paral-
lelism and work partitioning. In International Conference
on Learning Representations (ICLR), 2024.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. FlashAt-
tention: Fast and memory-efficient exact attention with
IO-awareness. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2022.

Dong, H., Yang, X., Zhang, Z., Wang, Z., Chi, Y., and Chen,
B. Get more with less: Synthesizing recurrence with
kv cache compression for efficient llm inference. arXiv
preprint arXiv:2402.09398, 2024a.

Dong, S., Cheng, W., Qin, J., and Wang, W. Qaq: Quality
adaptive quantization for llm kv cache. arXiv preprint
arXiv:2403.04643, 2024b.

Duanmu, H., Yuan, Z., Li, X., Duan, J., Zhang, X., and
Lin, D. Skvq: Sliding-window key and value cache
quantization for large language models. arXiv preprint
arXiv:2405.06219, 2024.

Feng, Y., Lv, J., Cao, Y., Xie, X., and Zhou, S. K. Ada-
kv: Optimizing kv cache eviction by adaptive budget
allocation for efficient llm inference, 2024. URL https:
//arxiv.org/abs/2407.11550.

Flashinfer. Flashinfer: A lightweight framework
for inferencing. https://github.com/
flashinfer-ai/flashinfer, 2024. Accessed:
2024-10.

Fu, Q., Cho, M., Merth, T., Mehta, S., Rastegari, M.,
and Najibi, M. Lazyllm: Dynamic token pruning for
efficient long context llm inference. arXiv preprint
arXiv:2407.14057, 2024.

Ge, S., Zhang, Y., Liu, L., Zhang, M., Han, J., and Gao,
J. Model tells you what to discard: Adaptive kv cache
compression for llms. arXiv preprint arXiv:2310.01801,
2023.

Gong, R., Yong, Y., Gu, S., Huang, Y., Zhang, Y., Liu, X.,
and Tao, D. Llm-qbench: A benchmark towards the best
practice for post-training quantization of large language
models. arXiv preprint arXiv:2405.06001, 2024.

Hassabis, D. and the Gemini Team. Introducing gem-
ini: our largest and most capable ai model, 2023.

https://github.com/jy-yuan/KIVI/issues/4
https://github.com/jy-yuan/KIVI/issues/4
https://arxiv.org/abs/2405.05465
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://claude.ai/
https://claude.ai/
https://bentoml.com/blog/benchmarking-llm-inference-backends
https://bentoml.com/blog/benchmarking-llm-inference-backends
https://github.com/InternLM/lmdeploy
https://github.com/InternLM/lmdeploy
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://github.com/flashinfer-ai/flashinfer
https://github.com/flashinfer-ai/flashinfer

URL https://blog.google/technology/ai/
google-gemini-ai. Accessed: 2024-06-07.

He, Y., Zhang, L., Wu, W., Liu, J., Zhou, H., and Zhuang,
B. Zipcache: Accurate and efficient kv cache quanti-
zation with salient token identification. arXiv preprint
arXiv:2405.14256, 2024.

Hooper, C., Kim, S., Mohammadzadeh, H., Mahoney,
M. W., Shao, Y. S., Keutzer, K., and Gholami, A.
Kvquant: Towards 10 million context length llm in-
ference with kv cache quantization. arXiv preprint
arXiv:2401.18079, 2024.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Kang, H., Zhang, Q., Kundu, S., Jeong, G., Liu, Z., Krishna,
T., and Zhao, T. Gear: An efficient kv cache compression
recipefor near-lossless generative inference of llm. arXiv
preprint arXiv:2403.05527, 2024.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023a.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles, 2023b.

Li, S., Ning, X., Wang, L., Liu, T., Shi, X., Yan, S., Dai, G.,
Yang, H., and Wang, Y. Evaluating quantized large lan-
guage models. arXiv preprint arXiv:2402.18158, 2024a.

Li, Y., Huang, Y., Yang, B., Venkitesh, B., Locatelli, A.,
Ye, H., Cai, T., Lewis, P., and Chen, D. Snapkv: Llm
knows what you are looking for before generation. arXiv
preprint arXiv:2404.14469, 2024b.

Liu, A., Liu, J., Pan, Z., He, Y., Haffari, G., and Zhuang, B.
Minicache: Kv cache compression in depth dimension for
large language models. arXiv preprint arXiv:2405.14366,
2024a.

Liu, D., Chen, M., Lu, B., Jiang, H., Han, Z., Zhang, Q.,
Chen, Q., Zhang, C., Ding, B., Zhang, K., et al. Re-
trievalattention: Accelerating long-context llm inference
via vector retrieval. arXiv preprint arXiv:2409.10516,
2024b.

Liu, R., Bai, H., Lin, H., Li, Y., Gao, H., Xu, Z., Hou, L.,
Yao, J., and Yuan, C. Intactkv: Improving large language
model quantization by keeping pivot tokens intact. arXiv
preprint arXiv:2403.01241, 2024c.

Liu, Z., Desai, A., Liao, F., Wang, W., Xie, V., Xu, Z., Kyril-
lidis, A., and Shrivastava, A. Scissorhands: Exploiting
the persistence of importance hypothesis for llm kv cache
compression at test time. Advances in Neural Information
Processing Systems, 36, 2024d.

Liu, Z., Yuan, J., Jin, H., Zhong, S., Xu, Z., Braverman,
V., Chen, B., and Hu, X. Kivi: A tuning-free asym-
metric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024e.

Luohe, S., Hongyi, Z., Yao, Y., Zuchao, L., and Hai, Z. Keep
the cost down: A review on methods to optimize llm’s
kv-cache consumption. arXiv preprint arXiv:2407.18003,
2024.

OpenAI. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Oren, M., Hassid, M., Adi, Y., and Schwartz, R. Transform-
ers are multi-state rnns. arXiv preprint arXiv:2401.06104,
2024.

Qiu, H., Mao, W., Patke, A., Cui, S., Jha, S., Wang, C.,
Franke, H., Kalbarczyk, Z. T., Başar, T., and Iyer, R. K.
Efficient interactive llm serving with proxy model-based
sequence length prediction. In The 5th International
Workshop on Cloud Intelligence / AIOps at ASPLOS 2024,
volume 5, pp. 1–7, San Diego, CA, USA, 2024. Associa-
tion for Computing Machinery.

Ren, S. and Zhu, K. Q. On the efficacy of eviction pol-
icy for key-value constrained generative language model
inference. arXiv preprint arXiv:2402.06262, 2024.

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin, M., Chen,
B., Liang, P., Ré, C., Stoica, I., and Zhang, C. Flexgen:
High-throughput generative inference of large language
models with a single gpu. In International Conference
on Machine Learning, pp. 31094–31116. PMLR, 2023.

Shi, Z., Ming, Y., Nguyen, X.-P., Liang, Y., and Joty, S.
Discovering the gems in early layers: Accelerating long-
context llms with 1000x input token reduction. arXiv
preprint arXiv:2409.17422, 2024.

Tang, H., Lin, Y., Lin, J., Han, Q., Hong, S., Yao, Y., and
Wang, G. Razorattention: Efficient kv cache compression
through retrieval heads. arXiv preprint arXiv:2407.15891,
2024a.

Tang, J., Zhao, Y., Zhu, K., Xiao, G., Kasikci, B., and Han,
S. Quest: Query-aware sparsity for efficient long-context
llm inference. arXiv preprint arXiv:2406.10774, 2024b.

https://blog.google/technology/ai/google-gemini-ai
https://blog.google/technology/ai/google-gemini-ai

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Wang, Z. and Gan, S. Squeezeattention: 2d management of
kv-cache in llm inference via layer-wise optimal budget.
arXiv preprint arXiv:2404.04793, 2024.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz,
M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jer-
nite, Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame,
M., Lhoest, Q., and Rush, A. M. Transformers: State-
of-the-art natural language processing. In Proceedings
of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations, pp.
38–45, Online, October 2020. Association for Compu-
tational Linguistics. URL https://www.aclweb.
org/anthology/2020.emnlp-demos.6.

Xiao, C., Zhang, P., Han, X., Xiao, G., Lin, Y., Zhang, Z.,
Liu, Z., and Sun, M. Infllm: Training-free long-context
extrapolation for llms with an efficient context memory.
In First Workshop on Long-Context Foundation Models@
ICML 2024, 2024a.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Ef-
ficient streaming language models with attention sinks.
arXiv preprint arXiv:2309.17453, 2023.

Xiao, G., Tang, J., Zuo, J., Guo, J., Yang, S., Tang, H., Fu,
Y., and Han, S. Duoattention: Efficient long-context llm
inference with retrieval and streaming heads, 2024b. URL
https://arxiv.org/abs/2410.10819.

Xu, Y., Jie, Z., Dong, H., Wang, L., Lu, X., Zhou, A., Saha,
A., Xiong, C., and Sahoo, D. Think: Thinner key cache by
query-driven pruning. arXiv preprint arXiv:2407.21018,
2024.

Yang, D., Han, X., Gao, Y., Hu, Y., Zhang, S., and
Zhao, H. Pyramidinfer: Pyramid kv cache compres-
sion for high-throughput llm inference. arXiv preprint
arXiv:2405.12532, 2024a.

Yang, J. Y., Kim, B., Bae, J., Kwon, B., Park, G., Yang, E.,
Kwon, S. J., and Lee, D. No token left behind: Reliable kv
cache compression via importance-aware mixed precision
quantization. arXiv preprint arXiv:2402.18096, 2024b.

Yang, S., Sheng, Y., Gonzalez, J. E., Stoica, I., and Zheng, L.
Post-training sparse attention with double sparsity. arXiv
preprint arXiv:2408.07092, 2024c.

Yuan, J., Liu, H., Chuang, Y.-N., Li, S., Wang, G., Le, D.,
Jin, H., Chaudhary, V., Xu, Z., Liu, Z., et al. Kv cache

compression, but what must we give in return? a compre-
hensive benchmark of long context capable approaches.
arXiv preprint arXiv:2407.01527, 2024.

Yue, Y., Yuan, Z., Duanmu, H., Zhou, S., Wu, J., and Nie,
L. Wkvquant: Quantizing weight and key/value cache
for large language models gains more. arXiv preprint
arXiv:2402.12065, 2024.

Zandieh, A., Daliri, M., and Han, I. Qjl: 1-bit quantized jl
transform for kv cache quantization with zero overhead.
arXiv preprint arXiv:2406.03482, 2024.

Zhang, H., Ji, X., Chen, Y., Fu, F., Miao, X., Nie, X., Chen,
W., and Cui, B. Pqcache: Product quantization-based
kvcache for long context llm inference. arXiv preprint
arXiv:2407.12820, 2024a.

Zhang, T., Yi, J., Xu, Z., and Shrivastava, A. Kv cache
is 1 bit per channel: Efficient large language model in-
ference with coupled quantization. Advances in Neural
Information Processing Systems, 37:3304–3331, 2024b.

Zhang, Y., Du, Y., Luo, G., Zhong, Y., Zhang, Z., Liu, S.,
and Ji, R. Cam: Cache merging for memory-efficient
llms inference. In Forty-first International Conference on
Machine Learning, 2024c.

Zhang, Y., Gao, B., Liu, T., Lu, K., Xiong, W., Dong, Y.,
Chang, B., Hu, J., Xiao, W., et al. Pyramidkv: Dynamic
kv cache compression based on pyramidal information
funneling. arXiv preprint arXiv:2406.02069, 2024d.

Zhang, Z. and Shen, H. Zero-delay qkv compression for mit-
igating kv cache and network bottlenecks in llm inference.
arXiv preprint arXiv:2408.04107, 2024.

Zhang, Z., Liu, S., Chen, R., Kailkhura, B., Chen, B., and
Wang, A. Q-hitter: A better token oracle for efficient llm
inference via sparse-quantized kv cache. Proceedings of
Machine Learning and Systems, 6:381–394, 2024e.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H2o:
Heavy-hitter oracle for efficient generative inference of
large language models. Advances in Neural Information
Processing Systems, 36, 2024f.

Zheng, Z., Ren, X., Xue, F., Luo, Y., Jiang, X., and You,
Y. Response length perception and sequence scheduling:
An llm-empowered llm inference pipeline. arXiv preprint
arXiv:2305.13144, 2023.

Zhu, Q., Duan, J., Chen, C., Liu, S., Li, X., Feng, G.,
Lv, X., Cao, H., Chuanfu, X., Zhang, X., Lin, D., and
Yang, C. Sampleattention: Near-lossless acceleration of
long context llm inference with adaptive structured sparse
attention, 2024. URL https://arxiv.org/abs/
2406.15486.

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2410.10819
https://arxiv.org/abs/2406.15486
https://arxiv.org/abs/2406.15486

A ARTIFACT APPENDIX

A.1 Abstract

We provide an artifact to demonstrate that representative KV
cache compression methods can reduce memory consump-
tion. Current implementations (e.g., FlashAttention, Page-
dAttention) do not optimize for production-level LLM serv-
ing, resulting in suboptimal throughput performance. We
also provide our tools to facilitate future LLM KV cache
compression studies.

A.2 Description and Requirements

Github Repository. The codes are available in the
following Github repository https://github.com/
LLMkvsys/rethink-kv-compression.

Hardware dependencies. Experiments are conducted on
one NVIDIA A6000 GPU.

Software dependencies. We provide a Docker image with
NVIDIA GPU support for this artifact. We use CUDA
12.1, torch 2.1.2, transformers 4.43.1, and LMDeploy v6.0.1
(modified).

A.3 Setup

To install the artifact, users should clone the repository.

1 git clone git@github.com:LLMkvsys/
rethink-kv-compression.git

2 cd rethink-kv-compression/
3 conda env create -f mlsys_environment.

yml
4 conda activate lmdeploy
5 conda clean -a
6 cd benchmark_thr/src/
7 pip install -e .

We also provide a Dockerfile to help you build a docker
image.

A.4 Evaluation workflow

Given the significant time and resource costs associated with
length and negative sample analysis, we do not recommend
executing these scripts during artifact evaluation. Instead,
we suggest focusing on throughput analysis (Figure 1). We
have provided scripts to facilitate the reproduction of Figure
1 using a single GPU. However, the first row in Figure 1
involves running models with HF transformers, which can
be notably slow in this context. As a result, we have not
included corresponding scripts for this specific part. We
recommend users follow the README as it provides
more detailed explanations.

A.5 Major Claims

The KV cache compression methods show negative com-
putational efficiency in certain scenarios of batch size, se-
quence length. Most KV cache compression methods except
Gear show advantages when serving requests with a heavy
KV cache.

A.6 Experiments

It might take one hour to finish the following experiments.
We provide scripts to measure the prefill and decoding
throughput of quantization-based approaches across var-
ious sequences with a fixed batch size. The benchmark-
ing logs are stored in folders 0 quant normal logs and
0 quant long logs, respectively.

1 cd benchmark_thr/src
2 bash 0_quant_normal_logs/

batch_eval_quant_normal_fixbsz.sh
3 bash 0_quant_long_logs/

batch_eval_quant_long_fixbsz.sh

The following scripts are to measure the prefill and decod-
ing throughput of sparsity-based approaches across vari-
ous sequences with a fixed batch size. The benchmark-
ing logs are stored in folders 0 sparse normal logs and
0 sparse long logs, respectively.

1 cd benchmark_thr/src
2 bash 0_sparse_normal_logs/

batch_eval_sparse_normal_fixbsz.sh
3 bash 0_sparse_long_logs/

batch_eval_sparse_long_fixbsz.sh

We provide scripts to measure the prefill and decoding
throughput of quantization-based approaches across var-
ious batch sizes with a fixed sequence length. The bench-
marking logs are stored in folders 0 quant normal logs and
0 quant long logs, respectively.

1 cd benchmark_thr/src
2 bash 0_quant_normal_logs/

batch_eval_quant_normal_fixlen.sh
3 bash 0_quant_long_logs/

batch_eval_quant_long_fixbsz.sh

We provide scripts to measure the prefill and decoding
throughput of quantization-based approaches across var-
ious batch sizes with a fixed sequence length. The bench-
marking logs are stored in folders 0 sparse normal logs and
0 sparse long logs, respectively.

1 cd benchmark_thr/src
2 bash 0_sparse_normal_logs/

batch_eval_sparse_normal_fixlen.sh
3 bash 0_sparse_long_logs/

batch_eval_sparse_long_fixbsz.sh

https://github.com/LLMkvsys/rethink-kv-compression
https://github.com/LLMkvsys/rethink-kv-compression

A.7 Experiments Results

We provide the following plotting scripts to generate Fig-
ures 1 (e)–(i), respectively. The resulting figures are saved
in the folder demo figs/. To account for system noise, we
recommend that users verify the presence of two key find-
ings: (1) certain KV cache compression methods fail to
outperform FP16 baselines; (2) the decoding throughput
advantages of KV cache compression techniques become
more pronounced in scenarios with heavy KV cache usage.

1 cd benchmark_thr/src
2 # Figure 1 (e) & (i)
3 python 0_plot/plot_normal_fixbsz.py
4 # Figure 1 (f) & (j)
5 python 0_plot/plot_normal_fixseqlen.py
6 # Figure 1 (g) & (k)
7 python 0_plot/plot_long_fixbsz.py
8 # Figure 1 (h) & (i)
9 python 0_plot/plot_long_fixseqlen.py

A.8 Additional Experiments

We conduct length analysis and negative analysis and pro-
vide our tools for your reference. Since this process requires
substantial GPU resources, we offer precomputed, cached
results within our prepared environment. The cached results
comprise the generated responses and associated length and
evaluation metric score.

First, we provide cached results to reproduce Figure 3.

1 cd benchmark_len/
2 python -u plot_kde_shift_dist.py

This script yields the distribution of response length differ-
ence across various compression algorithms. The results are
saved in the current directory. The users can observe that
with the increase of the compression ratio, the distribution of
response difference flattens, and more samples experience
verbose response.

Second, we provide cached results to reproduce Figure 5.

1 cd benchmark_neg/
2 python -u 0_ratio_vs_no_negative.py

This script outputs the figures in which the number of neg-
ative samples changes with the threshold. The results are
saved in the current directory. The users can find that there
are many negative samples even with a threshold of 10%,
indicating the fragility of compression algorithms.

B EVALUATION DETAILS

B.1 Dataset

ShareGPT. We select a subset of requests from
ShareGPT (Anon, 2024) to conduct the experiments of re-
sponse length difference distribution. We refer to the bench-
mark code in vLLM3 to sample 1, 000 requests. Due to
time and resource constraints, we set the maximum number
of generation tokens as 1024 in the evaluation. We also
truncate contexts for input prompts that exceed the model’s
maximum length allowance to ensure they fit within the
model’s capacity.

LongBench. LongBench (Bai et al., 2023) is a task for long
context understanding that covers key long-text application
scenarios, including multi-document QA, single-document
QA, summarization, few-shot learning, code completion,
and synthetic tasks. We keep strictly the evaluation met-
rics and settings in their released codebase 4 to ensure fair
assessments.

B.2 Models

LLaMA Family. The LLaMA family, developed by Meta
using a high-quality corpus, is widely favored by researchers
working on KV cache compression algorithms. Many
choose LLaMA models to evaluate the effectiveness of their
methods. In our performance evaluation, we cover LLaMA-
2-7B, LLaMA-2-13B, and LLaMA-2-70B to emphasize
the advantages of KV cache due to their exorbitant GPU
memory consumption of KV cache. Additionally, LLaMA-
3.1-8B, known for generating high-quality responses and
excelling in long-context tasks, is used in our length distri-
bution and negative sample analysis.

Mistral Family. Similarly to the LLaMA family, many
models from the Mistral family are used to demonstrate the
benefits of KV cache algorithms. Mistral models incor-
porate grouped-query attention (GQA) for faster inference
and are renowned for their exceptional performance. In our
length difference and negative sample analysis, we utilize
Mistral-7B-v0.1 to obtain relevant experimental results.

B.3 Algorithms

KIVI. KIVI (Liu et al., 2024e) is a notable quantization
algorithm for KV cache compression, specializing in per-
channel quantization for key tensors and per-token quanti-
zation for value tensors. We utilize their official implemen-
tation 5. The critical hyperparameters in KIVI are group
size G and the residual length R. G refers to the number of

3https://github.com/vllm-project/vllm/
blob/main/benchmarks/benchmark_serving.py

4https://github.com/THUDM/LongBench
5https://github.com/jy-yuan/KIVI

https://github.com/vllm-project/vllm/blob/main/benchmarks/benchmark_serving.py
https://github.com/vllm-project/vllm/blob/main/benchmarks/benchmark_serving.py
https://github.com/THUDM/LongBench
https://github.com/jy-yuan/KIVI

channels that are grouped for quantization in the key cache,
while R controls the number of most recent tokens that are
kept in full precision. Following the paper’s recommenda-
tions for achieving optimal performance, we have set them
to G = 32, R = 128.

GEAR. GEAR (Kang et al., 2024) is a typical quantiza-
tion error mitigation algorithm. We took their open-source
code6. The key parameters of GEAR are sparsity ratio s
and rank r. Specifically, s specifies the number of retained
full-precision outlier values. r controls the richness of the
low-rank approximation matrix, which recovers the model’s
ability from quantization errors. In line with the default
settings in the official codebase, we set s = 2%, r = 2%.

StreamingLLM. StreamingLLM (Xiao et al., 2023) is an
attention sparsity-based cache eviction algorithm. It retains
only a limited number of initial and most recent tokens. The
key parameters for controlling the sizes of the initial and
recent tokens are set to 64 and 448, respectively, resulting
in a total cache size of 512.

H2O. H2O (Zhang et al., 2024f) is another widely-used
cache eviction algorithm that dynamically calculates and
refreshes the KV cache. The parameters for the heavy
hitter oracle token size and the recent size are configured to
64 and 448, respectively, with a total cache size of 512.

B.4 LLM Serving Engine.

Transformers Library. We directly use Torch 2.1.2 and
Transformers 4.43.1 to measure the throughput perfor-
mance.

FlashAttention. FlashAttention7 can fully exploit the GPU
resources to realize fast and memory-efficient attention oper-
ation. In our throughput evaluation, we measure the through-
put performance of TRL+FA by enabling FlashAttention
2.5.6 in the transformers library.

LMDeploy. LMDeploy8 allows LLM developers to com-
press, deploy, and serve various LLMs. It naturally supports
the functionality of PagedAttention and FlashAttention. We
implement various KV cache algorithms based on LMDe-
ploy v6.0.1. We chose LMDeploy for three reasons.

First, LMDeploy stands out by implementing more efficient
quantization kernels than vLLM. This results in superior
performance in KV cache compression approaches com-
pared to vLLM, despite the significant attention vLLM has
garnered. Note that the primary focus of our paper is on KV
cache compression approaches, with a particular emphasis

6https://github.com/opengear-project/GEAR
7https://github.com/Dao-AILab/

flash-attention
8https://github.com/InternLM/lmdeploy/

tree/main

on quantization. A prior benchmark study conducted by
BentoML (BentoML) uncovers that LMDeploy obtains the
best throughput performance with 4-bit quantization.

Second, LMDeploy offers a better way for faster develop-
ment of KV cache compression algorithms than vLLM. The
author of KVI has stated the challenges of integrating the
KIVI algorithm into vLLM as early as April 2024 (kiv). As
of now, there has been no significant progress on this front.

Third, our conclusions, except for Observation 2, do not
pertain to any specific serving features of the inference en-
gines. Consequently, they remain independent of the LLM
inference engine used. For Observation 2, our objective is
to explore the impact of KV cache compression methods
like sparsity and quantization on popular serving features
(e.g., Page Attention, Flash Attention) rather than focusing
on any particular serving engine. As long as the selected in-
ference engines support the efficient implementation of the
necessary serving features (Page Attention, FlashAttention),
it will not affect Observation 2.

B.5 Hardware Environment.

Our evaluation experiments are conducted on a GPU node
with four NVIDIA A6000 GPUs interconnected via NVLink
and powered by an Intel Xeon Gold 6326 CPU at 2.90 GHz.

C MORE RESULTS OF THROUGHPUT
ANALYSIS

We evaluate throughput performance on a GPU node with
four NVIDIA A6000 GPUs interconnected via NVLink and
powered by an Intel Xeon Gold 6326 CPU at 2.90 GHz. We
exclude the initialization overhead and average the through-
put performance over three times for fair comparison. We
add more experiments to demonstrate the generality of our
statement in the throughput analysis as follows.

First, we measure the prefill and decoding throughput on
TRL, TRL+FA, and LMD using Mistral-7B and LLaMA-
13B, depicted in Figure 8 (a-b) and Figure 10 (a-b), respec-
tively. The relative speedup of the StreamingLLM algorithm
in the decoding throughput varies across LLMs and serving
techniques, as shown in Figure 8 (c-d) and Figure 10 (c-d).
The high speedup from TRL does not mean the significant
speedup benefits.

Second, we measure the prefill and decoding throughput on
LMD with various batch and prompt lengths in Figure 8
(e-h) and Figure 10 (e-l). We have observed that these Large
Language Models (LLMs) show negative speedup in certain
prompt lengths and batch sizes, which is consistent with
the statement mentioned in Section 4. However, the prompt
lengths and batch sizes that lead to this disadvantage vary
among different LLMs. Worth noticing that in Figure 10, we

https://github.com/opengear-project/GEAR
https://github.com/Dao-AILab/flash-attention
https://github.com/Dao-AILab/flash-attention
https://github.com/InternLM/lmdeploy/tree/main
https://github.com/InternLM/lmdeploy/tree/main

LMD TRL TRL+FA

1 2 4 8 16
Batch Size

0

250

500

D
 T

hr
 (T

/S
)

(a) Decode, KV Length 256

1 2 4 8 16
Batch Size

100

200

300

D
 T

hr
 (T

/S
)

(b) Decode, KV Length 2048

5 10 15
Batch Size

0.6

0.8

1.0

D
 S

pe
ed

up

(c) Decode, KV Length 256

5 10 15
Batch Size

0.5

1.0

1.5

D
 S

pe
ed

up

(d) Decode, KV Length 2048

FP16 K-4 G-4 H2O Stream

5 10 15
Batch Size

4000

6000

P
Th

r
(T

/S
)

(e) Prefill, Prompt 1024

2000 4000
Prompt Length

4000

6000

P
Th

r
(T

/S
)

(f) Prefill, Batch 1

5 10 15
Batch Size

250

500

D
 T

hr
 (T

/S
)

(g) Decode, KV Length 1024

2000 4000
KV Length

42

44

D
 T

hr
 (T

/S
)

(h) Decode, Batch 1

Figure 8. Throughput analysis of Mistral-7B (a-b) The FP16 decoding throughput on TRL (with and without FlashAttention) and
LMDeploy (LMD). (c-d) The speedup of the KIVI-4bit algorithm on TRL and LMD. (e-h) The prefill and decoding throughput for inputs
of moderate size.

FP16 K-4 G-4 H2O Stream SnapKV

5 10 15
Batch Size

2500

5000

7500

P
Th

r
(T

/S
)

(a) Prefill, Prompt 1024

2000 4000
Prompt Length

2500

5000

P
Th

r
(T

/S
)

(b) Prefill, Batch 1

5 10 15
Batch Size

250

500

D
 T

hr
 (T

/S
)

(c) Decode, KV Length 1024

2000 4000
KV Length

42.5

45.0

D
 T

hr
 (T

/S
)

(d) Decode, Batch 1

Figure 9. Throughput analysis of LLaMA-7B, with KV cache compression algorithm SnapKV (Li et al., 2024b) integrated.

omit the throughput information for the KIVI-4 algorithm
due to the out-of-memory issue when evaluating on LLaMA-
13B with a single A6000 GPU.

Third, we present additional findings on tensor parallelism in
Figures 11, 12, 13, and 14. Performance improvements with
larger tensor parallelism (TP) are notably evident during the
prefill stage for various compression methods. However,
larger TP does not confer significant benefits in the decod-
ing stage when the batch size is small. Our observations
indicate that the throughput advantages derived from KV
cache compression typically become more pronounced
under heavy evaluation settings (e.g., batch size, KV length,
and model size).

D MORE RESULTS OF LENGTH ANALYSIS

First, we outline the configurations of the compression al-
gorithms in Section 4.3. For text generation, we fix the
temperature as 1 for the FP16 baseline and compression
methods. We also vary T to assess the impact of length
differences from the hyperparameter T in Table 5. For
quantization-based methods, we only vary the quantization

bits for KIVI and GEAR. For sparsity-based methods, we
only vary the KV cache length for StreamingLLM and
H2O. All other compression-related configurations remain
consistent with those detailed in Appendix B.3.

Second, we supply more experimental results on Mistral-7B
to demonstrate the generality of our statement in Obser-
vations 3 and 4, respectively. Particularly, we perform a
similar experimental analysis as Table 5 on Mistral-7B and
show the ratio (%) of samples experiencing response length
variations induced by temperature and KV cache compres-
sion in Table 9. Similar to the LLaMA model, KV cache
compression shows a clear tendency to produce verbose
responses in Mistral-7B. We also repeat the experiments in
Figure 4 and show the results of Mistral-7B in Figure 15.
The impact of the compression ratio on the response length
remains consistent between the LLaMA and Mistral. We
also measure the end-to-end latency for various compres-
sion algorithms on Mistral-7B, as shown in Figure 16. Our
observation is that the latency benefits of KV cache com-
pression are not prominent, and the verbose response length
should be accounted for performance measurement of vari-
ous KV cache compression.

LMD TRL TRL+FA

1 2 4 8 16
Batch Size

100
200
300

D
 T

hr
 (T

/S
)

(a) Decode, KV Length 256

1 2 4 8 16
Batch Size

100

200

D
 T

hr
 (T

/S
)

(b) Decode, KV Length 2048

5 10 15
Batch Size

0.75

1.00

1.25

D
 S

pe
ed

up

(c) Decode, KV Length 1024

2 4 6 8
Batch Size

1.00

1.25

D
 S

pe
ed

up

(d) Decode, KV Length 2048

FP16 K-4 G-4 H2O Stream

5 10 15
Batch Size

3000

4000

P
Th

r
(T

/S
)

(e) Prefill, Prompt 1024

2000 4000
Prompt Length

2000

3000

4000
P

Th
r

(T
/S

)

(f) Prefill, Batch 1

1.0 1.5 2.0
Batch Size

2000

2500

3000

P
Th

r
(T

/S
)

(g) Prefill, Prompt 6144

4000 6000 8000
Prompt Length

2000

3000

P
th

r
(T

/S
)

(h) Prefill, Batch 1

5 10 15
Batch Size

100
200
300

D
 T

hr
 (T

/S
)

(i) Decode, KV Length 1024

2000 4000
KV Length

23

24

25

D
 T

hr
 (T

/S
)

(j) Decode, Batch 1

5 10 15
Batch Size

100

200

300

D
 T

hr
 (T

/S
)

(k) Decode, KV Length 6144

4000 6000 8000
KV Length

22

24

D
 T

hr
 (T

/S
)

(l) Decode, Batch 1

Figure 10. Throughput analysis of LLaMA-13B: (a-b) The FP16 decoding throughput on TRL (with and without FlashAttention) and
LMDeploy (LMD). (c-d) The speedup of the StreamingLLM algorithm on TRL and LMD. (e-h) The prefill throughput for various sizes
of inputs. (i-l) The decoding throughput for various sizes of inputs.

FP16
K-4
G-4

FP16-TP2
K-4-TP2
G-4-TP2

FP16-TP4
K-4-TP4
G-4-TP4

5 10 15
Batch Size

5000

10000

P
Th

r
(T

/S
)

(a) Prefill, Prompt 1024

2000 4000
Prompt Length

0

2500

5000

P
Th

r
(T

/S
)

(b) Prefill, Batch 1

5 10 15
Batch Size

0

500

D
 T

hr
 (T

/S
)

(c) Decode, KV Length 1024

2000 4000
KV Length

20

30

40

D
 T

hr
 (T

/S
)

(d) Decode, Batch 1

FP16
H2O
Stream

FP16-TP2
H2O-TP2
Stream-TP2

FP16-TP4
H2O-TP4
Stream-TP4

5 10 15
Batch Size

5000

10000

P
Th

r
(T

/S
)

(e) Prefill, Prompt 1024

2000 4000
Prompt Length

0

2500

5000

P
Th

r
(T

/S
)

(f) Prefill, Batch 1

5 10 15
Batch Size

0

500

D
 T

hr
 (T

/S
)

(g) Decode, KV Length 1024

2000 4000
KV Length

30

40

D
 T

hr
 (T

/S
)

(h) Decode, Batch 1

Figure 11. Throughput analysis of LLaMA-7B, with different tensor parallelism configurations. (a-d) The throughput of quantization-
based methods. (e-h) The throughput of sparsity-based methods.

Third,

FP16
K-4
G-4

FP16-TP2
K-4-TP2
G-4-TP2

FP16-TP4
K-4-TP4
G-4-TP4

5 10 15
Batch Size

4000

6000

8000

P
Th

r
(T

/S
)

(a) Prefill, Prompt 1024

2000 4000
Prompt Length

2000

4000

P
Th

r
(T

/S
)

(b) Prefill, Batch 1

5 10 15
Batch Size

0

250

500

D
 T

hr
 (T

/S
)

(c) Decode, KV Length 1024

2000 4000
KV Length

20

30

D
 T

hr
 (T

/S
)

(d) Decode, Batch 1

FP16
H2O
Stream

FP16-TP2
H2O-TP2
Stream-TP2

FP16-TP4
H2O-TP4
Stream-TP4

5 10 15
Batch Size

2500

5000

7500

P
Th

r
(T

/S
)

(e) Prefill, Prompt 1024

2000 4000
Prompt Length

0

2000

4000

P
Th

r
(T

/S
)

(f) Prefill, Batch 1

5 10 15
Batch Size

0

250

500

D
 T

hr
 (T

/S
)

(g) Decode, KV Length 1024

2000 4000
KV Length

20

30

D
 T

hr
 (T

/S
)

(h) Decode, Batch 1

Figure 12. Tensor parallelism analysis of LLaMA-13B. (a-d) The throughput of quantization-based methods. (e-h) The throughput of
sparsity-based methods.

FP16
K-4
G-4

FP16-TP2
K-4-TP2
G-4-TP2

FP16-TP4
K-4-TP4
G-4-TP4

5 10 15
Batch Size

5000

10000

P
Th

r
(T

/S
)

(a) Prefill, Prompt 1024

2000 4000
Prompt Length

2500

5000

P
Th

r
(T

/S
)

(b) Prefill, Batch 1

5 10 15
Batch Size

250

500

750

D
 T

hr
 (T

/S
)

(c) Decode, KV Length 1024

2000 4000
KV Length

35

40

D
 T

hr
 (T

/S
)

(d) Decode, Batch 1

FP16
H2O
Stream

FP16-TP2
H2O-TP2
Stream-TP2

FP16-TP4
H2O-TP4
Stream-TP4

5 10 15
Batch Size

5000

10000

P
Th

r
(T

/S
)

(e) Prefill, Prompt 1024

2000 4000
Prompt Length

0

2500

5000

P
Th

r
(T

/S
)

(f) Prefill, Batch 1

5 10 15
Batch Size

0

500

D
 T

hr
 (T

/S
)

(g) Decode, KV Length 1024

2000 4000
KV Length

30

40

D
 T

hr
 (T

/S
)

(h) Decode, Batch 1

Figure 13. Tensor parallelism analysis of Mistral-7B. (a-d) The throughput of quantization-based methods. (e-h) The throughput of
sparsity-based methods.

Table 9. The results of length analysis similar to Table 5, but mea-
sured on Mistral-7B.

Metric T=0.9 T=1.1 KIVI GEAR H2O Stream

% of samples D of which ≥ 50% 45.1% 45.9 & 2.8% 0.8% 11.0% 17.3%
% of samples D of which ≤ −50% 17.7% 20.0 % 44.9% 49.4% 14.3% 16.3%

E MORE RESULTS OF NEGATIVE SAMPLE
ANALYSIS

First, the detailed task description of the Long-
Bench used in the negative sample analysis can be

found in https://huggingface.co/datasets/
THUDM/LongBench#task-description. It con-
tains the detailed task description of the LongBench dataset,
including the task name, task type, evaluation metric, and av-
erage length. We use the corresponding task type to collect
the number of negative samples.

Section 3.2 suggests that compression algorithms excel in
proceeding short prompt lengths with no accuracy loss.
Thus, we use LongBench and Llama-3.1-8B-instruct to con-

https://huggingface.co/datasets/THUDM/LongBench#task-description
https://huggingface.co/datasets/THUDM/LongBench#task-description

FP16
K-4
G-4

FP16-TP2
K-4-TP2
G-4-TP2

FP16-TP4
K-4-TP4
G-4-TP4

5 10 15
Batch Size

1500

1750

2000

P
Th

r
(T

/S
)

(a) Prefill, Prompt 1024

2000 4000
Prompt Length

500

1000

1500

P
Th

r
(T

/S
)

(b) Prefill, Batch 1

5 10 15
Batch Size

100

200

D
 T

hr
 (T

/S
)

(c) Decode, KV Length 1024

2000 4000
Prompt Length

5

10

15

D
 T

hr
 (T

/S
)

(d) Decode, Batch 1

FP16
H2O
Stream

FP16-TP2
H2O-TP2
Stream-TP2

FP16-TP4
H2O-TP4
Stream-TP4

5 10 15
Batch Size

500

1000

1500

P
Th

r
(T

/S
)

(e) Prefill, Prompt 1024

2000 4000
Prompt Length

500

1000

P
Th

r
(T

/S
)

(f) Prefill, Batch 1

5 10 15
Batch Size

100

200

D
 T

hr
 (T

/S
)

(g) Decode, KV Length 1024

2000 4000
Prompt Length

5

10

15

D
 T

hr
 (T

/S
)

(h) Decode, Batch 1

Figure 14. Tensor parallelism analysis of LLaMA-70B. (a-d) The throughput of quantization-based methods. (e-h) The throughput of
sparsity-based methods.

200 150 100 50 0 50 100
Response Length Difference (%)

10 3

10 2

10 1

Lo
g

De
ns

ity

KIVI-2
KIVI-4

(a) KIVI

200 150 100 50 0 50 100
Response Length Difference (%)

10 6

10 5

10 4

10 3

10 2

Lo
g

De
ns

ity

GEAR-2
GEAR-4

(b) GEAR

200 150 100 50 0 50 100
Response Length Difference (%)

10 4

10 3

10 2

Lo
g

De
ns

ity

H2O-256
H2O-512

(c) H2O

200 150 100 50 0 50 100
Response Length Difference (%)

10 5

10 4

10 3

10 2

10 1

Lo
g

De
ns

ity

Stream-256
Stream-512

(d) StreamingLLM

Figure 15. The Mistral-7B’s distribution of response length difference across different compression algorithms.

20 21 22 23 24 25

Latency (s)

0

50

100

C
D

F
(%

)

FP16
KIVI
GEAR

H2O
Stream

Figure 16. The Mistral-7B’s CDF of the end-to-end latency (sec-
onds) of various algorithms.

21 23 25

Thresold (%)

600

700

#
 N

eg
at

iv
e

Sa
m

pl
es

KIVI
GEAR
Quant (C)

(a) Quantization

21 23 25

Thresold (%)

600

800

1000

#
 N

eg
at

iv
e

Sa
m

pl
es

H2O
Stream
Sparse (C)

(b) Sparsity

Figure 17. The threshold (x-axis) versus the number of negative
samples (y-axis) for quantization-based (a) and sparsity-based (b)
methods. The experimental results are measured on Mistral-7B.

69.4%

21.5%
5.0%

KIVI

58.5% 31.6%

9.1%
GEAR

42.4%

32.0%

H2O

38.4%

27.6%

StreamingLLM

Summarization QA Code Few shot Synthetic

Figure 18. The pie chart details the proportion of negative samples
over task types across varying compression algorithms on Mistral.

duct negative sample analysis. We assess the average scores
of LLaMA-3.1-8B-instruct for baseline, KIVI, GEAR, H2O,
and StreamingLLM on the LongBench test dataset are 41.2,
41.3, 40.9, 39.1, and 38.9, respectively. We also cover
more experimental results about negative sample analysis
on Mistral-7B in Section 3.2. In Mistral-7B, the average
scores for baseline, KIVI, GEAR, H2O, and StreamingLLM
on the LongBench test dataset are 33.3, 33.4, 33.4, 31.8,
and 30.4, respectively. First, we vary the threshold in Algo-
rithm 1 to uncover the relationship between the threshold
and the number of negative samples on Mistral-7B, as shown
in Figure 15. We conclude that the minor accuracy loss from
compression algorithms does not indicate that each sample

experiences a minor performance loss. It is not easy to
eliminate the existence of negative samples. Second, we
present the sensitivity of task types to KV cache compres-
sion in Figure 18 on Mistral. Similar to LLaMA, performing
KV cache compression on Mistral-7B considerably affects
the accuracy performance on summarization and QA tasks.
Overall, the experimental results further reinforce our state-
ment in Section 4.4.

Table 10. The accuracy of the length predictor for Mistral-7B.
Tools FP16 KIVI GEAR H2O Stream

Length Predictor 92.6% 92.3% 88.8% 92.8% 89.5%

F THROUGHPUT PREDICTOR

We use Vidur’s released code9 to realize the throughput
predictor. The runtime time information of each oper-
ator in LLMs is profiled on A6000 NVIDIA RTX. The
key difference between different compression algorithms
and the FP16 baseline hinges upon the attention operation.
Hence, apart from attention operators, all other operators
are reused among different KV cache compression algo-
rithms. We enumerate various combinations of batch sizes,
sequence lengths, and stages to attain ample profiled runtime
speed information for LLaMA-7B and Mistral-7B. Vidur
provides the implementation code to construct and opti-
mize the throughput predictor. We define the accuracy as
(1− |T pred−T gt|

T gt)× 100%.

G LENGTH PREDICTOR

We collect the response length information from ShareGPT
to synthesize the response length dataset. To account for
the long-context prompt, we choose LongFormer with a
maximum sequence size of 4096. We set the input of the
length predictor as the input response and the target of the
length predictor as the ratio between the response length
and the prompt length. We define the accuracy as (1 −
|Lpred−Lgt|

Lgt) × 100%. Table 6 has reported the prediction
results on LLaMA3-8B. We include the prediction results
on Mistral-7B in the second row of Table 10. Overall, the
bert-based length predictor can deliver accurate response
length prediction for LLaMA and Mistral models.

Table 11. The measured score of various algorithms evaluated on
the negative sample benchmark dataset and Mistral-7B using Long-
Bench’s provided metric.

Task Type Baseline KIVI GEAR H2O Stream

Summarization 27.2 15.2 16.6 15 11.1
Question Answering 26.8 17.6 16.4 18.0 15.4
Code 90.8 47.5 47.5 64.7 59.6

9https://github.com/microsoft/vidur

H PERFORMANCE ON NEGATIVE
BENCHMARK

We use the Mistral-7B and report the corresponding mea-
sured score on the negative sample benchmark dataset in
Table 11.

https://github.com/microsoft/vidur

