
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HOW REASONING EVOLVES FROM POST-TRAINING
DATA IN SEQUENTIAL DECISION-MAKING DOMAINS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study how reasoning evolves in a language model – from supervised fine-
tuning (SFT) to reinforcement learning (RL) – by analyzing how a set of
theoretically-inspired datasets impacts language model performance in a verifi-
able Markov Decision Process (MDP) such as chess. We find that fine-tuning
a model to directly predict the best move leads to effective RL and the strongest
downstream performance – however, the RL stage elicits unfaithful reasoning (rea-
soning inconsistent with the chosen move). Alternatively, training on multi-move
trajectories yields comparable downstream performance with faithful reasoning
and more stable RL. We show that RL induces a substantial positive shift in the
distribution of move quality and reduces hallucination rates as a side effect. Fi-
nally, we find several SFT-checkpoint metrics – metrics spanning evaluation per-
formance, hallucination rates, and reasoning quality – to be predictive of post-RL
model performance. We release checkpoints and final models as well as train-
ing data, evaluations, and code which allowed us to surpass leading open-source
reasoning models in chess with a 7B-parameter model1.

1 INTRODUCTION

What is required to train a language model to reason through RL? Several ingredients appear critical
– a strong base model and a compatible domain are sensible starting points. But what is a strong
base model? And once you have a domain, how do you train it to reason effectively?

We seek to address these motivating questions by training a language model to reason in a verifiable,
sequential decision process. Specifically, we choose chess as our focus because of several convenient
elements: intrinsic difficulty for LLMs, established theory, favorable structure (episodic MDP), large
datasets, and an efficient oracle (chess engines) for verifiable rewards and high-quality synthetic data
generation. As a result, we can measure how different training data influences our language model
through SFT and how RL further evolves reasoning from this checkpoint in a controlled setting.

Language-based reasoning (OpenAI, 2024) has emerged as a promising technique to advance lan-
guage model capabilities, although much research remains confined to specific domains such as
math and coding. Reasoning, often characterized as extending a model’s "chain-of-thought" behav-
ior (Wei et al., 2022) using methods such as RL, benefits from these domains being clearly verifiable:
the math is correct or the code passes all tests. This verifiable nature – combined with downstream
applicability and skill transfer – has stimulated research in these specific domains. As a result, rea-
soning models have achieved profound results across many related benchmarks (OpenAI, 2025a;
Anthropic, 2025; Google DeepMind, 2025), long-duration tasks (Kwa et al., 2025; METR, 2025),
and even earned an International Math Olympiad gold medal (DeepMind, 2025; OpenAI, 2025).

Although recent work explores reasoning in more subjective domains (Whitehouse et al., 2025)
through techniques such as "LLM-as-a-judge" (Zheng et al., 2023), we focus here on those that are
verifiable. The core verifiable domains – math and coding – benefit from years of continued research
that has established a corpus of high-quality training data which produces strong out-of-the-box base
model performance. While we benefit from stronger general base models, working on these explored
domains would pose a challenge in isolating the influence of our training interventions.

1Code and models available at lang-chess.

1

https://github.com/anonymous-hippopotamus/lang-chess


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Following initial data inclusion experiments, we scaled SFT on our two best-performing
datasets. Both resulted in comparably strong final evaluation performance, but training on optimal
move trajectories (Best Line) led to more stable RL and faithful reasoning compared to training on
single best moves (Best Move).

Chess thus emerges as an attractive domain for studying reasoning. Language models have histori-
cally struggled with chess (Acher, 2023; Dynomight, 2024) and even state-of-the-art reasoning mod-
els still falter – often responding with illegal moves or simple blunders as seen in the August 2025
Kaggle AI Chess Exhibition (Kaggle & Google DeepMind, 2025). Models underperform partly
because chess data, while abundant, is rarely emphasized in pretraining; further, the game’s combi-
natorial structure makes generalization difficult. While this poses a difficulty, access to superhuman
verification (in chess engines) provides an efficient method for verifiable rewards and synthetic data
generation. All these features make chess a compelling testbed for reasoning.

Motivated by this setting, we train a 7B-parameter model on custom datasets using both SFT and
RL to achieve performance surpassing gpt-oss-120b (OpenAI, 2025b) on several benchmarks. Our
study centers on the following questions which we will address:

• Q1: How do different datasets (e.g., programmatically generated, synthetic rejection sampling,
synthetic from a harness) impact downstream performance after SFT and RL?

• Q2: How does RL influence a model’s qualitative behaviors (e.g., move quality distribution, rea-
soning strategies used, rate of hallucination)?

• Q3: Which SFT-checkpoint metrics are predictive of final RL performance?

We show that focused SFT on predicting a single best move (Best Move) leads to strong performance
but unfaithful reasoning through RL; on the contrary, training on multi-step move trajectories (Best
Line) has more stable RL and faithful reasoning. We find that RL leads to fewer hallucinations and
a substantial positive shift in move quality, and we see that several SFT-checkpoint metrics (both
qualitative and quantitative) are predictive of final RL performance.

2 RELATED WORK

2.1 REASONING IN LANGUAGE MODELS

Reasoning in causal language models can be interpreted as self-guided search that makes a task more
tractable. Consider a numerical math problem: effective reasoning should increase the probability
of producing the correct number more than if the model had immediately predicted the final answer.
Note that this reasoning need not be wholly interpretable – for example, it can exist in continuous
space (Hao et al., 2024) or shift between languages (DeepSeek-AI et al., 2025) – what ultimately
matters is that the intermediate steps are beneficial to the model. For this work we will focus on
language-based reasoning.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Performance of our best reasoning model trained from a Qwen2.5 7B-Instruct base across
our evaluations. Note that trivial performance (i.e., random guessing) is 0.2 for the Best Move and
Worst Move tasks. See Appendix B for example evaluation questions.

The era of reasoning models, notably initiated with OpenAI’s release of o1 (OpenAI, 2024), builds
upon much prior work in self-guided in-context adaptation. Models, when told to work "step by step"
and write down intermediate results on a "scratchpad" (Nye et al., 2021), saw performance improve-
ment on multi-step computations – this result was reinforced at scale and termed "chain-of-thought"
in later work (Wei et al., 2022). Further, these reasoning traces can be used for iterated improve-
ment through fine-tuning on successful generations as evidenced by STaR (Zelikman et al., 2022).
Quiet-STaR (Zelikman et al., 2024) extended this from fine-tuning by using a reinforcement learning
policy-gradient update in REINFORCE (Williams, 1992) over tokens influenced by intermediate rea-
soning steps. This iterated bootstrapping using reinforcement learning for policy-gradient updates
has been the primary underlying method fueling the latest developments in reasoning models.

Following OpenAI’s release of o1, many leading systems began incorporating similar reasoning
techniques to improve performance. Notably, DeepSeek-R1 (DeepSeek-AI et al., 2025) and Kimi
k1.5 (Kimi Team et al., 2025) were among the first reasoning models to effectively approach state-
of-the-art ability and publicize the underlying training methods.

2.2 REASONING THROUGH RL

While there exist several effective methods for training models to reason such as in-context prompt-
ing (Wei et al., 2022; Kojima et al., 2023), model distillation (DeepSeek-AI et al., 2025), or SFT on
successful outputs (Zelikman et al., 2022; Yuan et al., 2023), we focus our attention on the setting
of applying RL to improve model reasoning.

RL has been used as an effective tool to guide model behavior with Ouyang et al. (2022) inciting the
viral ChatGPT moment that brought language models to public attention. Successful RL – regardless
of the setting – requires valuable reward signals; for language models these rewards can be generated
using the following methods: rewards can be parsed and automatically calculated in verifiable tasks
(Shao et al., 2024), determined directly through human judgment (Christiano et al., 2017), scored
with a learned reward model (Ouyang et al., 2022), or elicited using a language model as a judge
(Whitehouse et al., 2025). Rewards can be generated for the entire outcome or at intermediate steps
(Lightman et al., 2023), and learned value functions can approximate credit-assignment at the token-
level (Schulman et al., 2017) or reward can be indiscriminately applied over a full sequence (Shao
et al., 2024). While this covers many methods in RL for language models, it is not exhaustive.

A common family of algorithms used in RL for language models is Proximal Policy Optimization
(PPO) (Schulman et al., 2017) – an actor-critic method. Because actor-critic methods require learn-
ing a value function to address the credit-assignment problem (which can be computationally expen-
sive and experience instability), new methods such as Group Relative Policy Optimization (GRPO)
(Shao et al., 2024; DeepSeek-AI et al., 2025) have emerged to remove this learned value function
requirement. GRPO has further evolved through variants such as Dr. GRPO (Liu et al., 2025), which
removes sequence-level length normalization, and DAPO (Yu et al., 2025), which removes the KL
penalty, increases the clipping bound to encourage exploration, and addresses length normalization
issues observed in GRPO.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.3 CHESS ENGINES

Computer scientists have developed grandmaster-level chess systems built on three notable tech-
niques: 1) Classical search-based engines such as IBM Deep Blue (Campbell et al., 2002) or Stock-
fish that use a minimax-based search algorithm (commonly alpha-beta pruning), 2) neural search-
based systems such as AlphaZero (Silver et al., 2017) and its open-source implementation in Leela
Chess Zero that learn policy functions through RL self-play combined with Monte Carlo Tree Search,
and 3) searchless neural systems such as Google DeepMind’s chess transformer that predicts a move
directly from a board state (Ruoss et al., 2024). The respective 40/15 Elo scores of Stockfish and
Leela Chess Zero as of August 8, 2025 are 3645 and 3444 (Computer Chess Rating Lists, 2025),
and DeepMind’s chess transformer reached a Lichess blitz Elo of 2895 (Ruoss et al., 2024). While it
is worth noting that recent versions of Stockfish use neural networks to estimate the value of board
states – it still largely employs the same core algorithm used by classical search-based engines.

As discussed previously, language models struggle in the domain of chess. However, it is worth
mentioning gpt-3.5-turbo-instruct which has an estimated Elo around 1700 (Acher, 2023). While
this anomaly is interesting, this performance isn’t from language-based reasoning – rather it is direct
next move prediction (i.e., only outputs the move to play). Google DeepMind’s chess transformer
validated that a 270 million parameter transformer is capable of reaching grandmaster-level chess
without search (this was achieved by learning a value function, though a policy function was also
tested). As far as the authors are aware, no language model has achieved competitive-strength chess
ability through language-guided reasoning and the best reasoning model in chess is OpenAI o3
which won the 2025 Kaggle AI Chess Exhibition (Kaggle & Google DeepMind, 2025).

3 BACKGROUND

Our analysis is focused on the Qwen2.5-7B-Instruct model (Qwen et al., 2025). Given the baseline
model has insufficient ability, we first conducted SFT prior to the RL stage. We began with a full
set of data inclusion studies – from SFT to RL – to determine the most effective recipe before doing
a final, scaled training run on our leading mix.

3.1 BOARD AND MOVE REPRESENTATION

For all training and evaluation we provide the board state in a visual ASCII-format. We ran prelim-
inary tests on several board formats including Forsyth-Edwards Notation (FEN), FEN with space
delimiters, and a visual ASCII-format. While these showed similar quantitative performance, we
opted for the visual format following subjective qualitative analysis. Appendix A provides exam-
ples of the considered board states and discusses tokenization limitations in each. Note that our
board representation omits move repetitions due to dataset limitations – in competition chess, repe-
titions can be used as a termination condition. However, since none of our evaluations incorporates
repetitions, we can view our representation as a Markov-complete state.

For move representation, we follow DeepMind’s chess transformer (Ruoss et al., 2024) and represent
all moves in Universal Chess Interface (UCI) format (e.g., e1e2). This decision was made in lieu
of formats such as Standard Algebraic Notation (SAN) which may be more commonly represented
in training data – SAN has intricacies that could evoke errors avoidable by using UCI notation.

3.2 EVALUATIONS AND RL ENVIRONMENT

We created four custom tasks that we use for evaluations and the RL training environment. For the
Predict Move task, we provide a board and ask the model to play the best move – no list of legal
moves is provided. We measure both the ratio of legal moves generated as well as the move quality
for legal moves provided. Move quality is measured as the normalized rank among legal moves
(∈ [0, 1]) as determined by a chess engine – where the best move is given a score of 1 and the worst
move a score of 0. For the Best Move and Worst Move tasks, we provide a board and a set of 5
moves. The task is to choose the best move (and worst move, respectively) of the candidate moves
provided. For both tasks, candidate moves are sampled such that there is a threshold of move quality
(determined by a chess engine) separating the correct answer from other candidates. Finally, the
Legal Moves task asks the model to, for a given board and piece, list out all the legal moves that

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Samples from a selection of the custom datasets. The gray font represents an abbreviation
of the core prompt – in all samples the model is trained with a verbose instructive prompt and
provided with a board in our visual ASCII-format. Full samples are included in Appendix C.

piece can make. Results are computed as intersection over union (IoU) versus the ground truth. We
provide example questions in Appendix B.

3.3 DATASETS

We created several theoretically-inspired datasets to study training dynamics from SFT to RL. Con-
sider that chess can be represented as an MDP. At time t there is a state st ∈ S and playing a ply
(i.e., half-move) from the player’s perspective constitutes an action at ∈ A(st). We abstract the
opponent’s move to the environment, viewing a state transition as st+1 ∼ T (st, at). Additionally,
for each board state-action pair there is a reward rt = R(st, at) which we can approximate using a
shaped dense reward (centipawn delta, i.e., the change in an engine’s board evaluation measured in
hundredths of a pawn) from a chess engine: rt = γVengine(st+1) − Vengine(st) with γ = 1. We will
use this formulation to discuss motivation for several of our custom datasets.

We provide a brief description of each dataset and will further elaborate on data design and mo-
tivation within the context of experimental results in Section 4. We include detailed explanations
of each dataset and full examples in Appendix C – abbreviated examples are included in Figure 3.
Regarding our datasets, we organize them into the following four categories:

• General Instruction Following: Specifically, Magpie Llama 3.3 70B (Xu et al., 2024).
• Rejection Sampling: We generate outputs from Llama 4 Maverick (Meta AI, 2025) on our four

evaluation types. We chose Llama 4 Maverick for qualitative and quantitative performance, retain-
ing samples from the Best Move and Worst Move evaluations if correct and keeping outputs from
the Legal Moves and Predict Move evaluations if above a threshold.

• Guided Synthetic: We prompt Llama 4 Maverick and gpt-oss-120b with a programmatically
generated harness. Specifically, we provide a beginning board, 5 plies (the first ply being a move
candidate and following plies being optimal play from a chess engine), and the ending board state.
The task is to generate an explanation of how the proposed candidate move will play out, ending
with a final verdict for the proposed move.

• Programmatically Generated Data:

– Factual Board Answering: We build on top of a chess engine to generate simple question-
answer (QA) pairs for a given board. These questions may ask if a move is legal, which
square is threatening a specific piece, or how many legal moves a piece has. We combine
multiple QA pairs for each sample.

– Verbalized Alpha-Beta Pruning: We use a custom program built upon Stockfish to sam-
ple moves, rollout the line of play for each move (with branching and board values), and
verbalize rollouts and minimax decisions in natural language. We explicitly build in tree
search reasoning strategies and sample poor moves to verbalize the process of pruning, and
we leverage a large, custom prompt bank to add diversity to natural language outputs.

– Best Move: Given a board, immediately predict the best move in UCI notation.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

– Best Line: Given a board, predict the optimal line of play (4 − 6 plies) ending with the
expected centipawn delta from playing this line.

3.4 TRAINING ENVIRONMENT

All SFT is conducted using LlamaFactory (Zheng et al., 2024) and all RL is conducted using veRL
(Sheng et al., 2025). We utilize Dr. GRPO (Liu et al., 2025) for our RL optimization algorithm
and employ the Clip-Higher strategy with no KL divergence per Yu et al. (2025). A full list of
hyperparameters for both SFT and RL are included in Appendix H.

4 KEY FINDINGS

We ran a series of inclusion analyses to understand the efficacy of each data type and scaled our best-
performing recipes. Figure 2 highlights the performance of our best reasoning model. We found the
Best Move and Best Line datasets to be most effective – especially when lightly supplemented with
our other, less effective datasets. Our scaled runs build off of the Best Move - All and Best Line -
All datasets that use this dataset diversity. The best final performance was achieved by first training
Qwen2.5 7B-Instruct on 60 million tokens (Best Move - All data) followed with 60 million tokens
(Best Line - All data). Appendix D provides further detail on our experiments.

Figure 4: RL training performance on our scaled SFT-checkpoints. Left: Train reward and tokens
per response (smoothed using an exponential moving average with decay factor 0.9). Right: Reward
on the held-out evaluation set during training. The Best Move dataset, while having strong ending
performance, experienced more unstable RL compared to scaled runs trained on Best Line data.

4.1 Q1: HOW DO DIFFERENT DATASETS IMPACT DOWNSTREAM PERFORMANCE AFTER SFT
AND RL?

Multitask training is beneficial for a fixed token budget, yielding higher move quality, less reward
hacking, and a generally more robust model. This is shown by a comparison between Rejection
Sampling (Predict Move) and Rejection Sampling (All Evals): for the former we SFT and conduct
RL on only the Predict Move task – for the latter we use all tasks. Our experimental results (Figure
5) led to these takeaways. We incorporate multitask training in all following experiments.

The most effective datasets were dense with difficult, high-quality tokens. Consider the Factual
Board Answering dataset: we designed this dataset to sample multiple QA pairs from a set of custom
generators built atop a chess engine. The motivation is to force the model to embed complex board
understanding in its latent layers through these immediate (often 1 token) responses; however, we
find this dataset’s performance comparable to our initial Rejection Sampling (All Evals) experiment.
That is, latent board understanding did not result in a better reasoning model. If we compare this
with a similarly dense task in Best Move (predict the best move directly) or Best Line (generate the

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 5: Evaluation results for final RL models from each data inclusion experiment. Within each
metric we split results into three sections: (left) compares single vs. multitask, (middle) compares
the targeted data inclusion experiments, (right) covers our data diversity experiments. Note that in
all experiments we SFT on 15 million tokens and do RL on 8k samples. In the single task setting,
RL only uses the Predict Move task; in all other settings the 8k samples are split evenly between our
four task types. See Appendix D for detailed results (including exact token distributions).

optimal line of play), we see that performance is better when training on the latter datasets (Figure
5). Intuitively, these more difficult tasks require the model to develop a richer latent understanding
(e.g., playing the best move inherently requires board understanding).

Dataset diversity remains valuable. We see that the All Data experiments for Best Line and Best
Move are superior to their focused counterparts (Figure 5). For these runs, we SFT on nearly all
our data types – this comes despite mixed results on several of the individual inclusion analyses.
Notably, the Verbalized Alpha-Beta Pruning experiment showed it was detrimental for training – we
created this dataset as it is hallucination-free and includes rollouts and value functions (instilling
V (st) and T (st, at)). However, it possesses a lower density of high-quality tokens (moves and
valuations) and is surrounded by memorizable prompts. The Guided Synthetic dataset produced
mixed performance as well, although we will discuss unique results from this dataset in the following
section. Regardless, limited inclusion of all data (even marginal datasets) was found to be beneficial.

Best Line had more stable RL training than Best Move. Figure 4 outlines RL training performance
for our scaled runs – the models fine-tuned on Best Line data had more stable training dynamics.
One reason may be that training on Best Line data – which includes multiple moves and ends with
a valuation – allows the model to learn a world model for chess (both a value function V (st) and
transition dynamics T (st, at)). This is further supported by the coming discussion on reasoning
faithfulness that reinforces this stability observation.

4.2 Q2: HOW DOES RL INFLUENCE A MODEL’S QUALITATIVE BEHAVIORS?

Multi-step trajectory data led to the most faithful reasoners. Note that we measure faithfulness
with gpt-oss-120b judging alignment of final answers with reasoning traces. Our primary multi-
step trajectory datasets are Guided Synthetic and Best Line – they both incorporate a rollout (in
natural language and UCI, resp.) followed by a valuation (in natural language and as a centipawn
delta, resp.). This structure can be viewed as approximating n-step bootstrapping with n = 2 or 3
depending on ply depth. We can contrast this with the Best Move dataset which approximates a direct
policy function (i.e., learning πθ(at|st) via behavior cloning). Our multi-step trajectory checkpoints
largely retained faithful reasoning through RL – on the other hand, the Best Move dataset became
an unfaithful reasoner through RL, often displaying final, nontrivial answers that were disconnected
from its reasoning trace. Appendix G provides further detail on the reasoning quality measurement
and includes an unfaithful reasoning example.

This is interesting as the unfaithful reasoner improves through RL without defaulting to trivial moves.
Further, this improved ability is not explained by longer generations (Figure 4). One possible expla-
nation we offer is the following: faithful reasoning from multi-step data may arise due to the model
internalizing a chess world model (transition and value functions), whereas unfaithful reasoning may

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 6: Key results highlighting how RL influenced our SFT-checkpoints. Top left: RL on the
Best Move SFT-checkpoint induced unfaithful reasoning whereas checkpoints trained on multi-step
data were more robust. Top right: RL drove a meaningful decrease in hallucination rate as a side
effect of simply maximizing reward on our evaluations. Bottom: Our Best Move + Best Line scaled
run saw a significant distribution shift after RL in its move quality on the Predict Move evaluation
(n = 400). This shift is an improvement on both an absolute and relative basis, highlighting the
efficacy of RL. Appendix G has further detail on our reasoning quality measurement and Appendix
E outlines hallucinations.

result from strong latent capability mixed with weak verbalized reasoning ability. Previous work has
found that models (Turpin et al., 2023) may attempt to rationalize their answers in chain-of-thought
unfaithfully if they are biased; in our case, the model may be attempting to rationalize the move it
has "already decided".

Regardless of reasoning faithfulness, RL drove a substantial positive shift in move quality played
(Figure 6). Not only does RL improve the frequency of the best moves being played but it also
decreased the frequency of low quality moves on an absolute and relative basis. Additionally, RL
reduces the rate of hallucinations within reasoning traces (Figure 6). This result is a side effect
of rewarding correct answers as we do not incentivize factuality – we provide further detail on
hallucinations in Appendix E and show that this result is shared across all data inclusion experiments.

Lastly, we analyzed reasoning strategy usage at both the SFT and RL model stages. This follows
prior work (Gandhi et al., 2025; Zeng et al., 2025) showing that effective reasoning models tended to
utilize more reasoning strategies. We did not see clear trends in our analysis apart from our weaker
models – specifically those more prone to reward hacking – almost exclusively reducing the usage
of reasoning strategies through RL. In contrast, stronger models had mixed usage trends. We defer
to Appendix F for further detail.

4.3 Q3: WHICH SFT-CHECKPOINT METRICS ARE PREDICTIVE OF FINAL RL PERFORMANCE?

Finally, we conducted a simple linear regression analysis comparing metrics from the SFT-
checkpoint with the final RL model’s performance (average over all evaluations). Figure 7 highlights
three SFT-checkpoint metrics that are statistically significant predictors of downstream performance.

Some of this is expected – an SFT model that scores higher on evaluations is likely better suited
for RL. However, we find that more qualitative signals (specifically, referenced move accuracy and
reasoning quality) are also predictive of downstream performance. This shows that an effective SFT-
checkpoint is one that is truthful (low hallucination rate), already an effective reasoner, and exhibits
strong performance in the domain of focus.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 7: Linear regression comparing the final RL model (average score over all evaluations) with
various metrics from its corresponding SFT-checkpoint. Left: Vs. average score over all evaluations.
Middle: Vs. percent of moves referenced during reasoning trace that are legal (parsed by Llama
4 Maverick). Right: Vs. reasoning quality (mean over all reasoning quality metrics as judged by
gpt-oss-120b). Shaded region represents the 95% confidence intervals.

5 LIMITATIONS & FURTHER DISCUSSION

To begin, the intention of this work has always been to study general reasoning properties in lan-
guage models. Thus, while the final evaluation of our model is a welcome result, we focused much
of our effort on understanding the qualities and development of reasoning; this means that there
are many methods we believe could further improve a chess reasoning model beyond our final RL
model. For example, in full-game play our final RL model had poor performance against OpenAI
o3. We suspect distribution mismatch: training emphasized mid- and late-game positions to reduce
trivial moves, which likely degraded opening play and hurt head-to-head results versus an opponent
with stronger opening theory.

We also have identified several unexplored techniques that could further improve our final RL model.
We minimally experimented with reward function tuning in our RL environment and expect focused
effort could improve performance – particularly on the Predict Move task. Further, incorporating
multi-turn RL and chess puzzles could yield further improvement as these settings more closely
mimic a full chess game.

Additionally, we would like to highlight several limitations to this work. We acknowledge that our
experiments were confined to Qwen2.5 7B-Instruct – while it would have been valuable to replicate
on distinct base models, due to constraints this was not pursued. Additionally, we chose gpt-oss-
120b as our comparator because, in tests against Kimi K2 and DeepSeek-R1-0528, it showed state-
of-the-art open-source performance and was more convenient to run with our available resources.

6 CONCLUSION

We conduct a detailed study of how various custom datasets influence training dynamics through
SFT and RL in the domain of chess. Our analysis highlights that training to predict the best move
directly produces strong downstream performance but comes with unfaithful reasoning. Instead,
training on multi-move trajectories delivers similar performance with faithful reasoning. We find
that RL leads to fewer hallucinations and a substantial positive shift in move quality, and we see
that several SFT-checkpoint metrics (both qualitative and quantitative) are predictive of final RL
performance. We publish all code and data, as well as scaled SFT-checkpoints and RL models.

REFERENCES

Mathieu Acher. Debunking the chessboard: Confronting gpts against chess engines to esti-
mate elo ratings and assess legal move abilities. https://blog.mathieuacher.com/
GPTsChessEloRatingLegalMoves/, September 2023. Blog post by Professor Mathieu
Acher on variability in GPT chess performance.

Anthropic. Introducing claude 4, May 2025. URL https://www.anthropic.com/news/
claude-4. Accessed: 2025-08-15.

9

https://blog.mathieuacher.com/GPTsChessEloRatingLegalMoves/
https://blog.mathieuacher.com/GPTsChessEloRatingLegalMoves/
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Murray Campbell, A.Joseph Hoane, and Feng hsiung Hsu. Deep blue. Artificial Intelli-
gence, 134(1):57–83, 2002. ISSN 0004-3702. doi: https://doi.org/10.1016/S0004-3702(01)
00129-1. URL https://www.sciencedirect.com/science/article/pii/
S0004370201001291.

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences, 2017. URL https://arxiv.org/abs/
1706.03741.

Computer Chess Rating Lists. Ccrl 40/15 rating list, 2025. URL https://computerchess.
org.uk/ccrl/4040/index.html. Accessed: 2025-08-13.

DeepMind. Advanced version of gemini with deep think officially achieves gold-medal standard at
the international mathematical olympiad, July 2025. Accessed: 2025-08-15.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Dynomight. Something weird is happening with llms and chess. https://dynomight.net/
chess/, November 2024. Blog post; exact publication date unspecified, referenced as November
14, 2024.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman. Cogni-
tive behaviors that enable self-improving reasoners, or, four habits of highly effective stars, 2025.
URL https://arxiv.org/abs/2503.01307.

Google DeepMind. Gemini model thinking updates: Gemini 2.5 thinking, March
2025. URL https://blog.google/technology/google-deepmind/
gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking.
Accessed: 2025-08-15.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space, 2024. URL https:
//arxiv.org/abs/2412.06769.

10

https://www.sciencedirect.com/science/article/pii/S0004370201001291
https://www.sciencedirect.com/science/article/pii/S0004370201001291
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1706.03741
https://computerchess.org.uk/ccrl/4040/index.html
https://computerchess.org.uk/ccrl/4040/index.html
https://arxiv.org/abs/2501.12948
https://dynomight.net/chess/
https://dynomight.net/chess/
https://arxiv.org/abs/2503.01307
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2412.06769


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kaggle and Google DeepMind. Introducing kaggle game arena. https://www.kaggle.com/
blog/introducing-game-arena, August 2025. Blog announcement of a new benchmark-
ing platform where AI models compete in strategic games.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1.5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners, 2023. URL https://arxiv.org/abs/2205.
11916.

Thomas Kwa, Ben West, Joel Becker, Amy Deng, Katharyn Garcia, Max Hasin, Sami Jawhar,
Megan Kinniment, Nate Rush, Sydney Von Arx, Ryan Bloom, Thomas Broadley, Haoxing Du,
Brian Goodrich, Nikola Jurkovic, Luke Harold Miles, Seraphina Nix, Tao Lin, Neev Parikh, David
Rein, Lucas Jun Koba Sato, Hjalmar Wijk, Daniel M. Ziegler, Elizabeth Barnes, and Lawrence
Chan. Measuring ai ability to complete long tasks, 2025. URL https://arxiv.org/abs/
2503.14499.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective, 2025. URL https://arxiv.
org/abs/2503.20783.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Meta AI. The llama 4 herd: The beginning of a new era of natively mul-
timodal ai innovation, April 2025. URL https://ai.meta.com/blog/
llama-4-multimodal-intelligence/. Accessed: 2025-08-13.

METR. Details about metr’s evaluation of openai gpt-5. https://metr.github.io/
autonomy-evals-guide/gpt-5-report/, August 2025. Accessed: 2025-08-15.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Au-
gustus Odena. Show your work: Scratchpads for intermediate computation with language models,
2021. URL https://arxiv.org/abs/2112.00114.

OpenAI. Learning to reason with llms. https://openai.com/index/
learning-to-reason-with-llms/, September 2024. Blog release, September 12
2024.

OpenAI. Introducing gpt-5, August 2025a. URL https://openai.com/index/
introducing-gpt-5/. Accessed: 2025-08-15.

OpenAI. Introducing gpt-oss, August 2025b. URL https://openai.com/index/
introducing-gpt-oss/. Accessed: 2025-08-13.

OpenAI. We achieved gold medal-level performance on the 2025 International Mathematical
Olympiad with a general-purpose reasoning LLM! https://x.com/OpenAI/status/
1946594928945148246, July 2025. Tweet.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
URL https://arxiv.org/abs/2203.02155.

11

https://www.kaggle.com/blog/introducing-game-arena
https://www.kaggle.com/blog/introducing-game-arena
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2503.14499
https://arxiv.org/abs/2503.14499
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://metr.github.io/autonomy-evals-guide/gpt-5-report/
https://metr.github.io/autonomy-evals-guide/gpt-5-report/
https://arxiv.org/abs/2112.00114
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-oss/
https://openai.com/index/introducing-gpt-oss/
https://x.com/OpenAI/status/1946594928945148246
https://x.com/OpenAI/status/1946594928945148246
https://arxiv.org/abs/2203.02155


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Anian Ruoss, Grégoire Delétang, Sourabh Medapati, Jordi Grau-Moya, Li Kevin Wenliang, Elliot
Catt, John Reid, and Tim Genewein. Grandmaster-level chess without search. CoRR, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceed-
ings of the Twentieth European Conference on Computer Systems, EuroSys 25, pp. 12791297.
ACM, March 2025. doi: 10.1145/3689031.3696075. URL http://dx.doi.org/10.1145/
3689031.3696075.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm, 2017. URL https://arxiv.org/abs/1712.01815.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 2nd edition, 2018. URL http://incompleteideas.net/book/
the-book-2nd.html.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don't al-
ways say what they think: Unfaithful explanations in chain-of-thought prompting. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 74952–74965. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/ed3fea9033a80fea1376299fa7863f4a-Paper-Conference.pdf.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Chenxi Whitehouse, Tianlu Wang, Ping Yu, Xian Li, Jason Weston, Ilia Kulikov, and Swarnadeep
Saha. J1: Incentivizing thinking in llm-as-a-judge via reinforcement learning, 2025. URL https:
//arxiv.org/abs/2505.10320.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3-4):229–256, 1992. doi: 10.1007/BF00992696.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned llms with
nothing, 2024. URL https://arxiv.org/abs/2406.08464.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen,
Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu,
Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An
open-source llm reinforcement learning system at scale, 2025. URL https://arxiv.org/
abs/2503.14476.

12

https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
http://dx.doi.org/10.1145/3689031.3696075
http://dx.doi.org/10.1145/3689031.3696075
https://arxiv.org/abs/1712.01815
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/ed3fea9033a80fea1376299fa7863f4a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/ed3fea9033a80fea1376299fa7863f4a-Paper-Conference.pdf
https://arxiv.org/abs/2505.10320
https://arxiv.org/abs/2505.10320
https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models, 2023. URL https://arxiv.org/abs/2308.01825.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with
reasoning, 2022. URL https://arxiv.org/abs/2203.14465.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D. Goodman.
Quiet-star: Language models can teach themselves to think before speaking, 2024. URL https:
//arxiv.org/abs/2403.09629.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025.
URL https://arxiv.org/abs/2503.18892.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL https://arxiv.org/
abs/2306.05685.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models, 2024. URL
https://arxiv.org/abs/2403.13372.

13

https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2203.14465
https://arxiv.org/abs/2403.09629
https://arxiv.org/abs/2403.09629
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2403.13372


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A BOARD FORMAT

We tested various board representation formats – the three formats shown in Figure 8 had similar
initial evaluation performance on a baseline Qwen2.5 model. However, upon qualitative analysis
Visual (ASCII) format was ultimately chosen. Additional rationale and comments on each are listed
below:

• FEN: The tokenizer combines specific characters (e.g., \n, RK, PPP) and this may limit general-
ization. Additionally, uneven tokenization across rows may hinder spatial understanding.

• Spaced FEN: While this format resolves combined character issues, there is an inconsistent rep-
resentation of spaces – ’ 2’ is two tokens while ’ p’ is one token. This may present issues in
downstream spatial understanding.

• Visual (ASCII): Ultimately chosen because it alleviates concerns mentioned in Spaced FEN.

Note: We recommend that future practitioners alter the Visual (ASCII) format. Qwen-series (2 and
3) and Llama-series (3 and 4) tokenizers treat ’ .\n’ as a single token with ’ p\n’ as two tokens
– this can be fixed by including a space before each newline. This inconsistency was discovered late
in training and thus not integrated into our project. We include an updated uniform_visual
board format in our released code that improves upon Visual (ASCII).

Figure 8: Visualized tokenization of three candidate board formats using the Qwen2.5 tokenizer.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B EVALUATION SAMPLES

Figure 9 contains an example of each evaluation type for the displayed board.

Figure 9: Example questions for each evaluation task on the same board. Note that in actual prompts
(omitted in the figure) we include information related to the required format for valid parsing.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C DATASET TYPES AND SAMPLES

We now outline more detail on the format and creation of our datasets.

For General Text Alignment, we use samples from the Magpie (Xu et al., 2024) Llama 3.3 70B
dataset as a means of regularization. Given that a significant portion of the SFT data is dense in chess
notation, we felt it valuable to maintain the instruction-following abilities of our trained model to
prevent performance collapse.

Our Rejection Sampling data comprises of four separate tasks, Best Move, Worst Move,
Predict Move, and Legal Moves. We chose to use Llama 4 Maverick to generate synthetic
rejection-sampled data as it offered strong performance, was efficient to run on our hardware, and
offered more natural-sounding reasoning compared to other reasoning models. Our motivation for
this dataset was to instill correct reasoning format and bake in ability from the teacher model given
Qwen2.5 7B-Instruct had incredibly poor base performance. This motivation follows Yuan et al.
(2023) which found rejection sampling fine-tuning to be highly effective for improving weaker mod-
els.

For each evaluation set, we sampled outputs from Llama 4 Maverick (Meta AI, 2025) – retaining
answers that were correct on Best Move and Worst Move and keeping outputs on Predict
Move and Legal Moves if the answers met a threshold. This data was further sampled to ensure a
desirable distribution regarding move count and piece types, as rejection sampling inherently shifts
the distribution towards board states that the data-generating model performs well on.

Figure 10: A Rejection Sampling example. The full response in the sample is shortened for space.
Note that a drawback of this dataset is that it is prone to hallucinations as is shown in the provided
sample.

To construct our Guided Synthetic data, we generate synthetic data by using a sufficiently strong
teacher model to verbalize outcomes of a move. A teacher model (Llama 4 Maverick or OpenAI
gpt-oss-120b) is provided with a beginning board state, line of up to 5 total plies (where all plies
following the first move are the top suggested chess-engine move), and an ending board state. The
model is tasked with verbalizing the merit of the proposed ply – first providing logic then a verdict
on the candidate move’s quality (given how the board would develop).

In the MDP setting, this can be interpreted as verbalizing n-step bootstrapping (Sutton & Barto,
2018) with n = 3 (given 5 plies yields 3 player actions). This is due to a verbalized transition
function in the logic (outlining how the board will develop – T (st, at) ) combined with a verbal-

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

ized value function (V (st)) in the verdict. The intention of the harness is multifaceted – ideally
it should reduce hallucination rate while also guiding the model to generate this verbalized n-step
bootstrapping format with meaningful rationales and verdicts.

Figure 11: Sample of the Guided Synthetic data. Note that while the teacher model is provided with
a line and centipawn difference, the teacher model is still prone to hallucination (it cites a material
imbalance – this is not true). Additionally, despite prompting the teacher to use UCI notation, many
examples still use SAN due to teacher model bias.

The Verbalized Alpha-Beta Pruning dataset is an entirely programmatically generated dataset built
on top of Stockfish. This utilizes a program that does the following:

• For a given board, apply softmax with temperature sampling to choose initial move candidates
(based on Stockfish move valuations).

• For each candidate, recursively build a tree that employs a similar softmax-based sampling algo-
rithm.

• The recursion ends when a depth limit is reached, a max number of nodes are explored for this
move, or a move is "written off" (below a quality threshold compared to other lines).

• Upon creation of the full move tree, each tree is verbalized using a separate algorithm that samples
phrases from a large prompt bank to retain language diversity.

• The final winner (chosen via a minimax-based decision) is verbalized and used as the final answer.

We chose to include board valuations as well as minimax scores at decision nodes to instill a sort of
value function (V (st)) in the model. Note that this value function is the absolute centipawn score
– not a delta; we chose this to allow for verbalized minimax decision making. Further we instill
several tree search strategies into the structure of the data – for example branching search, pruning,
and minimax decision making.

The Factual Board Answering dataset generates multiple simple question-answer pairs about board
states and combines them to ask multiple questions about the same board. Questions can ask about
the legality of a proposed move, the location of pieces, whether or not a player is in check, the
number of total legal moves available, and attacking piece information.

This dataset has the intention of training a model to explicitly learn piece and board dynamics in
its latent space, with the hope that this latent ability will translate to downstream reasoning perfor-
mance.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 12: Sample of Verbalized Alpha-Beta Pruning. This sample highlights branching, minimax
decision making, and an instance of pruning.

Figure 13: Sample of the Factual Board Answering dataset.

The Best Move dataset asks the model to, given a board state, predict the best move directly with
no chain of thought. This can be interpreted as learning a policy function (πθ(at|st)) via behavior
cloning where the best move is suggested by a chess engine. One drawback of training on this data
is that it can lead to very slow fine-tuning given each sample has 4 trainable tokens.

Our final dataset – Best Line – is similar to Best Move except this asks to provide the line of optimal
play (between 4 and 6 plies, chosen randomly to avoid a rigid structure), ending with a final estimate
of the centipawn delta from this line. This is similar to Guided Synthetic and can be interpreted as
verbalized n-step bootstrapping with n = 2 or 3 dependent on the number of total plies.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Our intent is that this will instill a form of a world model through learning both transition dynamics
and a value function. It can also be viewed as an extension of Best Move that condenses multiple op-
timal move data-points into a single sample – this is beneficial from a training efficiency perspective
as well.

Figure 14: Samples of Best Line and Best Move.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D DATA INCLUSION ANALYSES

First, we outline the various data inclusion analyses we ran. The purpose was to understand which
datasets were most effective to inform our final scaled experiments – see Appendix C for detail and
examples for each dataset. Figure 15 outlines our experiments, including the token distributions for
each dataset used in SFT. Our results (SFT and RL) on each data mix are included in Tables 1 and 2.

Figure 15: Distribution of tokens used in each experiment. Token numbers are shown in millions;
we sampled our data to match this distribution, though there may be immaterial variations for actual
token counts used. We include tags (e.g., [VABP]) for mnemonic reference. Note that with the
Rejection Sampling (All Evals) [RSA] dataset, we allocate 50% of tokens to the Predict Move task
and sample the remainder from the other evaluation tasks. SFT8 + SFT9 XL was trained by
taking the SFT8 XL model checkpoint and training on the SFT9 XL dataset.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 1: Results are shown for the Predict Move evaluation on 400 samples. Predict Move
Average Rank is the average normalized rank (with 0 being the worst move and 1 being the best
move per Stockfish) of the legal moves provided in this task.

Experiment
Name

SFT
Train

Tokens

RLa

Samples

Pred. Move
% Legal ↑

Pred. Move
Avg. Rank ↑

% Trivialb
Moves ↓

SFT RL SFT RL SFT RL
Baselines
Qwen2.5
7B-Instruct

– – 8% 0.56 6%

Llama 4
Maverick

– – 42% 0.62 1%

gpt-oss-120b
(Medium)

– – 94% 0.66 2%

Inclusion Experiments
SFT1 [RSPM] 15M 8ka 34% 82% 0.63 0.52 4% 55%
SFT2 [RSA] 15M 8k 37% 73% 0.63 0.60 5% 48%
SFT3 [VABP] 15M 8k 40% 67% 0.61 0.53 3% 46%
SFT4 [FBA] 15M 8k 44% 72% 0.59 0.54 3% 40%
SFT5 [GS] 15M 8k 36% 71% 0.60 0.54 3% 42%
SFT6 [BM] 15M 8k 44% 93% 0.64 0.71 4% 31%
SFT7 [BL] 15M 8k 48% 85% 0.62 0.63 2% 64%
SFT8 [BM - All] 15M 8k 60% 90% 0.60 0.71 3% 14%
SFT9 [BL - All] 15M 8k 51% 89% 0.60 0.64 7% 32%
Scaled Runs
SFT8 XL 60M 16k 55% 98% 0.62 0.82 3% 12%
SFT9 XL 60M 16k 52% 93% 0.60 0.75 3% 25%
SFT8 + SFT9 XLc 120M 16k 54% 98% 0.58 0.83 2% 22%

a All experiments used equal portions of the four evaluation types for RL except SFT1 which trained on 8k
samples of only Predict Move.

b "Trivial Moves" consist of edge pawn moves (e.g., a2a4, a2a3) or king/rook wiggles (e.g., a1b1, b1a1).
These were chosen based on identified reward hacking behaviors.

c For this run we trained the SFT8 XL checkpoint with the SFT9 XL dataset.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 2: See Figure 15 for detail on the data included in each inclusion experiment and Table 1 for
performance on the Predict Move task. Each evaluation shown is based on 400 unique samples
for each task. The Legal Moves task asks the model to produce a list of legal moves given a target
piece – the score is measured as intersection over union (IoU) vs. ground truth. Best Move and
Worst Move ask the model to, given a list of 5 moves, choose the best (or worst, respectively) move
of the list – the incorrect candidates are sampled such that they are beyond a sufficient threshold of
difference per Stockfish. See Appendix B for examples of each task.

Experiment
Name

Legal Moves
IoU ↑

Best Move
Acc. ↑

Worst Move
Acc. ↑

Ref’d Move
Acc.a ↑

Avg. Reas.
Qualityb↑

SFT RL SFT RL SFT RL SFT RL SFT RL
Baselines
Qwen2.5
7B-Instruct

0.26 19% 21% 12% 6.4

Llama 4
Maverick

0.43 27% 31% 38% 6.6

gpt-oss-120b
(Medium)

0.96 57% 79% 70% 7.0

Inclusion Experiments
SFT1 [RSPM] 0.26 0.17 23% 19% 25% 23% 33% 76% 5.4 4.7
SFT2 [RSA] 0.37 0.44 29% 34% 30% 48% 35% 57% 5.3 4.2
SFT3 [VABP] 0.41 0.58 25% 35% 30% 48% 34% 45% 5.3 2.3
SFT4 [FBA] 0.49 0.58 26% 36% 30% 51% 39% 63% 5.0 4.0
SFT5 [GS] 0.37 0.57 30% 35% 29% 54% 35% 52% 5.3 6.1
SFT6 [BM] 0.42 0.66 29% 37% 32% 45% 41% 86% 5.3 2.2
SFT7 [BL] 0.46 0.63 25% 28% 32% 51% 38% 68% 5.0 2.4
SFT8 [BM - All] 0.44 0.67 31% 41% 34% 55% 53% 80% 5.7 2.9
SFT9 [BL - All] 0.40 0.59 29% 38% 28% 53% 44% 80% 5.6 3.5
Scaled Runs
SFT8 XL 0.46 0.79 29% 60% 33% 58% 48% 83% 5.7 2.2
SFT9 XL 0.47 0.75 28% 57% 33% 62% 48% 88% 5.7 5.3
SFT8 + SFT9 XL 0.52 0.87 31% 62% 31% 64% 47% 90% 5.8 5.3

a Referenced Move Accuracy is measured by using Llama 4 Maverick to parse reasoning outputs and create
a list of all moves that are mentioned by the model during the reasoning trace. These moves are then run
through a chess engine to determine what percent are legal as a measure of reasoning factuality. Appendix
E has further detail on measuring hallucinations.

b Average Reasoning Quality is measured by using gpt-oss-120b as a judge and is the simple average of
scores provided for Reasoning Efficacy, Reasoning Efficiency, and Reasoning Faithfulness. Further detail
is provided in Appendix G on measuring reasoning quality.
Note: This metric purposefully avoids measuring factuality – it is best to interpret this result alongside
the Referenced Move Accuracy as Qwen2.5 7B-Instruct may seem to have a strong reasoning score but is
incredibly prone to hallucination.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E HALLUCINATIONS

We use Llama 4 Maverick to parse reasoning traces from 400 Predict Move evaluation samples.
For each sample, the parsing generates two lists:

• Moves: This is a list of all moves referenced by the model in its reasoning trace played by the
player.

• Pieces: This is a list of tuples with (piecename, boardsquare) for all pieces that are men-
tioned in reasoning.

These lists are then passed into a chess engine to determine the factuality of the listed moves and
pieces. Mean Total Reasoning Accuracy is computed as the sum of correct moves and correct pieces
divided by the total number of provided moves and pieces – hallucination rate can simply be com-
puted with (1−Accuracy).

Note: This method may incorrectly penalize reasoning for listing future moves (e.g., play a2a4
followed by a4a5) or legal moves that the opponent may play. However, in review we found these to
be rare in occurrence.

Figure 16: Accuracy of tested models for both moves and pieces referenced in their reasoning traces.
Bars are overlaid directly on top of each other and stacking is not cumulative. Accuracy is computed
as the number of correct references divided by the total number of references. See Figure 15 for
detail on the data included in each experiment. Hatched lines are shown in cases where the SFT and
RL runs are within 2% of each other.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F REASONING STRATEGIES

Figure 17 highlights the usage of various reasoning strategies across tested models. We follow
from Gandhi et al. (2025) and Zeng et al. (2025), and we also include two other strategies in Self-
Correction (the model explicitly corrects something stated previously) and Tree Search. See Figure
15 for detail on the data included in each experiment.

Figure 17: Usage rate of reasoning strategies on 400 Predict Move tasks. Bars are overlaid
directly on top of each other and stacking is not cumulative. Reasoning strategies are parsed using
Llama 4 Scout and usage is measured as a binary flag for each evaluation sample. Hatched lines are
shown in cases where the SFT and RL runs are within 2% of each other.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G REASONING QUALITY

To analyze reasoning quality, we employ LLM-as-a-judge (Zheng et al., 2023) using gpt-oss-120b.
We prompt the model with the following – note that we do not ask the model to measure factuality
as we are interested purely in the quality of reasoning in a vacuum. Please refer to Appendix E for
detail on hallucination rates and see Figure 15 for detail on the data included in each experiment.

Figure 18: Reasoning quality scores on 400 Predict Move tasks. Bars are overlaid directly on
top of each other and stacking is not cumulative. Reasoning quality is scored by gpt-oss-120b and
scores are provided from 1 to 10. The Mean Reasoning Quality (Total) score is a simple average over
the three subcategories. Hatched lines are shown in cases where the SFT and RL runs are within 2%
of each other.

Additionally, we provide an example of unfaithful reasoning that earns a 1 out of 10 score on reason-
ing faithfulness. This sample is from our scaled Best Move - All final RL model.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 19: Example of unfaithful reasoning – given a score of 1 in reasoning faithfulness. Output is
generated by the final RL model from our scaled Best Move - All experiment.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

H SFT AND RL HYPERPARAMETERS

See Tables 3 and 4 for training hyperparameters.

All experiments were run on Nvidia A100 or H100 chips. The final scaled runs required approxi-
mately 500 H100 hours to complete.

Table 3: SFT training hyperparameters.

Parameter Value

Training engine LlamaFactory (Zheng et al., 2024)
Fine-tuning type Full SFT
LR scheduler Cosine
Precision BF16
Optimizer AdamW (Loshchilov & Hutter, 2019)
Learning rate 3× 10−6

Warmup ratio 0.1
Train batch size 64
Training data (tokens × epochs) 7.5mm× 2 (inclusion tests)

60mm× 1 (scaled runs)

Table 4: RL training hyperparameters.

Parameter Value

Training engine veRL (Sheng et al., 2025)
Objective Dr. GRPO (Liu et al., 2025)
Learning rate 1× 10−6

Train batch size 64
Max response length 3, 000 tokens
Actor clip ratio (low/high) 0.20 / 0.28 (Yu et al., 2025)
Use KL loss False (off)
Rollouts per sample 8
Entropy coefficient 0 (off)
Number of samples 8, 192 unique samples (inclusion tests)

16, 384 unique samples (scaled runs)

27


	Introduction
	Related work
	Reasoning in language models
	Reasoning through RL
	Chess engines

	Background
	Board and move representation
	Evaluations and RL environment
	Datasets
	Training environment

	Key findings
	Q1: How do different datasets impact downstream performance after SFT and RL?
	Q2: How does RL influence a model's qualitative behaviors?
	Q3: Which SFT-checkpoint metrics are predictive of final RL performance?

	Limitations & further discussion
	Conclusion
	Board format
	Evaluation samples
	Dataset types and samples
	Data inclusion analyses
	Hallucinations
	Reasoning strategies
	Reasoning quality
	SFT and RL hyperparameters

