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ABSTRACT

We study how reasoning evolves in a language model – from supervised fine-
tuning (SFT) to reinforcement learning (RL) – by analyzing how a set of
theoretically-inspired datasets impacts language model performance in a verifi-
able Markov Decision Process (MDP) such as chess. We find that fine-tuning
a model to directly predict the best move leads to effective RL and the strongest
downstream performance – however, the RL stage elicits unfaithful reasoning (rea-
soning inconsistent with the chosen move). Alternatively, training on multi-move
trajectories yields comparable downstream performance with faithful reasoning
and more stable RL. We show that RL induces a substantial positive shift in the
distribution of move quality and reduces hallucination rates as a side effect. Fi-
nally, we find several SFT-checkpoint metrics – metrics spanning evaluation per-
formance, hallucination rates, and reasoning quality – to be predictive of post-RL
model performance. We release checkpoints and final models as well as train-
ing data, evaluations, and code which allowed us to surpass leading open-source
reasoning models in chess with a 7B-parameter model1.

1 INTRODUCTION

What is required to train a language model to reason through RL? Several ingredients appear critical
– a strong base model and a compatible domain are sensible starting points. But what is a strong
base model? And once you have a domain, how do you train it to reason effectively?

We seek to address these motivating questions by training a language model to reason in a verifiable,
sequential decision process. Specifically, we choose chess as our focus because of several convenient
elements: intrinsic difficulty for LLMs, established theory, favorable structure (episodic MDP), large
datasets, and an efficient oracle (chess engines) for verifiable rewards and high-quality synthetic data
generation. As a result, we can measure how different training data influences our language model
through SFT and how RL further evolves reasoning from this checkpoint in a controlled setting.

Language-based reasoning (OpenAI, 2024) has emerged as a promising technique to advance lan-
guage model capabilities, although much research remains confined to specific domains such as
math and coding. Reasoning, often characterized as extending a model’s "chain-of-thought" behav-
ior (Wei et al., 2022) using methods such as RL, benefits from these domains being clearly verifiable:
the math is correct or the code passes all tests. This verifiable nature – combined with downstream
applicability and skill transfer – has stimulated research in these specific domains. As a result, rea-
soning models have achieved profound results across many related benchmarks (OpenAI, 2025a;
Anthropic, 2025; Google DeepMind, 2025), long-duration tasks (Kwa et al., 2025; METR, 2025),
and even earned an International Math Olympiad gold medal (DeepMind, 2025; OpenAI, 2025).

Although recent work explores reasoning in more subjective domains (Whitehouse et al., 2025)
through techniques such as "LLM-as-a-judge" (Zheng et al., 2023), we focus here on those that are
verifiable. The core verifiable domains – math and coding – benefit from years of continued research
that has established a corpus of high-quality training data which produces strong out-of-the-box base
model performance. While we benefit from stronger general base models, working on these explored
domains would pose a challenge in isolating the influence of our training interventions.

1Code and models available at lang-chess.

1
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Figure 1: Following initial data inclusion experiments, we scaled SFT on our two best-performing
datasets. Both resulted in comparably strong final evaluation performance, but training on optimal
move trajectories (Best Line) led to more stable RL and faithful reasoning compared to training on
single best moves (Best Move).

Chess thus emerges as an attractive domain for studying reasoning. Language models have histori-
cally struggled with chess (Acher, 2023; Dynomight, 2024) and even state-of-the-art reasoning mod-
els still falter – often responding with illegal moves or simple blunders as seen in the August 2025
Kaggle AI Chess Exhibition (Kaggle & Google DeepMind, 2025). Models underperform partly
because chess data, while abundant, is rarely emphasized in pretraining; further, the game’s combi-
natorial structure makes generalization difficult. While this poses a difficulty, access to superhuman
verification (in chess engines) provides an efficient method for verifiable rewards and synthetic data
generation. All these features make chess a compelling testbed for reasoning.

Motivated by this setting, we train a 7B-parameter model on custom datasets using both SFT and
RL to achieve performance surpassing gpt-oss-120b (OpenAI, 2025b) on several benchmarks. Our
study centers on the following questions which we will address:

• Q1: How do different datasets (e.g., programmatically generated, synthetic rejection sampling,
synthetic from a harness) impact downstream performance after SFT and RL?

• Q2: How does RL influence a model’s qualitative behaviors (e.g., move quality distribution, rea-
soning strategies used, rate of hallucination)?

• Q3: Which SFT-checkpoint metrics are predictive of final RL performance?

We show that focused SFT on predicting a single best move (Best Move) leads to strong performance
but unfaithful reasoning through RL; on the contrary, training on multi-step move trajectories (Best
Line) has more stable RL and faithful reasoning. We find that RL leads to fewer hallucinations and
a substantial positive shift in move quality, and we see that several SFT-checkpoint metrics (both
qualitative and quantitative) are predictive of final RL performance.

2 RELATED WORK

2.1 REASONING IN LANGUAGE MODELS

Reasoning in causal language models can be interpreted as self-guided search that makes a task more
tractable. Consider a numerical math problem: effective reasoning should increase the probability
of producing the correct number more than if the model had immediately predicted the final answer.
Note that this reasoning need not be wholly interpretable – for example, it can exist in continuous
space (Hao et al., 2024) or shift between languages (DeepSeek-AI et al., 2025) – what ultimately
matters is that the intermediate steps are beneficial to the model. For this work we will focus on
language-based reasoning.

2
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Figure 2: Performance of our best reasoning model trained from a Qwen2.5 7B-Instruct base across
our evaluations. Note that trivial performance (i.e., random guessing) is 0.2 for the Best Move and
Worst Move tasks. See Appendix B for example evaluation questions.

The era of reasoning models, notably initiated with OpenAI’s release of o1 (OpenAI, 2024), builds
upon much prior work in self-guided in-context adaptation. Models, when told to work "step by step"
and write down intermediate results on a "scratchpad" (Nye et al., 2021), saw performance improve-
ment on multi-step computations – this result was reinforced at scale and termed "chain-of-thought"
in later work (Wei et al., 2022). Further, these reasoning traces can be used for iterated improve-
ment through fine-tuning on successful generations as evidenced by STaR (Zelikman et al., 2022).
Quiet-STaR (Zelikman et al., 2024) extended this from fine-tuning by using a reinforcement learning
policy-gradient update in REINFORCE (Williams, 1992) over tokens influenced by intermediate rea-
soning steps. This iterated bootstrapping using reinforcement learning for policy-gradient updates
has been the primary underlying method fueling the latest developments in reasoning models.

Following OpenAI’s release of o1, many leading systems began incorporating similar reasoning
techniques to improve performance. Notably, DeepSeek-R1 (DeepSeek-AI et al., 2025) and Kimi
k1.5 (Kimi Team et al., 2025) were among the first reasoning models to effectively approach state-
of-the-art ability and publicize the underlying training methods.

2.2 REASONING THROUGH RL

While there exist several effective methods for training models to reason such as in-context prompt-
ing (Wei et al., 2022; Kojima et al., 2023), model distillation (DeepSeek-AI et al., 2025), or SFT on
successful outputs (Zelikman et al., 2022; Yuan et al., 2023), we focus our attention on the setting
of applying RL to improve model reasoning.

RL has been used as an effective tool to guide model behavior with Ouyang et al. (2022) inciting the
viral ChatGPT moment that brought language models to public attention. Successful RL – regardless
of the setting – requires valuable reward signals; for language models these rewards can be generated
using the following methods: rewards can be parsed and automatically calculated in verifiable tasks
(Shao et al., 2024), determined directly through human judgment (Christiano et al., 2017), scored
with a learned reward model (Ouyang et al., 2022), or elicited using a language model as a judge
(Whitehouse et al., 2025). Rewards can be generated for the entire outcome or at intermediate steps
(Lightman et al., 2023), and learned value functions can approximate credit-assignment at the token-
level (Schulman et al., 2017) or reward can be indiscriminately applied over a full sequence (Shao
et al., 2024). While this covers many methods in RL for language models, it is not exhaustive.

A common family of algorithms used in RL for language models is Proximal Policy Optimization
(PPO) (Schulman et al., 2017) – an actor-critic method. Because actor-critic methods require learn-
ing a value function to address the credit-assignment problem (which can be computationally expen-
sive and experience instability), new methods such as Group Relative Policy Optimization (GRPO)
(Shao et al., 2024; DeepSeek-AI et al., 2025) have emerged to remove this learned value function
requirement. GRPO has further evolved through variants such as Dr. GRPO (Liu et al., 2025), which
removes sequence-level length normalization, and DAPO (Yu et al., 2025), which removes the KL
penalty, increases the clipping bound to encourage exploration, and addresses length normalization
issues observed in GRPO.

3
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2.3 CHESS ENGINES

Computer scientists have developed grandmaster-level chess systems built on three notable tech-
niques: 1) Classical search-based engines such as IBM Deep Blue (Campbell et al., 2002) or Stock-
fish that use a minimax-based search algorithm (commonly alpha-beta pruning), 2) neural search-
based systems such as AlphaZero (Silver et al., 2017) and its open-source implementation in Leela
Chess Zero that learn policy functions through RL self-play combined with Monte Carlo Tree Search,
and 3) searchless neural systems such as Google DeepMind’s chess transformer that predicts a move
directly from a board state (Ruoss et al., 2024). The respective 40/15 Elo scores of Stockfish and
Leela Chess Zero as of August 8, 2025 are 3645 and 3444 (Computer Chess Rating Lists, 2025),
and DeepMind’s chess transformer reached a Lichess blitz Elo of 2895 (Ruoss et al., 2024). While it
is worth noting that recent versions of Stockfish use neural networks to estimate the value of board
states – it still largely employs the same core algorithm used by classical search-based engines.

As discussed previously, language models struggle in the domain of chess. However, it is worth
mentioning gpt-3.5-turbo-instruct which has an estimated Elo around 1700 (Acher, 2023). While
this anomaly is interesting, this performance isn’t from language-based reasoning – rather it is direct
next move prediction (i.e., only outputs the move to play). Google DeepMind’s chess transformer
validated that a 270 million parameter transformer is capable of reaching grandmaster-level chess
without search (this was achieved by learning a value function, though a policy function was also
tested). As far as the authors are aware, no language model has achieved competitive-strength chess
ability through language-guided reasoning and the best reasoning model in chess is OpenAI o3
which won the 2025 Kaggle AI Chess Exhibition (Kaggle & Google DeepMind, 2025).

3 BACKGROUND

Our analysis is focused on the Qwen2.5-7B-Instruct model (Qwen et al., 2025). Given the baseline
model has insufficient ability, we first conducted SFT prior to the RL stage. We began with a full
set of data inclusion studies – from SFT to RL – to determine the most effective recipe before doing
a final, scaled training run on our leading mix.

3.1 BOARD AND MOVE REPRESENTATION

For all training and evaluation we provide the board state in a visual ASCII-format. We ran prelim-
inary tests on several board formats including Forsyth-Edwards Notation (FEN), FEN with space
delimiters, and a visual ASCII-format. While these showed similar quantitative performance, we
opted for the visual format following subjective qualitative analysis. Appendix A provides exam-
ples of the considered board states and discusses tokenization limitations in each. Note that our
board representation omits move repetitions due to dataset limitations – in competition chess, repe-
titions can be used as a termination condition. However, since none of our evaluations incorporates
repetitions, we can view our representation as a Markov-complete state.

For move representation, we follow DeepMind’s chess transformer (Ruoss et al., 2024) and represent
all moves in Universal Chess Interface (UCI) format (e.g., e1e2). This decision was made in lieu
of formats such as Standard Algebraic Notation (SAN) which may be more commonly represented
in training data – SAN has intricacies that could evoke errors avoidable by using UCI notation.

3.2 EVALUATIONS AND RL ENVIRONMENT

We created four custom tasks that we use for evaluations and the RL training environment. For the
Predict Move task, we provide a board and ask the model to play the best move – no list of legal
moves is provided. We measure both the ratio of legal moves generated as well as the move quality
for legal moves provided. Move quality is measured as the normalized rank among legal moves
(∈ [0, 1]) as determined by a chess engine – where the best move is given a score of 1 and the worst
move a score of 0. For the Best Move and Worst Move tasks, we provide a board and a set of 5
moves. The task is to choose the best move (and worst move, respectively) of the candidate moves
provided. For both tasks, candidate moves are sampled such that there is a threshold of move quality
(determined by a chess engine) separating the correct answer from other candidates. Finally, the
Legal Moves task asks the model to, for a given board and piece, list out all the legal moves that

4
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Figure 3: Samples from a selection of the custom datasets. The gray font represents an abbreviation
of the core prompt – in all samples the model is trained with a verbose instructive prompt and
provided with a board in our visual ASCII-format. Full samples are included in Appendix C.

piece can make. Results are computed as intersection over union (IoU) versus the ground truth. We
provide example questions in Appendix B.

3.3 DATASETS

We created several theoretically-inspired datasets to study training dynamics from SFT to RL. Con-
sider that chess can be represented as an MDP. At time t there is a state st ∈ S and playing a ply
(i.e., half-move) from the player’s perspective constitutes an action at ∈ A(st). We abstract the
opponent’s move to the environment, viewing a state transition as st+1 ∼ T (st, at). Additionally,
for each board state-action pair there is a reward rt = R(st, at) which we can approximate using a
shaped dense reward (centipawn delta, i.e., the change in an engine’s board evaluation measured in
hundredths of a pawn) from a chess engine: rt = γVengine(st+1) − Vengine(st) with γ = 1. We will
use this formulation to discuss motivation for several of our custom datasets.

We provide a brief description of each dataset and will further elaborate on data design and mo-
tivation within the context of experimental results in Section 4. We include detailed explanations
of each dataset and full examples in Appendix C – abbreviated examples are included in Figure 3.
Regarding our datasets, we organize them into the following four categories:

• General Instruction Following: Specifically, Magpie Llama 3.3 70B (Xu et al., 2024).
• Rejection Sampling: We generate outputs from Llama 4 Maverick (Meta AI, 2025) on our four

evaluation types. We chose Llama 4 Maverick for qualitative and quantitative performance, retain-
ing samples from the Best Move and Worst Move evaluations if correct and keeping outputs from
the Legal Moves and Predict Move evaluations if above a threshold.

• Guided Synthetic: We prompt Llama 4 Maverick and gpt-oss-120b with a programmatically
generated harness. Specifically, we provide a beginning board, 5 plies (the first ply being a move
candidate and following plies being optimal play from a chess engine), and the ending board state.
The task is to generate an explanation of how the proposed candidate move will play out, ending
with a final verdict for the proposed move.

• Programmatically Generated Data:

– Factual Board Answering: We build on top of a chess engine to generate simple question-
answer (QA) pairs for a given board. These questions may ask if a move is legal, which
square is threatening a specific piece, or how many legal moves a piece has. We combine
multiple QA pairs for each sample.

– Verbalized Alpha-Beta Pruning: We use a custom program built upon Stockfish to sam-
ple moves, rollout the line of play for each move (with branching and board values), and
verbalize rollouts and minimax decisions in natural language. We explicitly build in tree
search reasoning strategies and sample poor moves to verbalize the process of pruning, and
we leverage a large, custom prompt bank to add diversity to natural language outputs.

– Best Move: Given a board, immediately predict the best move in UCI notation.

5
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– Best Line: Given a board, predict the optimal line of play (4 − 6 plies) ending with the
expected centipawn delta from playing this line.

3.4 TRAINING ENVIRONMENT

All SFT is conducted using LlamaFactory (Zheng et al., 2024) and all RL is conducted using veRL
(Sheng et al., 2025). We utilize Dr. GRPO (Liu et al., 2025) for our RL optimization algorithm
and employ the Clip-Higher strategy with no KL divergence per Yu et al. (2025). A full list of
hyperparameters for both SFT and RL are included in Appendix H.

4 KEY FINDINGS

We ran a series of inclusion analyses to understand the efficacy of each data type and scaled our best-
performing recipes. Figure 2 highlights the performance of our best reasoning model. We found the
Best Move and Best Line datasets to be most effective – especially when lightly supplemented with
our other, less effective datasets. Our scaled runs build off of the Best Move - All and Best Line -
All datasets that use this dataset diversity. The best final performance was achieved by first training
Qwen2.5 7B-Instruct on 60 million tokens (Best Move - All data) followed with 60 million tokens
(Best Line - All data). Appendix D provides further detail on our experiments.

Figure 4: RL training performance on our scaled SFT-checkpoints. Left: Train reward and tokens
per response (smoothed using an exponential moving average with decay factor 0.9). Right: Reward
on the held-out evaluation set during training. The Best Move dataset, while having strong ending
performance, experienced more unstable RL compared to scaled runs trained on Best Line data.

4.1 Q1: HOW DO DIFFERENT DATASETS IMPACT DOWNSTREAM PERFORMANCE AFTER SFT
AND RL?

Multitask training is beneficial for a fixed token budget, yielding higher move quality, less reward
hacking, and a generally more robust model. This is shown by a comparison between Rejection
Sampling (Predict Move) and Rejection Sampling (All Evals): for the former we SFT and conduct
RL on only the Predict Move task – for the latter we use all tasks. Our experimental results (Figure
5) led to these takeaways. We incorporate multitask training in all following experiments.

The most effective datasets were dense with difficult, high-quality tokens. Consider the Factual
Board Answering dataset: we designed this dataset to sample multiple QA pairs from a set of custom
generators built atop a chess engine. The motivation is to force the model to embed complex board
understanding in its latent layers through these immediate (often 1 token) responses; however, we
find this dataset’s performance comparable to our initial Rejection Sampling (All Evals) experiment.
That is, latent board understanding did not result in a better reasoning model. If we compare this
with a similarly dense task in Best Move (predict the best move directly) or Best Line (generate the

6
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Figure 5: Evaluation results for final RL models from each data inclusion experiment. Within each
metric we split results into three sections: (left) compares single vs. multitask, (middle) compares
the targeted data inclusion experiments, (right) covers our data diversity experiments. Note that in
all experiments we SFT on 15 million tokens and do RL on 8k samples. In the single task setting,
RL only uses the Predict Move task; in all other settings the 8k samples are split evenly between our
four task types. See Appendix D for detailed results (including exact token distributions).

optimal line of play), we see that performance is better when training on the latter datasets (Figure
5). Intuitively, these more difficult tasks require the model to develop a richer latent understanding
(e.g., playing the best move inherently requires board understanding).

Dataset diversity remains valuable. We see that the All Data experiments for Best Line and Best
Move are superior to their focused counterparts (Figure 5). For these runs, we SFT on nearly all
our data types – this comes despite mixed results on several of the individual inclusion analyses.
Notably, the Verbalized Alpha-Beta Pruning experiment showed it was detrimental for training – we
created this dataset as it is hallucination-free and includes rollouts and value functions (instilling
V (st) and T (st, at)). However, it possesses a lower density of high-quality tokens (moves and
valuations) and is surrounded by memorizable prompts. The Guided Synthetic dataset produced
mixed performance as well, although we will discuss unique results from this dataset in the following
section. Regardless, limited inclusion of all data (even marginal datasets) was found to be beneficial.

Best Line had more stable RL training than Best Move. Figure 4 outlines RL training performance
for our scaled runs – the models fine-tuned on Best Line data had more stable training dynamics.
One reason may be that training on Best Line data – which includes multiple moves and ends with
a valuation – allows the model to learn a world model for chess (both a value function V (st) and
transition dynamics T (st, at)). This is further supported by the coming discussion on reasoning
faithfulness that reinforces this stability observation.

4.2 Q2: HOW DOES RL INFLUENCE A MODEL’S QUALITATIVE BEHAVIORS?

Multi-step trajectory data led to the most faithful reasoners. Note that we measure faithfulness
with gpt-oss-120b judging alignment of final answers with reasoning traces. Our primary multi-
step trajectory datasets are Guided Synthetic and Best Line – they both incorporate a rollout (in
natural language and UCI, resp.) followed by a valuation (in natural language and as a centipawn
delta, resp.). This structure can be viewed as approximating n-step bootstrapping with n = 2 or 3
depending on ply depth. We can contrast this with the Best Move dataset which approximates a direct
policy function (i.e., learning πθ(at|st) via behavior cloning). Our multi-step trajectory checkpoints
largely retained faithful reasoning through RL – on the other hand, the Best Move dataset became
an unfaithful reasoner through RL, often displaying final, nontrivial answers that were disconnected
from its reasoning trace. Appendix G provides further detail on the reasoning quality measurement
and includes an unfaithful reasoning example.

This is interesting as the unfaithful reasoner improves through RL without defaulting to trivial moves.
Further, this improved ability is not explained by longer generations (Figure 4). One possible expla-
nation we offer is the following: faithful reasoning from multi-step data may arise due to the model
internalizing a chess world model (transition and value functions), whereas unfaithful reasoning may

7
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Figure 6: Key results highlighting how RL influenced our SFT-checkpoints. Top left: RL on the
Best Move SFT-checkpoint induced unfaithful reasoning whereas checkpoints trained on multi-step
data were more robust. Top right: RL drove a meaningful decrease in hallucination rate as a side
effect of simply maximizing reward on our evaluations. Bottom: Our Best Move + Best Line scaled
run saw a significant distribution shift after RL in its move quality on the Predict Move evaluation
(n = 400). This shift is an improvement on both an absolute and relative basis, highlighting the
efficacy of RL. Appendix G has further detail on our reasoning quality measurement and Appendix
E outlines hallucinations.

result from strong latent capability mixed with weak verbalized reasoning ability. Previous work has
found that models (Turpin et al., 2023) may attempt to rationalize their answers in chain-of-thought
unfaithfully if they are biased; in our case, the model may be attempting to rationalize the move it
has "already decided".

Regardless of reasoning faithfulness, RL drove a substantial positive shift in move quality played
(Figure 6). Not only does RL improve the frequency of the best moves being played but it also
decreased the frequency of low quality moves on an absolute and relative basis. Additionally, RL
reduces the rate of hallucinations within reasoning traces (Figure 6). This result is a side effect
of rewarding correct answers as we do not incentivize factuality – we provide further detail on
hallucinations in Appendix E and show that this result is shared across all data inclusion experiments.

Lastly, we analyzed reasoning strategy usage at both the SFT and RL model stages. This follows
prior work (Gandhi et al., 2025; Zeng et al., 2025) showing that effective reasoning models tended to
utilize more reasoning strategies. We did not see clear trends in our analysis apart from our weaker
models – specifically those more prone to reward hacking – almost exclusively reducing the usage
of reasoning strategies through RL. In contrast, stronger models had mixed usage trends. We defer
to Appendix F for further detail.

4.3 Q3: WHICH SFT-CHECKPOINT METRICS ARE PREDICTIVE OF FINAL RL PERFORMANCE?

Finally, we conducted a simple linear regression analysis comparing metrics from the SFT-
checkpoint with the final RL model’s performance (average over all evaluations). Figure 7 highlights
three SFT-checkpoint metrics that are statistically significant predictors of downstream performance.

Some of this is expected – an SFT model that scores higher on evaluations is likely better suited
for RL. However, we find that more qualitative signals (specifically, referenced move accuracy and
reasoning quality) are also predictive of downstream performance. This shows that an effective SFT-
checkpoint is one that is truthful (low hallucination rate), already an effective reasoner, and exhibits
strong performance in the domain of focus.

8
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Figure 7: Linear regression comparing the final RL model (average score over all evaluations) with
various metrics from its corresponding SFT-checkpoint. Left: Vs. average score over all evaluations.
Middle: Vs. percent of moves referenced during reasoning trace that are legal (parsed by Llama
4 Maverick). Right: Vs. reasoning quality (mean over all reasoning quality metrics as judged by
gpt-oss-120b). Shaded region represents the 95% confidence intervals.

5 LIMITATIONS & FURTHER DISCUSSION

To begin, the intention of this work has always been to study general reasoning properties in lan-
guage models. Thus, while the final evaluation of our model is a welcome result, we focused much
of our effort on understanding the qualities and development of reasoning; this means that there
are many methods we believe could further improve a chess reasoning model beyond our final RL
model. For example, in full-game play our final RL model had poor performance against OpenAI
o3. We suspect distribution mismatch: training emphasized mid- and late-game positions to reduce
trivial moves, which likely degraded opening play and hurt head-to-head results versus an opponent
with stronger opening theory.

We also have identified several unexplored techniques that could further improve our final RL model.
We minimally experimented with reward function tuning in our RL environment and expect focused
effort could improve performance – particularly on the Predict Move task. Further, incorporating
multi-turn RL and chess puzzles could yield further improvement as these settings more closely
mimic a full chess game.

Additionally, we would like to highlight several limitations to this work. We acknowledge that our
experiments were confined to Qwen2.5 7B-Instruct – while it would have been valuable to replicate
on distinct base models, due to constraints this was not pursued. Additionally, we chose gpt-oss-
120b as our comparator because, in tests against Kimi K2 and DeepSeek-R1-0528, it showed state-
of-the-art open-source performance and was more convenient to run with our available resources.

6 CONCLUSION

We conduct a detailed study of how various custom datasets influence training dynamics through
SFT and RL in the domain of chess. Our analysis highlights that training to predict the best move
directly produces strong downstream performance but comes with unfaithful reasoning. Instead,
training on multi-move trajectories delivers similar performance with faithful reasoning. We find
that RL leads to fewer hallucinations and a substantial positive shift in move quality, and we see
that several SFT-checkpoint metrics (both qualitative and quantitative) are predictive of final RL
performance. We publish all code and data, as well as scaled SFT-checkpoints and RL models.
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A BOARD FORMAT

We tested various board representation formats – the three formats shown in Figure 8 had similar
initial evaluation performance on a baseline Qwen2.5 model. However, upon qualitative analysis
Visual (ASCII) format was ultimately chosen. Additional rationale and comments on each are listed
below:

• FEN: The tokenizer combines specific characters (e.g., \n, RK, PPP) and this may limit general-
ization. Additionally, uneven tokenization across rows may hinder spatial understanding.

• Spaced FEN: While this format resolves combined character issues, there is an inconsistent rep-
resentation of spaces – ’ 2’ is two tokens while ’ p’ is one token. This may present issues in
downstream spatial understanding.

• Visual (ASCII): Ultimately chosen because it alleviates concerns mentioned in Spaced FEN.

Note: We recommend that future practitioners alter the Visual (ASCII) format. Qwen-series (2 and
3) and Llama-series (3 and 4) tokenizers treat ’ .\n’ as a single token with ’ p\n’ as two tokens
– this can be fixed by including a space before each newline. This inconsistency was discovered late
in training and thus not integrated into our project. We include an updated uniform_visual
board format in our released code that improves upon Visual (ASCII).

Figure 8: Visualized tokenization of three candidate board formats using the Qwen2.5 tokenizer.
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B EVALUATION SAMPLES

Figure 9 contains an example of each evaluation type for the displayed board.

Figure 9: Example questions for each evaluation task on the same board. Note that in actual prompts
(omitted in the figure) we include information related to the required format for valid parsing.
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C DATASET TYPES AND SAMPLES

We now outline more detail on the format and creation of our datasets.

For General Text Alignment, we use samples from the Magpie (Xu et al., 2024) Llama 3.3 70B
dataset as a means of regularization. Given that a significant portion of the SFT data is dense in chess
notation, we felt it valuable to maintain the instruction-following abilities of our trained model to
prevent performance collapse.

Our Rejection Sampling data comprises of four separate tasks, Best Move, Worst Move,
Predict Move, and Legal Moves. We chose to use Llama 4 Maverick to generate synthetic
rejection-sampled data as it offered strong performance, was efficient to run on our hardware, and
offered more natural-sounding reasoning compared to other reasoning models. Our motivation for
this dataset was to instill correct reasoning format and bake in ability from the teacher model given
Qwen2.5 7B-Instruct had incredibly poor base performance. This motivation follows Yuan et al.
(2023) which found rejection sampling fine-tuning to be highly effective for improving weaker mod-
els.

For each evaluation set, we sampled outputs from Llama 4 Maverick (Meta AI, 2025) – retaining
answers that were correct on Best Move and Worst Move and keeping outputs on Predict
Move and Legal Moves if the answers met a threshold. This data was further sampled to ensure a
desirable distribution regarding move count and piece types, as rejection sampling inherently shifts
the distribution towards board states that the data-generating model performs well on.

Figure 10: A Rejection Sampling example. The full response in the sample is shortened for space.
Note that a drawback of this dataset is that it is prone to hallucinations as is shown in the provided
sample.

To construct our Guided Synthetic data, we generate synthetic data by using a sufficiently strong
teacher model to verbalize outcomes of a move. A teacher model (Llama 4 Maverick or OpenAI
gpt-oss-120b) is provided with a beginning board state, line of up to 5 total plies (where all plies
following the first move are the top suggested chess-engine move), and an ending board state. The
model is tasked with verbalizing the merit of the proposed ply – first providing logic then a verdict
on the candidate move’s quality (given how the board would develop).

In the MDP setting, this can be interpreted as verbalizing n-step bootstrapping (Sutton & Barto,
2018) with n = 3 (given 5 plies yields 3 player actions). This is due to a verbalized transition
function in the logic (outlining how the board will develop – T (st, at) ) combined with a verbal-
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ized value function (V (st)) in the verdict. The intention of the harness is multifaceted – ideally
it should reduce hallucination rate while also guiding the model to generate this verbalized n-step
bootstrapping format with meaningful rationales and verdicts.

Figure 11: Sample of the Guided Synthetic data. Note that while the teacher model is provided with
a line and centipawn difference, the teacher model is still prone to hallucination (it cites a material
imbalance – this is not true). Additionally, despite prompting the teacher to use UCI notation, many
examples still use SAN due to teacher model bias.

The Verbalized Alpha-Beta Pruning dataset is an entirely programmatically generated dataset built
on top of Stockfish. This utilizes a program that does the following:

• For a given board, apply softmax with temperature sampling to choose initial move candidates
(based on Stockfish move valuations).

• For each candidate, recursively build a tree that employs a similar softmax-based sampling algo-
rithm.

• The recursion ends when a depth limit is reached, a max number of nodes are explored for this
move, or a move is "written off" (below a quality threshold compared to other lines).

• Upon creation of the full move tree, each tree is verbalized using a separate algorithm that samples
phrases from a large prompt bank to retain language diversity.

• The final winner (chosen via a minimax-based decision) is verbalized and used as the final answer.

We chose to include board valuations as well as minimax scores at decision nodes to instill a sort of
value function (V (st)) in the model. Note that this value function is the absolute centipawn score
– not a delta; we chose this to allow for verbalized minimax decision making. Further we instill
several tree search strategies into the structure of the data – for example branching search, pruning,
and minimax decision making.

The Factual Board Answering dataset generates multiple simple question-answer pairs about board
states and combines them to ask multiple questions about the same board. Questions can ask about
the legality of a proposed move, the location of pieces, whether or not a player is in check, the
number of total legal moves available, and attacking piece information.

This dataset has the intention of training a model to explicitly learn piece and board dynamics in
its latent space, with the hope that this latent ability will translate to downstream reasoning perfor-
mance.
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Figure 12: Sample of Verbalized Alpha-Beta Pruning. This sample highlights branching, minimax
decision making, and an instance of pruning.

Figure 13: Sample of the Factual Board Answering dataset.

The Best Move dataset asks the model to, given a board state, predict the best move directly with
no chain of thought. This can be interpreted as learning a policy function (πθ(at|st)) via behavior
cloning where the best move is suggested by a chess engine. One drawback of training on this data
is that it can lead to very slow fine-tuning given each sample has 4 trainable tokens.

Our final dataset – Best Line – is similar to Best Move except this asks to provide the line of optimal
play (between 4 and 6 plies, chosen randomly to avoid a rigid structure), ending with a final estimate
of the centipawn delta from this line. This is similar to Guided Synthetic and can be interpreted as
verbalized n-step bootstrapping with n = 2 or 3 dependent on the number of total plies.
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Our intent is that this will instill a form of a world model through learning both transition dynamics
and a value function. It can also be viewed as an extension of Best Move that condenses multiple op-
timal move data-points into a single sample – this is beneficial from a training efficiency perspective
as well.

Figure 14: Samples of Best Line and Best Move.
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D DATA INCLUSION ANALYSES

First, we outline the various data inclusion analyses we ran. The purpose was to understand which
datasets were most effective to inform our final scaled experiments – see Appendix C for detail and
examples for each dataset. Figure 15 outlines our experiments, including the token distributions for
each dataset used in SFT. Our results (SFT and RL) on each data mix are included in Tables 1 and 2.

Figure 15: Distribution of tokens used in each experiment. Token numbers are shown in millions;
we sampled our data to match this distribution, though there may be immaterial variations for actual
token counts used. We include tags (e.g., [VABP]) for mnemonic reference. Note that with the
Rejection Sampling (All Evals) [RSA] dataset, we allocate 50% of tokens to the Predict Move task
and sample the remainder from the other evaluation tasks. SFT8 + SFT9 XL was trained by
taking the SFT8 XL model checkpoint and training on the SFT9 XL dataset.
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Table 1: Results are shown for the Predict Move evaluation on 400 samples. Predict Move
Average Rank is the average normalized rank (with 0 being the worst move and 1 being the best
move per Stockfish) of the legal moves provided in this task.

Experiment
Name

SFT
Train

Tokens

RLa

Samples

Pred. Move
% Legal ↑

Pred. Move
Avg. Rank ↑

% Trivialb
Moves ↓

SFT RL SFT RL SFT RL
Baselines
Qwen2.5
7B-Instruct

– – 8% 0.56 6%

Llama 4
Maverick

– – 42% 0.62 1%

gpt-oss-120b
(Medium)

– – 94% 0.66 2%

Inclusion Experiments
SFT1 [RSPM] 15M 8ka 34% 82% 0.63 0.52 4% 55%
SFT2 [RSA] 15M 8k 37% 73% 0.63 0.60 5% 48%
SFT3 [VABP] 15M 8k 40% 67% 0.61 0.53 3% 46%
SFT4 [FBA] 15M 8k 44% 72% 0.59 0.54 3% 40%
SFT5 [GS] 15M 8k 36% 71% 0.60 0.54 3% 42%
SFT6 [BM] 15M 8k 44% 93% 0.64 0.71 4% 31%
SFT7 [BL] 15M 8k 48% 85% 0.62 0.63 2% 64%
SFT8 [BM - All] 15M 8k 60% 90% 0.60 0.71 3% 14%
SFT9 [BL - All] 15M 8k 51% 89% 0.60 0.64 7% 32%
Scaled Runs
SFT8 XL 60M 16k 55% 98% 0.62 0.82 3% 12%
SFT9 XL 60M 16k 52% 93% 0.60 0.75 3% 25%
SFT8 + SFT9 XLc 120M 16k 54% 98% 0.58 0.83 2% 22%

a All experiments used equal portions of the four evaluation types for RL except SFT1 which trained on 8k
samples of only Predict Move.

b "Trivial Moves" consist of edge pawn moves (e.g., a2a4, a2a3) or king/rook wiggles (e.g., a1b1, b1a1).
These were chosen based on identified reward hacking behaviors.

c For this run we trained the SFT8 XL checkpoint with the SFT9 XL dataset.
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Table 2: See Figure 15 for detail on the data included in each inclusion experiment and Table 1 for
performance on the Predict Move task. Each evaluation shown is based on 400 unique samples
for each task. The Legal Moves task asks the model to produce a list of legal moves given a target
piece – the score is measured as intersection over union (IoU) vs. ground truth. Best Move and
Worst Move ask the model to, given a list of 5 moves, choose the best (or worst, respectively) move
of the list – the incorrect candidates are sampled such that they are beyond a sufficient threshold of
difference per Stockfish. See Appendix B for examples of each task.

Experiment
Name

Legal Moves
IoU ↑

Best Move
Acc. ↑

Worst Move
Acc. ↑

Ref’d Move
Acc.a ↑

Avg. Reas.
Qualityb↑

SFT RL SFT RL SFT RL SFT RL SFT RL
Baselines
Qwen2.5
7B-Instruct

0.26 19% 21% 12% 6.4

Llama 4
Maverick

0.43 27% 31% 38% 6.6

gpt-oss-120b
(Medium)

0.96 57% 79% 70% 7.0

Inclusion Experiments
SFT1 [RSPM] 0.26 0.17 23% 19% 25% 23% 33% 76% 5.4 4.7
SFT2 [RSA] 0.37 0.44 29% 34% 30% 48% 35% 57% 5.3 4.2
SFT3 [VABP] 0.41 0.58 25% 35% 30% 48% 34% 45% 5.3 2.3
SFT4 [FBA] 0.49 0.58 26% 36% 30% 51% 39% 63% 5.0 4.0
SFT5 [GS] 0.37 0.57 30% 35% 29% 54% 35% 52% 5.3 6.1
SFT6 [BM] 0.42 0.66 29% 37% 32% 45% 41% 86% 5.3 2.2
SFT7 [BL] 0.46 0.63 25% 28% 32% 51% 38% 68% 5.0 2.4
SFT8 [BM - All] 0.44 0.67 31% 41% 34% 55% 53% 80% 5.7 2.9
SFT9 [BL - All] 0.40 0.59 29% 38% 28% 53% 44% 80% 5.6 3.5
Scaled Runs
SFT8 XL 0.46 0.79 29% 60% 33% 58% 48% 83% 5.7 2.2
SFT9 XL 0.47 0.75 28% 57% 33% 62% 48% 88% 5.7 5.3
SFT8 + SFT9 XL 0.52 0.87 31% 62% 31% 64% 47% 90% 5.8 5.3

a Referenced Move Accuracy is measured by using Llama 4 Maverick to parse reasoning outputs and create
a list of all moves that are mentioned by the model during the reasoning trace. These moves are then run
through a chess engine to determine what percent are legal as a measure of reasoning factuality. Appendix
E has further detail on measuring hallucinations.

b Average Reasoning Quality is measured by using gpt-oss-120b as a judge and is the simple average of
scores provided for Reasoning Efficacy, Reasoning Efficiency, and Reasoning Faithfulness. Further detail
is provided in Appendix G on measuring reasoning quality.
Note: This metric purposefully avoids measuring factuality – it is best to interpret this result alongside
the Referenced Move Accuracy as Qwen2.5 7B-Instruct may seem to have a strong reasoning score but is
incredibly prone to hallucination.
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E HALLUCINATIONS

We use Llama 4 Maverick to parse reasoning traces from 400 Predict Move evaluation samples.
For each sample, the parsing generates two lists:

• Moves: This is a list of all moves referenced by the model in its reasoning trace played by the
player.

• Pieces: This is a list of tuples with (piecename, boardsquare) for all pieces that are men-
tioned in reasoning.

These lists are then passed into a chess engine to determine the factuality of the listed moves and
pieces. Mean Total Reasoning Accuracy is computed as the sum of correct moves and correct pieces
divided by the total number of provided moves and pieces – hallucination rate can simply be com-
puted with (1−Accuracy).

Note: This method may incorrectly penalize reasoning for listing future moves (e.g., play a2a4
followed by a4a5) or legal moves that the opponent may play. However, in review we found these to
be rare in occurrence.

Figure 16: Accuracy of tested models for both moves and pieces referenced in their reasoning traces.
Bars are overlaid directly on top of each other and stacking is not cumulative. Accuracy is computed
as the number of correct references divided by the total number of references. See Figure 15 for
detail on the data included in each experiment. Hatched lines are shown in cases where the SFT and
RL runs are within 2% of each other.
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F REASONING STRATEGIES

Figure 17 highlights the usage of various reasoning strategies across tested models. We follow
from Gandhi et al. (2025) and Zeng et al. (2025), and we also include two other strategies in Self-
Correction (the model explicitly corrects something stated previously) and Tree Search. See Figure
15 for detail on the data included in each experiment.

Figure 17: Usage rate of reasoning strategies on 400 Predict Move tasks. Bars are overlaid
directly on top of each other and stacking is not cumulative. Reasoning strategies are parsed using
Llama 4 Scout and usage is measured as a binary flag for each evaluation sample. Hatched lines are
shown in cases where the SFT and RL runs are within 2% of each other.
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G REASONING QUALITY

To analyze reasoning quality, we employ LLM-as-a-judge (Zheng et al., 2023) using gpt-oss-120b.
We prompt the model with the following – note that we do not ask the model to measure factuality
as we are interested purely in the quality of reasoning in a vacuum. Please refer to Appendix E for
detail on hallucination rates and see Figure 15 for detail on the data included in each experiment.

Figure 18: Reasoning quality scores on 400 Predict Move tasks. Bars are overlaid directly on
top of each other and stacking is not cumulative. Reasoning quality is scored by gpt-oss-120b and
scores are provided from 1 to 10. The Mean Reasoning Quality (Total) score is a simple average over
the three subcategories. Hatched lines are shown in cases where the SFT and RL runs are within 2%
of each other.

Additionally, we provide an example of unfaithful reasoning that earns a 1 out of 10 score on reason-
ing faithfulness. This sample is from our scaled Best Move - All final RL model.
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Figure 19: Example of unfaithful reasoning – given a score of 1 in reasoning faithfulness. Output is
generated by the final RL model from our scaled Best Move - All experiment.
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H SFT AND RL HYPERPARAMETERS

See Tables 3 and 4 for training hyperparameters.

All experiments were run on Nvidia A100 or H100 chips. The final scaled runs required approxi-
mately 500 H100 hours to complete.

Table 3: SFT training hyperparameters.

Parameter Value

Training engine LlamaFactory (Zheng et al., 2024)
Fine-tuning type Full SFT
LR scheduler Cosine
Precision BF16
Optimizer AdamW (Loshchilov & Hutter, 2019)
Learning rate 3× 10−6

Warmup ratio 0.1
Train batch size 64
Training data (tokens × epochs) 7.5mm× 2 (inclusion tests)

60mm× 1 (scaled runs)

Table 4: RL training hyperparameters.

Parameter Value

Training engine veRL (Sheng et al., 2025)
Objective Dr. GRPO (Liu et al., 2025)
Learning rate 1× 10−6

Train batch size 64
Max response length 3, 000 tokens
Actor clip ratio (low/high) 0.20 / 0.28 (Yu et al., 2025)
Use KL loss False (off)
Rollouts per sample 8
Entropy coefficient 0 (off)
Number of samples 8, 192 unique samples (inclusion tests)

16, 384 unique samples (scaled runs)
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